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EXECUTIVE SUMMARY

The Balcones and Luling-Mexia-Talco Fault Zones delineate a belt that stretches
across the central part of Texas from the Rio Grande to the Red River. The fault
zones are denoted by broken and displaced strata, and juxtaposition of diverse bedrock
types has had a marked effect on natural resources both at the earth's surface and
below ground. There have also been demographic responses to the abrupt changes in
natural features; many of the major Texas cities, including Austin, Dallas, Fort Worth,
San Antonio, and Waco, occur along this trend.

Several Cretaceous aquifers along this belt provide ground water for municipal,
industrial, and domestic users; in general, the waters obtained from these aquifers
have low temperatures and low concentrations of dissolved solids. However, in some
areas the only available water supply occurs in the deepest, downdip parts of the
aquifer, and there, water temperature values are anomalously high--locally as much as
60 ° C (140 ° F). For many years these warm and locally mineralized waters have
supplied municipal and domestic needs, but the heat content was considered a nuisance
or an oddity. Warm waters have supplied a few health spas and swimming pools, but in
general, the heat content of these waters has been wasted.

This report presents a region-wide inventory and assessment of aquifers known to
yield warm water (greater than 90° F; 32 © C). We have conducted this study to
ascertain the potential for obtaining geothermal energy for space heating and water
heating needs. The aquifers investigated include the Hosston/Trinity Sands, the Hensel
Sand, the Paluxy Sand, the Edwards Limestone, and the Woodbine Sand. We have
examined each aquifer in terms of its stratigraphic and structural framework and its
hydrogeological properties.

Of the aquifers studied, three possess the greatest potential as sources of
geothermal energy. They are the Hosston/Trinity, the Paluxy, and the Woodbine. All
three provide local municipalities with potable water having elevated temperature.
The Edwards and the Hensel, on the other hand, have either adverse water quality, low
sustainable yields, or insufficient caloric content.

The Hosston/Trinity aquifer has the greatest geothermal potential of the
aquifers studied. That is, the Hosston/Trinity (1) covers the largest area, (2) provides
more towns across that area with water, (3) is the deepest (hence, hottest) of the
aquifers studied, and (4) has generally moderate dissolved solids content through the

area in which it is currently tapped. Our data on well yields are insufficient to project



aquifer capabilities for future ground-water withdrawals, but previous workers (Klemt
and others, 1975, p. 55) have indicated a potential for future increased pumpage from
the downdip parts of the Hosston Sand in Central Texas.

The Woodbine and Paluxy Sands have a moderate geothermal potential in North-
Central and northeast Texas, but both aquifer systems have a smaller geographic
extent compared with the Hosston/Trinity; also ground water from the Woodbine and
Paluxy generally has lower temperatures and higher concentrations of dissolved solids.

If the water obtained from the deep, geothermal parts of the aquifers does not
have to be potable, (that is, if it does not have to serve multiple needs), the
geothermal resource base will be expanded. Thus, the potential resource will include
hot brines that are known to occur in parts of the Edwards Limestone and high-salinity
waters that occur within the deeper parts of the various sand aquifers. In fact,
current projects to obtain heat from ground water from the Hosston (in Falls County)
and the Woodbine (in Navarro County) have selected the parts of the aquifers in which
water quality precludes the use of these aquifers as a potable water supply. Geologic
conditions in deep parts of the Hosston/Trinity, the Paluxy, and the Woodbine seem
favorable for large amounts of hot (but probably saline) waters. These are the deep
deltaic deposits that occur in Bowie, Red River, Lamar, Delta, Hopkins, Franklin, and
Titus Counties in northeast Texas, but since these deep sands have not been tapped as
aquifers, their hydrologic properties are conjectural.

Probably the greatest known geothermal potential along the Balcones and Luling-
Mexia-Talco Fault Zones occurs in those areas where warm waters are now being
extracted and consumed without regard for the heat value. The rate of pumpage and
the difference between prevailing winter air temperature and the ground-water
temperature show the magnitude of this resource that is being wasted. Taylor, Texas,
for example, pumps enough water at 116° F (47° C) that during winter months
10 Bty (5.2 x 107

probably be extracted economically, because those Btu's dissipated during an average

approximately 2.07 x 10 kg-cal.) is wasted. Part of this heat can
January have a value of as much as $52,000. The retrieval of this heat would entail
designation of a recipient, modification of water distribution, and the installation of a
heat exchange device. The geologic resource exists, therefore, but its utilization is an

engineering and economic problem.




OVERVIEW

General

For more than 80 years, warm waters with temperatures of up to 60° C (140° F)
have been produced from several aquifers located along a belt that bisects Texas from
the Rio Grande to the Red River. This trend, which is broadly delimited by the
Balcones Fault Zone on the west and the Luling-Mexia-Talco Fault Zones on the east
(fig. 1), constitutes a low-grade geothermal resource. Waters from aquifers in this
region have long supplied municipal and domestic needs, but except at local spas and
health resorts, the heat content of these waters has been considered a nuisance and
thus wasted. Today, however, because of increased costs of fossil fuels, low-grade
energy sources are attracting new attention. The waters produced along this belt
provide a potential supply for hot water and space-heating needs, and projects are
currently underway to tap this heat source for the Torbett-Hutchings- Smith Memorial
Hospital at Marlin and the Navarro Junior College at Corsicana.

