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A B S T R A C T

This study proposes an update on the criteria that are typically used to select the optimal intensity measures
(IMs) for development of probabilistic seismic demand models (PSDMs), which relate the input seismic hazard
and structural responses. Employing an optimal IM contributes to decreasing the uncertainty in the PSDMs,
which, in turn, increases the reliability of the PSDMs used in performance-based earthquake engineering ana-
lyses. In the literature, the optimality of the IMs is generally evaluated by the following metrics: efficiency;
practicality; proficiency, which is the composite of efficiency and practicality; sufficiency; and hazard com-
putability. The present study shows that the current criteria for evaluating the practicality and proficiency
features may mislead the selection of the optimal IM when IMs with different ranges and magnitudes are in-
vestigated. Moreover, the efficiency metric can provide biased results when comparing IMs for predicting de-
mands of different structural components or types of systems. As a result, alternative solutions are proposed to
investigate the efficiency, practicality, and proficiency features of the IMs. The suggested metrics are employed
in a case study to evaluate the IMs used to develop PSDMs for multi-span continuous steel girder bridges in Texas
subjected to human-induced seismic hazard.

1. Introduction

Current performance-based earthquake engineering frameworks [1]
contain four main analysis steps: seismic hazard analysis, structural
seismic response analysis, damage analysis, and loss estimation. In
probabilistic frameworks, the structural response and demand are often
characterized by probabilistic seismic demand models (PSDMs), which
provide the relationship between the structural demand responses (e.g.,
component deformations, accelerations, internal forces, etc.) and the
ground motion intensity measure (IM). The peak ground acceleration
(PGA), peak ground velocity (PGV), and spectral acceleration at dif-
ferent periods (Sa(T)) are the most common IMs used for engineering
applications. PSDMs provide the conditional probability that the
structural demand (D) meets or exceeds a certain value (d) given the
ground motion intensity measure (P[D≥ d | IM]).

The reliability of the outcomes of the probabilistic framework de-
pends on the level of uncertainty associated with the PSDMs, which, in
turn, depends on the selection of the IM for the model. Proper selection
of the IM reduces the uncertainty in the PSDMs, thereby leading to
more reliable performance predictions. In this regard, previous re-
searchers proposed metrics to evaluate IM optimality, which most
commonly include efficiency, practicality, proficiency, sufficiency, and

computability as described in detail in Section 3.
These metrics have been used in many studies to investigate IM

optimality for different structures subjected to different seismic ha-
zards. For example, Mackie and Stojadinovic [2] compared the optim-
ality of fifteen different IMs for California highway bridges, and they
demonstrated that spectral acceleration and displacement at the natural
period are the most appropriate IMs as they reduce uncertainties in the
PSDMs. Padgett et al. [3] evaluated ten different IMs for highway
bridge portfolios in Central and Eastern United States, and they found
that PGA is a preferred IM based on the abovementioned character-
istics. More recently, Hariri-Ardebili and Saouma [4] used these criteria
to examine over 70 different IMs for a concrete gravity dam. They
found that among the ground motion-dependent scalar IM parameters,
PGV is the most optimal IM for the concrete gravity dam. Wang et al.
[5] investigated the optimality of 26 different IMs for extended pile-
shaft-supported bridges in liquefiable and laterally spreading soils.
They concluded that velocity-related IMs result in more reliable PSDMs
for the considered system compared to acceleration, displacement, and
time-relate IMs.

The present study, first, shows that the current criterion for in-
vestigating efficiency can produce biased results when evaluating dif-
ferent components or systems that have different magnitudes of
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demand. Moreover, it is shown that the practicality metric may mislead
the selection of the optimal IM when IMs with different ranges and
magnitudes are investigated. This criterion may, in turn, adversely af-
fect the proficiency feature which is often used to determine the IM
considering both efficiency and practicality. Hence, alternative solu-
tions are proposed for efficiency, practicality, and proficiency metrics of
evaluation. The updated framework can be used not only for in-
vestigating the optimality of the different IMs on a single demand
parameter, but also for comparing the optimality of an IM for different
components of a structure or even for different systems.

The updated framework is then applied to a case study to com-
paratively investigate the differences in conventional and proposed
metrics. The case study considered in this paper is the evaluation of
multi-span continuous steel girder bridges, hereafter referred to as steel
girder bridges for brevity, in the state of Texas. According to
Khosravikia et al. [6], steel girder bridges are one of the main bridge
types in the state of Texas, representing approximately 11% of the
highway bridge inventory in the state. The motivation for the con-
sidered case study comes from the recent increase in the seismicity rate
in Texas and surrounding states as a result of more intense natural gas
production and petroleum activities since 2008 [7–11]. Such earth-
quakes generally occur in areas that historically have had negligible
seismicity, where the infrastructure is designed for little to no con-
sideration of seismic demands, thus raising concerns over the safety of
infrastructure in this area. In this regard, the present study aims to find
the optimal IM for probabilistic seismic demand models of the bridge
infrastructure subjected to human-induced earthquakes in the con-
sidered region. This information can be used to conduct more accurate
and reliable performance-based assessment of the bridge portfolios in
Texas.

2. Probabilistic seismic demand models

It is conventionally assumed that conditional PSDMs follow a log-
normal distribution as follows:

⎜ ⎟⩾ = − ⎛
⎝

− ⎞
⎠

P D d d S
β

[ |IM] 1 Φ ln( ) ln( )D

D|IM (1)

where Φ is the standard normal cumulative distribution function; SD
and βD|IM are, respectively, the median value of the demand in relation
to IM and the logarithmic dispersion of the demand conditioned on IM.
Moreover, previous studies starting with Cornell et al. [12] showed that
the median of seismic demands can be assumed to follow a power
function of intensity measure as follows:

=S aIMb
D (2)

This equation can be rearranged to natural log space where ln(SD) is
a linear function with respect to ln(IM) with coefficients ln(a) and b, as
follows,

= + ×S a bln( ) ln( ) ln(IM)D (3)

Therefore, as shown in Fig. 1, coefficients a and b can be computed
by fitting a linear regression to the lognormal of the outputs (D) from
nonlinear time history analyses. As seen in the figure, assuming a log-
normal distribution for the conditional seismic demand results in a
normal distribution with median of ln(SD) and dispersion of βD|IM in the
transformed space. According to Padgett et al. [3], βD|IM is approxi-
mately estimated by computing the dispersion of the data around the
fitted linear regression using the following equation:
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It is worth noting that the assumptions of using a power function
(i.e. Eq. (2)) to model demand parameters with respect to IMs and

assuming a constant dispersion for the variation of a demand parameter
given an IM are not the only possible models for predicting seismic
responses of structures given IMs. Nonlinear models such as Artificial
Neural Networks [13] can also be used to estimate the median of the
demand parameters; see, for example, Lagaros and Fragiadakis [14],
Mitropoulou and Papadrakakis [15], as well as Wang et al. [16], among
others.

