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Abstract

A series of earthquakes was recorded along a mapped fault system near Azle, Texas in 2013. To identify
the mechanism of seismicity, coupled fluid flow and geomechanical simulation is carried out to model fluid
injection/production and the potential onset of seismicity. Sensitivity studies for a broad range of reservoir
and geomechanical parameters are performed and the calibrated models are used to identify controlling
mechanisms for seismicity in the Azle area, North Texas and its relationship to hydrocarbon production
and fluid injection in the vicinity. Geologic, production/injection, and seismicity data are gathered to build
a detailed simulation model with coupled fluid flow and geomechanics. Geomechanical simulation results
are used to calculate cumulative seismic moment magnitude. Sensitivity analyses for injection well head
pressure and earthquake data are performed over a range of reservoir and geomechanical parameters.
Influential parameters are selected to perform a pareto-based multi-objective history matching of well head
pressures and seismic moments.

Geomechanical interaction has significant impact on seismicity in the Azle area. Unbalanced loading
(overall injection and production) on different sides of the fault generates accumulation of strain change,
resulting in the onset of seismicity. Previous studies seem to have significantly underestimated the fluid
withdrawal rates, almost by an order of magnitude. The equivalent bottom-hole fluid rate used in this
study suggests a drop in reservoir pore pressure which is consistent with the BHP trends. Thus, pore
pressure increases may not explain the seismicity near the Azle area, as indicated in previous studies. Instead
geomechanical effects and strain propagation to the basement appear to be the dominant mechanisms. The
low fault cohesion and minimum horizontal stress obtained from history matching suggest that the faults
must be near or at the critically-stressed state before the initiation of fluid production/injection. A sensitivity
analysis indicates that the minimum horizontal stress and fracture gradient each play a critical role in the
potential risk for seismicity related to fluid injection/production. Streamline flow pattern further proves that
there is no fluid movement in the basement formation and the unbalanced loading from different sides of
the fault is the controlling mechanism. This is the first study coupling fluid flow and geomechanics in the
Azle area and the first to simultaneously calibrate the models with fluid flow and seismicity data.
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Introduction and Background

Seismic events have been observed with increased frequence in the Fort Worth Basin since 2007. Several
studies have been conducted to investigate the recent seismicity and many of them conclude that the main
factors are the wastewater injection near the fault regions and reactivation of the faults (Frohlich et al. 2016,
Frohlich et al. 2011, Gono et al. 2015, Hornbach et al. 2015). Hornbach et al. (2015) constructed a single
phase flow model for the Ellenburger formation of the Azle area to simulate the pore pressure change and
found the pore pressure increase near the faults could range from 0.01MPa to 0.14MPa. This pore pressure
change could trigger the earthquake for near-critically stressed faults (Reasenberg and Simpson 1992, Stein
1999). However, Hornbach et al. (2015) only simulated the fluid flow in the Ellenburger formation and
did not explicitly account for geomechanical effects and the resulting fault activation and seismic moment
(Cappa and Rutqvist 2011, Jha and Juanes 2014, Park et al. 2016, Rutqvist et al. 2013, Segall and Lu 2015).
Fan et al. (2016) conducted coupled fluid flow and geomechanics simulation to calculate the stress and pore
pressure change along the faults during wastewater injection near Timpson, east Texas. Based on Mohr-
Coulomb failure criteria, they showed the potential of fault activation associated with wastewater injection
but they did not link the fault activation to the seismic moment magnitude. Previous studies either did not
include the basement below the reservoir formation (Gono et al. 2015, Hornbach et al. 2015) or did not
simulate the geomechanical effects in the basement although most large seismic events happened in the
basement.

In the current study, we focus on the Azle area in North Texas, where a series of seismic events occurred
between November 2013 and April 2014. To investigate the relationship between seismic events and field
operations, we built a detailed simulation model with coupled fluid flow and geomechanics. This model
consists of the overburden, the Marble Falls, the Barnett, the Ellenburger and the crystalline basement
formation. Two conjugate faults are located based on earthquake catalog (USGS) and the main fault is
extended to a depth of 8km, through the basement (Texas-RRC 2015). Two injection wells in the Ellenburger
and 70 production wells in the Barnett are included in the model. The wastewater injection rate is from
the H-10 form of the Railroad Commission of Texas website (Texas-RRC 2018) and the production rate
is from the "DrillingInfo" data base. Our modeling includes multiphase effects accounting for both water
and gas production, which results in substantial voidage under reservoir conditions. Pareto-based multi-
objective optimization is conducted to calibrate the subsurface model using both the well head pressure data
and the historical seismic events (Park et al. 2015). The Genetic algorithm (GA) is used in this optimization
study, which is a stochastic approach that allows for uncertainty quantification for the model parameters by
generating alternative plausible models rather than a unique deterministic solution. The overall workflow
is shown in Fig. 1. To further validate the results from this workflow, a fine-scale Azle model with more
than 2.7 million cells has also been constructed. Streamlines are traced on this fine-scale model to visualize
the flow paths.
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Figure 1—Workflow for Azle seismicity study using coupled flow and geomechanical modeling.