Although the heat content of these waters is low, the warm-water-bearing
aquifers constitute an appealing potential resource because of the convergence of
social and geologic attributes within the region. The belt from which the warm waters
are obtained is one of the most heavily populated and intensively used regions in
Texas. Total population of the region is more than 5 million with a maximum
population density in Dallas County of 1,616 people/mi2 (624 people/kmz). There are
six Standard Metropolitan Statistical Areas and numerous large industrial, military,
educational, and institutional facilities that might efficiently use this "alternative
energy source" (fig. 2). Perhaps more important than the sheer number and size of
potential users of this resource is the aforementioned fact that many communities
already tap the warm waters for their municipal water supplies. Thus, the costs of
drilling a well and pumping the water have already been borne. In these instances, all
that is necessary for using the heat is the designation of a recipient (a local school or
other public building, for example) and installation of the necessary heat exchange
systems.

However, a water resource of the type studied here--that is, one that provides
potable water and caloric energy--is an anomaly. In general, aquifers of moderately
shallow depth (up to several hundred feet deep) yield dependable amounts of water of

low, constant temperature and low total dissolved solids. But in the deeper parts of
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aquifers, porosity and permeability commonly decrease with an associated decline in
well yields. Also, water quality declines with increasing depth as a result of poor
circulation and either chemical equilibrium between deep ground water and minerals
composing the host rocks or a mixing of meteoric waters and pre-existing fluids within
the aquifer. This increase in dissolved constituents is further abetted by the increase
in earth temperature with depth; the hotter the ground water, the greater the capacity
of the water to retain salts in solution. Given these expected relations, plus the cost
of drilling a well, it is no mystery why wells usually tap the shallowest dependable
source of ground water in an area. People naturally seek the best quality water at the
lowest cost, and in the past, a hot-water well was considered unsatisfactory for
domestic or municipal supply. Many such wells may have been abandoned leaving no
record; hence, data on these waters are sometimes sparse.

Clearly, there are several constraints on the widespread use of warm potable
water; these constraints include geographic variations in quality, quantity, and heat
content of geothermal ground-water reservoirs. These factors combined affect the
technical and economic feasibility of tapping the waters either for drinking supply or

for heat extraction.

Purpose and Scope

This investigation is a regional inventory and overview. Its purpose is to assess
areal and stratigraphic extent and capabilities of aquifers that yield warm waters
within the Balcones and Luling-Mexia-Talco Fault Zones. The study involves a
state-of-knowledge evaluation of multiple-use potential (potable water and heat
content) on the basis of geologic, climatic, and demographic factors. Because multiple
use is so important to the viability of this potential energy resource, we have focused
our attention mainly on areas of known ground-water production. Thus, our major
questions are, "Where are there warm potable waters, and what are their geochemical
and hydrologic attributes?" However, we have also delineated as potential targets
untested areas that might yield potable geothermal waters. Finally, we have defined
possible future research tasks for further assessment of these resources.

The geographic scope of study included a region of more than 50,000 mi2
(approximately 137,000 ka) within 65 Texas counties (fig. 3). This study region was
defined on the basis of the location of Cretaceous aquifers in Central Texas that are
known to yield warm water locally. We purposely excluded areas in which warm
waters are confirmed from Tertiary strata in the Gulf Coast Basin in South Texas, and

from Paleozoic strata farther west; the Tertiary and Paleozoic aquifers differ from







the Cretaceous strata in geologic age, in mode of origin, and in areal extent. Time
constraints during this one-year project did not allow expansion of the study region to
include these adjacent geothermal provinces.

The conceptual scope of study involved two major avenues of inquiry, one dealing
with the stratigraphic and structural framework of the aquifers identified, and the
other addressing the hydrologic, geochemical, and thermal aspects. Both avenues of
investigation, however, were limited by extant data, whether it was information on
subsurface lithic control, water quality, or historical well yield. Limited water data
especially constrained the scope of study; no ground-water data exist for the rock
units studied where they are not used as aquifers. There, aquifer potential must be
inferred from our interpretations of the geologic setting. Our interpretations of the
regional geologic framework were similarly constrained by uneven distribution and
quality of subsurface data. In many areas there has been little petroleum exploration
activity, and in several instances where exploration wells do occur, the wells are often
cased through the water-bearing units, and thus the formations of interest in this
study do not appear on electric logs. The scope of follow-up investigations could be
expanded by the acquisition of a more complete data base within selected areas.

Because of the size and complexity of the study region, it has been subdivided
into three subareas (fig. 3). The Lampasas and Little Rivers separate the southern
area from the central part of the region, and the Trinity River separates the central
from the northern sections. The northern and southern areas were studied by
scientists at the Bureau of Economic Geology. The central segment was studied under
a contractual agreement with a team of consultants led by Drs. O. T. Hayward and
Robert G. Font of Baylor University at Waco, Texas. In addition to contributing data
and interpretations to the regional assessment, these consultants also completed a
state-of-knowledge assessment of the geologic and hydrologic settings in Falls
County. The Falls County study provided technical support for drilling a well to supply
warm water for the Memorial Hospital at Marlin funded mainly by the U.S. Depart-
ment of Energy. Maps and reports by these consultants--both on the entire central

study area and on Falls County--are on file at the Bureau of Economic Geology.

Data Base

Two types of data were used in this inventory. One type is applied to the
geologic framework; the other is used in assaying hydrology, water chemistry, and
historical use patterns of the aquifers delineated. In all instances, mapping was done

at a scale of 1:250,000. The work maps for all three study areas were then compiled
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into a single base at a scale of 1:1,000,000. These compilation maps are on file at the
Bureau of Economic Geology.

