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Questions addressed

* What do high-resolution local-scale
networks reveal about induced
earthquakes?

 How were the SMU earthquake catalogs
developed and where does monitoring
merge into research?

« What do studies of the Fort Worth Basin
uniquely reveal about induced
earthquakes?

 What are some remaining questions and
key missing data needed to effectively
design mitigation strategies?
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Earthquakes in the Fort Worth Basin are
primarily induced by wastewater disposal practices

Cumulative Wastewater Injection: 2005-2019

* No known earthquakes in this region e oy e
prior to 2008

« Earthquakes are spatially & temporally
associated with the shale gas play Patlhe |,
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Quinones et al. 2019 updated from Hornbach et al. 2016



Shale gas is extracted from the Barnett Shale and
waste fluids are injected into the Ellenburger formation.
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Where are the faults? How can we tell which faults can host earthquakes?

Hennings et al. 2019 from multiple sources



Network Operations & Catalogs in the FWB

* NTXES Network and Catalog Earthquakes Stations
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TexNet:

Texas funded a state-wide seismic network in 2015

Estimated magnitude of completeness in
the USGS ComCat for Texas is ~M2.7

— 18 broadband stations in Texas prior to 2017

TexNet added & reduced sensitivity to M1.5

— 25 permanent broadband seismometers

— 33 portable systems (broadband+strong motion)

Temporary networks supplement in areas of
interest == SMU research networks
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What do local and near-regional studies reveal about
induced earthquakes relative to regional networks?
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Local seismic data resolves faults and fault behavior
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Building a catalog:
Install stations== Resolve depth, smallest size, azimuthal coverage

Example: Irving-Dallas Eq Sequence
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Constraints at SMU for NTXES 4F & ZW

— Limited choice in sensor type
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Building a catalog:
Characterize the subsurface geology and velocity
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Building a catalog:
Automated and manual review of onset times & initial location
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We have 5 named sequences but many more source zones!
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We recorded 3 newly active faults over 2017-2019
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Building a catalog but sliding toward research:
Establishing a local magnitude calculator
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Building a catalog but sliding toward research:
Establishing focal mechanisms
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Research with catalogs:
Early indicators of induced earthquakes near wells
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W Montague™ 4
~ %ﬁ i+ . A Stations were located around the basin from 2010-2011
| O El CHo
. 8 0 Some faults had already generated felt earthquakes
0| Wise (@) 97°00'W (b) 9700W
AN 2005-2007 - 2008-2010 1
5 s
= T—W /
o Parker - 33°00°N / -33°0'0"N
_ DDHEI o 74
B )
I /
Y/ O {
Hood
S
! Do }
= S @ uscs @ swu (O Frohlich

Kilometers Injection Volume - Millions US Barrels

- I EE—
From Frohlich 2012 " [ ] os [ 510 [ 10-1s [ 1520




Over the last decade, earthquakes occurred on faults in areas
of lower volume but with expected pore pressure change
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Rebuilding catalogs to advance research
Template, correlation approaches

« Matched filter (template matching)
allow us to expand the local
catalogs in time but we lose
resolution in space
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Rebuilding catalogs to advance research:
Relative relocation A N
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Collaborative research using the catalogs:
Constraining fault geometry to study deformation history
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Collaborative research using the catalogs:

Fault slip potential Study
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Collaborative research using the catalogs:
Pore-pressure diffusion modeling [DFW Airport example]
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Collaborative research using the catalogs:
108 . 1 Source studies and hazard
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Public real-time seismic data spurs
societally-relevant research beyond induced earthquakes

North Texas seismometers record sudden reduced noise in Dallas associated
with county stay-at-nome order & the slower rise in noise with reopening
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Data analysis provided by Stephen Arrowsmith, SMU



Lessons: What have we (re)learned in the FWB?

* Faults within the basement are near critically stressed & orientation within the
current stress regime appears a critical predictor of reactivation

* Faults in naturally active seismic zones exhibit a long-lived history of
reactivation

* Very small stress changes can trigger seismicity

« Maximum magnitudes appear different between the FWB and natural
iIntraplate settings

* The cumulative history of wastewater injection and fluid production
within the Ellenburger, and the evolution of pressure in the injection
formation and units in hydrogeological contact, appear to be key
drivers of the seismogenic evolution of the basin.
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Many remaining questions
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Why do only some faults generate
earthquakes?

How sensitive are the FWB faults to pore
pressure perturbations?

What is the permeability of these faults? | A W

William "Bubba" Flint, special contributor

Some permeability and damage zone (fault width)
IS required to trigger basement faulting. How big
are the damage zones after 300 Ma?

What are the best mitigation strategies?



Still missing key data: Injection and production data

« Time and space correlation is not sufficient
—— Cammbran Ordovichn monthly el count to understand physical processes in the

- Cambrian-Ordovician cumulative disposal volume ~2 billion
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— Properties of the fluids and the source rock

From Hennings et al. 2019



Summary

. . . 99°0'0"W 98°0'0"W 97°0'0"W
* Integrating geology, fault information, ' ' '
catalogs and modeling efforts with timely >
Injection data provide necessary insights
into physical mechanisms in the FWB
e
« Monitoring over the full life-cycle of a i & SO
system is mandatory g @;%O
0
15
* Improved knowledge of downhole pressure \
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« Tracking the cumulative injection history 1 | s Barels
and evolution of the basin remains key U Il 0 -

Quinones et al. (2019), updated
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