Geologic Model of the Azle Area

The Azle geologic model in this study is similar to the model used by Hornbach et al. (2015). The major
difference is that we include the overburden as well as the basement, where most of the large seismic events
have occurred. The model consists of two conjugate faults consistent with where most of the seismic events
occurred. The primary normal fault extends down-dip through the crystalline basement (strike 225°, dip
60°~70°) (Hornbach et al. 2015).

Multi-stage hydraulic fracturing is routinely conducted in the Azle area to produce gas from the low
permeability Barnett shale. The produced water, either originating from hydraulic fracture injection fluid
or from the underlying Ellenburger formation, is reinjected into the Ellenburger formation through two
injectors. The seismic events (Mw>2) are shown in Fig. 2. From Fig. 2, the majority of the seismic events
have occurred in the basement. The two conjugate faults are constructed based on the observed seismic
events and previous geologic interpretation. The schematic 3D model is shown in Fig. 3. In this geologic
model, uniform properties are used for each formation except at the fault locations. The reservoir and
geomechanical properties for the base case are summarized in Table 1. The stress state and the Mohr-
Coulomb failure envelope of the fault at the top of the basement are shown in Fig. 4, where we can see
that the faults are near critically stressed since the initial stress state is very close to the Mohr-Coulomb
failure envelope.
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Figure 2—Azle area fault location and the locations of the earthquake events (Mw22).
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Figure 3—Azle geologic model with 2 conjugate faults.
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Figure 4—lInitial stress state and the Mohr-Coulomb failure envelop for the base case.
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Table 1—Reservoir and geomechanical properties for the Azle base case simulation
model (Hornbach et al. 2015, Lund and Zoback 2016, Texas-RRC 2015, Wang 2000)

Marble

Overburden Falls Barnett  Ellenburger Basement Fault Reference

Permeability
(md)

190 0.01 1.00E-05 30 1.00E-04 1.00E-03
Hormbach

Porosity

Same as etal. 2015

0.2 0.2 0.06 0.055 0.05 .
formation

Pore Pressure

Texas-
23082 kPa @ 2046 m RRC 2015

Effective
Vertical
Stress
Gradient

14.7 kPa/m

Effective
Minimum
Horizontal

Stress

Gradient

Snee and
4.5 kPa/m Zoback

2016

Ag = (s2-
s3)/(s1-s3)

0.74

Direction of
Horizontal
Stress

N28.8E

Young’s
Modulus
(kPa)

1.44E+07  6.00E+07 4.00E+07 6.00E+07 4.30E+07 4.00E+07

Poisson’s
Ratio

0.2 0.2 0.23 0.2 0.27 0.25 Wang
2000

Cohesion
(kPa)

2.00E+04 2.00E+04 2.00E+04 2.00E+04 2.00E+04 1.00E+03

Friction
Angle (Deg)

30 30 30 30 30 30

Coupled Flow, Geomechanical Modeling and the Seismicity Calculation

Our simulation model consists of 62x62x22 grid cells. The areal grid size is 160m by 160m and varying
cell dimensions vertically with high resolution in the Barnett and Ellenburger as shown in Fig. 5. The
model contains 1 layer for the overburden, 1 layer for the Marble Falls, 5 layers for the Barnett, 5 layers
for the Ellenburger and 10 layers for the basement. The Barnett formation is the production zone and the
Ellenburger is the wastewater injection zone. The two conjugate faults are represented as zig-zag faults in
the model and have distinct properties from the reservoir. Two injection wells in the Ellenburger and 70

production wells in the Barnett are included in the model with total simulation time of 12 years.
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Figure 5—A cross-sectional view of the Azle simulation model. (Property visualized is the Young's modulus.)

We use CMG STARS (CMG 2018) as the forward simulator. CMG STARS couples fluid flow and
reservoir deformation (geomechanics) together in a sequential manner. The fluid flow calculation first
updates the pressure over a time interval; the geomechanical calculation updates the formation deformation
in response to the new pressure and sends the new deformation back to the fluid flow calculation and the
processes is repeated over other time intervals.

