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Artificial Neural Network-Based Framework
for Developing Ground-Motion Models for
Natural and Induced Earthquakes in Oklahoma,
Kansas, and Texas
by Farid Khosravikia, Patricia Clayton, and Zoltan Nagy

ABSTRACT

This article puts forward an artificial neural network (ANN)
framework to develop ground-motion models (GMMs) for
natural and induced earthquakes in Oklahoma, Kansas, and
Texas. The developed GMMs are mathematical equations that
predict peak ground acceleration, peak ground velocity, and spec-
tral accelerations at different frequencies given earthquake mag-
nitude, hypocentral distance, and site condition. The motivation
of this research stems from the recent increase in the seismicity
rate of this particular region, which is mainly believed to be the
result of the human activities related to petroleum production
and wastewater disposal. Literature has shown that such events
generally have shallow depths, leading to large-amplitude shak-
ing, especially at short hypocentral distances. Thus, there is a
pressing need to develop site-specific GMMs for this region.
This study proposes an ANN-based framework to develop
GMMs using a selected database of 4528 ground motions,
including 376 seismic events with magnitudes of 3 to 5.8,
recorded over the 4- to 500-km hypocentral distance range in
these three states since 2005. The results show that the proposed
GMMs lead to accurate estimations and have generalization
capability for ground motions with a range of seismic character-
istics similar to those considered in the database. The sensitivity
of the equations to predictive parameters is also presented.
Finally, the attenuation of ground motions in this particular
region is compared with those in other areas of North America.

Electronic Supplement:Text and figures describing the selection
of the hidden layer size of the artificial neural network (ANN)
models, as well as sensitivity of ANN models to modeling
assumptions

INTRODUCTION

This article aims to develop ground-motion models (GMMs),
which are often referred to as attenuation models, for recent

seismic events recorded in Texas, Oklahoma, and Kansas.
GMMs are mathematical equations that estimate the intensity
measures of ground motions as a function of earthquake mag-
nitude, source-to-site distance, and site conditions. Since 2008,
there has been a significant increase in the seismicity rate of this
particular region of central and eastern North America
(CENA), which is mainly believed to be as a result of human
activities such as petroleum development or wastewater dis-
posal (Hough, 2014; Frohlich et al., 2016; Hornbach et al.,
2016; Petersen et al., 2016). The November 2011 earthquake
with moment magnitude Mw 5.7 in Prague, Oklahoma, the
May 2012 earthquake with Mw 4.8 near Timpson, Texas, as
well as the September 2016 earthquake with Mw 5.8 in
Pawnee, Oklahoma, are three examples of the recent earth-
quakes in this particular region, which were reported to cause
damage to nearby infrastructure (Ellsworth, 2013; Frohlich
et al., 2014; Barbour et al., 2017).

Bommer et al. (2016) demonstrated that because induced
earthquakes generally occur at shallow depths, they tend to
have large ground-motion amplitudes, especially at short hypo-
central distances. Such characteristics necessitate further inves-
tigations of GMMs for this region, which are keys in
investigating and mitigating the hazard proposed by natural
and induced earthquakes in that area. In this regard,
Atkinson (2015) assumed that the amplitudes of the ground
motions from induced events are similar to those of tectonic
earthquakes with similar magnitudes and hypocentral distances
(Rhypo). Small to moderate events (M 3–6) at short hypocentral
distances (Rhypo < 40 km) from the Next Generation
Attenuation-West2 (NGA-West2) database (Ancheta et al.,
2014) were used to develop GMMs applicable for induced seis-
micity. Although the models resulted in good estimation of the
intensity measures of the ground motions recorded from
induced events, Atkinson (2015) mentioned the need for
site-specific GMMs for such events. Later, Gupta et al. (2017)
assessed ground-motion amplitudes and attenuation for small
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to moderate induced and tectonic earthquakes in CENA.
Atkinson and Assatourians (2017) described the conditions
with which natural-earthquake models can be applied for
induced seismicity application. More recently, Khosravikia,
Zeinali, et al. (2018) showed that the CENA GMMs devel-
oped based largely on natural tectonic events cannot be prop-
erly used to estimate the intensity measures of the earthquakes
in this particular region. Farhadi et al. (2018) evaluated the
applicability of different GMMs for induced seismicity in
CENA, including many GMMs developed as part of the
NGA-West2 project (Bozorgnia et al., 2014) and those that
had already been developed for CENA. They pointed out that
the performance of the models depends on the intensity mea-
sure, and no single model performs the best over all of the
intensity measures. Novakovic et al. (2018) also recommended
developing region-specific GMMs for induced seismicity, and
they proposed empirically calibrated GMMs for Oklahoma.

The present study proposes new site-specific GMMs for
Texas, Oklahoma, and Kansas considering a selected database
of 4528 ground motions, including 376 seismic events with mag-
nitudes of 3 to 5.8, recorded over the 4- to 500-km hypocentral
distance range in these three states since 2005. The developed
GMMs aim to predict peak ground acceleration (PGA), peak
ground velocity (PGV), as well as 5% damped elastic pseudospec-
tral accelerations at different periods, denoted by PSA�T�, in
which T is the considered period. To do so, this study, unlike
conventional empirical methods that used regression analysis,
proposes a framework in which an artificial neural network
(ANN) is used as statistical method.

