Bureau of Economic Geology


Peer-Reviewed Publications - 2021

Other Years: 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000

BEG Peer-reviewed Papers

Abdelaal, M., Zeidouni, M., and Duncan, I. J., 2021, Effects of injection well operation conditions on CO2 storage capacity in deep saline aquifers: Greenhouse Gases: Science and Technology, v. 11, no. 4, p. 734–749, http://doi.org/10.1002/ghg.2076.

Alam, S., Gebremichael, M., Ban, Z., Scanlon, B. R., Senay, G., and Lettenmaier, D. P., 2021, Post-drought groundwater storage recovery in California's Central Valley: Water Resources Research, v. 57, no. e2021WR030352, 21 p., http://doi.org/10.1029/2021wr030352.

Bakhshian, S., 2021, Dynamics of dissolution trapping in geological carbon storage: International Journal of Greenhouse Gas Control, v. 112, no. 103520, 10 p., http://doi.org/10.1016/j.ijggc.2021.103520.

Bakhshian, S., and Romanak, K., 2021, DeepSense: a physics-guided deep learning paradigm for anomaly detection in soil gas data at geologic CO2 storage sites: Environmental Science and Technology, v. 55, no. 22, p. 15531–15541, http://doi.org/10.1021/acs.est.1c04048.

Bakhshian, S., Rabbani, H. S., and Shokri, N., 2021, Physics-driven investigation of wettability effects on two-phase flow in natural porous media: recent advances, new insights, and future perspectives: Transport in Porous Media, v. 140, p. 85–106, http://doi.org/10.1007/s11242-021-01597-z.

Bhattacharya, S., 2021, A primer on machine learning in subsurface geosciences: Cham, Switzerland, Springer Nature, SpringerBriefs in Petroleum Geoscience & Engineering, 182 p., ISBN 978-3-030-71767-4, http://doi.org/10.1007/978-3-030-71768-1.

Blackford, J., Romanak, K. D., Huvenne, V. A. I., Lichtschlag, A., Strong, J. A., Alendal, G., Schütz, S. E., Oleynik, A., and Dankel, D. J., 2021, Efficient marine environmental characterisation to support monitoring of geological CO2 storage: International Journal of Greenhouse Gas Control, v. 109, no. 103388, 16 p., http://doi.org/10.1016/j.ijggc.2021.103388.

Bump, A. P., Hovorka, S. D., and Meckel, T. A., 2021, Common risk segment mapping: streamlining exploration for carbon storage sites, with application to coastal Texas and Louisiana: International Journal of Greenhouse Gas Control, v. 111, no. 103457, 13 p., http://doi.org/10.1016/j.ijggc.2021.103457.

Chen, H., Zhang, C., Jia, N., Duncan, I., Yang, S., and Yang, Y. Z., 2021, A machine learning model for predicting the minimum miscibility pressure of CO2 and crude oil system based on a support vector machine algorithm approach: Fuel, v. 290, no. 120048, 13 p., http://doi.org/10.1016/j.fuel.2020.120048.

Chen, Y., and Fomel, S., 2021, Nonstationary local signal-and-noise orthogonalization: Geophysics, v. 86, no. 5, p. V409–V418, http://doi.org/10.1190/geo2020-0151.1.

Chen, Y., Fomel, S., Wang, H., and Zu, S., 2021, 5D dealiased seismic data interpolation using nonstationary prediction-error filter: Geophysics, v. 86, no. 5, p. V419–V429, http://doi.org/10.1190/geo2020-0540.1.

Chen, Y., Saad, O. M., Bai, M., Liu, X., and Fomel, S., 2021, A compact program for 3D passive seismic source‐location imaging: Seismological Research Letters, v. 92, no. 5, p. 3187–3201, http://doi.org/10.1785/0220210050.

Covault, J. A., Sylvester, Z., Ceyhan, C., and Dunlap, D. B., 2021, Giant meandering channel evolution, Campos deep-water salt basin, Brazil: Geosphere, v. 17, no. 6, p. 1869–1889, http://doi.org/10.1130/GES02420.1.

Dashtian, H., and Bakhshian, S., 2021, Effects of salinity and shear stress on clay deformation: a molecular dynamics study: The Journal of Chemical Physics, v. 155, no. 134304, 11 p., http://doi.org/10.1063/5.0062919.

Davletshin, A., Ko, L. T., Milliken, K., Periwal, P., Wang, C.-C., and Song, W., 2021, Detection of framboidal pyrite size distributions using convolutional neural networks: Marine and Petroleum Geology, v. 132, no. 105159, 11 p., http://doi.org/10.1016/j.marpetgeo.2021.105159.

Decker, L., and Fomel, S., 2021, A probabilistic approach to seismic diffraction imaging: Lithosphere, v. 2021, no. 1, article no. 6650633, 23 p., http://doi.org/10.2113/2021/6650633.