We calibrate our model with well head pressure and historical seismic events. The bottom-hole pressure
(BHP) can be directly obtained from the simulator. The seismic moment magnitude is calculated from
the geomechanical results. The seismic moment tensor is used to model the seismicity induced by fault
activation and is calculated using the following equation (Aki and Richards 2002)

Mpq = jV Cpq.':v Aemd 4 ( 1 )

Here, C,,, is the stiffness tensor or the elastic modulus tensor and Ae, is the change of strain
by deformation, which is obtained from the geomechanical simulation. The repeated indices indicate
summation. We take the L, norm of the seismic moment tensor to obtain the intensity of the seismic moment,
M, (Dahm and Kriiger 2014)

MO = ”Mpq ||L2 (2)

The cumulative seismic moment magnitude is calculated as follows (Kanamori 1977)

M, = logM, ~16.1 Afos_m'l +4.667 3)

By changing the reservoir properties, we calibrate our model to match the historical well head pressure
and seismic events. The detailed steps and results are discussed in the following sections.

History Matching Using Multi-objective Optimization

We use the Pareto-based multi-objective history matching algorithm to calibrate the forward model with
historical well head pressure and seismic events (Park et al. 2015). This methodology is suitable to minimize
multiple (potentially conflicting) objective functions. Instead of aggregating different misfit functions, the
pareto-based approach ranks the models based on the concept of dominance. Before history matching, we
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first conduct sensitivity studies for each type of data misfit, and then select the most influential parameters
from the sensitivity analyses to perform the multi-objective history matching. We obtain multiple plausible
parameter combinations that match reasonably well the historical bottom-hole pressure and seismic event
data and then perform uncertainty analyses using the history matched models.

Pareto Optimization Background

Dominance relationship among different solutions forms the basis of the Pareto concept. For a minimization
problem involving n objectives defined by objective functions objn, solution a dominates solution b if all
objective functions represented by a are not greater than those of b, and at least one objective of a is strictly
smaller than the corresponding objective of b (Han 2016).

The dominance concept can be graphically demonstrated in Fig. 6. For a 2-objective optimization
problem, we have solution O shown in the red circle. We draw vertical and horizontal lines crossing solution
O to divide the entire solution space into 4 regions. In region A, both 0bj 1 and obj2 of all three solutions are
smaller than those of solution O. Thus, solutions in region A are better solutions and dominate solution O.
Both 0bj1 and 0bj2 of solutions in region D are larger than those of solution O, so solutions in region D are
dominated by solution O. In region B and D, solutions have one objective smaller but the other objective
larger than that of solution O. Thus, there is no dominance relationship between region B and D solutions
and solution O.

Solution O
F 3
obj1 | D c '
Comparable Solutions @ Worse Solutions
v @
P “
@ "
, o
Better Solutions n © * & Comparable Solutions
0 obj2

Figure 6—Dominance concept demonstrated using solution O.

Similar exercise can be performed on every solution to obtain the overall ranking of the solutions. In
Fig. 7, a set of solutions which are not dominated by any other solutions are classified as rank 1 solutions.
Then, rank 1 solutions are excluded from the solution space, and the same exercise is performed in the
remaining solution space to obtain rank 2 solutions. Then, both rank 1 and rank 2 are excluded to obtain
the next rank level of non-dominated solutions. The process is continued until all solutions are assigned a
rank level. The solution ranking exhibits the following features: (i) solutions on the same rank (same Pareto
front) are equally optimal, (ii) the lower rank solutions are more competitive than the higher rank ones for
a minimization problem, and (iii) trade-offs of the front reveal potential conflict between objectives.
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Figure 7—Solution ranking demonstration.
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Genetic Algorithm Background

We use the genetic algorithm, one of the evolutionary algorithms, for model calibration. The genetic
algorithm imitates biological principles of evolution - survival of the fittest. It has been extensively applied
to history matching problems (Bittencourt and Horne 1997, Romero and Carter 2001, Yin et al. 2011). The
evolution starts from a population of randomly generated individuals. In each generation, the fitness of every
individual (the rank of every model parameter set in our study) in the population is evaluated. Multiple
individuals are stochastically selected from the current population (based on their fitness), and modified
(recombined and possibly randomly mutated) to form a new population. The new population is then used in
the next iteration of the algorithm. Commonly, the algorithm terminates when either the maximum number
of generations is produced or a satisfactory fitness level is reached (Yin et al. 2011). Thus, multiple plausible
parameter combinations are generated with low rank level matching reasonably well with historical data. In
this study, we have 2 objective functions to minimize for model calibration: (i) bottom-hole pressure (BHP)
misfit and (ii) seismic moment magnitude misfit.