In conventional empirical methods, the GMMs are built
using a regression analysis with predefined linear equations to
correlate the ground-motion intensity measures to the predic-
tive parameters. The assumed equations are generally based on
physical concepts, which can increase the accuracy of predic-
tion of the statistical method when limited data are available.
However, such equations often limit the ability of the method
to efficiently simulate complex and unknown behaviors of the
ground-motion intensity measures. Some researchers (Güllü
and Erçelebi, 2007; Alavi and Gandomi, 2011) have suggested
that linear regression analysis has major drawbacks related to
the idealization of complex processes, approximation, and aver-
aging of widely varying prototype conditions. However, ANN
has the capability of adaptively learning from experience and
extracting various discriminators in pattern recognition with-
out predefined functions (Perlovsky, 2001). Therefore, it has
the potential to provide more robust predictive models when
extensive datasets are used. In the literature, ANN has also
been shown to be a promising method in predicting ground-
motion characteristics (Kerh and Ting, 2005; Güllü and
Erçelebi, 2007; Ahmad et al., 2008; Alavi and Gandomi, 2011;
Derras et al., 2012, 2014, 2016).

It is commonly asserted that ANN models behave like
“black-box” systems and are not able to show the underlying
principles of the prediction. Likewise, it is often believed that
ANN models cannot be used by others to predict the outputs
unless they retrain their own ANN model, which would

impede the dissemination of new knowledge generated with
ANNmodels. This issue has been addressed here by converting
the ANNmodels into simple mathematical equations that any-
one can easily use to predict ground-motion intensity measures
given the input parameters without retraining any ANN
model.

The present study evaluates the generalization capability
of the proposed GMMs using different criteria presented in
the literature. In addition, the effects of the predictive param-
eters on predicting the intensity measures are also assessed
through a sensitivity analysis. Finally, the attenuation of ground
motions in the study region is compared with those developed
for small to moderate earthquakes of western America,
CENA, and those developed to be applicable to induced
seismicity.

GROUND-MOTION DATABASE

The database considered in this study (see Data and Resources)
consists of 4528 ground-motion recordings that correspond to
376 different natural and induced seismic events recorded at
209 different seismic stations in Texas, Oklahoma, and Kansas
since 2005. Figure 1 shows the location of the considered
events and the seismic stations that recorded the considered
ground motions. As seen in the figure, all the considered seis-
mic events have magnitudes larger than 3, and they mainly
occurred in Oklahoma, especially those with larger magnitudes,
that is,Mw > 5. The seismic stations are located in all of these
three states, resulting in adequate ground-motion recordings in
all the three states. As shown in the figure, the seismic stations

▴ Figure 1. Geographic distribution of the events and stations
considered in this study. The color version of this figure is avail-
able only in the electronic edition.
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located on the Gulf Coast Plain are not considered in this
study because the Gulf Coast Plain consists of significantly
deeper sediments, resulting in different attenuation behavior
than the surrounding region (Electric Power Research
Institute [EPRI], 2004).

The developed GMMs estimate PGA and PGV as well as
PSA values at 20 different periods varying between 0.05 and
2.5 s given earthquake moment magnitudeMw , the hypocentral
distance Rhypo, and the averaged shear-wave velocity over the top
30 m of soil V s30. The GMMs are based on the geometric mean
of the horizontal-component ground-motion amplitudes, which
is consistent with previous studies (Yenier and Atkinson, 2015).
For the selected ground motions, Mw is either derived from
Incorporated Research Institutions for Seismology (IRIS) data-
base (see Data and Resources), or calculated using 1-Hz PSA
amplitudes of the vertical component of the ground-motion
records (Atkinson and Mahani, 2013; Atkinson et al., 2014).
The V S30 values for most of the considered ground-motion
recording stations are taken from Zalachoris et al. (2017), which
were determined using the P-wave seismogram method. For a
few seismic station locations where P-wave seismogram V S30
estimates were not available, the VS30 estimates provided by
Parker et al. (2017) are used, which were determined over
the CENA using a hybrid slope-geology proxy method.
Finally, the hypocentral distance Rhypo, which is defined from
the epicentral location and focal depth, is used to allow
GMMs to correctly reflect the source-to-site distance attributes
of such small to moderate shallow depth earthquakes.

Figure 2a shows the magnitude–distance distribution of
the considered ground motions. As seen in the figure, Mw
varies between 3.0 and 5.8, representing small to moderate
earthquakes. Rhypo varies between 4 and 500 km, and approx-
imately 856 records, or 18.9%, have Rhypo less than 50 km.
Figure 2b shows the number of the stations according to
American Society of Civil Engineers (ASCE) 7-16 (ASCE,
2016) site classification. For example, 92 of 209 seismic sta-
tions are located on site classes A and B (760 m=s < VS30),
representing rock site conditions according to ASCE 7-16 site

classification. It is observed that VS30 varies
between 122 and 1706 m=s, representing very
soft soil to hard rock, respectively. Furthermore,
the hypocentral depth df of these seismic events
is generally less than 10 km, indicating shallow
depth earthquakes. The ranges and statistics of
the observed predictive parameters as well as
intensity measures for the ground motions con-
sidered in this study are shown in Ⓔ Table S1
(available in the electronic supplement to this
article). In the following section, the proposed
ANN-based ground-motion models for this
particular region of CENA are presented and
discussed.

