Mimicking Rock Heterogeneity in the Laboratory to Better Understand Effects on CO$_2$ Migration and Trapping
Prasanna G Krishnamurthy1, Luca Trevisan3, Tip Meckel2 and David DiCarlo1

1Petroleum and Geosystems Engineering Department, The University of Texas at Austin, Austin
2Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin
3Karlsruhe Institute of Technology, Karlsruhe, Germany

This research fabricates novel engineered sand packs for buoyancy-driven fluid migration experiments conducted at the meter scale using glass beads packed in a quasi 2D glass cell (60 x 60 x 1 cm) and complementary reduced physics simulations. We have constructed a novel, automated technique to build sandpacks that mimic natural sedimentary features. The heterogeneous sedimentary structures are built by vertically depositing commercial silica sand (ranging from 100 to 1000 microns) into the glass cell in an automated manner through a hopper mounted on a programmable dual axis (horizontal and vertical) linear actuator system (Fig 1). By programming the coordinated motion of the two axes the creation of previously unachievable crossbedding and ripple like deposits (Fig 2). The features can be re-generated in a highly reproducible manner (Fig. 3).

Fluid migration experiments are then conducted at ambient conditions using a surrogate fluid pair (Fig. 4) that mimics density and viscosity contrasts, and interfacial tension of in-situ reservoir brine and supercritical CO$_2$. A peristaltic pump is used to inject the supercritical CO$_2$ analogue at the bottom of the glass cell at low flow rates such that capillary forces are dominant.

Light transmission techniques and image processing are used for visualization, and to calibrate and quantify saturation of the trapped non-wetting fluid during the experiments. With the ability to generate different types of heterogeneous structures in a reproducible manner, a systematic investigation of the effect of heterogeneity on trapping and migration behavior becomes possible.

These novel experiments can be summarized with the following:
1. We can engineer sandpacks to specification mimicking cm-scale natural heterogeneity at meter-scale with high repeatability.
2. We can visualize and quantify (mass and pressure) buoyant flow at analog subsurface conditions using surrogate fluids. Time constraints are very high value. Extrapolate to field scale?
3. We can validate flow conformance with numerical simulations: build confidence. FOAK demonstrated match of complex sand tank model observations to numerical simulation.
4. Quantitative summary forthcoming, but we expect to be able to predict 2D tank saturations and flow times given basic geologic characterization (grain size contrast and fabric). With simulator conformance we gain trust in 3D simulation results of complex systems that are difficult to work with in the lab.

We seek someone to continue leading this groundbreaking research initiative.
Contact Dr. Tip Meckel – tip.meckel@beg.utexas.edu +1-512-471-4306
Fig 1: Schematic of the automated packing system, further developed from Griffith et al., 2013.

Fig 2: Sandpack configurations generated by the automated system. Inset images show actual geologic outcrops for comparison.

Fig 3: High reproducibility afforded by programmable system.
Fig 4: Setup for multi-phase buoyant flow experiments using surrogate fluids for subsurface conditions.

<table>
<thead>
<tr>
<th>Fluid Properties</th>
<th>Viscosity (cP)</th>
<th>Density (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heptane (Non wetting)</td>
<td>0.41</td>
<td>684</td>
</tr>
<tr>
<td>Glycerol + Ultrapure Water (Wetting) (50:50 w/w)</td>
<td>6.25</td>
<td>1115</td>
</tr>
<tr>
<td>Viscosity Ratio Φ (µl/µd)</td>
<td>0.065</td>
<td></td>
</tr>
<tr>
<td>Δρ</td>
<td>431</td>
<td></td>
</tr>
<tr>
<td>IFT mN/m</td>
<td>30.2</td>
<td></td>
</tr>
</tbody>
</table>

Fig 5: Preliminary results demonstrating effects of capillary entry pressure contrast.