3. Conventional framework of optimal IM selection

Five different criteria have been typically used in the literature to
investigate the optimality of the intensity measures as: efficiency, suf-
ficiency [17], practicality [2], proficiency [3], and hazard comput-
ability [18]. Each of these metrics is briefly explained below.

3.1. Efficiency

The first criterion is the efficiency of the IM, which determines the
variation of the predicted demand for a given IM and is quantified by
parameter βD|IM shown in Eq. (4). More efficient IMs lead to lower
values of βD|IM, indicating less dispersion around the estimated demand
from Eq. (3).

3.2. Practicality

The second criterion is practicality, which is an indicator of the
dependency of the demand on the IM. For conventional linear models,
this criterion is quantified by the parameter b in Eq. (3), which is the
slope of the linear regression. Values close to zero demonstrate that the
IM does not have any significant impact on the demand estimation,
representing an impractical IM. On the other hand, higher values of b
indicate a strong dependency between the IM and demand of the
structure.

3.3. Proficiency

In order to combine the previous two features, Padgett et al. [3]
suggested proficiency, ξ, which is the composite measure of both effi-
ciency and practicality, as follows:

=ξ
β

b
D|IM

(5)

Lower values of ξ indicate more proficient IMs, which have stronger
correlation between the IM and the demands while leading to less
dispersion around the median values.

Fig. 1. Illustration of PSDMs in natural log space.
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3.4. Sufficiency

Sufficiency is defined to evaluate the dependency of the IM to
ground motion parameters such as magnitude (Mw) and source-to-site
distance (Rd). A sufficient IM should be conditionally independent of
such characteristics. The sufficiency of an IM is investigated by con-
ducting a regression analysis on the residuals between the actual re-
sponse and the estimated demand from the PSDM relative to the ground
motion characteristic, Mw or Rd. Generally, the p-value [19] from the
regression of the residuals is used to quantify the sufficiency of the IM,
which indicates the probability of rejecting the null hypothesis that the
slope of the linear regression is zero. Significance levels of 0.1, 1, and
5% are generally used in previous studies as the threshold for IM suf-
ficiency evaluation. Values smaller than the threshold for the linear
regression of the residuals on Mw or Rd are an indicator of statistically
significant coefficients for the regression estimate, thereby indicating
an insufficient IM.

3.5. Hazard computability

As noted, the PSDM relates the demands of the structure to the
seismic hazard of the considered region, which is quantified by the IM.
Thus, the probabilistic seismic hazard must be computed with respect
to the values dictated by the IM. In this regard, the hazard comput-
ability is a metric to determine the level of effort required to conduct
the probabilistic seismic hazard analysis for a specific IM [18]. For
example, hazard maps are readily available for PGA or spectral accel-
eration at different discrete periods; nonetheless, other IMs such as
spectral acceleration at the natural period require more effort or even
structure-specific information for their determination. Therefore, de-
spite having an advantage in terms of features such as efficiency, a
particular IM may be less desirable according to hazard computability.

4. Issues with the current framework

In the current framework, the efficiency of the IMs is evaluated by
βD|IM, shown in Eq. (4), which is equal to the mean squared error of the
linear regression in estimating the demand parameters. This parameter
is not normalized to the range of the demand parameters; thus, al-
though it can be used to investigate the efficiency of the IMs for a single
demand, it cannot be used to compare the efficiency of IMs on demands
of different structural components or for different types of structures
(e.g. bridges and buildings), which may have demands of different
magnitudes and/or units. Moreover, as noted, parameter βD|IM is equal
to the mean squared error of the linear regression. Although it is a good
estimator of the accuracy of the model, it does not tell anything about
the correlation between the estimates from the PSDM and the observed
values from the time-history analysis.

Furthermore, practicality of the IM is determined by the slope of the
linear regression which is controlled by parameter b in Eq. (3). Al-
though this feature is to determine the dependency of the IM and de-
mand of the structure, it is not a fair comparison if it is used to com-
pared different IMs with different ranges and magnitudes. In fact, as
seen in Fig. 1, parameter b (the slope of the fitted linear regression)
depends on the range of variables in the x- and y-axis (IM and demands,
respectively). While the demand parameter is similar for investigating
different IMs for a single component, the IMs can have different ranges,
which may affect the slope and therefore the values of parameter b.
However, the IMs correspond to the same ground motion database.
Therefore, if it is assumed that a suitable ground motion database is
used for time-history analyses, the range of IMs should not adversely
impact their selection as the practical IM.

Moreover, the proficiency feature (composite of efficiency and
practicality), which is the metric that is generally used to determine the
optimal IM, also depends on the slope of the linear regression.
Therefore, considering slope as an indicator of practicality of the IM

may mislead the outcomes of the optimality investigation. Such a bias
in determining the practicality and proficiency criteria may prevent
certain IMs with large ranges from being selected as the optimal IM. It is
also worth noting that since the practicality and proficiency of the IMs
depend on the slope of the linear regression, they cannot be used as
evaluation metrics for optimal intensity measure selection when non-
linear models are used to estimate the median demand values given IMs
in natural log space.

5. Updated framework

In the following section, alternative solutions are suggested to ad-
dress the abovementioned issues with the current framework.