BHP Misfit

The injector BHP misfit is calculated using the following equation:

. Nwell Ntime obs ca
bjgup =loa(3)y [ (BHESS - BHPS!Y) @

Here, N,.; is the total number of history matching wells, N,,. is the total number of pressure data
observation times, the superscript obs indicates the observed data, and the superscript cal indicates the
calculated value from the simulation.

Seismic Moment Magnitude Misfit

Three simulations are used in Fig. 8 to demonstrate the seismic moment magnitude misfit calculations. The
magnitude misfit is the vertical difference between cumulative seismic moment magnitude and the observed
seismic event magnitude at the observed time and is given by:

Obj’?!agﬂinld(.’ = JZ:\:{";VCHI (MM}I(”‘“ - MM);‘“’ )2 (5)
--=-Simulation 1  —-Simulation 2
----Simulation 3 < Observed
.5"-’ %5 Observed Seismic Event Mw
2 77 |AMw, (3000, 2.8), @3000 AMw
325 P days
§ AMw, JAMw, P - -
- 1.5 § et o |7 - Simulation 1 2.4 0.4
= e B ,
3] o ; . , 4
g 0.5 / /_{,-' Simulation 1.4 1.4
= — Simulation 3 e 1.6
-0.5

0 1000 2000 3000 4000
Time, days
(a) (b)
Figure 8—An illustration of the calculation of the seismic moment magnitude misfit (a)

seismic moment magnitude evolution (b) seismic moment magnitude misfit calculation.

Here, N, is the total number of history matching seismic events, Mw,> is the observed seismic
moment magnitude of event i, and Ay is the calculated cumulative seismic moment magnitude from the



SPE-191623-MS 9

simulation within a specified search radius of seismic event i. The search radius represents the uncertainty
in the spatial location of the seismic event.

It is important to note that the intent here is not to predict when an earthquake will occur and the
calculated cumulative seismic moment magnitude does not suggest an equal-magnitude earthquake. Instead,
the calculated cumulative seismic moment magnitude implies the maximum stored energy from plastic
strain change and whether the accumulated energy is sufficient to cause a corresponding seismic event.

Sensitivity Analysis

Fig. 9 shows the calculated sensitivity of the injector bottom-hole pressure misfit to different parameters.
The flow parameters viz. permeability anisotropy and permeability and the geomechanical properties viz.the
Young's Modulus and Poisson's ratio are the most influential parameters, particularly for the Ellenburger
formation. This is because the two injectors are completed within the Ellenburger formation. The injector
bottom-hole pressure is not sensitive to the parameters other than from the Ellenburger. From the sensitivity
analysis, permeability anisotropy, Ellenburger permeability, Young's modulus, and Poisson's ratio are
identified as the primary tuning parameters for BHP calibration.

Base Case

Permeability Anisotropy (Kv/Kh) (0.01, 1)
Ellenburger Young's Modulus (1E+07, 1E+08), kPa
Ellenburger Permeability (10, 100), mD
Ellenburger Poisson's Ratio (0.15, 0.35)

Basement Permeability (1E-05, 1E-03), mD
Basement Poisson's Ratio (0.15, 0.35)

Fault Cohesion (0, 5000), kPa

Minimum Effective Horizontal Stress (1.5, 9), kPa/m
Maximum Horizontal Stress Orientation (18.7, 39.9), Deg
Ellenburger Pore Volume Multiplier (0.7, 1.3)
Barnett Poisson's Ratio (0.15, 0.35)

Fault Poisson's Ratio (0.15, 0.35)

Basement Young's Modulus (1E+07, 1E+08), kPa
A_phi = (s2-s3)/(s1-s3) (0.59, 0.89)

Basement Pore Volume Multiplier (0.7, 1.3)

Fault Young's Modulus (SE+6, 1E+08)

Fault Permeability (0.0001, 0.01), mD

Barnett Permeability (1E-06, 1E-04), mD

Barnett Pore Volume Multiplier (0.7, 1.3)

Barnett Young's Modulus (1E+7, 1E+08), kPa

(== e e T TR TYy

0 4 8 12 16 20 24
BHP Misfit

Figure 9—Sensitivity of the injector bottom-hole pressure misfit to various reservoir/geomechanical parameters.

