Bureau of Economic Geology


Peer-Reviewed Publications - 2020

Other Years: 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000

BEG Peer-reviewed Papers

Abolt, C. J., and Young, M. H., 2020, High-resolution mapping of spatial heterogeneity in ice wedge polygon geomorphology near Prudhoe Bay, Alaska: Scientific Data, v. 7, no. 87, 7 p., http://doi.org/10.1038/s41597-020-0423-9.

Abolt, C. J., Young, M. H., Atchley, A. L., Harp, D. R., and Coon, E. T., 2020, Feedbacks between surface deformation and permafrost degradation in ice wedge polygons, Arctic Coastal Plain, Alaska: Journal of Geophysical Research: Earth Surface, v. 125, no. 3, article no. e2019JF005349, 17 p., http://doi.org/10.1029/2019JF005349.

Agrawal, D., Lujan, B., Verma, S., Bhattacharya, S., and Mallick, S., 2020, Seismic response to paleo-sand dunes in the Nugget Sandstone Formation, southwestern Wyoming: Interpretation, v. 8, no. 4, p. SR23–SR26, http://doi.org/10.1190/INT-2019-0231.1.

Almansour, A., Laubach, S. E., Bickel, J. E., and Schultz, R. A., 2020, Value-of-information analysis of a fracture prediction method: SPE Reservoir Evaluation & Engineering, v. 23, no. 3, p. 811–823, http://doi.org/10.2118/198906-PA.

Alnahwi, A., Kosanke, T., Loucks, R. G., Greene, J., Liu, X., and Linton, P., 2020, High-resolution hyperspectral-based continuous mineralogical and total organic carbon analysis of the Eagle Ford Group and associated formations in south Texas: AAPG Bulletin, v. 104, no. 7, p. 1439–1462, http://doi.org/10.1306/02262018156.

Ambrose, W. A., Flaig, P., Zhang, J., Olariu, M. I., Denison, C., Demchuk, T., and O'Keefe, J., 2020, The Midway to Carrizo succession in the southeastern Texas Gulf Coast: evolution of a tidally influenced coastline: GCAGS Journal, v. 9, p. 41–75.

Arciniega‑Esparza, S., Hernández‑Espriú, A., Breña‑Naranjo, J. A., Young, M. H., and Pedrozo‑Acuña, A., 2020, A multivariate outlier detection approach for water footprint assessments in shale formations: case Eagle Ford play (Texas): Environmental Earth Sciences, v. 79, no. 454, 18 p., http://doi.org/10.1007/s12665-020-09197-8.

Bakhshian, S., Hosseini, S. A., and Lake, L. W., 2020, CO2-brine relative permeability and capillary pressure of Tuscaloosa sandstone: effect of anisotropy: Advances in Water Resources, v. 135, no. 103464, 13 p., http://doi.org/10.1016/j.advwatres.2019.103464.

Bakhshian, S., Murakami, M., Hosseini, S. A., and Kang, Q., 2020, Scaling of imbibition front dynamics in heterogeneous porous media: Geophysical Research Letters, v. 47, no. e2020GL087914, 10 p., http://doi.org/10.1029/2020GL087914.

Bakhshian, S., Rabbani, H. S., Hosseini, S. A., and Shokri, N., 2020, New insights into complex interactions between heterogeneity and wettability influencing two‐phase flow in porous media: Geophysical Research Letters, v. 47, no. e2020GL088187, 10 p., http://doi.org/10.1029/2020GL088187.

Baqués, V., Ukar, E., Laubach, S. E., Forstner, S. R., and Fall, A., 2020, Fracture, dissolution, and cementation events in Ordovician carbonate reservoirs, Tarim Basin, NW China: Geofluids, v. 2020, no. 9037429, 28 p., http://doi.org/10.1155/2020/9037429.

Bauer, D. B., Hubbard, S. M., Covault, J. A., and Romans, B. W., 2020, Inherited depositional topography control on shelf-margin oversteepening, readjustment, and coarse-grained sediment delivery to deep water, Magallanes Basin, Chile: Frontiers in Earth Science, v. 7, no. 358, 22 p., http://doi.org/10.3389/feart.2019.00358.

Bhattacharya, S., and Verma, S., 2020, Seismic attribute and petrophysics-assisted interpretation of the Nanushuk and Torok Formations on the North Slope, Alaska: Interpretation, v. 8, no. 2, p. SJ17–SJ34, http://doi.org/10.1190/INT-2019-0112.1.

Bhattacharya, S., Verma, S., and Rotzien, J. R., 2020, 3D seismic imaging of the submarine slide blocks on the North Slope, Alaska: Interpretation, v. 8, no. 4, p. SR37–SR44, http://doi.org/10.1190/INT-2020-0038.1.

Caldwell, T. G., Wolaver, B. D., Bongiovanni, T., Pierre, J. P., Robertson, S., Abolt, C., and Scanlon, B. R., 2020, Spring discharge and thermal regime of a groundwater dependent ecosystem in an arid karst environment: Journal of Hydrology, v. 587, no. 124947, 14 p., http://doi.org/10.1016/j.jhydrol.2020.124947.

Callahan, O. A., Eichhubl, P., and Davatzes, N. C., 2020, Mineral precipitation as a mechanism of fault core growth: Journal of Structural Geology, v. 140, no. 104156, 16 p., http://doi.org/10.1016/j.jsg.2020.104156.

Callahan, O. A., Eichhubl, P., Olson, J. E., and Davatzes, N. C., 2020, Experimental investigation of chemically aided fracture growth in silicified fault rocks: Geothermics, v. 83, no. 101724, 14 p., http://doi.org/10.1016/j.geothermics.2019.101724.

Chen, J., Tapley, B., Rodell, M., Seo, K.-W., Wilson, C., Scanlon, B. R., and Pokhrel, Y., 2020, Basin-scale river runoff estimation from GRACE gravity satellites, climate models, and in situ observations: a case study in the Amazon Basin: Water Resources Research, v. 56, no. 10, article no. e2020WR028032, 21 p., http://doi.org/10.1029/2020wr028032.

Chen, X., Eichhubl, P., Olson, J. E., and Dewers, T. A., 2020, Salinity, pH, and temperature controls on fracture mechanical properties of three shales and their implications for fracture growth in chemically reactive fluid environments: Geomechanics for Energy and the Environment, v. 21, no. 100140, 12 p., http://doi.org/10.1016/j.gete.2019.100140.

Chiarenza, A.A., Fiorillo, A.R., Tykoski, R.S., McCarthy, P.J., Flaig, P. P., and Contreras, D.L., 2020, The first juvenile dromaeosaurid (Dinosauria: Theropoda) from Arctic Alaska: PLoS ONE, v. 15 (7), no. e0235078, 30 p., http://doi.org/10.1371/journal. pone.0235078.