The geologic interpretations were based mainly on electric logs of wells
occurring across the region, although we also examined some cuttings and cores to
substantiate stratigraphic horizons in problem areas. Our well control consists of 724
data points in 63 counties (fig. 4). We used these data to construct 24 dip-oriented and
10 strike-oriented cross sections, as well as a series of 11 maps that present the
structural framework of various stratigraphic horizons and the isopachous or isolith
geometry of the aquifers studied. Bottom-hole temperature values from these
electric logs were also used to construct a map showing the geothermal gradient
across the region.

Our subsurface geologic data base was computer indexed and is presented in the
appendix to this report. This appendix contains selected information obtained from
the electric log heading or from other sources, and it also contains our lithic
interpretations. Each data point is located by county numbers (fig. 4) and each well
has a unique number code that is compatible with the State well numbering system of
the Texas Department of Water Resources. Of the two numbering systems, the
county-by-county convention shown in figure 4 is more important in using this report
because our interpretative maps and cross sections use this system. Hence, if anyone
wants to retrieve data used in any interpretation here, he or she may do so by
referring to the appendix by county and number of the well in question.

Most of the geohydrologic data used in this report were obtained from the
computer files of the Texas Department of Water Resources, although some data on
dissolved solids and temperature were obtained from published reports. Computerized
data include several thousand values of water level measurements, water quality and
temperature, and municipal ground-water withdrawals. For each aquifer system
deemed potentially important as a geothermal resource, the data were treated in two
main types of operations. One of these operations was to plot representative points on
maps to provide depictions of regional geographic variations in water level, water
chemistry, water temperature, and municipal water use. This procedure resulted in
the construction of 16 maps. The other operation was to treat the water quality
information for each aquifer in the aggregate--that is, in a non-site-specific manner.
This entailed running computer programs to plot scattergrams showing the relations
among dissolved solids, temperature, and well depth. Finally, water quality data were
programmed to show major anion and cation relations using piper diagrams. This was

mainly done in an individual gounty format in order to denote a characteristic
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geochemical "thumbprint" of a given aquifer, or to show strike-oriented or dip-
oriented changes in anion-cation balance within an aquifer.

The data on water quality and water level are not indexed in this report because
of the massive repetition of information that is readily obtainable from computer files
of the Texas Department of Water Resources. The location-specific information for
hydrologic data used in contouring maps presented in this report is retained on the
open-file work maps at the Bureau of Economic Geology. These work maps present
the water-quality and water-level data base from which the interpretations were
drawn. These data are coded by county, by aquifer, and by State well number.

In this report we first present general discussions of regional physiography,
climate, structural geology, and stratigraphy. Then we focus on each of the horizons
that were mapped in detail, beginning with the pre-Cretaceous "basement complex"
and including each of the major Cretaceous aquifers that yield low-temperature

geothermal waters. These aquifers are addressed from oldest to youngest.

Regional Physiography and Climate

Most of the large facilities that might potentially use the low-temperature
geothermal waters lie along the Blackland Prairie physiographic province (fig. 5). The
intensive human use of the Blackland belt is due to several factors. The terrain is
gently rolling, and the soils are fertile, so that the area constitutes prime agricultural
land. Moreover, especially in the south-central part of the Blackland belt, geologic
changes across the Balcones Fault Zone have resulted in marked demographic re-
sponses. Most notable are the changes in terrain from the Hill Country and its
dominant ranching economy to the inner coastal plain and its cotton-based farming
economy. Also, the Balcones Fault Zone delineates the Edwards artesian aquifer
system that constitutes a major supply of fresh water in south-central Texas.

Other physiographic provinces that warrant special notice are the Western Cross
Timbers and the Eastern Cross Timbers because they generally delimit the recharge
areas for the various warm-water-bearing aquifers in Central and North-Central
Texas. The Western Cross Timbers receives recharge for all the basal Cretaceous sand
units, including the Hosston, the Hensel, the "Trinity Undifferentiated" sand units, and
part of the Paluxy Sand. The Eastern Cross Timbers is the recharge zone for the
Woodbine Sand.

Climatic factors that are important in evaluating low-temperature geothermal
water resources include mean annual air temperature, seasonal (winter) deviations

/
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from this mean, and average length of seasons that are subject to freezing tempera-
ture,

Mean annual air temperature (fig. 6) provides a basis for approximating the
temperature of water entering the aquifers; in other words, initial aquifer temperature
should be close to the mean annual air temperature across the respective recharge
areas. Moreover, mean annual air temperature represents a reasonable estimate for
near-surface ground temperature, and this value is used as a baseline for computing
geothermal gradients.

Mean temperature values for winter months provide a way to compute the
effective caloric value of warm waters for space heating needs. Hence, the difference
between January mean minimum temperatures (fig. 6) and the temperature of the
local ground water provides an approximate maximum figure for available heat, even
though the actual usable heat will be somewhat less than this differential, because of
heat-exchange efficiencies and other factors. The most conservative estimate of
available heat may be obtained by computing the difference between temperatures of
geothermal waters and the local mean annual air temperatures, as this value should
approximate the difference between temperatures of recharging waters and the waters
at depth in the same ground-water system.

The map showing mean length of freeze periods (fig. 7) provides a rough estimate
of the length of time during which space-heating needs are greatest. However, in
most of Texas there are many warm interludes within this freeze period. Also at other
times temperatures may be above freezing but below the range of comfort, so that for
a detailed, site-specific analysis the climatic parameter needed is the "annual heating
degree days," which is available from National Weather Service data files but is not
presented here. The map depicting freeze period does illustrate the brief part of the
year in which space heating is needed. But for water-heating needs, the caloric value
of the water does not depend on seasonal air temperature, and the demand for hot
water implies a year-round need for geothermal water. Yet warm water in storage
tanks loses heat, and for this reason hot-water heaters powered by fossil fuels are

widely used even in homes that directly tap the geothermal aquifers.