Duffy, O. B., Dooley, T. P., Hudec, M. R., Fernandez, N., Jackson, C. A.-L., and Soto, J. I., 2021, Principles of shortening in salt basins containing isolated minibasins: Basin Research, v. 33, no. 3, p. 2089–2117, http://doi.org/10.1111/bre.12550.

Ershadnia, R., Hajirezaie, S., Amooie, A., Wallace, C. D., Gershenzon, N. I., Hosseini, S. A., Sturmer, D. M., Ritzi, R. W., and Soltanian, M. R., 2021, CO2 geological sequestration in multiscale heterogeneous aquifers: effects of heterogeneity, connectivity, impurity, and hysteresis: Advances in Water Resources, v. 151, no. 103895, 16 p., http://doi.org/10.1016/j.advwatres.2021.103895.

Ershadnia, R., Wallace, C. D., Hosseini, S. A., Dai, Z., and Soltanian, M. R., 2021, Capillary heterogeneity linked to methane lateral migration in shallow unconfined aquifers: Geophysical Research Letters, v. 48, no. 23, article no. e2021GL095685, 12 p., http://doi.org/10.1029/2021GL095685.

Ettinger, N. P., Larson, T. E., Kerans, C., Thibodeau, A. M., Hattori, K. E., Kacur, S. M., and Martindale, R. C., 2021, Ocean acidification and photic‐zone anoxia at the Toarcian Oceanic Anoxic Event: insights from the Adriatic Carbonate Platform: Sedimentology, v. 68, no. 1, p. 63–107, http://doi.org/10.1111/sed.12786.

Fakhreddine, S., Prommer, H., Scanlon, B. R., Ying, S. C., and Nicot, J.-P., 2021, Mobilization of arsenic and other naturally occurring contaminants during managed aquifer recharge: a critical review: Environmental Science & Technology, v. 55, no. 4, p. 2208–2223, http://doi.org/10.1021/acs.est.0c07492.

Feng, D., Bakhshian, S., Wu, K., Song, Z., Ren, B., Li, J., Hosseini, S. A., and Li, X., 2021, Wettability effects on phase behavior and interfacial tension in shale nanopores: Fuel, v. 290, no. 119983, 17 p., http://doi.org/10.1016/j.fuel.2020.119983.

Fernandez, N., Duffy, O. B., Peel, F. J., and Hudec, M. R., 2021, Influence of minibasin obstruction on canopy dynamics in the northern Gulf of Mexico: Basin Research, v. 33, no. 1, p. 427–446, http://doi.org/10.1111/bre.12480.

Fildani, A., Kostic, S., Covault, J. A., Maier, K. L., Caress, D. W., and Paull, C. K., 2021, Exploring a new breadth of cyclic steps on distal submarine fans: Sedimentology, v. 68, no. 4, p. 1378–1399, http://doi.org/10.1111/sed.12803.

Fomel, S., and Kaur, H., 2021, Wave-equation time migration: Geophysics, v. 86, no. 1, p. s103–s111, http://doi.org/10.1190/geo2019-0822.1.

Gao, S., Nicot, J.-P., Hennings, P. H., La Pointe, P., Smye, K. M., Horne, E. A., and Dommisse, R., 2021, Low pressure buildup with large disposal volumes of oil field water: a flow model of the Ellenburger Group, Fort Worth Basin, northcentral Texas: AAPG Bulletin, v. 105, no. 12, p. 2575–2593, http://doi.org/10.1306/03252120159.

Gearon, J. H., and Young, M. H., 2021, Geomorphic controls on shrub canopy volume and spacing of creosote bush in northern Mojave Desert, USA: Landscape Ecology, v. 36, no. 2, p. 527–547, http://doi.org/10.1007/s10980-020-01149-8.

Gleeson, T., Wagener, T., Döll, P., Zipper, S. C., West, C., Wada, Y., Taylor, R., Scanlon, B. R., Rosolem, R., Rahman, S., and and 14 others, 2021, GMD perspective: the quest to improve the evaluation of groundwater representation in continental- to global-scale models: Geoscientific Model Development, v. 14, no. 12, p. 7545–7571, http://doi.org/10.5194/gmd-14-7545-2021.

Hattori, K. E., and Loucks, R. G., 2021, Cyclicity of carbonate shoaling sequences of the Lower Cretaceous Pettet Formation, Rusk County, East Texas: GCAGS Journal, v. 10, p. 31–46.

Heidari, M., Nikolinakou, M. A., Hudec, M. R., and Flemings, P. B., 2021, Impacts of vertical salt welding on pore pressure, stresses, and deformation near the weld: Marine and Petroleum Geology, v. 133, no. 105259, 18 p., http://doi.org/10.1016/j.marpetgeo.2021.105259.