5.1. Efficiency

In order to make the efficiency metric comparable for different
demand parameters with different units and ranges, the following
parameter is introduced to evaluate the efficiency of the IMs:

= ×
+

β
β

l R
1

1r
D|IM

(6)

where βr is the updated parameter to investigate efficiency of the IMs; l
is the range of demand parameters in the natural log space, shown in
Fig. 2; R is the correlation coefficient [20] between the measured and
predicted demand parameters. Larger values of R (closer to 1) represent
stronger linear correlation between the demand values and their esti-
mates from the linear regression. As seen in Eq. (6), βr is a composite of
the mean squared error and correlation coefficient of measured and
predicted variables, leading to more accurate evaluation of the effi-
ciency of the IMs. Lower values of βr indicate more efficient IM the
PSDM of which has higher predictive power and provides stronger
correlation between the demands and their predicted values.

Moreover, normalizing βD|IM by the range of the demand parameter
in the natural log space not only makes this parameter able to be used
for determining the efficient IM on a single demand parameter, but also
makes it useful for investigating the efficiency of an IM on different
components of a system or even different types of systems. It should be
noted that R in Eq. (6) does not depend on the magnitude and range of
the demand parameter, so there is no need to normalize this parameter
in the equation.

5.2. Practicality

To eliminate the impacts of the IM ranges from this metric, an al-
ternative solution for the practicality criterion is proposed. Here, the
practicality, α, is defined as follows,

Fig. 2. Illustration of components of parameter α in natural log space.
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where li is range of the natural log of the demand parameter covered by
the PSDM model in the considered range of the IM, and l is the total
range of the demand parameter in natural log space. Fig. 2 illustrates
the parameters li and l in PSDM. As seen in the figure, the practicality,
here, is defined as the proportion of the demand range that is covered
by the PSDM given the range of the considered IM in the transformed
space, lIM. As parameter α increases, the IM becomes more practical.
The PSDM for a more practical IM covers a wider range of the demand
parameters for the range of the considered IM from the time-history
analyses. In fact, demand values are derived from the time-history
analyses by subjecting the structures to a set of ground motions with a
range of intensities. Thus, to be considered practical, the PSDM for the
considered range of IM should represent the entire range of the demand
values. Otherwise, the IM is not practical since the PSDM related to that
IM does not represent the whole range of demand values observed from
time-history analyses. However, unlike the previous metric (i.e., the
slope of the linear regression), this parameter does not depend on the
magnitude of the considered IMs and demand parameters.

It is worth noting that, according to Eq. (8), parameter α is equal to
the slope of the regression line when both ln(IM) and ln(D) are nor-
malized by their range, which is shown by parameter bn in Fig. 3.

=
−

=
−

=
×

= =

b
IM IM

l
l
l

α

([ln( )] max [ln( )] min)
n

l
l

IM
l

IM
l

l
l

l

l
l

l

i

[ln( )] max [ln( )] min 1

1
IM

i i

i

IM IM IM

IM (8)

This normalization before fitting the linear regression diminishes
the impacts of the range of the IM and demand parameters on the op-
timality investigation. Therefore, this parameter can be used to in-
vestigate the practicality of different IMs on different components of a
system or even different types of systems.

It should be noted that if practicality of two IMs with similar ranges
are investigated, the parameter α acts in the same fashion as parameter
b, i.e. the slope of the PSDM. That is, the IM corresponding to a higher
slope is the one that covers a wider range of demand parameters,
leading to larger values for parameter α. However, for nonlinear
PSDMs, parameter α from Eq. (7) can be also used as the metric of
practicality evaluation when nonlinear models are used to develop
PSDMs.

5.3. Proficiency

In the proposed framework, the parameter ξ, which represent the
proficiency of the IMs, is also updated as follows,

=ξ
β
αr

r
(9)

where ξr is still the composite of efficiency and practicality, but the
proportion of βr over α is used to determine the proficiency of the IM.
Similar to ξ, lower values of ξr indicate a more proficient IM. Moreover,
since both components of ξr (i.e. βr and α) are independent of the range
of the IMs and range of the demand parameters, ξr, similar to efficiency
and practicality indexes, can be used for comparing the proficiency of
different IMs for different demand parameters and different structural
systems.

It should be noted that, in the updated framework, the sufficiency
and hazard computability metrics remain unchanged; thus, their fea-
tures are not discussed in this section.

6. Case study: Modeling and assumptions

The evaluation of intensity measure selection for seismic demand
predictions is presented here for multi-span continuous steel girder
bridges, hereafter referred to as steel girder bridges for brevity, in the
state of Texas. Steel girder bridges make up approximately 11% of the
highway bridge inventory of the state [6,21]. The seismic performance
of these bridges is of interest due to the recent increase in the seismicity
rate in Texas and surrounding associated with more intense natural gas
and petroleum production and wastewater injection practices since
2008 [7–11]. Such activities increase the pore pressure, facilitating the
release of stored tectonic stress along an adjacent fault. Literature
showed that since such earthquakes generally occur at shallow depths,
they are likely to have large ground‐motion amplitudes, especially at
short hypocentral distances [22–25], which could cause damage to the
surrounding infrastructure. The 2011 Prague, OK earthquake with
moment magnitude, Mw, of 5.7, the 2012 Timpson, TX earthquake with
Mw of 4.8, and the 2016 Pawnee, OK earthquake with Mw of 5.8 are
three examples of recent seismic events in the area that were reported
to cause damage to nearby infrastructure [26–28]. In the following
section, the ground motion database, bridge characteristics, and nu-
merical modeling are discussed.