Childress, T. M., Simon, A. C., Reich, M., Barra, F., Arce, M., Lundstrom, C. C., and Bindeman, I. N., 2020, Formation of the Mantoverde iron oxide-copper-gold (IOCG) deposit, Chile: insights from Fe and O stable isotopes and comparisons with iron oxide-apatite (IOA) deposits: Mineralium Deposita, v. 55, no. 7, p. 1489–1504, http://doi.org/10.1007/s00126-019-00936-x.

Childress, T., Simon, A. C., Reich, M., Barra, F., Bilenker, L. D., La Cruz, N. L., Bindeman, I. N., and Ovalle, J. T., 2020, Triple oxygen (δ18O, Δ17O), hydrogen (δ2H), and iron (δ56Fe) stable isotope signatures indicate a silicate magma source and magmatic-hydrothermal genesis for magnetite orebodies at El Laco, Chile: Economic Geology, v. 115, no. 7, p. 1519–1536, http://doi.org/10.5382/econgeo.4760.

Covault, J. A., Sylvester, Z., Hudec, M. R., Ceyhan, C., and Dunlap, D., 2020, Submarine channels ‘swept’ downstream after bend cutoff in salt basins: The Depositional Record, v. 6, no. 1, p. 259–272, http://doi.org/10.1002/dep2.75.

Denny, A. C., Fall, A., Orland, I. J., Valley, J. W., Eichhubl, P., and Laubach, S. E., 2020, A history of pore water oxygen isotope evolution in the Cretaceous Travis Peak Formation in East Texas: Geological Society of America Bulletin, v. 132, no. 7/8, p. 1626–1638, http://doi.org/10.1130/B35291.1.

Devitt, D. A., Young, M. H., and Pierre, J. P., 2020, Assessing the potential for greater solar development in West Texas, USA: Energy Strategy Reviews, v. 29, no. 100490, 10 p., http://doi.org/10.1016/j.esr.2020.100490.

Dooley, T. P., and Hudec, M. R., 2020, Extension and inversion of salt-bearing rift systems: Solid Earth, v. 11, no. 4, p. 1187–1204, http://doi.org/10.5194/se-11-1187-2020.

Dooley, T. P., Hudec, M. R., Pichel, L. M., and Jackson, M. P. A., 2020, The impact of base-salt relief on salt flow and suprasalt deformation patterns at the autochthonous, paraautochthonous and allochthonous level: insights from physical models, in McClay, K. R., and Hammerstein, J. A., eds., Passive margins: tectonics, sedimentation and magmatism: London, Geological Society of London, Special Publication, v. 476, p. 287-315.

Duffy, O. B., Fernandez, N., Peel, F. J., Hudec, M. R., Dooley, T. P., and Jackson, C. A.-L., 2020, Obstructed minibasins on a salt‐detached slope: an example from above the Sigsbee canopy, northern Gulf of Mexico: Basin Research, v. 32, no. 3, p. 505–524, http://doi.org/10.1111/bre.12380.

Enriquez, D. A., Zhang, T., Sun, X., Meng, D., and Zhang, Y., 2020, Methane resaturation in Barnett Formation core plugs and new approach for determination of post-coring gas loss: Marine and Petroleum Geology, v. 118, no. 104430, 15 p., http://doi.org/10.1016/j.marpetgeo.2020.104430.

Fall, A., 2020, Applications of fluid inclusions in structural diagenesis, in Lecumberri-Sanchez, P., Steele-MacInnis, M., Kontak, D. (eds.), Fluid and Melt Inclusions: Applications to Geologic Processes: Québec, Québec, Canada, Mineralogical Association of Canada, Topics in Mineral Sciences, v. 49, p. 17-46.

Fatichi, S., Or, D., Walko, R., Vereecken, H., Young, M. H., Ghezzehei, T. A., Hengl, T., Kollet, S., Agam, N., and Avissar, R., 2020, Soil structure is an important omission in Earth System Models: Nature Communications, v. 11, no. 522, 11 p., http://doi.org/10.1038/s41467-020-14411-z.

Feng, D., Wu, K., Bakhshian, S., Hosseini, S. A., Li, J., and Li, X., 2020, Nanoconfinement effect on surface tension: perspectives from molecular potential theory: Langmuir, v. 36, no. 30, p. 8764–8776, http://doi.org/10.1021/acs.langmuir.0c01050.

Fernandez, N., Hudec, M. R., Jackson, C. A.-L., Dooley, T. P., and Duffy, O. B., 2020, The competition for salt and kinematic interactions between minibasins during density-driven subsidence: observations from numerical models: Petroleum Geoscience, v. 26, no. 1, p. 3–15, http://doi.org/10.1144/petgeo2019-051.

Fifariz, R., Janson, X., Kerans, C., and Sapiie, B., 2020, Carbonate-shelf evolution during the Oligocene to early Miocene: insights from shelf architecture, lithofacies, and depositional models of the Kujung Formation, offshore East Java, Indonesia: Journal of Sedimentary Research, v. 90, no. 8, p. 796–820, http://doi.org/10.2110/jsr.2020.42.

Frohlich, C., Hayward, C., Rosenblit, J., Aiken, C., Hennings, P., Savvaidis, A., Lemons, C., Horne, E., Walter, J. I., and DeShon, H. R., 2020, Onset and cause of increased seismic activity near Pecos, West Texas, USA from observations at the Lajitas TXAR Seismic Array: Journal of Geophysical Research: Solid Earth, v. 125, no. 1, 14 p., http://doi.org/10.1029/2019JB017737.

Fu, Q., and Ambrose, W. A., 2020, Lithofacies and diagenetic features of Strawn carbonates in the subsurface of north-central Texas: implications for controls on reservoir quality: GCAGS Journal, v. 9, p. 115–132.

Fu, Q., Baumgardner, R. W., Jr., and Hamlin, H. S., 2020, Early Permian (Wolfcampian) succession in the Permian Basin: icehouse platform, slope carbonates, and basinal mudrocks, in Ruppel, S. C., ed., Anatomy of a Paleozoic basin: the Permian Basin, USA: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations 285; AAPG Memoir 118, v. 2, p. 185–226, http://doi.org/0.23867/RI0285-1.

Fu, Q., Hu, S., Xu, Z., Zhao, W., Shi, S., and Zeng, H., 2020, Depositional and diagenetic controls on deeply buried Cambrian carbonate reservoirs: Longwangmiao Formation in the Moxi–Gaoshiti area, Sichuan Basin, southwestern China: Marine and Petroleum Geology, v. 117, no. 104318, 24 p., http://doi.org/10.1016/j.marpetgeo.2020.104318.