PROPOSED ANN-BASED GROUND-
MOTION MODELS

This study uses multilayer perceptron network, which is a kind
of ANN with a feed-forward architecture (Cybenko, 1989), to
derive site-specific GMMs for Texas, Oklahoma, and Kansas.
Figure 3a presents the schematic view of the ANN framework
proposed in this study. As seen in the figure, the network here
is organized in three different layers as input, hidden, and out-
put layers. The input layer consists of the normalized values of
Mw , VS30, and Rhypo, and the output layer comprises the nor-
malized output parameter in natural log space. Normalized val-
ues of any variable (input or output) are computed by dividing
the value by its corresponding normalization ratio N ratio, pre-
sented inⒺ Table S1. The normalization process prevents sat-
uration of the activation functions within the neural network,
thereby resulting in a better estimation of the results. The sen-
sitivity of the ANN models to the normalization process is
available in the Ⓔ electronic supplement. It is here assumed
that all the proposed ANN models comprise one hidden layer
with the same number of neurons. By training different ANN
models considering different hidden layer sizes and evaluating
their performance (details are available in the Ⓔ electronic
supplement), it is concluded that four neurons is the optimal
hidden layer size for all outputs. The strength of the connec-
tion of neurons in each layer to the neurons of other layers is
determined by connection weights.

The general structure of a neuron is shown schematically
in Figure 3b. As seen, each neuron receives the outputs of the
neurons in the previous layer as inputs. In addition to the out-
puts of the previous layer, a bias parameter is introduced as an
input to each neuron, which acts in the same fashion as the
intercept in a regression model. Within each neuron, the sum-
mation of the weighted inputs and the bias parameter passes
through the activation function to compute the output of the
neuron yi as follows:

EQ-TARGET;temp:intralink-;df1;323;133yi � φ

�X
wji × xj � bi

�
; �1�

in which xj is the value of input neuron j; wji is the connection
weight of the jth neuron from the input layer and the

(a)
w

(b)

▴ Figure 2. Characteristics of the ground-motion database, consisting of 4528
ground-motion records from 376 seismic events: (a) magnitude–distance distribu-
tion of the database and (b) station number per American Society of Civil Engineers
(ASCE) 7-16 site classification.
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considered ith neuron; bi is the bias defined for ith neuron; and
φ is the activation function for the neurons. In the present
study, a log-sigmoid function of φ�x� � 1=�1� e−x� and a
linear function of φ�x� � x are considered as the activation
functions of the neurons in the hidden and output layers,
respectively. The sensitivity of the ANN models to the selec-
tion of the activation functions is available in theⒺ electronic
supplement. The output yi, in turn, will be used as the input for
the neurons in the following layer, if present.

The connection weights as well as bias terms for each neu-
ron are adjusted through the training process of the network.
To do so, the Levenberg–Marquardt backpropagation algo-
rithm (Marquardt, 1963), which is a standard nonlinear
least-squares optimization algorithm, is implemented. In the
training process, the ground-motion database is divided into
three different subsets as follows: (1) training subset, which
is used to adjust the weights and bias values on the ANNmod-
els; (2) validation subset, which is used to minimize overfitting
of the models by checking their generalization capability on
data they did not train on (overfitting is a modeling error that
occurs when the model is too closely fit to a particular set of
data and may therefore fail to reliably predict future observa-
tions); and (3) testing subset, which is used for testing the final
algorithm to confirm the actual predictive power of the models
for future data.

In the literature, most of the ANN-based studies randomly
divide the ground-motion records into the above-mentioned
subsets. However, the ground-motion records from individual
earthquake are correlated because of higher-order source effects
not accounted for in the model. Thus, there is a moderate risk
of overfitting because the ground-motion records in the vali-
dation and testing subsets may be correlated with the ones in
the training subset, which correspond to the same earthquake.
To address this issue, in the present study, instead of randomly
dividing the ground-motion records, the 376 seismic events
are randomly divided into training, validation, and testing sub-
sets, which approximately consist of 60%, 20%, and 20% of
the whole dataset, respectively. Then, for each subset, the

ground-motion records associated with seismic events in that
subset are considered for training process.

After training the ANN model shown in Figure 3a, it is
now turned into mathematical formulation as follows:
EQ-TARGET;temp:intralink-;df2;311;484

ln�p�
N ratio

� b�
X4
i�1

vi

×

2
4 1

1� exp
h
−
�
w1i×

Mw
6:1 �w2i×

VS30
1792:0�w3i×

RJB

522:0�bi
�i

3
5;

�2�
in which p is the predicted value of intensity measure; b is the bias
value of output neuron; vi denotes the connection weights
between the ith neuron from thehidden layer andoutput neuron;
w1i, w2i, and w3i are the connection weights entering ith neuron
of the hidden layer from the input layer; and bi denotes the bias of
the hidden layer neurons. The values of w1i, w2i, w3i, and bi for
different outputs are listed inⒺTables S2 and S3, and the values
of vi and b for different outputs are listed inⒺ Table S4. Using
equation (2) and the coefficients presented in the tables, one can
easily estimate the ground-motion intensitymeasures in the study
region given the input parameters of the groundmotions without
retraining the proposed ANNmodels. The developedGMMs are
also implemented into ready-to-use Microsoft Excel Spreadsheet
available in Ⓔ ANN_Calculation. The reliability and generali-
zation capability of the proposed GMMs are investigated in
the following section of the article.

PERFORMANCE ANALYSIS AND MODEL
VALIDITY

This section addresses the performance and model validity of
the developed ANN models for different intensity measures.
To evaluate the performance of the ANNmodels in predicting
the intensity measures, the correlation between the predicted
and target values for PGA is shown in Figure 4. Dashed lines in

(a) (b)
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▴ Figure 3. Schematic representation of (a) the artificial neural network (ANN) model and (b) the i th neuron of the hidden layer. The color
version of this figure is available only in the electronic edition.
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each plot indicate the ideal case in which the predicted values
are exactly the same as the target values. As seen in the figure,
the data are close to the ideal line, indicating a strong corre-
lation between the estimated and measured values. In addition,
Figure 5 plots the distribution of the residuals, ε, defined as the
natural log of the ratio of the measured ground-motion param-
eter to its predicted value, for PGA in relation to the input
parameters. The ideal value for this parameter is zero, indicat-
ing that the GMM precisely predicts the measured parameter.
Residual values above and below zero, respectively, demonstrate
that the GMM underestimates and overestimates the measured
parameters. As seen in Figure 5, the mean of the residuals for all
plots is approximately zero, indicating that the proposed ANN
model for PGA on average accurately predicts the intensity
measures for the considered ground motions. The same trends
are observed for all other intensity measures.