6.1. Ground motion database

This study is motivated by the recent increase in human-induced
earthquakes in Texas and surrounding regions. Given the lack of his-
torical data of induced earthquakes specifically in Texas, a database of
200 ground motions corresponding to 36 different seismic events from
Texas, Oklahoma, and Kansas from 10/13/2010 to 11/7/2016, was
used to represent potential seismic hazards in Texas. These ground
motion recordings are selected from a larger database described in
Khosravikia et al. [6], which consists of 4500 ground motion recordings
from 274 earthquakes happening in the same region since 2005. While
the original database intentionally did not distinguish between natural
and induced ground motions, the selected ground motions have been
classified as induced earthquakes [7,8]. The selected database consists
of 50 recordings within each of 4 magnitude bins (i.e.,
4.0≤Mw < 4.5, 4.5≤Mw < 5.0, 5.0≤Mw < 5.5, and Mw≥ 5.5).
The maximum recorded PGA of these ground motions is 0.6 g, recorded
at a hypocentral distance, Rhyp, of 5.2 km during the 2016 Cushing,
Oklahoma event with magnitude of 5.0. Fig. 4 shows the magnitude
versus source-to-site distance relation of the considered ground mo-
tions.

In addition, Fig. 5 demonstrates the response spectra of the selected
ground motions for different peak ground acceleration bins as:
PGA < 0.05 g, 0.05 g≤ PGA < 0.1 g, 0.1 g≤ PGA < 0.3 g, and

Fig. 3. Illustration of linear regression fitted to ln(D) and ln(IM) when they are
normalized by their range.
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PGA > 0.3 g. The red line in each plot of Fig. 5 demonstrates the
median response spectra of the recordings for a specific PGA bin.
Moreover, in each plot, the generalized response spectra representative
of seismic hazards in different distinct regions of Texas state are also

shown as a reference.
The generalized response spectra for different regions of Texas are

here developed using the spectral accelerations at a period of 0.2 sec
and 1.0 sec (SS and S1, respectively), which are determined from the
USGS one-year hazard maps representing a 1 percent probability of
exceedance in 1 year [11]. The shape of the response spectra between
these points was generated following the design spectrum shape defined
in the International Building Code (IBC). The seismic hazard in Texas is
not uniform; thus, three separate target response spectra are developed
for the Dallas-Fort Worth area, for West Texas, and for the rest of Texas.
The values of SS and S1 for each region are shown in Table 1.

As can be seen in Fig. 5, the selected ground motions cover the
range of seismic hazards in the state. They include ground motions
representing the low seismicity of much of the state, as represented by
the “Reference – Rest of Texas” response spectra at the ground motions
with PGA less than 0.05 g, as well as the ground motions that are re-
presentative of the more seismically active regions of Dallas and West

Fig. 4. Magnitude versus hypocentral distance of the considered ground mo-
tions.

Individual record
Median
Reference-Dallas
Reference-West Texas
Reference-Rest of Texas

Individual record
Median
IBC - Dallas
IBC - West Texas
IBC - Rest of Texas

Individual record
Median
IBC - Dallas
IBC - West Texas
IBC - Rest of Texas

Individual record
Median
IBC - Dallas
IBC - West Texas
IBC - Rest of Texas

Individual record
Median
Reference-Dallas
Reference-West Texas
Reference-Rest of Texas

Individual record
Median
Reference-Dallas
Reference-West Texas
Reference-Rest of Texas

Individual record
Median
Reference-Dallas
Reference-West Texas
Reference-Rest of Texas

Fig. 5. Response spectra of the selected ground motions for different bins of PGA values [6].

Table 1
Estimated values of SS and S1 from USGS one-year hazard maps representing 1
percent probability of exceedance in 1 year [11] for different regions of Texas.

Dallas West Texas Rest of Texas

SS (g) 0.18 0.35 0.05
S1 (g) 0.025 0.035 0.01
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Texas. The selected ground motions also include some motions with
response spectra that exceed the reference spectrum for West Texas
(e.g. those shown with PGA greater than 0.3 g) to represent the upper
bound of ground shaking expected in Texas.

6.2. Bridge characteristics and modeling

Fig. 6 shows a schematic view of multi-span continuous steel girder
bridges, which are referred to herein as steel girder bridges. Khosravikia
et al. [21] showed that steel girder bridges were most popular in the
1960 s in Texas. As noted, Texas had a very low historic seismicity, and
therefore, most of the bridges were designed with little to no con-
sideration of seismic demands. According to the Texas Department of
Transportation (TxDOT) bridge database, the majority of steel girder
bridges (i.e. over 70%) are supported by multi-column bents. Thus,
multi-column bents are considered as the bent type in the analyses for
these bridges. As seen in the figure, the column diameter is typically
governed by span length and year of construction. Investigation of
TxDOT standard drawings and as-built bridge drawings from the 1930s
to 2000s indicated that TxDOT multi-column bents have historically
utilized either 24-inch diameter or 30-inch diameter columns. The
specific column sizes and details used for each bridge class are found in
Khosravikia et al. [6].

Review of as-built bridge drawings indicates that most of the steel
girder bridge inventory in Texas built prior to the 1990s, which consist
of high-type steel expansion (rocker) and fixed bearings, as shown in
Fig. 6. A fixed bearing can accommodate rotational movement, while
an expansion bearing allows both rotation and horizontal translation in
the longitudinal direction. Moreover, review of TxDOT standard and as-
built drawings indicates that most bridges have pile-bent seat abut-
ments that have two types of resistance in the longitudinal direction as:
(1) Passive resistance, which is developed as a result of pressing the
abutment into the soil. In this case, both the soil and the piles beneath
the abutment provide resistance. (2) Active resistance, which is devel-
oped as a result of pulling the abutment away from the backfill. In this
case, resistance is only provided by piles beneath the abutment. It is
worth noting that for the transverse direction, only the piles are

assumed to contribute to the resistance. Furthermore, it is observed that
the majority of bridges (about 75%) have no or very little skew (less
than fifteen degrees), which is defined as the angle between the cen-
terline of supports and a line perpendicular to the centerline of the
roadway. According to Sullivan and Nielson [29], a skew angle less
than fifteen degrees has little to no effect on seismic vulnerability of a
bridge; therefore, skew is neglected in this study.