Geng, Z., Wu, X., Fomel, S., and Chen, Y., 2020, Relative time seislet transform: Geophysics, v. 85, no. 2, p. V223–V232, http://doi.org/10.1190/geo2019-0212.1.

Geng, Z., Wu, X., Shi, Y., and Fomel, S., 2020, Deep learning for relative geologic time and seismic horizons: Geophysics, v. 85, no. 4, p. WA87–WA100, http://doi.org/10.1190/geo2019-0252.1.

Grigoratos, I., Rathje, E., Bazzurro, P., and Savvaidis, A., 2020, Earthquakes induced by wastewater injection, part I: model development and hindcasting: Bulletin of the Seismological Society of America, v. 110, no. 5, p. 2466–2482, http://doi.org/10.1785/0120200078.

Grigoratos, I., Rathje, E., Bazzurro, P., and Savvaidis, A., 2020, Earthquakes induced by wastewater injection, part II: statistical evaluation of causal factors and seismicity rate forecasting: Bulletin of the Seismological Society of America, v. 110, no. 5, p. 2483–2497, http://doi.org/10.1785/0120200079.

Hackley, P. C., Zhang, T., Jubb, A. M., Valentine, B. J., Dulong, F. T., and Hatcherian, J. J., 2020, Organic petrography of Leonardian (Wolfcamp A) mudrocks and carbonates, Midland Basin, Texas: the fate of oil-prone sedimentary organic matter in the oil window: Marine and Petroleum Geology, v. 112, no. 104086, 15 p., http://doi.org/10.1016/j.marpetgeo.2019.104086.

Haddad, M., and Eichhubl, P., 2020, Poroelastic models for fault reactivation in response to concurrent injection and production in stacked reservoirs: Geomechanics for Energy and the Environment, v. 24, no. 100181, 17 p., http://doi.org/10.1016/j.gete.2020.100181.

Harris, A. D., Covault, J. A., Baumgardner, S., Sun, T., and Granjeon, D., 2020, Numerical modeling of icehouse and greenhouse sea-level changes on a continental margin: sea-level modulation of deltaic avulsion processes: Marine and Petroleum Geology, v. 111, p. 807–814, http://doi.org/10.1016/j.marpetgeo.2019.08.055.

Heidari, M., Nikolinakou, M. A., and Flemings, P. B., 2020, Modified Cam‐Clay Model for large stress ranges and its predictions for geological and drilling processes: Journal of Geophysical Research Solid Earth, v. 125, no. e2020JB019500, 21 p., http://doi.org/10.1029/2020JB019500.

Hooghvorst, J. J., Harrold, T. W. D., Nikolinakou, M. A., Fernandez, O., and Marcuello, A., 2020, Comparison of stresses in 3D v. 2D geomechanical modelling of salt structures in the Tarfaya Basin, West African coast: Petroleum Geoscience, v. 26, no. 1, p. 36–49, http://doi.org/10.1144/petgeo2018-095.

Horne, E. A., Hennings, P. H., Osmond, J. L., and DeShon, H. R., 2020, Structural characterization of potentially seismogenic faults in the Fort Worth Basin: Interpretation, v. 8, no. 2, p. T323–T347, http://doi.org/10.1190/INT-2019-0188.1.

Hubbard, S. M., Jobe, Z. R., Romans, B. W., Covault, J. A., Sylvester, Z., and Fildani, A., 2020, The stratigraphic evolution of a submarine channel: linking seafloor dynamics to depositional products: Journal of Sedimentary Research, v. 90, no. 7, p. 673–686, http://doi.org/10.2110/jsr.2020.36.

Hudec, M. R., Dooley, T. P., Peel, F. J., and Soto, J. I., 2020, Controls on the evolution of passive-margin salt basins: structure and evolution of the Salina del Bravo region, northeastern Mexico: Geological Society of America Bulletin, v. 132, no. 5/6, p. 997–1012, http://doi.org/10.1130/B35283.1.

Jackson, C. A.-L., Duffy, O. B., Fernandez, N., Dooley, T. P., Hudec, M. R., Jackson, M. P. A., and Burg, G., 2020, The stratigraphic record of minibasin subsidence, Precaspian Basin, Kazakhstan: Basin Research, v. 32, no. 4, p. 739–763, http://doi.org/10.1111/bre.12393.

Jeong, H., Sun, A. Y., Jeon, J., Min, B., and Jeong, D., 2020, Efficient Ensemble-Based Stochastic Gradient Methods for Optimization Under Geological Uncertainty: Frontiers in Earth Science, v. 8, no. 108, 14 p., http://doi.org/10.3389/feart.2020.00108.

Jung, H., Espinoza, D. N., and Hosseini, S. A., 2020, Wellbore injectivity response to step-rate CO2 injection: coupled thermo-poro-elastic analysis in a vertically heterogeneous formation: International Journal of Greenhouse Gas Control, v. 102, no. 103156, 10 p., http://doi.org/10.1016/j.ijggc.2020.103156.

Kaur, H., Fomel, S., and Pham, N., 2020, Seismic ground‐roll noise attenuation using deep learning: Geophysical Prospecting, v. 68, no. 7, p. 2064–2077, http://doi.org/10.1111/1365-2478.12985.

Kaur, H., Pham, N., and Fomel, S., 2020, Improving the resolution of migrated images by approximating the inverse Hessian using deep learning: Geophysics, v. 85, no. 4, p. WA173–WA183, http://doi.org/10.1190/geo2019-0315.1.

Kavoura, F., Savvaidis, A., and Rathje, E., 2020, Determination of local magnitude for earthquakes recorded from the Texas Seismological Network (TexNet): Seismological Research Letters, v. 91, no. 6, p. 3223–3235, http://doi.org/10.1785/0220190366.

Kerans, C., Hearty, P. J., Zahm, C., Bachtel, S. L., and Cheng, H., 2020, Reply to: comments on: “Anatomy of a late Quaternary carbonate island: Constraints on timing and magnitude of sea-level fluctuations, West Caicos, Turks and Caicos Islands, BWI” by Wanless and Dravis [Quat. Sci. Rev. DOI:10.1016/j.quascirev.2020.106216]: Quaternary Science Reviews, v. 243, no. 106441, 6 p., http://doi.org/10.1016/j.quascirev.2020.106441.

La Cruz, N. L., Ovalle, J. T., Simon, A. C., Konecke, B. A., Barra, F., Reich, M., Leisen, M., and Childress, T., 2020, The geochemistry of magnetite and apatite from the El Laco iron oxide-apatite deposit, Chile: implications for ore genesis: Economic Geology, v. 115, no. 7, p. 1461–1491, http://doi.org/10.5382/econgeo.4753.