Regional Structural Geology

The study region lies along a major structural hinge that separates the Texas
Craton from the embayments of the Gulf coastal province (fig. 8). The hinge occupies
a zone as much as 40 mi (64 km) wide that shows evidence of structural activity over

an expanse of geologic time. The major tectonic features delimiting the hinge zone
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Figure 6. Mean annual air temperature and January mean minimum temperature of
study region (data from Texas Natural Resources Information System).
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Mean Annual Freeze Days:
Contour interval = 5days

/
Figure 7. Mean annual freeze period of study region (data from Texas Natural
Resources Information System).
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are the surface faults of the Balcones and Luling-Mexia~Talco systems and the buried
Ouachita structural belt (fig. 9). Other features that lie along this trend are the updip
subcrop of Jurassic strata, Cretaceous igneous plugs, and the updip outcrop of Tertiary
rocks. Detailed stratigraphic and structural analyses demonstrate facies changes,
abrupt thickening and rapid changes in the rate of dips of strata, complex faulting, and
anomalously high geothermal gradients. The time of structural deformation spans
more than 200 million years from the late Paleozoic during Ouachita deformation to
Miocene time when the major events of Balcones faulting occurred. The foundered
Ouachita structural belt and the proximity of the Jurassic subcrop suggest that this
hinge line was the locus of rifting during the opening of the ancestral Gulf of Mexico
at the beginning of the Mesozoic Era. Subsequently, the Balcones and Luling-Mexia-
Talco fault systems formed in response to tensional stresses, perhaps related to this
rifting. The Balcones Fault System shows displacement mainly down-to-the-coast,
whereas the Luling-Mexia-Talco system is displaced both up-to-the-coast and down-
to-the-coast, but in many areas a graben occurs superjacent to the Ouachita belt
between the Balcones and Luling-Mexia-Talco Fault Zones.

The dominant features that affected the depositional framework of Cretaceous
rock units along this hinge zone are the various positive and negative structural
features within the region (fig. 8). The three positive elements that were most
influential in determining the composition and depositional aspects of Cretaceous
sandstone units are the Llano Uplift, the Arbuckle Mountains, and the Ouachita
Mountains. All three of these features provided sediment for the basal Cretaceous
terrigenous clastic deposits, the downdip areas of which are the major geothermal
aquifers. Other positive features of more limited areal extent are the Devil's River
Uplift and the Chittim Anticline, both of which are especially denoted by their effects
on the structural configuration of the Edwards Limestone in South Texas. In Central
Texas, the San Marcos Platform is a major salient extending southeastward from the
Llano Uplift. This platform is the locus of several facies changes with concomitant
effects on aquifer properties of the Hosston and Hensel sand units. The Muenster Arch
and the Preston Anticline affected the sand trends of several units in north Texas.
The Sligo Reef Trend delineates the Cretaceous (Comanchean) shelf edge, and the pre-
Cretaceous shelf edge is inferred from the location of the updip Jurassic line.

The major negative structural features are the Maverick Basin, the East Texas
Basin, and the Gulf Coast Basin. Both the Maverick and the East Texas Basins are
delineated on figure 9, but the Gulf Coast Basin is shown only on the index map

because overall it is interpreted to be a super-province encompassing the entire region

17




I EE EE

OKLAHOMA

~

-CRETACEO(S

PRE

25 50 75 100 M1
¥ e L 2
40 80 120 160 Km

Figure 8. Regional structural elements.

18




ARKANSAS

I

LOUISIANA

50 Miles

TOKilomelers

EXPLANATION
SURFACE FEATURES

/ Normal fauit (lick indicates downthrown side )
* Updip imit of Terhary oufcrop
/ Updip hmit of Cretaceous outcrop

: Pre-Cretoceous uphft areas

SUBSURFACE FEATURES
POST - QUACHITA FEATURES

a5 Updip imit of Jurassic subcrop

7

OUACHITA FEATURES

-'I ((‘ Overthrust foult (teeth on downdip side
SAN A i \)\f/ ET, ’ of fault plone)
}NTQ&&Q;“QPW / / // =
b C R A 7 Teor foult

P e

N X & K\ Subcrop of Quachita sedimentary rocks
*\j\s"/ // ~ N7 i N\ (identfied Paleozoic strato)
h S v
i Gl 2 (—’v_] Cor n Lefc. {age unt )
TN o
'#/’ X [ T Phyllite, slate, etc (age unknown)

/
Figure 9. Regional tectonic features (modified from Flawn and others, 1961, and
Sellards and Hendricks, 1946).

19




i

|

east of the Texas Craton. An initial boundary might have been the southeastern edge
of the Ouachita structural belt. As the basin was filled with sediment during the early
Mesozoic, the shelf edge migrated eastward. During deposition of the Edwards Group
the shelf edge apparently stabilized along the Stuart City Reef Trend. Later, during
the Tertiary and Quaternary periods, the basin continued to regress with only minor
transgressions.

The map showing geothermal gradient (fig. 10) reflects some of the regional
structural and tectonic features. Most of the gradient values show an increase ranging
from 1.0° to 1.5° F for every 100 ft (18° to 27° C/km) of depth. However, there are
anomalies with closures of more than 3.0° F/100 ft (55° C/km). These high anomalies
lie mostly along the main zones of normal faulting in the Balcones system, which is
also superjacent to OQuachita structural belt and its zones of thrust faulting and
different degrees of metamorphism (Flawn and others, 1961).