Fig. 10 shows the sensitivity of the cumulative seismic moment magnitude misfit to different parameters.
Minimum effective horizontal stress and fault cohesion are the most sensitive parameters since they directly
determine the initial stress state of the faults based on the Mohr-Coulomb criteria. Fault Poisson's ratio is
also sensitive since this parameter is directly used in the seismic moment magnitude calculation in Eq. (1).
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Base Case

Minimum Effective Horizontal Stress (1.5, 9), kPa/m :
Fault Cohesion (0, 5000), kPa

Fault Poisson's Ratio (0.15, 0.35)

Ellenburger Permeability (10, 100), mD

Basement Young's Modulus (1E+07, 1E+08), kPa
Permeability Anisotropy (Kv/Kh) (0.01,1)
Basement Poisson's Ratio (0.15, 0.35)

Ellenburger Poisson's Ratio (0.15, 0.35)

A_phi = (s2-s3)/(s1-s3) (0.59, 0.89)

Maximum Horizontal Stress Orientation (18.7, 39.9), Deg
Fault Young's Modulus (SE+06, 1E+08), kPa
Ellenburger Young's Modulus (1E+07, 1E+08), kPa
Fault Permeability (0.0001, 0.01), mD

Barnett Young's Modulus (1E+07, 1E+08), kPa
Basement Pore Volume Multiplier (0.7, 1.3)
Basement Permeability (1E-05, 1E-03), mD
Ellenburger Pore Volume Multiplier (0.7, 1.3)
Barnett Poisson's Ratio (0.15, 0.35)

Barnett Pore Volume Multiplier (0.7, 1.3)
Basement Permeability (1E-0S, 1E-03), mD

,,l,,11[|||||ll

in [

0 0.5 1 2 25 3
Seismic Moment Magnitude Misfit

Figure 10—Sensitivity of the cumulative seismic moment magnitude misfit to various reservoir/geomechanical parameters.

Pareto-based Multi-objective History Matching and Uncertainty Analysis

Table 2 gives the primary tuning parameters and their ranges for the history matching process. Most of the
geomechanical properties have high uncertainty ranges because of limited data or prior knowledge. Fig.
11a shows the trade-off between seismic moment magnitude and BHP misfit using the pareto-based multi-
objective history matching. Comparing generation 5 with generation 1, we can clearly see generation 5
moves towards the bottom left of the figure, which indicates misfit reduction of the two objective functions.
Also, we can see a clear ‘Pareto front’ between BHP and seismic magnitude misfits in generation 5. Fig. 11b
shows the seismic moment magnitude matching. The initial generation response is scattered while the rank
1 matches are moving toward the unit slope line. Fig. 11c & Fig. 11d show the BHP matching of the two
injectors. All the rank 1 models show good agreement with historical pressure data, which slowly declines
over the injection period.

Table 2—History matching parameters and ranges.

Description Parameter Base Low High
Ellenburger Young’s Modulus  YOUNGE 6.00E+07 1.00E+07 1.00E+08
(kPa)
Basement Young’s Modulus ~ YOUNGB 4.30E+07 1.00E+07 1.00E+08
(kPa)
Geomechanical  Fault Young’s Modulus (kPa) YOUNGF 4.00E+07 1.00E+07 1.00E+08
Properties Fault Cohesion (kPa) COHEF 1000 0 5000
Ellenburger Poisson’s Ratio POISSE 0.27 0.2 0.35
Fault Poisson’s Ratio POISSF 0.25 0.2 0.35
Minimum Horizontal Stress Shmin 4.5 L5 9
(kPa/m)
Ellenburger Pore Volume PVE 1 0.7 1.3
Reservoir Multiplier B
. Ellenburger Permeability PERME 1 0.1 10
Properties Multiplier
ultiplie

Permeability Anisotropy Kv/Kh 0.1 0.01 0.2
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Figure 11—Multi-objective history matching results (a) Trade-off between seismic moment magnitude and
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Figure 12—History match parameter ranges (a) prior distribution (b) posterior distribution.

Fig. 12 gives boxplots of the prior and posterior distribution of the history match parameters. From
the result, we can clearly see significant reduction of uncertainty ranges for several key parameters,
especifically the Ellenburger permeability (#2 PERME), fault cohesion (#3 COHEF), and fault Poisson's
ratio (#8 POISSF). There is also uncertainty range reduction for several other geomechanical parameters.
One interesting phenomenon is that both fault cohesion (#3 COHEF) and the minimum horizontal stress (#9
Shmin) move towards lower bounds, indicating the two conjugate faults are actually in a critically-stressed

state before the start of injection.