Larson, T. E., Perkins, G. B., Williams, R. F., Fessenden, J. E., Clegg, S. M., and Currier, R. P., 2020, Partitioning of oxygen isotopes during the aqueous solvation of nitric acid: Fluid Phase Equilibria, v. 506, no. 112364, 5 p., http://doi.org/10.1016/j.fluid.2019.112364.

Lawton, T. F., Amato, J. M., Machin, S. E. K., Gilbert, J. C., and Lucas, S. G., 2020, Transition from Late Jurassic rifting to middle Cretaceous dynamic foreland, southwestern U.S. and northwestern Mexico: Geological Society of America Bulletin, v. 132, no. 11/12, p. 2489–2516, http://doi.org/10.1130/B35433.1.

Lawton, T. F., Sierra-Rojas, M. I., and Martens, U., 2020, Stratigraphic correlation chart of Carboniferous–Paleogene rocks of Mexico, adjacent southwestern United States, Central America, and Colombia, in Martens, U., and Molina Garza, R. S., Southern and central Mexico: basement framework, tectonic evolution, and provenance of Mesozoic–Cenozoic basins: Boulder, Colo., Geological Society of America, Special Paper, v. 546, 28 p., http://doi.org/10.1130/2020.2546(05).

Liu, M., and Sun, A. Y., 2020, A physical agricultural drought index based on root zone water availability: model development and application: Geophysical Research Letters, v. 47, no. e2020GL088553, 11 p., http://doi.org/10.1029/2020GL088553.

Long, D., Yang, W., Scanlon, B. R., Zhao, J., Liu, D., Burek, P., Pan, Y., You, L., and Wada, Y., 2020, South-to-North Water Diversion stabilizing Beijing's groundwater levels: Nature Communications, v. 11, no. 3665, 10 p., http://doi.org/10.1038/s41467-020-17428-6.

Longman, M. W., Milliken, K., Olson, T. M., and Drake, W. R., 2020, A Comparison of Silica Diagenesis in the Devonian Woodford Shale (Central Basin Platform, West Texas) and Cretaceous Mowry Shale (Powder River Basin, Wyoming), in Camp, W., Milliken, K., Taylor, K., Fishman, N., Hackley, P., and Macquaker, J., eds., Mudstone Diagenesis: Research Perspectives for Shale Hydrocarbon Reservoirs, Seals, and Source Rocks: Tulsa, Okla., AAPG Memoir, v. 120, p. 49–67, http://doi.org/10.1306/13672210M12163.

Loucks, R. G., Lambert, J. R., Patty, K., Larson, T. E., Reed, R. M., and Zahm, C. K., 2020, Regional overview and significance of the mineralogy of the Upper Cretaceous Austin Chalk Group, onshore Gulf of Mexico: GCAGS Journal, v. 9, p. 1–16.

Loucks, R. G., Larson, T. E., Zheng, C. Y. C., Zahm, C. K., Ko, L. T., Sivil, J. E., Peng, S., Ruppel, S. C., and Ambrose, W. A., 2020, Geologic characterization of the type cored section for the Upper Cretaceous Austin Chalk Group in southern Texas: a combination fractured and unconventional reservoir: AAPG Bulletin, v. 104, no. 10, p. 2209–2245, http://doi.org/10.1306/04222019197.

Male, F., Jensen, J. L., and Lake, L. W., 2020, Comparison of permeability predictions on cemented sandstones with physics-based and machine learning approaches: Journal of Natural Gas Science and Engineering, v. 77, no. 103244, 12 p., http://doi.org/10.1016/j.jngse.2020.103244.

McNeill, L., Dugan, B., Petronotis, K., Milliken, K., Francis, J., and Expedition 362 scientists, 2020, Late Miocene wood recovered in Bengal–Nicobar submarine fan sediments by IODP Expedition 362: Scientific Drilling, v. 27, p. 49–52, http://doi.org/10.5194/sd-27-49-2020.

Mehana, M., Hosseini, S. A., Meckel, T. A., and Viswanathan, H., 2020, Modeling CO2 plume migration using an invasion-percolation approach that includes dissolution: Greenhouse Gases: Science and Technology, v. 10, no. 2, p. 283–295, http://doi.org/10.1002/ghg.1976.

Merzlikin, D., Fomel, S., and Wu, X., 2020, Least-squares diffraction imaging using shaping regularization by anisotropic smoothing: Geophysics, v. 85, no. 5, p. S313–S325, http://doi.org/10.1190/geo2019-0741.1.

Merzlikin, D., Savvaidis, A., Whittaker, S., and Bestmann, I., 2020, Data processing of a local seismological network for West Texas seismicity characterization: Seismological Research Letters, v. 91, no. 6, p. 3469–3482, http://doi.org/10.1785/0220190358.

Milliken, K. L., and Hayman, N. W., 2020, Mudrock components and the genesis of bulk rock properties: review of current advances and challenges, in Dewers, T., Heath, J., and Sánchez, M., eds., Shale: subsurface science and engineering: Washington, D.C.; Hoboken, N.J., American Geophysical Union; Wiley, Geophysical Monograph, v. 245, p. 3–25, http://doi.org/10.1002/9781119066699.ch1.

Molina Garza, R. S., Lawton, T. F., Barboza Gudiño, J. R., Sierra-Rojas, M. I., Figueroa Guadarrama, A., and Pindell, J., 2020, Geochronology and correlation of the Todos Santos Group, western Veracruz and eastern Oaxaca States, Mexico: implications for regional stratigraphic relations and the rift history of the Gulf of Mexico, in Martens, U., and Molina Garza, R. S., eds., Southern and central Mexico: basement framework, tectonic evolution, and provenance of Mesozoic–Cenozoic basins: Boulder, Colo., Geological Society of America, Special Paper, v. 546, 28 p., http://doi.org/10.1130/2020.2546(06).

Molina Garza, R. S., Lawton, T. F., Figueroa Guadarrama, A., and Pindell, J., 2020, Mexican record of circum–Gulf of Mexico Jurassic depositional systems and climate, in Martens, U., and Molina Garza, R. S., eds., Southern and central Mexico: basement framework, tectonic evolution, and provenance of Mesozoic–Cenozoic basins: Boulder, Colo., Geological Society of America, Special Paper, v. 546, 22 p., http://doi.org/10.1130/2020.2546(13).

Mrad, A., Katul, G. G., Levia, D. F., Guswa, A. J., Boyer, E. W., 19 others, and Scanlon, B. R., 2020, Peak grain forecasts for the US High Plains amid withering waters: Proceedings of the National Academy of Sciences, v. 117, no. 42, p. 26145–26150, http://doi.org/10.1073/pnas.2008383117.