To evaluate external validity of the models, which is
defined as the reliability of the model in predicting future data,
different sets of criteria available in the literature, as shown in
Table 1, are checked. Large values of the correlation coefficients

R between the target and predicted values (R > 0:8) demon-
strate that the model provides strong correlation between the
estimates and the target values (Smith, 1986). In fact, large val-
ues of R especially for testing subset (i.e., the subset that the
model does not see during training) indicate that they can reli-
ably be used to determine principal ground-motion intensity
measures for future data (Pan et al., 2009). Moreover,
Golbraikh and Tropsha (2002) suggested that at least one
of the slopes of the regression of targets against estimates
through the origin and that of estimates against targets through
the origin for the testing subset (k and k′, respectively) should
be between 0.85 and 1.15. They also suggested that at least one
of the correlation coefficients of these regression lines (R2

o and
R′2
o ) should be close to 1.0. To ensure that the model has good

predictive power, they proposed that at least either R2
o or R′2

o
should be close to R2. Finally, Roy and Roy (2008) suggested
that values of the modified coefficient of correlation R2

m larger
than 0.5 can be considered as an indicator of good generaliza-
tion capability of the model.
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▴ Figure 4. Measured versus predicted values for peak ground acceleration (PGA) for the training, validation, and testing subsets. The
values of correlation coefficient R and mean absolute error (MAE) of each subset are also shown in the figure.
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▴ Figure 5. Residuals of the proposed ground-motion model (GMM) for PGA in respect to input parameters. Squares depict the mean
residual and its standard deviation in logarithmically spaced distance bins. The color version of this figure is available only in the elec-
tronic edition.
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Here, the above-mentioned external validation criteria are
checked for the proposed ANN models, and the results are
shown in Table 2. As seen in the table, the derived models pass
all the above-mentioned criteria, which denotes that the devel-
oped model can be reliably used to predict the future data.
Similar to other statistical methods, the generalization capabil-
ity of the proposed ANN-based GMMs is limited to the range
of the input characteristics considered in this study, and

caution should be exercised when extrapolating beyond the
range constrained by the input data.

SENSITIVITY ANALYSIS

Here, the sensitivity of the ANN models to the predictor var-
iables (Mw , VS30, and Rhypo) is evaluated. To do so, Garson’s
algorithm (Garson, 1991) is used to compute the contribution

Table 1
Considered Criteria for Checking the External Validity of the Models

Criteria Suggested by

R �
P

m
i�1

�t i−t̄ ��pi−p̄������������������������������������������P
m
i�1

�t i−t̄ �2
P

m
i�1

�pi−p̄�2
p ≥ 0:8 Smith (1986)

0:85 ≤ k �
P

m
i�1

�t i×pi �P
m
i�1

p2i
≤ 1:15 or 0:85 ≤ k ′ �

P
m
i�1

�t i×pi �P
m
i�1

t 2i
≤ 1:15 Golbraikh and Tropsha (2002)

R2
o � 1 −

P
m
i�1

�pi−t oi �2P
m
i�1

�pi−p̄�2
or R ′2

o � 1 −
P

m
i�1

�t i−poi �2P
m
i�1

�t i−t̄�2
should close to 1 Golbraikh and Tropsha (2002)

mindex � j R2−R2
o

R2 j ≤ 0:1 or nindex � j R2−R ′2
o

R2 j ≤ 0:1 Golbraikh and Tropsha (2002)

R2
m � R2�1 −

�������������������
jR2 − R2

oj
p

� ≥ 0:5 Roy and Roy (2008)

t i and pi are the target and predicted output values, respectively; m is the number of samples; t̄ and p̄ are the average of the
target and predicted output values, respectively; and t oi � k × pi and poi � k ′ × t i .

Table 2
Performance Analysis of Artificial Neural Network Models

Parameters R training RValidation R testing k k ′ R 2
o R ′2

o mindex nindex R 2
m

PGV 0.923 0.906 0.918 1.020 0.941 0.986 0.921 0.171 0.094 0.523
PGA 0.924 0.907 0.916 0.982 0.843 0.998 0.903 0.189 0.076 0.505