Hennings, P., Dvory, N., Horne, E., Li, P., Savvaidis, A., and Zoback, M., 2021, Stability of the fault systems that host induced earthquakes in the Delaware Basin of West Texas and southeast New Mexico: The Seismic Record, v. 1, no. 2, p. 96–106, http://doi.org/10.1785/0320210020.

Hennings, P., Nicot, J.-P., Gao, R. S., DeShon, H. R., Lund Snee. J.-E., Morris, A. P., Brudzinski, M. R., Horne, E. A., and Breton, C., 2021, Pore pressure threshold and fault slip potential for induced earthquakes in the Dallas-Fort Worth area of north central Texas: Geophysical Research Letters, v. 48, no. 15, article no. e2021GL093564, 9 p., http://doi.org/10.1029/2021GL093564.

Horne, E. A., Hennings, P. H., and Zahm, C. K., 2021, Basement-rooted faults of the Delaware Basin and Central Basin Platform, Permian Basin, West Texas and southeastern New Mexico, in Callahan, O. A., and Eichhubl, P., eds., The Geologic basement of Texas: a volume in honor of Peter T. Flawn: Austin, Tex., The University of Texas at Austin, Bureau of Economic Geology, Report of Investigations, v. 286, 36 p., http://doi.org/10.23867/RI0286C6.

Horne, E. A., Hennings, P. H., and Zahm, C. K., 2021, Basement-rooted faults of the Delaware Basin and Central Basin Platform, Permian Basin, West Texas and southeastern New Mexico, in Callahan, O. A., and Eichhubl, P., eds., The geologic basement of Texas: a volume in honor of Peter T. Flawn: The University of Texas at Austin, Bureau of Economic Geology, v. 286, 36 p., http://doi.org/10.23867/RI0286C6.

Huang, G., Chen, X., Li, J., Luo, C., Wang, H., and Chen, Y., 2021, Pre-stack seismic inversion using a Rytov–WKBJ approximation: Geophysical Journal International, v. 227, no. 2, p. 1246–1267, http://doi.org/10.1093/gji/ggab281.

Huang, G., Chen, X., Li, J., Saad, O. M., Fomel, S., Luo, C., Wang, H., and Chen, Y., 2021, The slope-attribute-regularized high-resolution prestack seismic inversion: Surveys in Geophysics, v. 42, no. 3, p. 625–671, http://doi.org/10.1007/s10712-021-09636-6.

Hudec, M. R., and Soto, J. I., 2021, Piercement mechanisms for mobile shales: Basin Research, v. 33, no. 5, p. 2862–2882, http://doi.org/10.1111/bre.12586.

Hudec, M. R., Dooley, T. P., Burrel, L., Teixell, A., and Fernandez, N., 2021, An alternative model for the role of salt depositional configuration and preexisting salt structures in the evolution of the Southern Pyrenees, Spain: Journal of Structural Geology, v. 146, no. 104325, 16 p., http://doi.org/10.1016/j.jsg.2021.104325.

Kaur, H., Fomel, S., and Pham, N., 2021, A fast algorithm for elastic wave-mode separation using deep learning with generative adversarial networks (GANs) [In special issue, Machine Learning for Solid Earth Observation, Modeling, and Understanding.]: Journal of Geophysical Research: Solid Earth, v. 126, no. 9, article no. e2020JB021123, 29 p., http://doi.org/10.1029/2020JB021123.

Kaur, H., Pham, N., and Fomel, S., 2021, Seismic data interpolation using deep learning with generative adversarial networks: Geophysical Prospecting, v. 69, no. 2, p. 307–326, http://doi.org/10.1111/1365-2478.13055.

Lawton, T. F., Blakey, R. C., Stockli, D. F., and Liu, L., 2021, Late Paleozoic (Late Mississippian–Middle Permian) sediment provenance and dispersal in western equatorial Pangea: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 572, no. 110386, 35 p., http://doi.org/10.1016/j.palaeo.2021.110386.

Lawton, T., Giles, K., and Rowan, M., 2021, La Popa Basin, Nuevo León and Coahuila, Mexico: halokinetic sequences and diapiric structural kinematics in the field: Cham, Switzerland, Springer Nature, Springer Geology Field Guides, 98 p., http://doi.org/10.1007/978-3-030-79397-5.

Li, S., Zhu, H., Liang, J., Du, X., Wang, Q., Yao, T., and Zeng, H., 2021, Mixed siliciclastic-carbonate deposition and cyclical evolution of the Upper Shahejie Formation and its impact on reservoir development in the Eocene Huanghekou Sag, Bohai Bay Basin, East China: Interpretation, v. 9, no. 2, p. SC17–SC30, http://doi.org/10.1190/INT-2020-0171.1.