The main bridge parameters that affect seismic performance and
modeling are number of spans, span length, vertical underclearance,
and deck width. Vertical underclearance refers to the total height of the
column, bearing, and bent cap, which can be used as a proxy for esti-
mating column height in the numerical bridge models. The probability
distributions of these parameters are extracted from the FHWA National
Bridge Inventory (NBI) [30] and Texas Department of Transportation
(TxDOT) bridge database and are shown in Fig. 7. As seen, 80% of the
bridges in this class consist of less than six spans, the lengths of which
typically vary between 5m and 60m. The vertical underclearance of
these bridges also varies between 3.9m and 7.6 m, and their decks have
widths ranging from 6m to 30m. The average of each parameter is also
shown in Fig. 7.

Based on the abovementioned distributions, eight bridge config-
urations are sampled using the Latin Hypercube Sampling method from
the population of the bridge class inventory to account for the varia-
bility of geometry and date of construction. According to Huntington
and Lyrintzis [31], Latin Hypercube Sampling (LHS), which utilizes a
stratified random sampling technique, is a variant of Monte Carlo that
utilizes relatively smaller samples. In this approach, the cumulative
distribution function for the parameters of interest are divided into the
desired number of equal sections or bins, and then, a sample is ran-
domly selected from each bin. This approach allows for the full prob-
abilistic distribution to be represented in just a small number of sam-
ples.

It is worth noting that the distributions of some geometric variables
are modified before sampling to reduce unnecessary complexities in the
modeling process. For example, there are some bridges in the popula-
tion that have a very large number of spans (e.g., 12 or more). In such
cases, LHS could generate samples with a similarly large number of

Fig. 6. Schematic view of multi-span continuous steel girder bridges in Texas.
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spans which would significantly increase the computational expense
during the nonlinear response-history analyses. On the other hand, for
such cases, the expected damage is not expected to be substantially
different from a bridge with significantly fewer spans [29]. Thus, in this
study, the number of spans considered in the sampling methods are
reduced to only two to five span configurations to avoid having models
with an excessive number of spans. This range of spans covers over 70%
of the steel girder bridge population in Texas. Moreover, to ensure that
the bridge samples capture the vast majority of the bridge inventory
without generating unnecessarily complex and computationally ex-
pensive bridge models, the deck width and span length are sampled
from the 10th to the 90th percentile of the inventory.

In the sampling procedure, the correlations among the geometric
parameters are also taken into account to ensure that the combination
of the sampled geometric parameters represents the inventory. The
correlations are computed based on the information derived from
constructed bridges and are available at Khosravikia et al. [6]. The
geometric parameters of each bridge configuration are shown in
Table 2. As seen in the table, the bridge configurations have two to four

spans with lengths between 12.2 m and 73.2m.
In addition, the uncertainty in material properties is also taken into

account by considering them as random variables. The details of the
distribution type assigned for the material properties, as well as other
key modeling parameters (e.g. damping ratio and loading direction) are
shown in Table 3. The ranges and statistics of these parameters come
from the TxDOT and NBI databases [30] as well as other relevant stu-
dies in the Central and Eastern U.S. [32]. To properly account for the
effect of the uncertainty in material properties of each bridge config-
uration, eight different bridge samples with different material proper-
ties are randomly generated for each bridge configuration using the
LHS method, resulting in 64 total bridge samples.

The behavior of the 64 bridge samples are simulated in the OpenSees
analysis program [33] using three-dimensional (3D) models. The soft-
ware provides robust nonlinear dynamic analysis capabilities with nu-
merous built-in and user-defined materials to represent a wide range of
nonlinear behaviors. Fig. 8 shows the three-dimensional numerical
model of bridge system that was developed for this study. As seen in the
figure, the developed model contains beam-column elements for the
columns, bent caps, and girders, with concentrated translational and/or
rotational springs to simulate nonlinearity. For these models, it is as-
sumed that the bridge deck and girders behave elastically with no da-
mage. This assumption is consistent with past studies and post-earth-
quake inspections [34,35]. Nielson and DesRoches [34] modeled the
bridge girders and deck as a single beam with stiffness properties de-
termined from the composite multi-girder and deck section. The present
study employs a more detailed grid of beam elements to better model
the vertically and horizontally distributed stiffness and mass of the
girder and deck system, similar to the grid model described in Filipov
et al. [35]. A brief description of the numerical modeling procedure for
each component of the bridges is provided in the following paragraphs.
However, for full details of the numerical models, see the work done by

Mean = 4.1 Mean = 31.1 m

Mean = 14.5 m

Vertical Underclearance (m)

Mean = 5.4 m

Fig. 7. Geometric characteristics of multi-span continuous steel girder bridges in Texas.

Table 2
Geometric parameters of representative bridge configurations.

Bridge no. Spans Span length
(m)

Deck width
(m)

Vertical underclearance
(m)

1 3 18.20 20.10 6.65
2 4 27.43 8.50 4.98
3 3 26.52 9.51 4.44
4 4 35.97 16.37 4.22
5 3 12.19 12.63 4.90
6 4 44.20 13.17 4.65
7 3 21.34 12.19 4.72
8 2 73.15 10.73 5.28
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Khosravikia et al. [6].
For columns, flexural and/or combined axial-flexural damage are

commonly observed in earthquakes; however, columns in low-seismic
regions may also be more susceptible to shear failure modes due to the
poor confinement and shear reinforcement found in non-seismically
detailed columns. In this study, a concentrated plasticity model is used
to model nonlinear column behavior. Columns are modeled as elastic
beam-column elements with nonlinear rotational springs (i.e., zero-
length elements) at the top and bottom acting in two orthogonal di-
rections (i.e. longitudinal and transverse). Each spring is assigned a
nonlinear moment-rotation behavior to capture flexure, shear, and lap
splice failures in columns based on the backbone strength parameters
presented in ACI [36] and ASCE/SEI 41-17 [37]. The nonlinear hys-
teretic behavior of the rotational springs was calibrated per a large
database of 319 and 171 rectangular and circular columns, respectively,
that were tested under cyclic loading with various levels of seismic
detailing and shear reinforcement [38,39]. More details of the column
numerical modeling and experimental validation are available at

Khosravikia et al. [6].
Bearings are another component that can significantly affect bridge

seismic performance. As previously discussed, the steel girder bridges in
this study employed steel bearings. For such bearings, nonlinear models
under lateral loads are developed and calibrated with extensive ex-
perimental data available in the research literature [40]. For other
components such as expansion joints, deck pounding, abutments, and
foundations, nonlinear models developed in previous studies
[34,35,41] are assigned. However, such models are adjusted with ap-
propriate modifications to represent typical details of Texas bridge in-
frastructures.