Fig. 13 shows classification tree analysis of seismic moment magnitude and BHP misfit. The history
matched models have been grouped into four classes: the best fit being in class 1 and the worst fit are in class
4. The classification tree is generated by recursively finding the variable splits that best separate the output
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into groups where a single category dominates (Breiman et al. 1984). The algorithm searches through the
variables one by one to find the optimal split within each variable and the splits are compared among all
variables to find the best split for that fork. The process is repeated until all groups contain a single category.
Thus, the more dominant variables are generally the splits closer to the tree root. From Fig. 13, the most
important parameters for the seismic moment magnitude misfit are the minimum horizontal stress (Shmin)
and fault Poisson's ratio (POISSF) and for the BHP misfit it is the Ellenburger permeability (PERME).

Seismic Moment Magnitude Misfit

Shmin < 4.53
‘— POISSF < 0.262 @&]
I_ PERME < 0.474 —] ?’ﬂ
POISSF <0.211 YOUNGB >=87.7e+6
|_JZ__| IA__] COHEl <656 —|
é‘ PERME < 2.1
-

(a)

BHP Misfit

PERME >= 0.285 [;5)
,7 PERME <2. 15 l

PERME >= 0.406 Kth <0.0427

é boa

Figure 13—Parameter importance analysis using classification tree
(a) seismic moment magnitude misfit (b) injector pressure misfit.

It is important to note that if the minimum horizontal stress is higher than a threshold value (4.53 kPa/
m), all simulation results will have an insufficient accumulation of seismic moment magnitude and fall into
class 4, indicating that they significantly deviate from the seismic event history. The minimum horizontal
stress gradient is essentially the formation fracture gradient often obtained from minifrac tests. Thus, one
way to evaluate whether there is a risk of seismicity is to identify those depths in formations with low
fracture gradient.

In addition to classification tree analysis, we utilize entropy (mutual information) analysis to
quantitatively evaluate the strength of different input-output association (Mishra 2009). The mutual
information between x and y, which measures the reduction in uncertainty of y due to knowledge of x is
defined as (Bonnlander and Weigend 1994)

: (6)
J
Here, P; is the probability of outcomes corresponding to both state x; and state y;, while P; is the probability
of outcomes corresponding to state x; alone, and P, is the probability of outcomes corresponding to state y;
alone. A useful measure of importance defined on the basis of mutual information is called the R-statistic
(Granger and Lin 1994)
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R’ (x,y) = l—exp(—ZI(x,y)) (7

R takes values in the range of [0, 1], with values increasing with I(x,y). R is zero if x and y are independent,
and is unity if there is an exact linear relationship between x and y.

Fig. 14 shows the strength of different input-output associations quantitatively. As expected, reservoir
properties such as Ellenburger permeability (PERME), Ellenburger Young's modulus (YOUNGE), and
permeability anisotropy (Kv/Kh) have the strongest impacts on injector pressure. For seismic moment
magnitude, Shmin is the most influential parameter but POISSF and Kv/Kh are almost equally influential.
Thus, the classification tree analysis and the entropy analysis complement each other in this study. While
the entropy analysis provides the absolute strength of entire input-output associations, the classification tree
analysis offers useful insights into what variables are most important in determining whether the outputs
fall into each specific category.

Moment Magnitude L4 * [ ] [ ] . . . [ J ® @
R_statistic
* 0.2
® 04
® 06
® 08
Injector BHP . ® . ® . . . . . °

Output Misfit Objective Function

PVE PERME COHEF YOUNGE YOUNGB YOUNGF POISSE POISSF  Shmin KvKh
Input Parameter

Figure 14—Bubble plot showing quantitative strength of different input-output association.

Unbalanced Loading

Wastewater disposal is often associated with induced seismicity and much of the literature has focused on
reservoir pore pressure increase after injection as the primary mechanism for the seismicity (Hornbach et
al. 2015, Hornbach et al. 2016). Our results indicate that these effects may not be the primary reason for the
seismic events at Azle. First, the pressure change is larger in the Ellenburger formation but most of the Mw>2
seismic events were actually recorded in the basement. Second, there is sufficient evidence suggesting that
the Barnett and Ellenburger formations are not isolated and the amount of fluid volume extracted from the
reservoir may easily offset the amount of water injected. Thus, we do not see a pressure increase in the
Ellenburger and the basement formations, and this result agrees with the observed well BHP trends. Third,
using the fault permeability value from Hornbach et al. (2015), there is no pressure change in the basement
(Fig. 15a) and the streamline distribution in Fig. 15b shows that the majority of the fluid movement occurs
in the Ellenburger and Barnett formation with no fluid movement in the basement. However, we can see the
displacement for the weaker elements with low cohesion value in the basement as shown in Fig. 16.
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Figure 15—Matched case (a) pressure change and (b) streamline trajectory at the time of the observed seismic event.
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Figure 16—Matched case strain component changes at the time of the observed seismic event.