Li, Y., Zhang, T., Shen, B., Li, Z., Shao, D., and Lash, G. G., 2021, Carbon and sulfur isotope variations through the Upper Ordovician and Lower Silurian of South China linked to volcanism: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 567, no. 110285, 15 p., http://doi.org/10.1016/j.palaeo.2021.110285.

Lin, N., and Brooks, R. E., 2021, Global liquified natural gas trade under energy transition: Energies, v. 14, no. 6617, 30 p., http://doi.org/10.3390/en14206617.

Liu, L., Ambrose, W. A., Lawton, T. F., and Stockli, D. F., 2021, Tectonic controls on the evolution of mixed carbonate-siliciclastic systems: insights from the late Palaeozoic Ouachita-Marathon foreland, United States: Basin Research, v. 33, no. 4, p. 2281–2302, http://doi.org/10.1111/bre.12557.

Liu, M., Xu, X., Scanlon, B. R., Sun, A. Y., and Wang, K., 2021, A modified evaporation model indicates that the effects of air warming on global drying trends have been overestimated: Journal of Geophysical Research: Atmospheres, v. 126, no. e2021JD035153, 17 p., http://doi.org/10.1029/2021JD035153.

Liu, X., Tang, Q., Hosseini-Moghari, S.-M., Shi, X., Lo, M.-H., and Scanlon, B., 2021, GRACE satellites enable long-lead forecasts of mountain contributions to streamflow in the low-flow season: Remote Sensing, v. 13, no. 1993, 12 p., http://doi.org/10.3390/rs13101993.

Loucks, R. G., and Peng, S., 2021, Matrix reservoir quality of the Upper Cretaceous Austin Chalk Group and evaluation of reservoir-quality analysis methods; northern onshore gulf of Mexico, U.S.A.: Marine and Peroleum Geology, v. 134, no. 105323, 11 p., http://doi.org/10.1016/j.marpetgeo.2021.105323.

Loucks, R. G., Reed, R. M., Ko, L. T., Zahm, C. K., and Larson, T. E., 2021, Micropetrographic characterization of a siliciclastic-rich chalk; Upper Cretaceous Austin Chalk Group along the onshore northern Gulf of Mexico, USA: Sedimentary Geology, v. 412, no. 105821, 19 p., http://doi.org/10.1016/j.sedgeo.2020.105821.

Loucks, R. G., Zahm, C. K., Larson, T. E., Zahm, L. C., and Peng, S. [erroneously credited as "Peng Zeng"], 2021, Stratal architecture, lithofacies, environmental setting, depositional processes, and associated geological characteristics of the Upper Cretaceous Austin Chalk in Louisiana: GCAGS Journal, v. 10, p. 47–75.

MacDonald, A. M., Lark, R. M., Taylor, R. G., Abiye, T., Fallas, H. C., Favreau, G., Goni, I. B., Kebede, S., Scanlon, B. R., and Sorensen, J. P. R., 2021, Mapping groundwater recharge in Africa from ground observations and implications for water security: Environmental Research Letters, v. 16, no. 034012, 14 p., http://doi.org/10.1088/1748-9326/abd661.

Madugula, A. C. S., Sachde, D., Hovorka, S. D., Meckel, T. A., and Benson, T. J., 2021, Estimation of CO2 emissions from petroleum refineries based on the total operable capacity for carbon capture applications: Chemical Engineering Journal Advances, v. 8, no. 100162, 9 p., http://doi.org/10.1016/j.ceja.2021.100162.

Madugula, A. C. S., Sachde, D., Hovorka, S. D., Meckel, T. A., and Benson, T. J., 2021, Estimation of CO₂ emissions from petroleum refineries based on the total operable capacity for carbon capture applications: Chemical Engineering Journal Advances, v. 8, no. 100162, 9 p., http://doi.org/10.1016/j.ceja.2021.100162.

Meckel, T. A., Bump, A. P., Hovorka, S. D., and Treviño, R. H., 2021, Carbon capture, utilization, and storage hub development on the Gulf Coast: Greenhouse Gases: Science and Technology, v. 11, no. 4, p. 619–632, http://doi.org/10.1002/ghg.2082.

Mehrnegar, N., Jones, O., Singer, M. B., Maike Schumacher, Jagdhuber, T., Scanlon, B. R., Rateb, A., and Forootan, E., 2021, Exploring groundwater and soil water storage changes across the CONUS at 12.5 km resolution by a Bayesian integration of GRACE data into W3RA: Science of The Total Environment, v. 758, no. 143579, 16 p., http://doi.org/10.1016/j.scitotenv.2020.143579.