PSA (0.05 s) 0.927 0.902 0.912 0.955 0.867 0.988 0.912 0.188 0.097 0.503
PSA (0.06 s) 0.927 0.917 0.918 0.953 0.868 0.947 0.923 0.123 0.094 0.572
PSA (0.08 s) 0.916 0.917 0.922 1.034 0.832 0.969 0.899 0.140 0.059 0.556
PSA (0.10 s) 0.916 0.912 0.919 1.049 0.805 0.987 0.907 0.169 0.074 0.525
PSA (0.15 s) 0.904 0.905 0.905 1.035 0.789 0.983 0.881 0.200 0.076 0.487
PSA (0.20 s) 0.890 0.906 0.891 1.051 0.742 0.967 0.911 0.217 0.146 0.465
PSA (0.25 s) 0.898 0.899 0.912 0.985 0.825 0.980 0.909 0.178 0.093 0.511
PSA (0.30 s) 0.907 0.882 0.893 0.988 0.773 0.975 0.875 0.222 0.097 0.462
PSA (0.35 s) 0.896 0.914 0.899 0.972 0.801 0.950 0.887 0.176 0.098 0.503
PSA (0.40 s) 0.901 0.902 0.915 1.019 0.834 0.990 0.930 0.182 0.111 0.510
PSA (0.45 s) 0.910 0.917 0.916 0.974 0.875 0.994 0.898 0.185 0.071 0.508
PSA (0.50 s) 0.916 0.887 0.909 1.024 0.880 0.974 0.904 0.180 0.095 0.507
PSA (0.60 s) 0.927 0.902 0.917 1.028 0.863 0.998 0.909 0.186 0.080 0.508
PSA (0.70 s) 0.923 0.941 0.938 0.968 0.970 0.957 0.998 0.087 0.134 0.636
PSA (0.80 s) 0.930 0.897 0.943 1.023 0.924 0.999 0.938 0.123 0.055 0.595
PSA (0.90 s) 0.929 0.945 0.934 0.966 0.988 0.955 0.999 0.096 0.147 0.620
PSA (1.00 s) 0.939 0.912 0.949 1.012 0.949 0.990 0.979 0.099 0.088 0.632
PSA (1.50 s) 0.938 0.950 0.940 0.986 0.990 0.968 0.990 0.095 0.120 0.627
PSA (2.00 s) 0.949 0.928 0.949 1.019 0.967 0.987 0.971 0.097 0.079 0.635
PSA (2.50 s) 0.953 0.933 0.946 1.020 0.969 0.986 0.971 0.102 0.085 0.625

PGA, peak ground acceleration; PGV, peak ground velocity; PSA, pseudospectral acceleration.
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of each input variable in the ANN output. In this algorithm,
the input-hidden and hidden-output weights of the trained
ANN models are partitioned, and the absolute values of the
weights are taken to calculate the relative importance values.
The relative importance values for each ANN model are com-
puted and presented in Figure 6. As shown, for PGA and PSA
values at short periods (T < 0:4 s), Rhypo is the most impor-
tant parameter, but for PGV and PSA values at long periods
(T > 0:4 s), Rhypo and Mw have similar contributions.
Moreover, regardless of which intensity measure is discussed,
VS30 has the least contribution in predicting the ground-
motion intensity measures. It is worth noting that for longer
periods (T > 1 s), VS30 has relatively more contribution
(∼20%), reflecting amplification effects caused by regional
geology.

COMPARISON OF THE GROUND-MOTION
MODELS

In this section, the GMMs developed for Texas, Oklahoma,
and Kansas are compared with three different sets of
GMMs available in the literature as:
1. GMMs developed by Boore et al. (2014; hereafter,

BSSA14) for western North America as part of the
NGA-West2 (Bozorgnia et al., 2014) project with more
focus on small to moderate magnitude tectonic earth-
quakes. It is believed that these events are similar to
induced events in terms of key features such as magnitude
and distance scaling of ground-motion amplitudes.

2. GMMs developed by Atkinson (2015; hereafter, A15)
using small to moderate events (M 3–6) at short hypocen-
tral distances (Rhypo < 40) from the NGA-West2 data-
base (Ancheta et al., 2014). The GMMs are developed to
be applicable for induced seismicity assuming that the
amplitude of motions from induced events is similar to
that of tectonic earthquakes with the same magnitudes
and hypocentral distances.

3. GMMs developed by Hassani and Atkinson (2015; here-
after, HA15) for CENA. They updated the GMMs

developed by Boore et al. (2014) for
western North America, applying an
adjustment factor to fit the models to
the CENA ground-motion database.

Figure 7 demonstrates the intensity–
distance relations of the ground motions from
the Texas, Oklahoma, and Kansas dataset, as
well as the corresponding attenuation curves
derived from proposed and above-mentioned
GMMs. To plot the attenuation curves from
BSSA14 and HA15 in hypocentral distance,

it is assumed that Rhypo ≈
���������������������
R2
JB � 5:12

q
, in

which 5.1 km is the average hypocentral depth
of the considered data, and RJB is the closest
distance to the surface projection of the rupture
(Joyner–Boore distance). In fact, similar to pre-

vious studies in the literature (Atkinson, 2015; Hassani and
Atkinson, 2015; Khosravikia, Zeinali, et al., 2018), it is
assumed that the fault is small enough so that the epicentral
distance is approximately equal to the Joyner–Boore distance.
As seen in Figure 7, theTexas, Oklahoma, and Kansas motions
tend to follow a pronounced trilinear amplitude decay func-
tion at regional distances, and ANN models properly capture
this behavior. This behavior has been also observed by
Khosravikia, Zeinali, et al. (2018) and Novakovic et al. (2018).