The natural periods of the 64 sampled bridges vary between 0.3 and
0.8 s, which respectively correspond to the bridge configurations with
shortest and longest span lengths. Moreover, it is worth noting that by
looking into the mode shapes of the bridges, it is found that the long-
itudinal translation mode is the fundamental mode for the majority of
the bridge samples, which is consistent with previous relevant studies
such as Nielson [42] and Padgett et al. [3]. This observation is mainly
because of the fact that, as shown in Fig. 6, most of the steel girder
bridges in Texas consist of multi-column bents, which provide much
more stiffness in the transverse direction compared to the longitudinal
direction. In addition, having expansion bearings, which allows for
more deformation in the longitudinal direction, as well as gaps between
abutments and girders in the longitudinal direction increase the fun-
damental period of the bridges in this direction.

The nonlinear 3D model of each of the 64 bridges, shown in Fig. 8, is
subjected to 10 randomly selected ground motions that are scaled to
different values of spectral acceleration at the bridge’s natural period,
varying between 0.2 and 2 g with increments of 0.2 g, which leads to
640 nonlinear response-history analyses. In this study, it is assumed
that damage can occur in columns, bearings, and abutments; therefore,
the responses of these components are recorded during each analysis. In
particular, for column response, the maximum rotation in the column
hinge is captured. For bearings, the longitudinal and transverse de-
formations of both fixed and expansion bearings are recorded during
the analyses. Finally, for abutments, deformations in passive, active,
and transverse directions are documented. The list of the demand
parameters considered in this study is shown in Table 4. These outputs
are set as inputs for the probabilistic seismic demand models, which are
discussed in the next section.

6.3. Probabilistic seismic demand models

As noted, probabilistic seismic demand model (PSDM) predicts the
demand of the structure given the IM of the ground motion and is based

Table 3
Summary of modeling parameters and distribution characteristics.

Probability
Parameters

Modeling parameter Distribution a1 b1 Units

Concrete strength Normal 29.0 5.9 Mpa
Reinforcing strength Lognormal 379 34 Mpa
Steel fixed - longitudinal Uniform 74.4 111.6 kN/mm
Steel fixed - transverse Uniform 4.0 6.0 kN/mm
Steel fixed COF2-

longitudinal
Uniform 0.168 0.252

Steel fixed COF2-
transverse

Uniform 0.296 0.444

Steel rocker COF2-
longitudinal

Uniform 0.032 0.048

Steel rocker COF2-
transverse

Uniform 0.080 0.120

Abutment - passive
stiffness

Uniform 11.5 28.7 kN/mm/m

Pile stiffness Uniform 3.5 10.5 kN/mm per
pile

Superstructure mass Uniform 1.1 1.4 factor
Damping ratio Normal 0.05 0.01
Deck gaps Uniform 25 152 mm
Loading direction Uniform 0 360 degrees

1 For normal and lognormal distributions, a and b indicate the median and
dispersion, respectively, and for uniform distribution, a and b represent the
lower and upper bounds, respectively.

2 COF: Coefficient of friction.

Fig. 8. Schematic view of the 3D bridge model.
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on the results from the nonlinear response-history analyses. In this
study, PSDMs are developed for the demand parameters presented in
Table 4. To investigate the optimality of IMs, seven different IMs
(shown in Table 5) are considered for development of the PSDMs, in-
cluding acceleration-related IMs (e.g. PGA and Ia), velocity-related IMs
(e.g. PGV), displacement-related IMs (e.g. PGD), and structure-specific
IMs (e.g. Sa at 0.2 s, and 1.0 s, and the natural period of the bridges, Tn).

For each pair of demand-IM, the PSDM is developed by fitting a
linear regression to the results from nonlinear response-history analyses
to compute the coefficients a and b in Eq. (3), and computing the dis-
persion of the data around the fitted line, βD|IM, using Eq. (4). Table 6
presents the parameters of the PSDMs (a, b, and βD|IM), for the four
demand parameters including column rotation (Rot), longitudinal de-
formations of fixed and expansion bearings (fx_L and ex_L, respec-
tively), as well as transverse deformation of the abutment (abut_T).

7. Discussion of the IM selection

In this section, first, both current and updated frameworks are ap-
plied to the considered case study to comparatively investigate the
differences in conventional and proposed IM evaluation metrics. Then,
using the proposed framework, the optimality of IMs for steel girder
bridges in the state of Texas are discussed. This information can be used
in further research for more reliable performance predictions of the
bridge infrastructure in this area subjected to human-induced seismi-
city.

7.1. Comparison of conventional and proposed frameworks

Fig. 9 shows the efficiency, practicality, and proficiency of the
considered IMs for four different demand parameters of steel girder
bridges listed in Table 6 using both conventional and updated frame-
works. As seen in Fig. 9, for a specific demand parameter, using both
frameworks leads to a similar order for the efficiency of the IMs, where
lower values indicate more efficient IMs. For example, regardless of the
framework, the order of PGV, Sa(1.0 s), Ia, Sa(Tn), Sa(0.2 s), PGA, and
PGD, from most to least efficient are determined for column rotation.
However, there are two key differences between the efficiency results
from conventional and proposed frameworks as follows:

First, the βD|IM values from the conventional framework may be
misleading when they are used for investigating efficiency of IMs for
different demand parameters. For example, the PSDM corresponding to
the column rotation demand given PGA provides a larger value of βD|IM
compared to the relevant PSDM for longitudinal deformations of fixed
bearing given the same IM, simply due to the magnitude of values
observed for each of these demands. However, the suggested index for
efficiency evaluation (i.e. βr) demonstrates that it does not necessarily
mean that the conditional PSDM for columns upon PGA is less accurate
than that developed for bearings. In fact, the values of βr indicate that
conditional PSDM upon PGA developed for column provides much
stronger predictive power than that of longitudinal deformation of fixed
bearings.