Nicot, J.-P., Darvari, R., Eichhubl, P., Scanlon, B. R., Elliott, B. A., Bryndzia, T. L., Gale, J. F. W., and Fall, A., 2020, Origin of low salinity, high volume produced waters in the Wolfcamp Shale (Permian), Delaware Basin, USA: Applied Geochemistry, v. 122, no. 104771, 18 p., http://doi.org/10.1016/j.apgeochem.2020.104771.

Nolting, A., Zahm, C. K., Kerans, C., and Alzayer, Y., 2020, The influence of variable progradation to aggradation ratio and facies partitioning on the development of syndepositional deformation in steep-walled carbonate platforms: Marine and Petroleum Geology, v. 114, no. 104171, 12 p., http://doi.org/10.1016/j.marpetgeo.2019.104171.

Osmond, J. L., and Meckel, T. A., 2020, Enhancing trap and fault seal analyses by integrating observations from HR3D seismic data with well logs and conventional 3D seismic data, Texas inner shelf, in Ogilvie, S. R., Dee, S. J., Wilson, R. W., and Bailey, W. R., eds., Integrated fault seal analysis: London, Geological Society, London, Special Publications, v. 496, no. 496, p. 253–279, http://doi.org/10.1144/SP496-2018-142.

Pantaleone, S., and Bhattacharya, S., 2020, Potential for carbon sequestration in the Hemlock Formation of the Cook Inlet Basin, Alaska: Environmental Geosciences, v. 27, no. 3, p. 143–164, http://doi.org/10.1306/eg.10221919011.

Peel, F., Hudec, M. R., and Weijermars, R., 2020, Salt diapir downbuilding: fast analytical models based on rates of salt supply and sedimentation: Journal of Structural Geology, v. 141, no. 104202, 14 p., http://doi.org/10.1016/j.jsg.2020.104202.

Peng, J., Milliken, K. L., and Fu, Q., 2020, Quartz types in the Upper Pennsylvanian organic‐rich Cline Shale (Wolfcamp D), Midland Basin, Texas: Implications for silica diagenesis, porosity evolution and rock mechanical properties: Sedimentology, v. 67, no. 4, p. 2040–2064, http://doi.org/10.1111/sed.12694.

Peng, J., Milliken, K., Fu, Q., Janson, X., and Hamlin, H. S., 2020, Grain assemblages and diagenesis in organic-rich mudrocks, Upper Pennsylvanian Cline shale (Wolfcamp D), Midland Basin, Texas: AAPG Bulletin, v. 104, no. 7, p. 1593–1624, http://doi.org/10.1306/03022018240.

Peng, S., 2020, Gas-water relative permeability of unconventional reservoir rocks: hysteresis and influence on production after shut-in: Journal of Natural Gas Science and Engineering, v. 82, no. 103511, 11 p., http://doi.org/10.1016/j.jngse.2020.103511.

Pichel, L. M., Jackson, C. A.-L., Peel, F., and Dooley, T. P., 2020, Base‐salt relief controls salt‐tectonic structural style, São Paulo Plateau, Santos Basin, Brazil: Basin Research, v. 32, no. 3, p. 453–484, http://doi.org/10.1111/bre.12375.

Pickering, K. T., Carter, A., Andò, A., Garzanti, E., Limonta, M., Vezzoli, G., and Milliken, K. L., 2020, Deciphering relationships between the Nicobar and Bengal submarine fans, Indian Ocean: Earth and Planetary Science Letters, v. 544, no. 116329, 14 p., http://doi.org/10.1016/j.epsl.2020.116329.

Pickering, K. T., Pouderoux, H., McNeill, L. C., Backman, J., Chemale, F., Kutterolf, S., Milliken, K. L., Mukoyoshi, H., Henstock, T. J., Stevens, D. E., Parnell, C., and Dugan, B., 2020, Sedimentology, stratigraphy and architecture of the Nicobar Fan (Bengal–Nicobar Fan System), Indian Ocean: results from International Ocean Discovery Program Expedition 362: Sedimentology, v. 67, no. 5, p. 2248–2281, http://doi.org/10.1111/sed.12701.

Pierre, J. P., Andrews, J. R., Young, M. H., Sun, A. Y., and Wolaver, B. D., 2020, Projected landscape impacts from oil and gas development scenarios in the Permian Basin, USA: Environmental Management, v. 66, no. 3, p. 348–363, http://doi.org/10.1007/s00267-020-01308-2.

Porritt, R. W., Savvaidis, A., Young, B., Shirley, M., and Li, P., 2020, Crustal structure in southeastern Texas from joint inversion of ambient seismic noise and P to S receiver functions: Geochemistry, Geophysics, Geosystems, v. 21, no. 7, article no. e2019GC008866, 13 p., http://doi.org/10.1029/2019GC008866.

Portnov, A., Cook, A. E., Heidari, M., Sawyer, D. E., Santra, M., and Nikolinakou, M., 2020, Salt-driven evolution of a gas hydrate reservoir in Green Canyon, Gulf of Mexico: AAPG Bulletin, v. 104, no. 9, p. 1903–1919, http://doi.org/10.1306/10151818125.

Rabbani, A., Babaei, M., and Javadpour, F., 2020, A triple pore network model (T-PNM) for gas flow simulation in fractured, micro-porous and meso-porous media: Transport in Porous Media, v. 132, no. 3, p. 707–740, http://doi.org/10.1007/s11242-020-01409-w.

Rateb, A., and Abotalib, A. Z., 2020, Inferencing the land subsidence in the Nile Delta using Sentinel-1 satellites and GPS between 2015 and 2019: Science of the Total Environment, v. 729, no. 138868, 11 p., http://doi.org/10.1016/j.scitotenv.2020.138868.

Rateb, A., and Hermas, E., 2020, The 2018 long rainy season in Kenya: hydrological changes and correlated land subsidence: Remote Sensing, v. 12, no. 1390, 16 p., http://doi.org/10.3390/rs12091390.

Rateb, A., Scanlon, B. R., Pool, D. R., Sun, A., Zhang, Z., Chen, J., Clark, B., Faunt, C. C., Haugh, C. J., Hill, M., and nine others, 2020, Comparison of groundwater storage changes from GRACE satellites with monitoring and modeling of major U.S. aquifers: Water Resources Research, v. 56, no. 12, article no. e2020WR027556, 19 p., http://doi.org/10.1029/2020WR027556.

Reber, J. E., Cooke, M. L., and Dooley, T. P., 2020, What model material to use? a review on rock analogs for structural geology and tectonics: Earth-Science Reviews, v. 202, no. 103107, 21 p., http://doi.org/10.1016/j.earscirev.2020.103107.