First, the proposed GMMs are compared with those devel-
oped for CENA (i.e., HA15). As seen in the figure, for earth-
quakes with 3:5 ≤ Mw < 4:0, Texas, Oklahoma, and Kansas
tend to have higher amplitudes at short distances
(Rhypo < 20 km) compared with other areas of CENA.
This observation is mainly because of the fact that the pro-
posed GMMs are adjusted to the potentially induced seismic
events in Texas, Oklahoma, and Kansas, which generally con-
sist of shallower depth earthquakes compared with other areas
of CENA (Atkinson and Assatourians, 2017; Khosravikia,
Zeinali, et al., 2018). At large distances (Rhypo > 20 km),
ANN results in similar attenuations as HA15 for PGA and
PSA at short periods. However, at longer periods
(T > 0:5 s), as seen in the plot for PSA(1.0 s), Texas,
Oklahoma, and Kansas amplitudes tend to be higher regardless
of the distance of the site from the earthquake epicenter, which
probably reflects the amplification effects caused by the
regional geology of the study region. For earthquakes with
larger magnitudes (Mw > 5), the proposed amplitudes for
PGA and PSA values at shorter periods (T < 0:5 s) tend to
be lower than those of HA15, reflecting that the application
of the CENA GMMs for the study region is likely to overesti-
mate the intensity measures. However, for PSA values at long
periods, HA15 and ANNmodels result in similar attenuations.

Next, the proposed GMMs are compared with those of
A15 and BSSA15. As seen in Figure 7, A15 leads to fairly good
estimates of the attenuations in Texas, Oklahoma, and Kansas,
especially for larger earthquakes (Mw > 5) and at shorter
hypocentral distances (Rhypo < 20 km). However, at larger dis-
tances, BSSA14 and A15 predict amplitudes significantly lower

1 PGV 2 PGA 3 PSA(0.05s) 4 PSA(0.06s) 5 PSA(0.08s) 6 PSA(0.10s) 
7 PSA(0.15s) 8 PSA(0.20s) 9 PSA(0.25s) 10 PSA(0.30s) 11 PSA(0.35s) 12 PSA(0.40s) 
13 PSA(0.45s) 14 PSA(0.05s) 15 PSA(0.60s) 16 PSA(0.70s) 17 PSA(0.80s) 18 PSA(0.90s) 
19 PSA(1.00s) 20 PSA(1.50s) 21 PSA(2.00s) 22 PSA(2.50s)     

Mw VS30 Rhypo

▴ Figure 6. Contribution of the predictive parameters in the developed ANN
models.
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than those observed in the study region, reflecting slower
attenuations for Texas, Oklahoma, and Kansas motions at
regional distances compared with small to moderate earth-
quakes in western North America.

CONCLUSION

The recent increase in the seismicity rate of the states of Texas,
Oklahoma, and Kansas driven by increased oil and gas produc-
tion necessitates further investigation of the seismic hazard in
CENA. This study presents site-specific GMMs, which are a
valuable tool for evaluating and mitigating hazard for that
region. The proposed GMMs are mathematical equations that
predict PGA, PGV, and 5% damped elastic PSA at different
periods given earthquake magnitude, hypocentral distance, and
average shear-wave velocity over the top 30 m of soil. This
study used a selected database of 4528 ground motions, includ-
ing 376 seismic events with magnitudes of 3 to 5.8, recorded
over the 4- to 500-km hypocentral distance range in these three
states since 2005.

This study, unlike many other studies in the literature that
used linear regression analysis, outlines a framework in which
ANN is used as the statistical method to develop the GMMs.
Regression analysis is conducted using predefined linear and

nonlinear equations. Although such equations are based on
physical justifications and are helpful in interpreting the
derived GMMs, they may limit the predictive power of the
GMMs in simulating the complex behavior of ground-motion
characteristics. ANN, in contrast, is able to adaptively learn
from a dataset without any presumed behaviors. The predic-
tion reliability and generalization capability of the developed
ANNmodels are evaluated against different criteria available in
the literature, and the results show that they provide reliable
estimates of intensity measures.

It is observed that Texas, Oklahoma, and Kansas motions
tend to follow a pronounced trilinear amplitude decay func-
tion at regional distances. The GMMs developed for this
region are also compared with GMMs developed for small-
to-moderate earthquakes of western America, CENA, and
those developed to be applicable to induced seismicity. For
instance, it is concluded that Texas, Oklahoma, and Kansas
amplitudes at long periods or short distances tends to be higher
than CENA amplitudes for earthquake with magnitudes of 3.5
to 4. It should be noted that the validity of the proposed ANN
models, similar to other data-driven models, is limited to the
range of the input characteristics considered in the ground-
motion dataset. The use of these models outside the range
of variability of the original dataset is not recommended.

PSA(0.05s) (cm/s2) PSA(0.2s) (cm/s2)PGA (cm/s2)

PSA(0.05s) (cm/s2) PSA(0.2s) (cm/s2)PGA (cm/s2)

Rhypo (km)

ANN HA15
Rhypo (km) Rhypo (km)

A15 BSSA14

Earthquakes with 3.5(a)

(b)

≤ Mw <4

Earthquakes with 5 ≤ Mw

PSA(1.0s) (cm/s2)

PSA(1.0s) (cm/s2)

Rhypo (km)

▴ Figure 7. Intensity measure to distance relations of the GMMs determined in this study in comparison with Hassani and Atkinson (2015;
hereafter, HA15) GMMs developed for central and eastern North America, Atkinson (2015; hereafter, A15) GMMs developed for small to
moderate events at short hypocentral distances with applicability to induced seismicity, and Boore et al. (2014; hereafter, BSSA14) devel-
oped as part of the Next Generation Attenuation-West2 project. All GMMs are plotted for V S30 � 760 m= s as well asMw � 3:7 for (a) and
Mw � 5:3 for (b). The color version of this figure is available only in the electronic edition.
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DATA AND RESOURCES

The database of ground motions for the present study was
retrieved from the Incorporated Research Institutions for
Seismology (IRIS) database (https://www.iris.edu/hq/, last
accessed September 2017) and was processed by Zalachoris
and Rathje from TheUniversity of Texas at Austin. More infor-
mation about the database is available at Khosravikia, Potter,
et al. (2018). The MATLAB computational platform was used
to train artificial neural network models (www.mathworks.com/
products/matlab, last accessed March 2018).