Milliken, K. L., Zhang, T., Chen, J., and Ni, Y., 2021, Mineral diagenetic control of expulsion efficiency in organic-rich mudrocks, Bakken Formation (Devonian-Mississippian), Williston Basin, North Dakota, U.S.A.: Marine and Petroleum Geology, v. 127, no. 104869, 24 p., http://doi.org/10.1016/j.marpetgeo.2020.104869.

Morris, A. P., Hennings, P. H., Horne, E. A., and Smye, K. M., 2021, Stability of basement-rooted faults in the Delaware Basin of Texas and New Mexico, USA: Journal of Structural Geology, v. 149, no. 104360, 18 p., http://doi.org/10.1016/j.jsg.2021.104360.

Ni, H., and Meckel, T. A., 2021, Characterizing the effect of capillary heterogeneity on multiphase flow pulsation in an intermediate-scale beadpack experiment using time series clustering and frequency analysis: Water Resources Research, v. 57, no. 11, article no. e2021WR030876, 17 p., http://doi.org/10.1029/2021WR030876.

Ni, H., Møyner, O., Kurtev, K. D., and Benson, S. M., 2021, Quantifying CO2 capillary heterogeneity trapping through macroscopic percolation simulation: Advances in Water Resources, v. 155, no. 103990, 17 p., http://doi.org/10.1016/j.advwatres.2021.103990.

Nicot, J.-P., 2021, Hydrogeology of the Texas basement, in Callahan, O. A., and Eichhubl, P., eds., The geologic basement of Texas: a volume in honor of Peter T. Flawn: The University of Texas at Austin, Bureau of Economic Geology, Report of Investigations, v. 286, 13 p., http://doi.org/10.23867/RI0286C5.

Nikolinakou, M. A., and Whittle, A. J., 2021, Constitutive model of structural alteration and swelling behavior for Old Alluvium: Engineering Geology, v. 293, no. 106307, 16 p., http://doi.org/10.1016/j.enggeo.2021.106307.

Oboué, Y. A. S. I., and Chen, Y., 2021, Enhanced low-rank matrix estimation for simultaneous denoising and reconstruction of 5D seismic data: Geophysics, v. 86, no. 5, p. V459–V470, http://doi.org/10.1190/GEO2020-0773.1.

Ogiesoba, O. C., and Ambrose, W. A., 2021, A systematic approach to identifying hydrocarbon sweet spots using integrated seismic multiattribute, wireline-log, and core analyses: case study from the Upper Cretaceous Taylor Serbin field, southeast Texas: The University of Texas at Austin, Bureau of Economic Geology, Report of Investigations, v. 287, 76 p., http://doi.org/10.23867/RI0287D.

Olariu, C., Zhou, C., Steel, R., Zhang, Z., Yuan, X., Zhang, J., Chen, S., Cheng, D., and Kim, W., 2021, Controls on the stratal architecture of lacustrine delta successions in low‐accommodation conditions: Sedimentology, v. 68, no. 5, p. 1941–1963, http://doi.org/10.1111/sed.12838.

Olson, T., and Milliken, K. L., 2021, Petrographic imaging methods for characterizing mudstone reservoirs, in Sorkhabi, R. (ed.), Encyclopedia of petroleum geoscience: Springer Nature Switzerland, Encyclopedia of Earth Sciences series, 29 p., http://doi.org/10.1007/978-3-319-02330-4_309-1.

Paine, J. G., Costard, L., Andrews, J., Averett, A., Saylam, K., and Hupp, J., 2021, Determining annual to decadal subsidence areas and rates using airborne lidar, GPS surveys, and topographic maps at the Wink sinkholes, West Texas, in Johnson, K. S., Land, L., and Decker, D. D., eds., Evaporite karst in the Greater Permian Evaporite Basin (GPEB) of Texas, New Mexico, Oklahoma, Kansas, and Colorado: Norman, Oklahoma, Oklahoma Geological Survey, Circular, v. 113, p. 93-103.

Pantaleone, S., and Bhattacharya, S., 2021, Hydrologic and geomechanical characterization of the deep sedimentary rocks and basement for safe carbon sequestration in the Cook Inlet Basin, Alaska: International Journal of Greenhouse Gas Control, v. 106, no. 103243, 10 p., http://doi.org/10.1016/j.ijggc.2020.103243.

Peng, J., Fu, Q., Larson, T. E., and Janson, X., 2021, Trace-elemental and petrographic constraints on the severity of hydrographic restriction in the silled Midland Basin during the late Paleozoic ice age: Geological Society of America Bulletin, v. 133, no. 1-2, p. 57–73, http://doi.org/10.1130/B35336.1.

Peng, S., 2021, Advanced understanding of gas flow and the Klinkenberg effect in nanoporous rocks: Journal of Petroleum Science and Engineering, v. 206, no. 109047, 14 p., http://doi.org/10.1016/j.petrol.2021.109047.