Reed, R. M., Loucks, R. G., and Ko, L. T., 2020, Scanning electron microscope petrographic differentiation among different types of pores associated with organic matter in mudrocks: GCAGS Journal, v. 9, p. 17–27.

Ren, B., and Jeong, H., 2020, Buoyant and countercurrent flow of CO2 with capillary dispersion: Journal of Petroleum Science and Engineering, v. 195, no. 107922, 11 p., http://doi.org/10.1016/j.petrol.2020.107922.

Ren, B., and Trevisan, L., 2020, Characterization of local capillary trap clusters in storage aquifers: Energy, v. 193, no. 116795, 14 p., http://doi.org/10.1016/j.energy.2019.116795.

Robinson, R., Li, A., Savvaidis, A., and Hu, H., 2020, Complex shear-wave anisotropy from induced earthquakes in West Texas: Bulletin of the Seismological Society of America, v. 110, no. 5, p. 2242–2251, http://doi.org/10.1785/0120200086.

Romanak, K. D., and Bomse, D. S., 2020, Field assessment of sensor technology for environmental monitoring using a process-based soil gas method at geologic CO2 storage sites: International Journal of Greenhouse Gas Control, v. 96, no. 103003, 12 p., http://doi.org/10.1016/j.ijggc.2020.103003.

Rowan, M. G., Hearon, T. E., IV, Kernen, R. A., Giles, K. A., Gannaway-Dalton, C. E., Williams, N. J., Fiduk, J. C., Lawton, T. F., Hannah, P. T., and Fischer, M. P., 2020, A review of allochthonous salt tectonics in the Flinders and Willouran ranges, South Australia: Austalian Journal of Earth Sciences, v. 67, no. 6, p. 787–813, http://doi.org/10.1080/08120099.2018.1553063.

Ruppel, S. C., Rowe, H., Reed, R. M., and Loucks, R. G., 2020, The Mississippian System in the Permian Basin: Proximal Platform Carbonates and Distal Organic-Rich Mudrocks, in Ruppel, S. C., ed., Anatomy of a Paleozoic Basin: The Permian Basin, USA: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations 285; AAPG Memoir 118, v. 118, pt. 2, p. 125–158, http://doi.org/0.23867/RI0285-2.

Ruppel, S. C., Rowe, H., Reed, R. M., Barrick, J. E., James, E. J., and Loucks, R. G., 2020, The Woodford Formation of the Permian Basin: Regional, Middle to Late Devonian Transgression of the Southern Midcontinent and Accompanying Anoxia, in Ruppel, S. C., ed., Anatomy of a Paleozoic Basin: The Permian Basin, USA: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations 285; AAPG Memoir 118, pt. 2, p. 75–124, http://doi.org/0.23867/RI0285-2.

Savvaidis, A., Lomax, A., and Breton, C., 2020, Induced seismicity in the Delaware Basin, West Texas is caused by hydraulic fracturing and wastewater disposal: Bulletin of the Seismological Society of America, v. 110, no. 5, p. 2225–2241, http://doi.org/10.1785/0120200087.

Saylam, K., Averett, A. R., Costard, L., Wolaver, B. D., and Robertson, S., 2020, Multi-Sensor Approach to Improve Bathymetric Lidar Mapping of Semi-Arid Groundwater-Dependent Streams: Devils River, Texas: Remote Sensing, v. 12, no. 2491, 24 p., http://doi.org/10.3390/rs12152491.

Scanlon, B. R., Ikonnikova, S., Yang, Q., and Reedy, R. C., 2020, Will water issues constrain oil and gas production in the United States?: Environmental Science and Technology, v. 54, no. 6, p. 3510–3519, http://doi.org/10.1021/acs.est.9b06390.

Scanlon, B. R., Reedy, R. C., Xu, P., Engle, M., Nicot, J. P., Yoxtheimer, D., Yang, Q., and Ikonnikova, S., 2020, Can we beneficially reuse produced water from oil and gas extraction in the U.S.?: Science of the Total Environment, v. 717, no. 137085, 12 p., http://doi.org/10.1016/j.scitotenv.2020.137085.

Shao, D., Zhang, T., Ko, L. T., Li, Y., Yan, J., Zhang, L., Luo, H., and Qiao, B., 2020, Experimental investigation of oil generation, retention, and expulsion within Type II kerogen-dominated marine shales: insights from gold-tube nonhydrous pyrolysis of Barnett and Woodford Shales using miniature core plugs: International Journal of Coal Geology, v. 217, no. 103337, 16 p., http://doi.org/10.1016/j.coal.2019.103337.

Sheng, G., Su, Y., Javadpour, F., Wang, W., Zhan, S., Liu, J., and Zhong, Z., 2020, New slip coefficient model considering adsorbed gas diffusion in shale gas reservoirs: Energy and Fuels, v. 34, no. 10, p. 12078–12087, http://doi.org/10.1021/acs.energyfuels.0c01689.

Sheng, G., Zhao, H., Su, Y., Javadpour, F., Wang, C., Zhou, Y., Liu, J., and Wang, H., 2020, An analytical model to couple gas storage and transport capacity in organic matter with noncircular pores: Fuel, v. 268, no. 117288, 13 p., http://doi.org/10.1016/j.fuel.2020.117288.

Shi, Y., Wu, X., and Fomel, S., 2020, Waveform embedding: automatic horizon picking with unsupervised deep learning: Geophysics, v. 85, no. 4, p. WA67–WA76, http://doi.org/10.1190/geo2019-0438.1.

Sierra-Rojas, M. I., Lawton, T. F., Martens, U., von Quadt, A., Beltran Triviño, A., Coombs, H., and Stockli, D. F., 2020, Early Cretaceous to Paleogene sandstone provenance and sediment-dispersal systems of the Cuicateco terrane, Mexico, in Martens, U., and Molina Garza, R. S., eds., Southern and central Mexico: basement framework, tectonic evolution, and provenance of Mesozoic–Cenozoic basins: Boulder, Colo., Geological Society of America, Special Paper, v. 546, 26 p., http://doi.org/10.1130/2020.2546(10).

Sinha, S., Pires de Lima, R., Lin, Y., Sun, A. Y., Symons, N., Pawar, R., and Guthrie, G., 2020, Normal or abnormal? Machine learning for the leakage detection in carbon sequestration projects using pressure field data: International Journal of Greenhouse Gas Control, v. 103, no. 103189, 12 p., http://doi.org/10.1016/j.ijggc.2020.103189.

Smith, B. P., Larson, T., Martindale, R. C., and Kerans, C., 2020, Impacts of basin restriction on geochemistry and extinction patterns: a case from the Guadalupian Delaware Basin, USA: Earth and Planetary Science Letters, v. 530, no. 115876, 11 p., http://doi.org/10.1016/j.epsl.2019.115876.