ACKNOWLEDGMENTS

This work was financially supported by the Texas Department
of Transportation (TxDOT) through Grant Number 0-6916,
the State of Texas through the TexNet Seismic Monitoring
Project, and the Industrial Associates of the Center for
Integrated Seismic Research (CISR) at the Bureau of
Economic Geology of the University of Texas. The opinions
and findings expressed herein are those of the authors and not
the sponsors.

REFERENCES

Ahmad, I., M. H. El Naggar, and A. N. Khan (2008). Neural network
based attenuation of strong motion peaks in Europe, J. Earthq. Eng.
12, no. 5, 663–680.

Alavi, A. H., and A. H. Gandomi (2011). Prediction of principal ground-
motion parameters using a hybrid method coupling artificial neural
networks and simulated annealing, Comput. Struct. 89, nos. 23/24,
2176–2194.

American Society of Civil Engineers (ASCE) (2016). Minimum design
loads and associated criteria for buildings and other structures,
ASCE/SEI 7, Reston, Virginia.

Ancheta, T. D., R. B. Darragh, J. P. Stewart, E. Seyhan,W. J. Silva, B. S.-J.
Chiou, K. E. Wooddell, R. W. Graves, A. R. Kottke, D. M. Boore,
et al. (2014). NGA-West2 database, Earthq. Spectra 30, no. 3, 989–
1005.

Atkinson, G. M. (2015). Ground-motion prediction equation for small-
to-moderate events at short hypocentral distances, with application
to induced-seismicity hazards, Bull. Seismol. Soc. Am. 105, no. 2A,
981–992.

Atkinson, G. M., and K. Assatourians (2017). Are ground-motion models
derived from natural events applicable to the estimation of expected
motions for induced earthquakes? Seismol. Res. Lett. 88, no. 2A,
430–441.

Atkinson, G. M., and A. B. Mahani (2013). Estimation of moment mag-
nitude from ground motions at regional distances, Bull. Seismol. Soc.
Am. 103, no. 1, 107–116.

Atkinson, G. M., D. W. Greig, and E. Yenier (2014). Estimation of
moment magnitude (M) for small events (M < 4) on local net-
works, Seismol. Res. Lett. 85, no. 5, 1116–1124.

Barbour, A. J., J. H. Norbeck, and J. L. Rubinstein (2017). The effects of
varying injection rates in Osage County, Oklahoma, on the 2016
Mw 5.8 Pawnee earthquake, Seismol. Res. Lett. 88, no. 4, 1040–
1053.

Bommer, J. J., B. Dost, B. Edwards, P. J. Stafford, J. van Elk, D. Doornhof,
and M. Ntinalexis (2016). Developing an application-specific
ground-motion model for induced seismicity, Bull. Seismol. Soc.
Am. 106, 158–173.

Boore, D. M., J. P. Stewart, E. Seyhan, and G. M. Atkinson (2014). NGA-
West2 equations for predicting PGA, PGV, and 5% damped PSA

for shallow crustal earthquakes, Earthq. Spectra 30, no. 3, 1057–
1085.

Bozorgnia, Y., N. A. Abrahamson, L. Al Atik, T. D. Ancheta, G. M.
Atkinson, J. W. Baker, A. Baltay, D.M. Boore, K. W. Campbell,
B. S.-J. Chiou, et al. (2014). NGA-West2 research project,
Earthq. Spectra 30, no. 3, 973–987.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal
function, Math. Control Signals Syst. 2, no. 4, 303–314.

Derras, B., P. Y. Bard, and F. Cotton (2014). Towards fully data driven
ground-motion prediction models for Europe, Bull. Earthq. Eng.
12, no. 1, 495–516.

Derras, B., P.-Y. Bard, and F. Cotton (2016). Site-condition proxies,
ground motion variability, and data-driven GMPEs: Insights from
the NGA-West2 and RESORCE data sets, Earthq. Spectra 32,
no. 4, 2027–2056.

Derras, B., P.-Y. Bard, F. Cotton, and A. Bekkouche (2012). Adapting the
neural network approach to PGA prediction: An example based on
the KiK-net data, Bull. Seismol. Soc. Am. 102, no. 4, 1446–1461.

Electric Power Research Institute (EPRI) (2004). CEUS Ground Motion
Project Final Report 1009684, EPRI, Palo Alto, California.

Ellsworth, W. L. (2013). Injection-induced earthquakes, Science 341,
no. 6142, 1225942.

Farhadi, A., S. Pezeshk, and N. Khoshnevis (2018). Assessing the appli-
cability of ground-motion models for induced seismicity application
in central and eastern North America, Bull. Seismol. Soc. Am. 108,
no. 4, 2265–2277.

Frohlich, C., H. Deshon, B. Stump, C. Hayward, M. Hornbach, and J. I.
Walter (2016). A historical review of induced earthquakes in Texas,
Seismol. Res. Lett. 87, no. 4, 1–17.

Frohlich, C., W. Ellsworth, W. A. Brown, M. Brunt, J. Luetgert, T.
MacDonald, and S. Walter (2014). The 17 May 2012 M 4.8 earth-
quake near Timpson, East Texas: An event possibly triggered by
fluid injection, J. Geophys. Res. 119, no. 1, 581–593.

Garson, G. D. (1991). Interpreting neural network connection weights,
AI Expert 6, 47–51.

Golbraikh, A., and A. Tropsha (2002). Beware of q2!, J. Mol. Graph.
Model. 20, no. 4, 269–276.

