CO₂ STORAGE IN DEPLETED GAS FIELDS

Filip Neele, Stefan Belfroid, Aris Twerda
STORAGE IN DEPLETED GAS FIELDS

- First choice for CO₂ storage in The Netherlands
 - ~1.5 Gt capacity in ~100 offshore fields
 - Re-use of pipelines, platforms, wells

- Competition with other uses for offshore area
 - Wind farms
 - Energy storage or conversion

- First gas fields (cluster) under development for CCS
 - Porthos consortium (Rotterdam)

North Sea Energy
www.north-sea-energy.eu
ALIGN - CCUS
DEVELOPING CAPACITY

Abundant storage capacity, but how to develop it?

Potential timeline of field development

Ranking of options – unit storage cost, location, capacity, etc.

DGF: depleted gas field
DSF: deep saline formation
Re-using platforms, wells, pipelines

Network development
Flexibility, robustness

Large pressure drops in system – management of CO₂ temperature is key element of operations

Well integrity, fault stability, flow rates, intermittency, low-temperature cycling, …

Risk management plan
Monitoring plan

Pressure and temperature distribution and development in reservoir (injection of cold CO₂)

Site conformance
Site handover

High-pressure pipeline(s)
RE-USING DEPLETED FIELDS (AND THE WELLS)

- Safe storage
 - Well integrity maintained during operations
 - Injection on – off: temperature cycling in well
 - **Wellhead**: $T > -10 \, ^\circ\text{C}$ (material constraint)
 - Reservoir and cap rock integrity preserved
 - Large contrast temperature CO_2 - reservoir

- Maintain operability of reservoir
 - Avoid salt deposition and hydrate formation
 - Hydrates: **bottomhole** $T > 15 \, ^\circ\text{C}$

- Flow rates through well: limits due to erosion, vibration
EXAMPLE: LIQUID, COLD CO₂ CONDITIONS ALONG WELL

› TVD ~ 3.5 km (deviated well)

› At wellhead:
 › Massflow: 10 - 170 kg/s
 › Pipeline pressure 100 bar
 › Wellhead temperature: 10 °C

› Near bottom of well:
 › Reservoir pressure: 20 bar
 › Reservoir temperature: 120 °C

-10 °C (wellhead)

15 °C (bottom hole)

Minimum safe injection rate 80 kg/s (~2.5 Mtpa) (only for this particular set-up!)

Results depend on well completion, reservoir properties, etc.: system design to take the flow phenomena into account
DYNAMIC OPERATIONS – SHUTIN

- Shutin
 - Reservoir pressure 20 bar
 - Initial mass flow rate 30 kg/s
 - Well shut in

- During shutin
 - Wellhead pressure decreases
 - Liquid is formed
 - Conditions shift to phase line
 - Results in temporary low temperatures

- Requires detailed heat transfer calculations including heat capacity
 - Tubing temperatures
 - Annulus temperatures
 - Cement bonding

Total time: 90 minutes
CONFORMANCE MONITORING

- Define site conformance indicators
 - Pressure, temperature in places in system

- Compare measured and observed field performance indicators
 - Measured: noise
 - Modelled: uncertainties, model limitations

- What is magnitude of signal in monitoring data from risks that do occur, compared to noise and uncertainties?

Regulations in place, but not tested yet

EU Storage Directive & ETS: emphasis on monitoring, measuring and verification

How well can we assess conformance?
Correct assessment depends on (a.o.): Uncertainties in a priori model, variations in CO₂ quality, noise in monitoring data.

False negatives, false positives

Improve: decrease uncertainties, add other monitoring techniques

EXAMPLE: BHP BASED MONITORING
CONCLUSIONS

- Depleted fields: blessing in disguise?
 - Abundance of data from production period
 - Well-defined storage capacity
 - Pipelines, platforms and wells to be re-used
 - Low pressure represents challenge – injection project becomes temperature management project
 - For NL fields: size (capacity) of fields requires many fields to be developed
Acknowledgements

ACT ALIGN CCUS Project No 271501

This project has received funding from RVO (NL), FZJ/PtJ (DE), Gassnova (NO), UEFISCDI (RO), BEIS (UK) and is cofunded by the European Commission under the Horizon 2020 programme ACT, Grant Agreement No 691712

www.alignccus.eu

This work has been produced with support from the ERA-NET ACT Pre-ACT project (Project No. 271497) funded by RCN (Norway), Gassnova (Norway), BEIS (UK), RVO (Netherlands), and BMWi (Germany) and co-funded by the European Commission under the Horizon 2020 programme, ACT Grant Agreement No 691712. We also acknowledge the following industry partners for their contributions: Total, Equinor, Shell, TAQA.