Soto-Kerans, G. M., Stockli, D. F., Janson, X., Lawton, T. F., and Covault, J. A., 2020, Orogen proximal sedimentation in the Permian foreland basin: Geosphere, v. 16, no. 2, p. 567–593, http://doi.org/10.1130/GES02108.1.

Soumaya, A., Kadri, A., Ben Ayed, N., Kim, Y.-S., Dooley, T. P., Rajabi, M., and Braham, A., 2020, Deformation styles related to intraplate strike-slip fault systems of the Saharan-Tunisian Southern Atlas (North Africa): new kinematic models: Journal of Structural Geology, v. 140, no. 104175, 20 p., http://doi.org/10.1016/j.jsg.2020.104175.

Sripanich, Y., Fomel, S., Trampert, J., Burnett, W., and Hess, T., 2020, Probabilistic moveout analysis by time warping: Geophysics, v. 85, no. 1, p. U1–U20, http://doi.org/10.1190/geo2018-0797.1.

Sun, A. Y., 2020, Optimal carbon storage reservoir management through deep reinforcement learning: Applied Energy, v. 278, no. 115660, 15 p., http://doi.org/10.1016/j.apenergy.2020.115660.

Sun, A. Y., and Tang, G., 2020, Downscaling satellite and reanalysis precipitation products using attention-based deep convolutional neural nets: Frontiers in Water, v. 2, no. 536743, 22 p., http://doi.org/10.3389/frwa.2020.536743.

Tahmasebi, P., Javadpour, F., and Enayati, S. F., 2020, Digital rock techniques to study shale permeability: a mini-review: Energy and Fuels, v. 34, no. 12, p. 15672–15685, http://doi.org/10.1021/acs.energyfuels.0c03397.

Tang, D. G., Milliken, K. L., and Spikes, K. T., 2020, Machine learning for point counting and segmentation of arenite in thin section: Marine and Petrolelum Geology, v. 120, no. 104518, 17 p., http://doi.org/10.1016/j.marpetgeo.2020.104518.

Tang, X., Zhang, T., Zhang, J., Sun, X., Wu, C., and Jin, Z., 2020, Effect of pore fluids on methane sorption in the Lower Bakken Shales, Williston Basin, USA: Fuel, v. 282, no. 118457, 14 p., http://doi.org/10.1016/j.fuel.2020.118457.

Thompson, J. C., Kreitler, C. W., and Young, M. H., 2020, Exploring groundwater recoverability in Texas: maximum economically recoverable storage: Texas Water Journal, v. 11, no. 1, p. 152–171.

Torres, M. E., Hong, W.-L., Solomon, E. A., Milliken, K., Kim, J.-H., Sample, J. C., Teichert, B. M. A., and Wallmann, K., 2020, Silicate weathering in anoxic marine sediment as a requirement for authigenic carbon burial: Earth-Science Reviews, v. 200, no. 102960, 15 p., http://doi.org/10.1016/j.earscirev.2019.102960.

Traphagan, J. W., and Wisian, K., 2020, Protocols for encounter with extraterrestrials: lessons from the Covid-19 Pandemic: Journal of the British Interplanetary Society, v. 73, no. 7, p. 234–238, https://www.bis-space.com/membership/jbis/2020/JBIS-v73-no07-July-2020_r0cgh4.pdf.

Ukar, E., Baqués, V., Laubach, S. E., and Marrett, R., 2020, The nature and origins of decametre-scale porosity in Ordovician carbonate rocks, Halahatang oilfield, Tarim Basin, China: Journal of the Geological Society, v. 177, no. 5, p. 1074–1091, http://doi.org/10.1144/jgs2019-156.

Ukar, E., López, R. G., Hryb, D., Gale, J. F. W., Manceda, R., Fall, A., Brisson, I., Hernandez-Bilbao, E., Weger, R. J., Marchal, D. A., Zanella, A., and Cobbold, P. R., 2020, Natural fractures: from core and outcrop observations to subsurface models, in Minisini, D., Fantín, M., Lanusse Noguera, I., and Leanza, H. A., eds., Integrated geology of unconventionals: the case of the Vaca Muerta play, Argentina: Tulsa, Okla., American Association of Petroleum Geologists, Memoir, v. 121, p. 377-416, http://doi.org/10.1306/13682234M1203837.

Ukar, E., López, R. G., Hryb, D., Gale, J. F. W., Manceda, R., Fall, A., Brisson, I., Hernandez-Bilbao, E., Weger, R. J., Marchal, D. A., Zanella, A., and Cobbold, P. R., 2020, Natural fractures: from core and outcrop observations to subsurface models, in Minisini, D., Fantín, M., Lanusse Noguera, I., and Leanza, H. A., eds., Integrated geology of unconventionals: the case of the Vaca Muerta play, Argentina: Tulsa, Okla., American Association of Petroleum Geologists, AAPG Memoir, v. 121, p. 377-416, http://doi.org/10.1306/13682234M1203837.

Wang, S., Feng, Q., Javadpour, F., Zha, M., and Cui, R., 2020, Multiscale modeling of gas transport in shale matrix: an integrated study of molecular dynamics and rigid-pore-network model: Society of Petroleum Engineers Journal, v. 25, no. 3, p. 1416–1442, http://doi.org/10.2118/187286-PA.

Wang, Y., Zhang, L., Ren, S., Ren, B., Chen, B., and Lu, J., 2020, Identification of potential CO2 leakage pathways and mechanisms in oil reservoirs using fault tree analysis: Greenhouse Gases: Science and Technology, v. 10, no. 2, p. 331–346, http://doi.org/10.1002/ghg.1959.

Wathelet, M., Chatelain, J.-L., Cornou, C., Di Giulio, G., Guillier, B., Ohrnberger, M., and Savvaidis, A., 2020, Geopsy: a user-friendly open-source tool set for ambient vibration processing: Seismological Research Letters, v. 91, no. 3, p. 1878–1889, http://doi.org/10.1785/0220190360.

Williams, N. D., Elliott, B. A., and Kyle, J. R., 2020, A predictive geospatial exploration model for Mississippi Valley Type Pb–Zn mineralization in the Southeast Missouri Lead District: Natural Resources Research, v. 29, no. 1, p. 285–310, http://doi.org/10.1007/s11053-020-09618-2.

Wisian, K. W., and Traphagan, J. W., 2020, The search for extraterrestrial intelligence: a realpolitik consideration: Space Policy, v. 52, no. 101337, 6 p., http://doi.org/10.1016/j.spacepol.2020.101377.