Geothermal anomalies may be due to structural setting or to hydrologic factors.
Clearly, there appears to be a relation between the location of faults and the abnormal
gradients. This may be due to two divergent mechanisms; the faults may be conduits
for upwelling fluids (i.e. hot brines), or the faults might retard fluid flow, thus
resulting in a stagnating hydrologic system and a long-term increase in temperature.
The local sources of the heat either trapped or conveyed by faults include (1)
exothermic chemical reactions among deep-seated fluids, (2) buried plutons that are
still cooling, (3) the presence of radiogenic rocks at depth, and (4) zones of rock
possessing relatively high thermal conductivity properties. As noted by Plummer and
Sargent (1931), these and other factors might act singularly or in concert to contribute
to abnormal geothermal gradients in the Guif Coast region.

It is beyond the scope of this report to address fully the problem of geothermal
heat sources. Nevertheless, convergence of high geothermal gradients, locus of
faulting, major deep-seated structural elements, and the occurrence of warm ground-
waters pose many potientially fruitful lines of inquiry for further study. No doubt a
combination of factors has affected the geothermal setting in this study region. The
geothermal gradients as reported here are conservative (low) values based on bottom-
hole temperatures as recorded on electric logs. These logs are generally run
immediately after a well is drilled, yet the bottom-hole temperature is usually
mediated by the circulation of drilling muds. A long-term monitoring of thermal

conditions in this region might show even greater temperature anomalies.
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Regional Stratigraphy

The geothermal aquifers are mostly Lower Cretaceous sandstone units that are
superjacent to the Ouachita structural belt. Of these, the most notable potential
geothermal resource occurs in the basal Cretaceous sands--the strata that rest
directly on the Ouachita rocks. However, in South Texas, the Edwards Limestone also
yields warm waters, as does the Carrizo Sand of Tertiary (Eocene) age farther east in
the Gulf Coast Basin. In northeast Texas, the Upper Cretaceous Woodbine Sand is also
a notable source of warm water. The geographic and stratigraphic distribution of the
warm-water-bearing rock units indicates that near this structural hinge zone the
deepest stratum that maintains hydrologic communication with meteoric waters (and
thus is part of a viable aquifer system) exhibits abnormally high temperatures in its
downdip reaches. The aquifers apparently serve as a natural heat exchange and heat
storage system in response to the anomalous geothermal gradients along the
OQuachita-Balcones trend. Because of the functioning of aquifers in this way
progressively younger stratigraphic units serve as geothermal water-bearing units from
the Texas Craton to the Gulf Coast Basin.

The regional stratigraphic picture is complex, partly because of structural
framework and resulting changes in depositional processes across this region, but
mostly because of nomenclatural inconsistencies. For example, the basal Cretaceous
(Trinity) sands aquifer systems--that is, the initial terrigenous sands that were
deposited on the Paleozoic surface--has no less than nine stratigraphic units cited in
the literature for sands of (probably) equivalent age and of similar depositional
environments. There are nomenclatural changes from outcrop into the subsurface, as
noted in Central Texas (fig. 11), and there are nomenclatural changes along strike (fig.
12).

Of the various basal Cretaceous sandstone units, eight of these and their
permutations are listed as aquifers in the data files of the Texas Department of Water
Resources. For the sake of simplicity, we have considered only three or four of these
units. In Central Texas we have focused on the Hosston Sand and the Hensel Sand,
thus discriminating these two "members" from what has previously been termed the
Travis Peak Formation (Klemt and others, 1975). Farther north, near the Trinity
River, we have combined Travis Peak, Trinity, Twin Mountains, Antlers, and the updip
part of the Paluxy all under the rubric "Trinity Sands Undifferentiated." Hence, we
consider only six units region-wide: the Hosston, the Hensel, the Trinity Undif-
ferentiated, the Paluxy, the Woodbine Sands, and the Edwards Limestone. Of these,

the most important in terms of geothermal potential are three major aquifer systems:
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(1) the Hosston/Trinity Undifferentiated, (2) the Paluxy, and (3) the Woodbine.
Outcrop patterns of these units show the geographic distribution of their recharge
zone (fig. 13); their configuration at depth is shown on both subsurface geologic maps
and cross sections. The series of cross sections (figs. 14-47) shows the geographic
location and thickness of rock units that are considered as potential geothermal
aquifers; these sections extend beyond the areas in which the strata are tapped as
aquifers, so that many downdip and lateral facies changes that limit aquifer capabili-
ties may be seen on the electric log signatures.

Two typical electric logs--one from Travis County and one from Dallas
County-- illustrate actual lithic variations from south to north (fig. 48) and provide a
basis for recognizing diagnostic log signatures for use of the cross sections presented
here. Marked changes also occur in a downdip direction; downdip changes generally
militate against aquifer capability at depth owing to either adverse water quality or
insufficient well yield. Furthermore, in many instances facies boundaries result in
extreme changes in lithic properties of an aquifer host rock. This happens where the
Hensel Sand changes downdip into the shales and limestones of the Pearsall Formation
in south-central Texas (Loucks, 1977). Such changes result from different environ-
ments of deposition--a dip-oriented terrigenous sand system for the Hensel, a strike-
oriented carbonate marine shelf system for the Pearsall. Similar changes from a
dip-oriented terrigenous sand to a strike-oriented carbonate sand (Bebout, 1977) cause

the Hosston Sand to terminate as a viable aquifer in many of its downdip reaches.
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Figure 25. Dip-oriented cross section 2-2' (see figure 4 for location; see appendix for

individual well data).
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Figure 32. Dip-oriented cross section 9-9' (see figure 4 for location; see appendix for

individual well data).
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Figure 42. Dip-oriented cross section 19-19' (see figure 4 for location; see appendix for

individual well data).
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Figure 43. Dip-oriented cross section 20-20' (see figure & for location; see appendix for

individual well data).
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Figure 44. Dip-oriented cross section 21-21' (see figure 4 for location; see appendix for
individual well data).
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Figure 46. Dip-oriented cross section 23-23' (see figure 4 for location; see appendix for
individual well data). ‘
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Figure 47. Dip-oriented cross section 24-24' (see figure 4 for location; see appendix for
individual well data).
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PRE-CRETACEOUS SURFACE