Even with no pore pressure change, the geomechanical interaction at the weaker elements of the basement
formation are able to accumulate enough plasticity strain to match the observed seismic event magnitude.
The accumulation of strain change is caused by the unbalanced loading on different sides of the fault
as shown in Fig. 17. On the northwest side of the main fault, there are 2 injectors and approximately
20 producers. The overall net reservoir volume of fluids (cumulative injection volume minus cumulative
production volume) at the end of simulation history is approximately 3.5E6 m?®. On the other side of the
fault, there are approximately 50 producers and no injector. The overall net reservoir volume of fluids is
approximately -8.1E6 m?®. The unbalanced fluid loading can be more easily visualized using streamlines.
Streamlines are traced from both injectors and producers, with each streamline from either producer or
injector carrying an equal amount of fluid volume. Fig. 17c clearly shows that the northwest side of the
main fault has less concentration of streamlines than the southeast side, indicating less production, and
the 2 injectors on the northwest side further increase the load imbalance. Even though the reservoir is not
completely compartmentalized by the fault, the difference of net reservoir volume change on different sides
of the fault creates an unbalanced loading to the basement, leading to the onset of seismicity.
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Figure 17—Unbalanced fluid loading in the basement generates accumulation of strain change,
leading to potential onset of seismicity: (a) schematic diagram of loading, (b) net cumulative
volume on different sides of the fault, and (c) top view injector and producer streamline distribution.

Streamline and Flow Visualization at the Fine-scale Model

In order to further validate our history matched results and the unbalanced loading evaluated using the
coarse-scale Azle model, a fine-scale Azle model with more than 2.7 million cells has been constructed. The
calibrated properties from the coarse-scale Azle model are used to tune the fine-scale geologic model and
streamlines are traced to visualize the flow paths. The injector-producer flow pattern is analyzed to validate
the identified controlling mechanism from the coarse-scale simulation results.

Fine-Scale Geologic Model

A high-resolution subsurface geologic model of the Azle area is shown in Fig. 18. This high resolution
geologic model has been constructed in the Petrel Geomodeling tool (Schlumberger 2018) for application
to the geomechanical assessment of fault reactivation and seismicity. The domain of the model is a 144
km? area in NW Tarrant County, NE Parker County, and southern Wise County. The model consists of
stratigraphic control surfaces and through-going normal faults that have been interpreted in a 3D structural
framework following the general workflow outlined in Krantz and Neely (2016). Approximately 2,000
vertical and horizontal wells from the general region were used to constrain the stratigraphic surfaces in the
model (top Lower Barnett formation at ~1,830 m SSTVD, top of Ellenburger formation ~1,920 m SSTVD,
and top of igneous and metamorphic basement at ~2,900 m SSTVD). Faults in the region were constrained
by an integration of stratigraphic mapping, structural interpretation, earthquake hypocenters (Hornbach et
al. 2015), and review of existing publications and public records from the Texas Rail Road Commission.
There are three NE-striking normal faults in the model that are in close proximity to the earthquakes: Azle
(6.5 km long, 50 m throw at the top of the Ellenburger formation), Azle Antithetic (3.0 km long, 60 m throw),
and Reno (3.4 km long, 40 m throw). These faults are part of the Llano Fault System in the Fort Worth
Basin as described by Ewing (1991). The lateral extent, strike, and general dip of the faults was constrained
by 3D interpretation and earthquake hypocenter location. The petrophysical interpretation of porosity and
permeability for the stratigraphic units in the model was conducted by analysis of 14 wells in the vicinity for
which triple combo digital well log suites are available. Porosity was calculated using neutron-density cross
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plot techniques and a permeability index was derived using porosity to permeability transforms described in
Lucia (2007). Total water saturation was calculated using an Archie equation. The calculated petrophysical
attributes from the wells were distributed throughout the model using both sequential Gaussian simulation
and moving average techniques.
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Figure 18—Azle fine-scale geologic model