Peng, S., Shevchenko, P., Periwal, P., and Reed, R. M., 2021, Water-oil displacement in shale: new insights from a comparative study integrating imbibition tests and multiscale imaging: Society of Petroleum Engineers Journal, v. 26, no. 5, paper no. SPE-205515-PA, p. 3285–3299, http://doi.org/10.2118/205515-PA.

Pham, N., and Fomel, S., 2021, Uncertainty and interpretability analysis of encoder-decoder architecture for channel detection: Geophysics, v. 86, no. 4, p. O49–O58, http://doi.org/10.1190/geo2020-0409.1.

Prieto, M. I., Moscardelli, L., and Wood, L., 2021, Deepwater sedimentary bedforms in a mobile substrate terrain: examples from the central Gulf of Mexico Basin: Interpretation, v. 9, no. 2, p. SB33–SB48, http://doi.org/10.1190/int-2020-0128.1.

Ramirez, S. G., Hayman, N. W., Gulick, S. P. S., Milliken, K. L., Stockli, D. F., and Masago, H., 2021, Sediment provenance, routing and tectonic linkages in the Nankai forearc region, Japan: Basin Research, v. 33, no. 6, p. 3231–3255, http://doi.org/10.1111/bre.12601.

Rateb, A., Scanlon, B. R., and Kuo, C.-Y., 2021, Multi-decadal assessment of water budget and hydrological extremes in the Tigris-Euphrates Basin using satellites, modeling, and in-situ data: Science of The Total Environment, v. 76, no. 144337, 11 p., http://doi.org/10.1016/j.scitotenv.2020.144337.

Ren, B., and Duncan, I. J., 2021, Maximizing oil production from water alternating gas (CO2) injection into residual oil zones: the impact of oil saturation and heterogeneity: Energy, v. 222, no. 119915, 13 p., http://doi.org/10.1016/j.energy.2021.119915.

Ren, G., Ren, B., Li, S., and Zhang, C., 2021, Unlock the potentials to further improve CO2 storage and utilization with supercritical CO2 emulsions when applying CO2-philic surfactants: Sustainable Chemistry, v. 2, no. 1, p. 127–148, http://doi.org/10.3390/suschem2010009.

Romanak, K. D., Fridahl, M., and Dixon, T., 2021, Attitudes on carbon capture and storage (CCS) as a mitigation technology within the UNFCCC: Energies, v. 14, no. 3, article no. 629, 16 p., http://doi.org/10.3390/en14030629.

Saad, O. M., Bai, M., and Chen, Y., 2021, Uncovering the microseismic signals from noisy data for high-fidelity 3D source-location imaging using deep learning: Geophysics, v. 86, no. 6, p. KS161–KS173, http://doi.org/10.1190/GEO2021-0021.1.

Saad, O. M., Huang, G., Chen, Yufeng, Savvaidis, A., Fomel, S., Pham, N., and Chen, Yangkang, 2021, SCALODEEP: a highly generalized deep learning framework for real‐time earthquake detection: Journal of Geophysical Research: Solid Earth, special issue on machine learning for solid earth observation, modeling, and understanding, v. 126, no. 4, article no. e2020JB021473, 18 p., http://doi.org/10.1029/2020JB021473.

Scanlon, B. R., Rateb, A., Pool, D. R., Sanford, W., Save, H., Sun, A., Long, D., and Fuchs, B., 2021, Effects of climate and irrigation on GRACE-based estimates of water storage changes in major US aquifers: Environmental Research Letters, v. 16, no. 9, 14 p., http://doi.org/10.1088/1748-9326/ac16ff.

Senger, K., Betlem, P., Birchall, T., Buckley, S. J., Coakley, B., Eide, C. H., Flaig, P. P., Forien, M., Galland, O., Gonzaga, L., Jr., and and 13 others, 2021, Using digital outcrops to make the high Arctic more accessible through the Svalbox database: Journal of Geoscience Education, v. 69, no. 2, p. 123–137, http://doi.org/10.1080/10899995.2020.1813865.

Sharman, G. R., Covault, J. A., Stockli, D. F., Sickmann, Z. T., Malkowski, M. A., and Johnstone, S. A., 2021, Detrital signals of coastal erosion and fluvial sediment supply during glacio-eustatic sea-level rise, Southern California, USA: Geology, v. 49, no. 12, p. 1501–1505, http://doi.org/10.1130/G49430.1.

Shi, Y., Wu, X., and Fomel, S., 2021, Interactively tracking seismic geobodies with a deep-learning flood-filling network: Geophysics, v. 86, no. 1, p. A1–A5, http://doi.org/10.1190/geo2020-0042.1.