Moreover, the values from the proposed framework provide more
accurate estimations of the efficiency feature of the IMs, because they
consider both dispersion and correlation among the predicted and
measured data. For example, for longitudinal deformation of the fixed
bearing (i.e. fx_L), the conventional framework suggested values of 1.17
and 0.96 for PGD and Sa(0.2 s), respectively. That is, Sa(0.2 s) provides
13% lower βD|IM comparing to PGD for this specific demand parameter.
However, for the same demand parameter, the proposed framework
provides approximately 26% difference between the efficiency index of
PGD and Sa(0.2 s), which indicates that Sa(0.2 s) is much more efficient
that PGD. This observation is mainly because of the fact that Sa(0.2 s)
provides not only lower dispersion (i.e. βD|IM) but also a higher corre-
lation coefficient (i.e. R) compared to PGD for the considered demand
parameter. However, for column rotation (i.e. Rot), the conventional
framework suggests that PGV is much more efficient that PGA.
Although a similar order is also observed in the proposed framework, a
smaller difference is observed for the efficiency index of these IMs,
which is mainly because of the fact that PGA provides slightly larger
values of R compared to PGV for column rotation. Therefore, both
dispersion and correlation coefficient are key parameters in de-
termining the accuracy of the PSDM developed for a specific demand
parameter, and they both are taken into account in the proposed effi-
ciency index.

Considering practicality of the IMs, regardless of the demand
parameter of interest, the conventional framework suggests that Ia is the
least practical IM among others. This observation is mainly because of
the differences in the range and magnitude of the considered IMs. For

Table 4
Demand parameters of different bridge components considered in this study.

Demand parameter Abbreviation Units

Column rotation Rot rad
Fixed bearing: Longitudinal deformation fx_L mm
Fixed bearing: Transverse deformation fx_T mm
Expansion bearing: Longitudinal deformation ex_L mm
Expansion bearing: Transverse deformation ex_T mm
Abutment: Active deformation abut_A mm
Abutment: Passive deformation abut_P mm
Abutment: Transverse deformation abut_T mm

Table 5
Considered intensity measures.

Intensity measure Description Units

PGA Peak Ground Acceleration g
PGV Peak Ground Velocity mm/s
PGD Peak Ground Displacement mm
Sa (Tn) Peak Spectral Acceleration at natural period, Tn g
Sa (0.2 s) Peak Spectral Acceleration at 0.2 s g
Sa (1.0 s) Peak Spectral Acceleration at 1.0 s g
Ia Arias Intensity mm/s

Table 6
PSDMs for four different demand parameters considering different IMs.

Rot fx_L ex_L abut_T

IM a b βD|IM a b βD|IM a b βD|IM a b βD|IM

PGA 0.00 1.05 1.02 2.54 0.77 0.94 30.37 0.68 0.71 10.19 0.61 0.92
PGV 0.00 1.48 0.73 0.01 0.94 0.92 0.12 0.96 0.53 0.08 0.85 0.82
PGD 0.00 0.69 1.24 0.43 0.40 1.14 3.35 0.49 0.80 1.76 0.39 1.01
Sa (0.2 s) 0.00 1.18 0.95 1.66 0.77 0.99 19.65 0.76 0.67 6.76 0.71 0.87
Sa (1.0 s) 0.04 1.37 0.76 10.31 0.75 1.02 159.28 0.92 0.50 39.82 0.75 0.86
Sa (Tn) 0.01 1.65 0.94 4.23 1.12 0.95 48.60 1.06 0.66 14.00 0.61 1.03
Ia 0.00 0.56 0.92 0.06 0.40 0.95 0.98 0.38 0.67 0.52 0.33 0.91
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illustration, Fig. 10 shows the values of the longitudinal deformation of
the expansion bearings, ex_L, of the steel girder bridges given PGA and
Ia. The results in the figure correspond to the same response-history
analyses, and therefore, both plots contain the same range of demand

values (y-axis). As seen in the figure, since Ia contains a wider range of
values, it corresponds to a lower slope (b values), and therefore, it is less
practical when the slope of the IM is used as the metric to investigate
the practicality of the IMs. This observation can also be found in other
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Fig. 9. Efficiency, practicality, and proficiency evaluation of the considered IMs for steel girder bridges with conventional and proposed framework.

Fig. 10. PSDMs of longitudinal deformation of expansion bearings, ex_L, considering PGA and Ia.
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studies because the slope, here, only depends on the range of the IM,
and Ia always contains a wider range, which indicates the bias in the
practicality investigation. For example, in the study conducted by
Padgett et al. [3] about the selection of an optimal IM for bridge
portfolios, while Ia was the most efficient parameter for most of the
bridge demand parameters, it led to a much lower slope, making it a
much less practical and proficient IM. However, the values of α, shown
in Fig. 10, demonstrates that the PSDM for Ia covers a wider range of the
observed demand parameter, and hence, it is more practical compared
to PGA. The same trend is observed if the natural log of the IMs is
normalized before fitting the linear regression to the models. It should
be noted that IMs like Ia may not be the optimal IM because of hazard
computability or sufficiency features; however, it should not be re-
flected when the practicality of the IMs are evaluated.

The change in the practicality order is also reflected in the profi-
ciency of the IMs. In fact, as seen in Fig. 9, according to the conven-
tional framework, for longitudinal deformation of the expansion
bearing, Sa(0.2 s) is a more proficient IM than PGA, which is, in turn,
more proficient than Ia. However, in the proposed framework, Sa(0.2 s)
and Ia have similar proficiency, which is better than that of PGA. This
change in the order of the IM proficiency is due to the elimination of the
bias in the IM practicality metric. Moreover, since the practicality and
efficiency parameters are normalized to the range of the demand
parameters, the values derived for the proficiency index (i.e. ξr) for
different components are now comparable. For instance, according to
Fig. 9, PGA is more proficient in estimating the column responses than
those of bearings and abutments.