Streamline Tracing

The Azle fine scale geologic model results in a faulted corner point grid representation of the subsurface,
where the geometry of the grid cells conforms to the structural description of the faults and the stratigraphy
of the geologic description. Flow simulation is performed in this model to examine the mechanisms
already discussed, but now with this more detailed reservoir description. To visualize flow paths and the
relationships between injectors and producers, streamline tracing was used as a simulation post-processing
tool, conducted by an in-house code. Streamlines are traced using total fluid flux which can be used to
track the overall movement of fluids in the reservoir, providing a convenient way for visualizing the impact
of reservoir heterogeneity on fluid flow. The fundamental parameter in streamline tracing is time of flight
(t), which is defined as the travel time of a neutral tracer along the streamlines. In this study, streamline
tracing is implemented based on time of flight computation proposed by Jimenez et al. (2007), simplifying
the process by a parameterization of the streamline trajectories using a time-like parameter T, called the
pseudo-time of flight, that increases along the streamlines,

dr da ap dy
dT= = = =
G-I @By 0a) O(f) Or) ®)

Here, a, B, and y are dimensionless (isoparametric) coordinates across each corner point cell crossed by
a streamline, and the Jacobian j(a, 3, y) represents local volume along the streamline. This set of equations
can be integrated explicitly and independently for each direction to obtain streamline trajectories. Instead of
working with velocity, the volumetric flux is used and is replaced by its linear interpolant in each direction.
The integral solution in the a-direction is

a +¢-a

Ty a a
_[dT _ do _ doa _ lln[
0 @ O(a) LA Toa ¢ ate-q

)

Identical constructions will arise when integrating in the - and y- directions. The pseudo-time for the
transit of neutral tracer across a cell will be given by the minimum pseudo-time of flight over allowable
edges (Jimenez et al. 2007),
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Once the pseudo-time of flight T is known, the exit coordinate of the particle is easily calculated using
the general solution of Eq. (9) in all three directions and solving for each unit coordinate.

ol _
ae=a0+(a1+a0c1)(e 1] (11)
G
Knowing the unit space coordinates (a, 3, v) in Eq. (11), we can use tri-linear interpolation to transform the
unit coordinates to the physical space (X, y, z) (Datta-Gupta and King 2007). After obtaining their solution,
we can determine T from the integral:

T
v=¢[J(a(7),8(T),y(T))dT (12)

0
Fig. 19a shows the streamlines distribution after 10 years of production, where light blue lines are for
producers and dark blue lines are for injectors. It is clear that wastewater injected through injectors will not
transport to the southeast side of the main fault and also there are more streamlines from producers on the
northwest side of the main fault, consistent with unbalanced loading on different sides of the main fault.
From Fig. 19b, we can see that there is no streamline in the basement, indicating there is no volumetric flux

or pressure change in the basement, consistent with the results from the calibrated coarse scale model.

Basement
(b)

Figure 19—(a) Horizontal view of streamlines from producers and injectors
(10000 days cut-off) (b) vertical view of streamlines from producers and injectors

Fig. 20 shows the pressure distribution along streamlines after 10 years of production. We can see that
there is a pressure difference between the two sides of the main fault, which results in the unbalanced loading
on the basement to cause the onset of seismicity at the weaker elements of the basement.
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Figure 20—Pressure distribution along streamlines
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Conclusion

1.

Geomechanical interactions have significant impact on the seismicity observed in the Azle area, North
Texas. Unbalanced loading on different sides of the fault in the basement generates accumulation of
strain change, leading to the onset of seismicity.

Unlike previous studies, our results indicate that pore pressure changes may not be sufficient to
explain the seismicity near the Azle area. Previous studies have significantly underestimated the fluid
withdrawal rates, almost by an order of magnitude. The equivalent bottom-hole fluid rate (reservoir
voidage from water and gas production) used in this study suggests a reduction in reservoir pore
pressure which is consistent with the observed well head pressure trends.

The low values of fault cohesion and minimum horizontal stress inferred from history matching
seem to indicate that the faults were near or at the critically-stress state before the initiation of fluid
production/injection. Also, a parameter importance analysis using classification tree shows that the
minimum horizontal stress/fracture gradient play a critical role in evaluating the potential risk of
seismicity.

Fine-scale modelling with streamline tracing further validates the unbalanced loading concept in the
Azle area. The amount of the unbalanced loading on different sides of the main fault can be clearly
visualized from streamline distribution and the lack of streamlines in the basement again demonstrates
the lack of fluid flux in the basement formation.
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