Shokouhi, P., Kumar, V., Prathipati, S., Hosseini, S. A., Giles, C. L., and Kifer, D., 2021, Physics-informed deep learning for prediction of CO2 storage site response: Journal of Contaminant Hydrology, v. 241, no. 103835, 13 p., http://doi.org/10.1016/j.jconhyd.2021.103835.

Shuster, M. W., Zahm, C. K., and Hennings, P. H., 2021, Oil and gas in fractured crystalline igneous and metamorphic rocks: global overview and examples from Texas, in Callahan, O. A., and Eichhubl, P., eds., The geologic basement of Texas: a volume in honor of Peter T. Flawn: Austin, Tex., The University of Texas at Austin, Bureau of Economic Geology, Report of Investigations, v. 286, 68 p., http://doi.org/10.23867/RI0286C3.

Smye, K. M., Hennings, P. H., and Horne, E. A., 2021, Variations in vertical stress in the Permian Basin region: AAPG Bulletin, v. 105, no. 10, p. 1893–1907, http://doi.org/10.1306/10092019189.

Smye, K., Banerji, D. A., Eastwood, R., McDaid, G., and Hennings, P., 2021, Lithology and reservoir properties of the Delaware Mountain Group of the Delaware Basin and implications for saltwater disposal and induced seismicity: Journal of Sedimentary Research, v. 91, no. 11, p. 1113–1132, http://doi.org/10.2110/jsr.2020.134.

Song, L., Bhattacharya, S., Webb, Z., Fowler, A., and Lee, V., 2021, Preservation of organic carbon in the Cretaceous Hue Shale on the North Slope of Alaska: insights from pyrite morphology: International Journal of Coal Geology, v. 235, no. 103678, 11 p., http://doi.org/10.1016/j.coal.2021.103678.

Soto, J. I., Heidari, M., and Hudec, M. R., 2021, Proposal for a mechanical model of mobile shales: Scientific Reports, v. 11, no. 23785, 11 p., http://doi.org/10.1038/s41598-021-02868-x.

Soto, J. I., Hudec, M. R., Mondol, N. H., and Heidari, M., 2021, Shale transformations and physical properties—implications for seismic expression of mobile shales: Earth-Science Reviews, v. 220, no. 103746, 23 p., http://doi.org/10.1016/j.earscirev.2021.103746.

Soto, J. I., Hudec, M. R., Mondol, N. H., and Heidari, M., 2021, Shale transformations and physical properties—implications for seismic expression of mobile shales: Earth-Science Reviews, v. 220, no. 103746, 23 p., http://doi.org/10.1016/j.earscirev.2021.103746.

Soto-Kerans, P., Loucks, R. G., and Kerans, C., 2021, Deeper-water deposition in intrashelf basins: example from the Lower Cretaceous (Albian) upper Glen Rose Formation in the Houston trough, eastern Texas: AAPG Bulletin, v. 105, no. 7, p. 1405–1434, http://doi.org/10.1306/12222019055.

Spruženiece, L., Späth, M., Urai, J. L., Ukar, E., Selzer, M., and Nestler, B., 2021, Wide-blocky veins explained by dependency of crystal growth rate on fracture surface type: insights from phase-field modeling: Geology, v. 49, no. 6, p. 641–646, http://doi.org/10.1130/G48472.1.

Spruženiece, L., Späth, M., Urai, J. L., Ukar, E., Selzer, M., Nestler, B., and Schwedt, A., 2021, Formation of wide-blocky calcite veins by extreme growth competition: Journal of the Geological Society, v. 178, no. 2, article no. jgs2020-104, 17 p., http://doi.org/10.1144/jgs2020-104.

Sun, A. Y., Jiang, P., Mudunuru, M. K., and Chen, X., 2021, Explore spatio-temporal learning of large sample hydrology using graph neural networks: Water Resources Research, v. 57, no. e2021WR030394, 23 p., http://doi.org/10.1029/2021WR030394.

Sun, A. Y., Scanlon, B. R., Save, H., and Rateb, A., 2021, Reconstruction of GRACE total water storage through automated machine learning: Water Resources Research, v. 57, no. 2, article no. e2020WR028666, 20 p., http://doi.org/10.1029/2020WR028666.

Sylvester, Z., Durkin, P. R., Hubbard, S. M., and Mohrig, D., 2021, Autogenic translation and counter point bar deposition in meandering rivers: Geological Society of America Bulletin, v. 133, no. 11-12, p. 2439–2456, http://doi.org/10.1130/B35829.1.

Tavassoli, S., Krishnamurthy, P., Beckham, E., Meckel, T., and Sepehrnoori, K., 2021, Carbon dioxide storage in deltaic saline aquifers: invasion percolation and compositional simulation: Society of Petroleum Engineers Reservoir Evaluation & Engineering, v. 24, no. 3, article no. SPE-196723-PA, 13 p., http://doi.org/10.2118/196723-PA.

