Predicting CO\textsubscript{2} Buoyant Flow Saturation in Heterogeneous Geologic Formations with Machine Learning

HAILUN NI1, SAHAR BAKHSHIAN1, ANTHONY ZUNIGA2, TIP MECKEL1

1GCC, BEG, The University of Texas at Austin
2The Department of Computer Science and Engineering, University of North Texas
Sub-meter scale barriers can determine migration pathways, speed of plume movement, and CO₂ storage capacity

CO₂ retained per grid block: 3% -> 48%
CO₂ retained: 10% -> 21%
Sub-meter scale barriers can determine migration pathways, speed of plume movement, and CO$_2$ storage capacity

Increasing grain size contrast between matrix and laminae

(Increasing degree of heterogeneity)

\[S_{NWP} = 0.27\% \]
\[S_{NWP} = 3.24\% \]
\[S_{NWP} = 31.5\% \]
\[S_{NWP} = 36.8\% \]

CO$_2$ retained per grid block: 3% → 48%
CO$_2$ retained: 10% → 21%

Krishnamurthy, 2020
Why do modified invasion percolation simulations?

3D representation of the monitored CO$_2$ plume

Modified invasion percolation simulation result

Cavanagh & Haszeldine, 2014
Heterogeneity in natural geologic formations is affected by two major factors:

- **Grain size**: Trevisan et al., 2017
 - Coarse: Upper, Lower
 - Medium: Upper, Lower
 - Fine: Upper, Lower
 - Very fine: Upper, Lower

- **Bedform architecture**: Rubin & Carter, 2005; Meckel et al., 2017
 - Laminae = 1
 - Matrix = 0
Data generation: modified invasion percolation simulations

- 59 bedform architectures
- 40 grain size contrast cases
- 50 stochastic realizations
- = 118,000 simulations run

Rubin & Carter, 2005; Meckel et al., 2017; Trevisan et al., 2017
Data: first look

![Graph showing contrast between matrix and laminae]

Average CO₂ saturation (%) vs. Contrast between matrix and laminae, δ (-)

Bedform:
- # 3
- # 5
- # 13
- # 19
- # 27
- # 36
- # 42a
- # 63
- # 4
- # 15
- # 16
- # 17
- # 18
- # 21
- # 22a
- # 22b
- # 25
- # 29
- # 32a
- # 32b
- # 32c
- # 34a
- # 34b
- # 34c
- # 38
- # 40
- # 42b
- # 43a
- # 43b
- # 45
- # 46a
- # 46b
- # 46c
- # 46d
- # 46e
- # 46f
- # 46g
- # 46h
- # 46i
- # 46j
- # 46k
- # 46l
- # 46m
- # 46n
- # 55
- # 56
- # 58
- # 59
- # 65
- # 66
- # 67
- # 69
- # 71
- # 72
- # 73
- # 74
- # 77
- # 78
- # 79
Model training: training and test set

All data

59 Bedforms

Training set

51 Bedforms

Test set

8 Bedforms

Each bedform architecture model has all of its 40 grain size contrast cases included.
Model results: first model

\[R^2 = 0.86 \]
\[RMSE = 8.7 \]
Model building: with machine learning

- Add more features
 - Grain sorting
 - Geological entropy
 - Bedform descriptors
 - Planform shape
 - Shape and behavior through time
 - Crest orientation
 - Lamination type and shape

- Try different machine learning regression models
 - K nearest neighbors
 - Linear regression
 - Tree-based ensemble models
 - Random forest
 - Gradient-boosted trees
 - Artificial neural networks
Model building: feature selection
Model results: second model

• Random forest model

\[R^2 = 0.95 \]
\[RMSE = 5.3 \]
Model results: feature importance

Feature importance bars for various features, with 'Grain size contrast' being the most important.
Important features: grain sorting and laminae grain size

Symbol size represents absolute laminae grain size
Important features: lamination type and shape

• High CO\textsubscript{2} saturation:
 • Continuous ripple lamination

• Low CO\textsubscript{2} saturation:
 • Discontinuous cross-lamination
Validation: experiments

(a) Exp. A Exp. B

Exp. C Exp. D

End of Drainage

CO₂ saturation

High

Low

\[\left(\langle S_{CO₂}\rangle \right) \text{%}\]

\[0.00 \quad 10.00 \quad 20.00 \quad 30.00 \quad 40.00 \quad 50.00 \quad 60.00\]

 Experimental Predicted Simulated

\[R^2 = 0.80\]

\[RMSE = 7.2\]

Krishnamurthy, 2020
Conclusions

Single-feature model

$R^2 = 0.86$
$RMSE = 8.7$

Multi-feature model

$R^2 = 0.95$
$RMSE = 5.3$

Feature importance:
- Grain size contrast
- Lamina median grain size
- Bottom filled volume
- Lamination type_ripple
- Entropic scale
- Grain sorting_Extremely well sorted
- Global entropy
- Planform shape_3D-superimposed
- Grain sorting_Very well sorted
- Grain sorting_Moderately sorted
- Crest orientation_oblique
- Grain sorting_Well sorted
- Shape and behavior through time_variable
- Crest orientation_transverse
- Crest orientation_Longitudinal
- Planform shape_2D

Graph showing predicted vs. actual S_{CO2} values.
Important features: geological entropy and entrograms

Bianchi & Pedretti, 2017; 2018
Potential model use case: upscaling critical CO₂ saturation for heterogeneous domains

Threshold capillary pressure

P1

P2

P3

P4

CO₂ saturation

Irreducible water saturation

Water saturation

1 − critical CO₂ saturation