General

Pre-Cretaceous rocks exposed in the study region consist of Precambrian igneous
and metamorphic rocks that crop out in the Llano area, and the unmetamorphosed
Paleozoic "foreland facies" strata (Flawn and others, 1961) that crop out in the Llano
area and that occur beneath the Cretaceous strata west of the Balcones Fault Zone.
Farther east, in the subsurface, the Ouachita complex becomes progressively more
highly deformed and metamorphosed, and dips of the Ouachita rocks become progress-
ively steeper. At the eastern margin of control on the Ouachita complex, there are
thick terrigenous and evaporitic (?) strata of presumed Jurassic age.

Pre-Cretaceous rocks have affected both composition and geometry of the
Cretaceous aquifers in the region investigated. This is because the pre-Cretaceous
rocks constituted source materials for many of the overlying clastic sediments, and
the late Paleozoic erosion surface composed the substrate on which the updip parts of
the basal Cretaceous sandstone units were deposited. Moreover, pre-Cretaceous
physiographic and structural conditions affected areal extent of the depositional
environments that resulted in the various facies of Cretaceous strata. For example,
the structural hinge defined by the eastern margin of the steeply dipping Ouachita belt
marked the locus of change from predominantly terrestrial sedimentation to a marine
depositional regime during early Cretaceous time. Although numerous transgressive
and regressive migrations of the marine environment occurred throughout the early
Cretaceous (Stricklin and others, 1971), the hinge line persisted as a zone of major
changes between depositional environments. Examples along this trend include the
updip subcrop limit of Jurassic strata and facies changes from terrestrial to marine
strata for both the Hosston and Hensel sand units in Central Texas. Moreover, it is
along this trend that many of the terrigenous rock units change from being dominantly
dip-oriented to being mainly strike-oriented, as the depositional environments changed
from fluvial and deltaic systems to lagoonal or marine systems. Commonly, there are
also drastic compositional changes in rocks representing the different environments of
deposition. The dip-oriented systems are dominantly composed of quartzose sand,
whereas the strike-oriented units are made up mainly of carbonate rocks, evaporites,
or mud. Because of both compositional effects and geometry of rock bodies, the dip-
oriented parts of the various rock units have superior aquifer properties. Porosity and
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permeability are generally higher for these rocks, hence, expected well yields are
greater than for other depositional systems. Also, the dip-oriented geometry ensures
adequate hydrologic communication with the outcrop (recharge) area, and this

mediates both well yield and water quality aspects.

Structural Configuration of the Pre-Cretaceous Surface

The hinge zone separating the Texas Craton from the Gulf coastal province is
noted on the structural map of the top of the pre-Cretaceous surface (fig. 49) by a
marked steepening of dip. West of the hinge zone, dips are less than 70 ft/mi
(13m/km), and are commonly less than 20 ft/mi (4m/km) farther inland. East of the
hinge, dips of more than 200 ft/mi (38m/km) are common. The hinge also coincides
with the main locus of Balcones faulting, which happens to be a zone of sparse well
data in south-central Texas; within this area, paucity of well data prevented our
extrapolating contours on various maps. Moreover, there is an abrupt compositional
change across the hinge; as denoted by Flawn and others (1961), slightly metamor-
phosed Ouachita strata of recognizable age abut more intensively metamorphic rocks
of unknown age.

When viewed in plan, the pre-Cretaceous surface also shows marked changes in
strike. A major structural salient occurs at about the location of the San Marcos
Platform, where strike changes from approximately northeast-southwest to nearly
east-west. A major embayment occurs along an axis that parallels the Preston
Anticline in north Texas; there strike changes from a northeast trend to an approxi-
mately east-west orientation. It is in this area that the Arbuckle and Ouachita
structural trends converge; also this embayment occurs near where the Ouachita
structural belt dips beneath the ground surface. These combine to produce a locally
complicated subsurface geologic setting.

On the Texas Craton, erosional topographic features on the pre-Cretaceous
surface (the Washita Paleoplain of Hill, 1901, p. 363) determined composition, texture,
and overall geometry of subsequent Cretaceous rocks. Topographic relief of more
than 200 ft (61 m) is mapped in Kerr County. High-relief areas were local sources of
sediments during Cretaceous time, and low-topographic areas determined the major
sites of early Cretaceous fluvial deposition (Hall, 1976). Across the hinge zone, in the
Gulf coastal province, structural downwarping was more important than initial
erosional topographic irregularities on the pre-Cretaceous surface in controlling

subsequent Cretaceous sedimentation.
/
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The structural hinge zone marks one of the probable loci of initial rifting of the
Gulf of Mexico, as evidenced by the abrupt occurrence of thick sequences of
interbedded evaporites and terrigenous clastic sediments composing the presumed
Jurassic subcrop (figs. 25, 35, 37, 47). Furthermore, there are very few localities
identified where Jurassic(?) strata overlie the Paleozoic basement complex. This
relation suggests that during initial rifting, Jurassic strata were formed in a series of
periodically subsiding grabens that received terrigenous detritus and that acted as salt
flats. Initially, the Ouachita complex was both sediment source and substrate for
these Jurassic rocks, but as rifting continued, formation of new (oceanic?) crust and
possible local crustal thinning resulted in continued downwarping in the sediment-
receiving basins. Tensional forces associated with rifting, coupled perhaps with
crustal thinning, resulted in the foundering of the Ouachita Mountains throughout
Texas.