Wolaver, B. D., Priestley, S. C., Crossey, L. J., Karlstrom, K. E., and Love, A. J., 2020, Elucidating sources to aridland Dalhousie Springs in the Great Artesian Basin (Australia) to inform conservation: Hydrogeology Journal, v. 28, no. 1, p. 279–296, http://doi.org/10.1007/s10040-019-02072-2.

Wu, C., Zhang, L., Zhang, T., Tuo, J., Song, D., Liu, Y., Zhang, M., and Xing, L., 2020, Reconstruction of paleoceanic redox conditions of the lower Cambrian Niutitang shales in northern Guizhou, Upper Yangtze region: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 538, no. 109457, 11 p., http://doi.org/10.1016/j.palaeo.2019.109457.

Wu, X., Geng, Z., Shi, Y., Pham, N., Fomel, S., and Caumon, G., 2020, Building realistic structure models to train convolutional neural networks for seismic structural interpretation: Geophysics, v. 85, no. 4, p. WA27–WA39, http://doi.org/10.1190/geo2019-0375.1.

Wu, X., Yan, S., Qi, J., and Zeng, H., 2020, Deep learning for characterizing paleokarst collapse features in 3-D seismic images: Journal of Geophysical Research: Solid Earth, v. 125, no. e2020JB019685, 23 p., http://doi.org/10.1029/2020JB019685.

Xie, H., Longuevergne, L., Ringler, C., and Scanlon, B. R., 2020, Integrating groundwater irrigation into hydrological simulation of India: case of improving model representation of anthropogenic water use impact using GRACE: Journal of Hydrology: Regional Studies, v. 29, no. 100681, 17 p., http://doi.org/10.1016/j.ejrh.2020.100681.

Yáñez, E., Ramírez, A., Núñez-López, V., Castillo, E., and Faaij, A., 2020, Exploring the potential of carbon capture and storage-enhanced oil recovery as a mitigation strategy in the Colombian oil industry: International Journal of Greenhouse Gas Control, v. 94, no. 102938, 36 p., http://doi.org/10.1016/j.ijggc.2019.102938.

Zeng, H., He, Y., Kerans, C., and Janson, X., 2020, Seismic chronostratigraphy at reservoir scale: lessons from a realistic seismic modeling of mixed clastic-carbonate strata in the Permian Basin, West Texas and New Mexico, USA: Interpretation, v. 8, no. 1, p. T13–T25., http://doi.org/10.1190/INT-2019-0053.1.

Zeng, H., Zhu, X., Liu, Q., Zhu, H., and Xu, C., 2020, An alternative, seismic-assisted method of fluvial architectural-element analysis in the subsurface: Neogene, Shaleitian area, Bohai Bay Basin, China: Marine and Petroleum Geology, v. 118, no. 104435, 29 p., http://doi.org/10.1016/j.marpetgeo.2020.104435.

Zeng, Z., Zhu, H., Yang, X., Zeng, H., and Zhang, G., 2020, Multistage progradational clinoform-set characterisation and evolution analysis of the Early Oligocene in the Baiyun Sag, Pearl River Mouth Basin, South China Sea: Marine and Petroleum Geology, v. 112, no. 104048, 13 p., http://doi.org/10.1016/j.marpetgeo.2019.104048.

Zhang, J., Olariu, C., Steel, R., and Kim, W., 2020, Climatically controlled lacustrine clinoforms: theory and modelling results: Basin Research, v. 32, no. 2, p. 240–250, http://doi.org/10.1111/bre.12383.

Zhang, J., Sylvester, Z., and Covault, J., 2020, How do basin margins record long-term tectonic and climatic changes?: Geology, v. 48, no. 9, p. 893–897, http://doi.org/10.1130/G47498.1.

Zhang, T., Javadpour, F., Li, X., Wu, K., Li, J., and Ying, Y., 2020, Mesoscopic method to study water flow in nanochannels with different wettability: Physical Review E, v. 102, no. 013306, 17 p., http://doi.org/10.1103/PhysRevE.102.013306.

Zhang, T., Javadpour, F., Yin, Y., and Li, X., 2020, Upscaling water flow in composite nanoporous shale matrix using lattice Boltzmann method: Water Resources Research, v. 56, no. e2019WR026007, 19 p., http://doi.org/10.1029/2019WR026007.

Zhao, H., Liu, C., Larson, T. E., McGovern, G. P., and Horita, J., 2020, Bulk and position-specific isotope geochemistry of natural gases from the Late Cretaceous Eagle Ford Shale, south Texas: Marine and Petroleum Geology, v. 122, no. 104659, 11 p., http://doi.org/10.1016/j.marpetgeo.2020.104659.

Zhong, Z., Sun, A. Y., and Wu, X., 2020, Inversion of time-lapse seismic reservoir monitoring data using CycleGAN: a deep learning-based approach for estimating dynamic reservoir property changes: Journal of Geophysical Research: Solid Earth, v. 125, no. e2019JB018408, 27 p., http://doi.org/10.1029/2019JB018408.

Zhong, Z., Sun, A. Y., Wang, Y., and Ren, B., 2020, Predicting field production rates for waterflooding using a machine learning-based proxy model: Journal of Petroleum Science and Engineering, v. 194, no. 107574, 14 p., http://doi.org/10.1016/j.petrol.2020.107574.

Zhou, Q., Yang, X., Zhang, R., Hosseini, S. A., Ajo-Franklin, J. B., Freifeld, B. M., Daley, T. M., and Hovorka, S. D., 2020, Dynamic processes of CO2 storage in the field: 1. multiscale and multipath channeling of CO2 flow in the hierarchical fluvial reservoir at Cranfield, Mississippi: Water Resources Research, v. 56, no. e2019EF001360, 30 p., http://doi.org/10.1029/2019WR025688.

Zhu X.-M., Dong Y.-L., Zeng H.-L., Lin C.-Y., and Zhang X.-G., 2020, Research status and thoughts on the development of seismic sedimentology in China (Chinese with English abstract): Journal of Palaeogeography (Chinese Edition), v. 22, no. 3, p. 397–411, http://doi.org/10.7605/gdlxb.2020.03.027.

Zuo, H., Javadpour, F., Deng, S., and Li, H., 2020, Liquid slippage on rough hydrophobic surfaces with and without entrapped bubbles: Physics of Fluids, v. 32, no. 082003, 30 p., http://doi.org/10.1063/5.0015193.

Zuo, H., Javadpour, F., Deng, S., Jiang, X., Li, Z., and Li, H., 2020, Reassessing water slippage in hydrophobic nanostructures: The Journal of Chemical Physics, v. 153, no. 19, article no. 191101, 8 p., http://doi.org/10.1063/5.0030758.


University of Texas at Austin

University of Texas

© 2021 Bureau of Economic Geology | Web Privacy Policy | Web Accessibility Policy