7.2. Optimal IM selection for steel girder bridges in the state of Texas

Here, the results from the proposed framework are used to de-
termine the optimal IM for steel bridge infrastructure in the state of
Texas. Fig. 11 shows the proficiency order of the IMs for different
components of the bridges. As seen in the figure, the velocity-related IM
(i.e. PGV) and the spectral acceleration at long period (i.e. Sa(1.0 s)) are
the two most proficient IMs for most of the demand parameters con-
sidered in this study. In previous optimal IM studies [3], it was de-
termined that the acceleration-related IM (i.e. PGA) is the most profi-
cient IM for steel bridge portfolios in Central United States. The
difference in the proficient IM for steel girder bridges in Texas and
Central United States is a key observation in performance-based as-
sessment of infrastructure subjected to potentially induced earthquakes.
Further research is required to determine whether it is correlated to
geological effects, bridge characteristics, or nature of the induced
seismicity.

After these two IMs, spectral acceleration at short periods (i.e. 0.2 s)
is the most proficient IM. It is mainly because of the fact that for these

ground motions, in which the spectral acceleration diminishes very
quickly with period, spectral acceleration at short periods (i.e. 0.2 s)
can be a proficient IM for bridge evaluation. It is worth noting that the
spectral accelerations at constant periods (i.e. Sa(0.2 s) and Sa(1.0 s))
are more proficient than spectral accelerations at natural period of the
bridges (i.e. Sa(Tn)). Thereafter, acceleration-related IMs (i.e. PGA and
Ia) are the next most proficient IMs. Note that Ia is the composite of
duration and acceleration time-history; thus, there is a strong correla-
tion between PGA and Ia. This correlation makes them perform in a
similar fashion. However, Ia is slightly more proficient since duration of
the ground motions are also taken into account in Ia. Finally, Fig. 11
shows that the displacement-related IM (i.e. PGD) is not a proficient IM
for seismic performance assessment of steel girder bridges in Texas
subjected to potentially human-induced seismic hazard.

In addition, it is worth noting that hazard maps are readily available
for PGV and spectral acceleration at constant values (i.e. 0.2 and 1.0 s).
Therefore, not only are these IMs the most proficient IMs, but also they
have an advantage in terms of hazard computability.

To investigate the sufficiency of the IMs, Table 7 shows the p-values
for the residuals of the PSDMs and ground motion characteristics such
as magnitude, Mw, and source-to-site distance, Rd. Here, hypocentral
distance, Rhyp, is considered as an indicator of source-to-site distance. A
significance level of 5% is considered in this study as the threshold for
IM sufficiency evaluation. As seen in the table, not a single IM passes
the sufficiency test for all the demand parameters. The insufficiency of
the considered IMs is a motivation for further researches to find an
alternative IM to pass the sufficiency test for such earthquakes.

8. Summary and conclusion

The present study evaluates the conventional metrics for selection of
the optimal intensity measure, IM, for probabilistic seismic demand
models (PSDMs). Such models are critical in relating the seismic hazard
and structural responses in probabilistic performance assessments, and
selection of an optimal IM is very promising in reducing the uncertainty
in the PSDMs and increasing the reliability and usability of the PSDMs
for performance-based earthquake engineering analysis. It has been
traditionally shown that the demand of the structures follows a linear
function of the IM in natural log space; therefore, PSDMs are generally
determined by fitting a linear regression to the database in natural log
space.

The current study evaluated the metrics as: efficiency, which de-
monstrates the uncertainty of the PSDM given IM; practicality, which
demonstrates the dependency of the demands on the IM; proficiency,
which is the composite of efficiency and practicality; sufficiency, which
demonstrates the dependency of the outcome to ground motion para-
meters such as magnitude and source-to-site distance; and finally ha-
zard computability, which demonstrates the amount of effort to extract
hazard maps and curves for the considered IM.

The present study shows that the current metric for practicality,
which is determined by the slope of the linear regression fitted to the

Fig. 11. Proficiency evaluation of considered IMs for different demand para-
meters of steel girder bridges in Texas.

Table 7
Sufficiency evaluation of considered IMs for different demand parameters of
steel girder bridges in Texas.

Rot fx_L ex_L abut_T

IMs Mw Rhyp Mw Rhyp Mw Rhyp Mw Rhyp

PGA 0.00 0.00 0.23 0.18 0.00 0.00 0.00 0.00
PGV 0.00 0.00 0.06 0.01 0.00 0.00 0.01 0.00
PGD 0.00 0.02 0.00 0.00 0.00 0.08 0.00 0.09
Sa(0.2 s) 0.00 0.00 0.23 0.17 0.00 0.00 0.00 0.00
Sa(1.0 s) 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.08
Sa(Tn) 0.60 0.61 0.00 0.00 0.19 0.62 0.45 0.73
Ia 0.00 0.00 0.11 0.23 0.00 0.00 0.02 0.00
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data may mislead the selection of the optimal IM when IMs with dif-
ferent ranges and magnitudes are investigated. The metric may also
adversely affect the proficiency feature which is the composite of effi-
ciency and practicality and is the parameter that is conventionally used
to choose the IM with both efficiency and practicality. Moreover, the
efficiency metric can produce biased results when evaluating different
components or systems that have different magnitudes of demand.
Thus, alternative solutions are proposed to investigate the efficiency,
practicality, and proficiency features of the IMs, which diminish the
impacts of the range of the IMs and demand parameters in these
commonly used optimality metrics. The proposed framework can be
used for optimal IM evaluation of different types of structures and
different forms of probabilistic seismic demand models.

Then, the proposed framework is applied to the steel girder bridge
portfolios in the state of Texas, which has been recently subjected to
increased seismicity due to human-induced earthquakes starting around
2009. The results show that for this bridge system, the velocity-related
IM (i.e. PGV) leads to more accurate estimates of the structural re-
sponses, while literature shows that the acceleration-related IM (i.e.
PGA) is the most proficient IM for similar bridge systems in other areas
of the Central United States.
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