The structural scenario presented here is conjectural, but it does affect our
formulating hypotheses that explain the origin of anomalous geothermal gradients
within the study region. A rift zone is denoted by high heat flow values. Even a
"fossil rift" might continue as an area of high heat flow, and given a blanket of
insulating sediments (Jurassic[?] and Cretaceous strata), a long-term anomalous geo-
thermal gradient might be the result. Thus, one hypothesis for the source of heat for
the warm waters along the Balcones and Luling-Mexia-Talco Fault Zones is that the
basement complex there is a relict analogue to the Salton Sea.

Faults provide another explanation of the observed geothermal anomalies. There
are numerous normal faults depicted on the structural map of the pre-Cretaceous
surface; there are also zones of thrust faulting mapped by Flawn and others (1961).
Deep-seated fracture zones might result in anomalously warm ground waters at a
relatively shallow depth, and deep circulation of meteoric waters along faults is the
prevailing model for the origin of the Hot Springs of Arkansas (Bedinger and others,
1974) and the Warm Springs of western Virginia (Geiser, 1979). Hence, the Ouachita
belt may represent a buried analogue to the geothermal conditions at, for instance,

Hot Springs, Arkansas.
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HOSSTON AND TRINITY SANDS UNDIFFERENTIATED

General

Strata deposited on the pre-Cretaceous surface consist of the various basal
Cretaceous sandstone units. These sandstones are mainly riverine or deltaic deposits
on the Texas Craton, but across the structural hinge strata, of terrigenous origin end
and much thicker lagoonal or offshore marine deposits mark the beginning of the Gulf
coastal province.

As mentioned previously, the stratigraphy of the Lower Cretaceous units is
complex, and this complexity has been exacerbated by diverse and sometimes
overlapping or inconsistent names applied to the same or equivalent strata across the
region. In hopes of simplifying this situation, while retaining enough of the
stratigraphic nomenclature to communicate effectively, we refer to the basal Creta-
ceous units as being "Hosston and Trinity Sands Undifferentiated" (see fig. 12). We
have drawn the boundary between the Hosston Sand and the Trinity Undifferentiated
along a line parallel to, but southwest of, the Trinity River in Johnson, Tarrant, Ellis,
and Navarro Counties. However, this boundary is somewhat arbitrary because the
basal Cretaceous sands represent several depositional systems, and although the line
separating the Hosston from the Trinity Sands is also a boundary between two of these

systems, other system boundaries of equal or greater importance are not shown.

Net-Sand Distribution of the Hosston/Trinity

The major depositional systems composing the basal Cretaceous sands are
delineated on the basis of aggregate thickness of sand strata as shown on the net-sand
map (fig. 50). The values presented here are conservative, as sand thickness of 10 ft (3
m) or less was not included in the computations on which the net-sand map was based.
Hence, sand thicknesses are somewhat less than those presented by Hall (1976), even
though overall sand trends are the same.

The net-sand map shows clearly distinguishable dip-oriented thick sand trends
that correspond to loci of fluvial deposition (fig. 51); the areas between these
thick-sand trends are probably interfluvial areas within flood basins or along the delta
plains of the Cretaceous river systems. Immediately downdip from the presumed
fluvial channels, areas of variable areal extent commonly have either uniform sand
thicknesses or have abrupt thickening of sand. These are thought to be deltaic

deposits, which are of several types, as suggested by areal geometry and thickness of
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Figure 51. Schematic Hosston/Trinity paleogeographic map.
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sand bodies. Some dip-oriented feeder systems terminate either without a broad
expanse of sand of uniform thickness or without localized abrupt thickening of sands.
We think these represent relatively small fluvial systems that derived sediment from a
local source area and that terminated as small fan deltas. The largest of these occur
in Grayson and Collin Counties, and lie within the Sherman Syncline. The headwaters
of these fan systems probably drained the Arbuckle or Ouachita Mountains, which are
only about 75 mi (121 km) to the north. A second type of delta occurs from Falls
County north to Ellis County, in which the sand patterns occur as a broad expanse of
sands of equal thickness. Hall (1976) has proposed that these represent high-
destructive wave dominated deltas. The riverine part of this fluvial-deltaic system is
the best documented of any of the Lower Cretaceous sand deposits, and the
configuration of these ancient river systems coincides with the parts of the Hosston
aquifer having highest yields and best water quality (Henningsen, 1962). The third type
of delta occurs in northeast Texas. It has clearly delineated tributary feeder systems
that course off the Ouachita uplands. These fluvial deposits terminate in a delta of a
form similar to the high-destructive type in Central Texas, but there are also distal
sand bodies of relatively great thickness, suggesting a delta-front sand deposit. This
would seem to require protection from intense waves and currents (in contrast to the
processes acting on the high-destructive delta system). Probably, in this area the
Trinity sands were protected from wave action--perhaps by the Sabine Uplift farther
south. The delta-front sands of this system offer some of the thickest terrigenous
sand deposits in the region, yet these thick sands are not directly related to the
outcrop of Trinity Sands only a few tens of miles to the north. Thus recharge probably
does not readily occur between the fluvial systems and the sands of the offshore bar
facies.