Wang, J., Zeng, L., Yang, X., Liu, C., Wang, K., Zhang, R., Chen, X., Qu, Y., Laubach, S. E., and Wang, Q., 2021, Fold-related fracture distribution in Neogene, Triassic, and Jurassic sandstone outcrops, northern margin of the Tarim Basin, China: guides to deformation in ultradeep tight sandstone reservoirs: Lithosphere, v. 2021, no. Special 1, article no. 8330561, 17 p., http://doi.org/10.2113/2021/8330561.

Wang, S., Qin, C., Feng, Q., Javadpour, F., and Rui, Z., 2021, A framework for predicting the production performance of unconventional resources using deep learning: Applied Energy, v. 295, no. 117016, 21 p., http://doi.org/10.1016/j.apenergy.2021.117016.

Wang, S., Yao, X., Feng, Q., Javadpour, F., Yang, Y., Xue, Q., and Li, X., 2021, Molecular insights into carbon dioxide enhanced multi-component shale gas recovery and its sequestration in realistic kerogen: Chemical Engineering Journal, v. 425, no. 130292, 17 p., http://doi.org/10.1016/j.cej.2021.130292.

Wendt, D. E., van Loon, A. F., Scanlon, B. R., and Hannah, D. M., 2021, Managed aquifer recharge as a drought mitigation strategy in heavily-stressed aquifers: Environmental Research Letters, v. 16, no. 1, article no. 014046, 13 p., http://doi.org/10.1088/1748-9326/abcfe1.

Wu, R.-J., Lo, M.-H., and Scanlon, B. R., 2021, The annual cycle of terrestrial water storage anomalies in CMIP6 models evaluated against GRACE data: Journal of Climate, v. 34, no. 20, p. 8205–8217, http://doi.org/10.1175/jcli-d-21-0021.1.

Xu, W., Li, Z., Zhang, C., Meng, M., Zeng, H., and Ding, Y., 2021, The relationship between source supply and mixed deposition of siliciclastic and carbonate: first to second member of the Shahejie Formation, Paleogene, Bohai Sea area, China: Interpretation, v. 9, no. 2, p. SC45–SC52, http://doi.org/10.1190/INT-2020-0182.1.

Yao, Y., Zheng, C., Andrews, C. B., Scanlon, B. R., Kuang, X., Zeng, Z., Jeong, S.-J., Lancia, M., Wu, Y., and Li, G., 2021, Role of groundwater in sustaining northern Himalayan rivers: Geophysical Research Letters, v. 48, no. e2020GL092354, 10 p., http://doi.org/10.1029/2020gl092354.

Zeng, H., He, Y., and Zeng, L., 2021, Impact of sedimentary facies on machine learning of acoustic impedance from seismic data: lessons from a geologically realistic 3D model: Interpretation, v. 9, no. 3, p. 1009–1024, http://doi.org/10.1190/int-2021-0035.1.

Zhang, J., Ambrose, W. A., and Xie, W., 2021, Applying convolutional neural networks to identify lithofacies of large-n cores from the Permian Basin and Gulf of Mexico: the importance of the quantity and quality of training data: Marine and Petroleum Geology, v. 133, no. 105307, 6 p., http://doi.org/10.1016/j.marpetgeo.2021.105307.

Zhang, J., Flaig, P. P., Wartes, M., Aschoff, J., and Shuster, M., 2021, Integrating stratigraphic modelling, inversion analysis, and shelf-margin records to guide provenance analysis: an example from the Cretaceous Colville Basin, Arctic Alaska: Basin Research, v. 33, no. 3, p. 1954–1966, http://doi.org/10.1111/bre.12543.

Zhang, T., Fu, Q., Sun, X., Hackley, P. C., Ko, L. T., and Shao, D., 2021, Meter-scale lithofacies cycle and controls on variations in oil saturation, Wolfcamp A, Delaware and Midland Basins: AAPG Bulletin, v. 105, no. 9, p. 1821–1846, http://doi.org/10.1306/01152120065.

Zhang, Y., Zhou, D., Wei, W., Frame, J. M., Sun, H., Sun, A. Y., and Chen, X., 2021, Hierarchical fractional advection-dispersion equation (FADE) to quantify anomalous transport in river corridor over a broad spectrum of scales: theory and applications: Mathematics, v. 9, no. 7, article no. 790, 15 p., http://doi.org/10.3390/math9070790.

Zhong, Z., Sun, A. Y., Ren, B., and Wang, Y., 2021, A deep-learning-based approach for reservoir production forecast under uncertainty: Society of Petroleum Engineers Journal, v. 26, no. 3, p. 1314–1340, http://doi.org/10.2118/205000-PA.


University of Texas at Austin

University of Texas

© 2021 Bureau of Economic Geology | Web Privacy Policy | Web Accessibility Policy