Güllü, H., and E. Erçelebi (2007). A neural network approach for attenu-
ation relationships: An application using strong ground motion
data from Turkey, Eng. Geol. 93, no. 3, 65–81.

Gupta, A., J. W. Baker, and W. L. Ellsworth (2017). Assessing ground-
motion amplitudes and attenuation for small-to-moderate induced
and tectonic earthquakes in the central and eastern United States,
Seismol. Res. Lett. 88, no. 5, 1379–1389.

Hassani, B., and G. M. Atkinson (2015). Referenced empirical ground-
motion model for eastern North America, Seismol. Res. Lett. 86,
477–491.

Hornbach, M. J., M. Jones, M. Scales, H. R. DeShon, M. B. Magnani, C.
Frohlich, B. Stump, C. Hayward, and M. Layton (2016).
Ellenburger wastewater injection and seismicity in North Texas,
Phys. Earth Planet. In. 261, 54–68.

Hough, S. E. (2014). Shaking from injection-induced earthquakes in the
central and eastern United States, Bull. Seismol. Soc. Am. 104, no. 5,
2619–2626.

Kerh, T., and S. B. Ting (2005). Neural network estimation of ground
peak acceleration at stations along Taiwan high-speed rail system,
Eng. Appl. Artif. Intell. 18, no. 7, 857–866.

Khosravikia, F., A. Potter,V. Prakhov, G. Zalachoris, T. Cheng, A. Tiwari, P.
Clayton, B. Cox, E. Rathje, E. Williamson, et al. (2018). Seismic vul-
nerability and post-event actions for Texas bridge infrastructure,
FHWA/TX-18/0-6916-1, Center forTransportation Research (CTR).

Khosravikia, F., Y. Zeinali, Z. Nagy, P. Clayton, and E. Rathje (2018).
Neural network-based equations for predicting PGA and PGV in
Texas, Oklahoma, and Kansas, Fifth Geotech. Earthq. Eng. Soil
Dynam. Conference, Austin, Texas, 10–13 June.

Marquardt, D. W. (1963). An algorithm for least-squares estimation of
nonlinear parameters, J. Soc. Ind. Appl. Math. 11, no. 2, 431–441.

Seismological Research Letters Volume XX, Number XX – 2019 9

SRL Early Edition

Downloaded from https://pubs.geoscienceworld.org/ssa/srl/article-pdf/doi/10.1785/0220180218/4602832/srl-2018218.1.pdf
by Univ of Texas-Austin user
on 28 December 2018

https://www.iris.edu/hq/
https://www.iris.edu/hq/
https://www.iris.edu/hq/
http://www.mathworks.com/products/matlab
http://www.mathworks.com/products/matlab


Novakovic, M., G. M. Atkinson, and K. Assatourians (2018). Empirically
calibrated ground-motion prediction equation for Oklahoma, Bull.
Seismol. Soc. Am. 108, no. 5A, 2444–2461.

Pan, Y., J. Jiang, R. Wang, H. Cao, and Y. Cui (2009). A novel QSPR
model for prediction of lower flammability limits of organic com-
pounds based on support vector machine, J. Hazard. Mater. 168,
nos. 2/3, 962–969.

Parker, G. A., J. A. Harmon, J. P. Stewart,Y. M. A. Hashash, A. R. Kottke,
E. M. Rathje,W. J. Silva, and K. W. Campbell (2017). Proxy-based
V S30 estimation in central and eastern North America, Bull.
Seismol. Soc. Am. 107, no. 1, 117–131.

Perlovsky, L. I. (2001). Neural Networks and Intellect: Using Model-Based
Concepts, Oxford University Press, New York, New York.

Petersen, M., C. S. Mueller, M. P. Moschetti, S. M. Hoover, A. L.
Llenos, W. L. Ellsworth, A. J. Michael, J. L. Rubinstein, A. F.
McGarr, and K. S. Rukstales (2016). 2016 one-year seismic hazard
forecast for the central and eastern United States from induced and
natural earthquakes, U.S. Geol. Surv. Open-File Rept. 2016-1035,
52 pp.

Roy, P. P., and K. Roy (2008). On some aspects of variable selection for
partial least squares regression models, QSAR Comb. Sci. 27, no. 3,
302–313.

Smith, G. N. (1986). Probability and Statistics in Civil Engineering, Collins
Professional and Technical Books, London, United Kingdom.

Yenier, E., and G. M. Atkinson (2015). Regionally adjustable generic
ground-motion prediction equation based on equivalent point-
source simulations: Application to central and eastern North
America, Bull. Seismol. Soc. Am. 105, no. 4, 1989–2009.

Zalachoris, G., E. M. Rathje, and J. G. Paine (2017). V S30 characteriza-
tion of Texas, Oklahoma, and Kansas using the P-wave seismogram
method, Earthq. Spectra 33, no. 3, 943–961.

Farid Khosravikia
Patricia Clayton

Zoltan Nagy
Department of Civil Architectural and Environmental

Engineering
The University of Texas at Austin

301E E Dean Keeton Street C1700
Austin, Texas 78712 U.S.A.
farid.khosravikia@utexas.edu

clayton@utexas.edu
nagy@utexas.edu

Published Online 27 December 2018

10 Seismological Research Letters Volume XX, Number XX – 2019

SRL Early Edition

Downloaded from https://pubs.geoscienceworld.org/ssa/srl/article-pdf/doi/10.1785/0220180218/4602832/srl-2018218.1.pdf
by Univ of Texas-Austin user
on 28 December 2018


