We are delighted to share the news that the Gulf Coast Carbon Center has received funding for three new projects. These efforts span the breadth of our technical expertise from characterizing new storage units in offshore depleted fields to utilizing new operational tools for safely injecting in onshore brine reservoirs to deploying smart technologies for whole system monitoring. Here’s a preview of our upcoming work and we look forward to keeping you up-to-date on our progress.
Offshore Asessment
The aim of this DOE-funded project is to conduct an offshore carbon storage resource assessment of the Gulf of Mexico Texas – Louisiana study area. The project, called TXLA for the region of interest, is headed up by Tip Meckel and Ramón Treviño.
The carbon dioxide storage capacity of depleted oil and natural gas reservoirs will be assessed utilizing existing data such as well logs, records and sample descriptions from existing or plugged and abandoned wells, available seismic surveys, existing core samples, and other available geologic and laboratory data from historical hydrocarbon industry activities. One significant benefit of working in this Gulf Coast region is that rich data is available in the heavily explored portions of the inner continental shelf of the Texas and Louisiana Gulf of Mexico coastal areas.
Using existing data, TXLA will also assess the ability and capacity of saline formations in the region to safely and permanently store nationally-significant amounts of anthropogenic CO2. The study will identify at least one specific site with potential to store at least 30 million tons of CO2 that could be considered for a commercial or integrated demonstration project in the future. The project will also engage the public and other stakeholders for the region through outreach activities to apprise them of the study objectives and results.
Pressure Management
Seyyed Hosseini is the Primary Investigator on a new project called Pressure Management and Plume Control Strategies through a Brine Extraction Storage Test at the Devine Test Site. Funded by DOE’s Carbon Storage program, which focuses on developing specific subsurface engineering approaches that address research needs critical for advancing carbon capture and storage to commercial scale, the work will be performed in partnership with GE Global Research.

Pressure management through brine extraction can solve many of the problems associated with injection of CO2 for geological storage. Extracted brine can be fed into brine treatment and desalination units for water recovery. The schematic above for the Active Pressure Management strategy (APMS) shows the storage zone where CO2 would be injected. An extraction well that extends to the storage zone would be used to actively pump brine from the storage zone to the surface to control pressure buildup in the storage zone. The brine can be treated at the surface and the treatment residuals would be disposed of into a distinct geologic unit.
The project will test active brine extraction wells, passive pressure relief wells, and combinations of both, to control the pressure buildup in the storage formation. Under each pressure management strategy, a complete life-cycle analysis for brine, along with brine handling strategies, will be developed. The proposed study will include some lab and pre-pilot scaling work to obtain the design parameters for Phase II. The proposed field site is the University of Texas at Austin’s Devine test site.
Intelligent Monitoring