The lagoonal, prodelta, or other marine systems are denoted by abrupt increases
in "sand" thicknesses beginning near the structural hinge zone where dips increase
precipitously into the Gulf Coast Basin (fig. 34). Much of the apparent sand composing
these deposits, however, is carbonate sand, such as dolomite or oolites (Bebout, 1977).
Too, the abnormal thickening is partly caused by the probable inclusion of Jurassic
strata as part of the aggregate sands measured as Hosston or Trinity Undifferentiated.
These thick carbonate sand deposits are of a different genetic system from the dip-fed
fluvial-deltaic sand bodies, and hence they are not in direct hydrologic communication
with either the recharge areas or the major producing zones of the aquifers. Because
of these genetic-geometrical relations, we have focused almost entirely on the

geothermal aquifer properties of the fluvial and deltaic deposits that occur on the
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Texas Craton. No water data exist for the lagoonal or marine shelf systems, but we
project that water yields would probably be low and of limited duration, and adverse

water quality conditions would pose problems with use.

Structural Configuration of the Hosston/Trinity

The structural configuration of the Hosston/Trinity Sands (fig. 52) largely
reflects the underlying pre-Cretaceous surface. The hinge zone marking the boundary
between the Texas Craton and the Gulf coastal province persisted into Cretaceous
time, although the updip limit of Sligo deposition in south-central Texas indicates a
transgression of marine conditions during the late stages of Hosston/Trinity deposition.
Other structural or topographic irregularities present on the late Paleozoic surface
also apparently affected the Hosston/Trinity depositional configuration; for example,
the salient that marks the change in strike orientation near the San Marcos Platform
persists, as does the embayment in North Texas. The Preston Anticline and the
Sherman Syncline appear on both structural maps, as does the (unnamed) high-relief
area in Kerr County. However, structural features in southwest Texas, the Devil's
River Uplift and the Chittim Anticline, affected the Hosston structural setting but is
not noted on the structural map of the pre-Cretaceous surface. Also, some topo-
graphic structural irregularities on the pre-Cretaceous surface do not appear on the
Hosston/Trinity structure map (the localized topographic high in Williamson County is
one example).

Dip on the top of the Hosston/Trinity ranges from a low of approximately 10
ft/mi (2 m/km) on the Texas Craton in Bandera County to nearly 500 ft/mi (97 m/km)
in the Gulf coastal province (Wilson County).

Although a few normal faults apparently have atfected the pre-Cretaceous
structural setting, normal faults become a major aspect of the regional structural
setting of the Hosston/Trinity systems. Most of the faults displacing basal Cretaceous
strata occur from Bexar County north into Travis and Williamson Counties. Likewise,
maximum mapped displacement of approximately 350 ft (107 m) occurs along this
trend. Most displacement is down-to-the-coast, but there is clearly defined up-to-
the-coast faulting of the Luling System in Bexar, Guadalupe, and Caldwell Counties.
Displacement there is as much as 400 ft (122 m). Both up-to-the-coast and down-to-
the-coast faulting occurs in the Talco system, and a narrow graben is defined in
Hopkins, Franklin, and Titus Counties. Detailed fault trends are not shown within the
main part of the Mexia Fault Zone, and even though surface displacement indicates
that the main aspect of faulting there is up-to-the-coast, local data indicate the
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major displacement to be down-to-the-coast (Hayward and others, 1979). Also,
because of sparse data, the individual fault traces in part of the Balcones Fault Zone
are not depicted; this area is denoted on the structure map as "zone of complex
faulting."

The larger number of faults displacing Cretaceous strata as compared with the
number that displace the underlying pre-Cretaceous rocks may be due to several
factors. It may be a function of incomplete subsurface data for the pre-Cretaceous
surface. Although in updip areas such as in Kerr and Bandera Counties, where control
is of comparable quantity and quality for Cretaceous and pre-Cretaceous horizons, the
Cretaceous strata nonetheless appear to be more intensely faulted. Still, more faults
might displace the Paleozoic complex than are depicted on the structural map of the
pre-Cretaceous surface; pre-Cretaceous faults might not appear on the map because
of small scale or low density of control. Another explanation for the disparity in the
number of faults affecting the pre-Cretaceous surface and the Lower Cretaceous
strata might be the differences in competency of rocks affected. The stresses that
result in intense faulting of the Cretaceous sands simply might not have deformed the
underlying pre-Cretaceous complex in a way that is discernible on the maps presented
here. A third possibility, and one suggested by certain interpretations of the central
part of the study region (Hayward, 1978) is that growth faulting may have occurred
during deposition of the Hosston. However, a comparison of fault trends to isopach or
net sand data does not support this on a region-wide basis at our working scale. More

detailed investigations, however, might prove this hypothesis to be correct.

General Aquifer Properties of the Hosston/Trinity

Data on water level, water quality, and water temperature are presented for an
area from Travis County, north to Cooke and Grayson Counties at the Oklahoma
border. The scarcity of water data in relation to the broad scope of the maps of the
Hosston/Trinity lithic framework is due to the limited areal extent in which the
Hosston-Trinity is used as an aquifer. In northeast Texas, no known localities exist
east of Dallas, Collin, and Grayson Counties where the Trinity sands are tapped for
ground-water supplies. In south-central Texas, there are a few localities within the
Balcones Fault Zone in Bexar and Uvalde Counties where the Hosston supplies water
needs, but these data points are too scattered to allow confident extension of our maps
into that area. The San Marcos Platform appears to have acted as a barrier, south of
which lithic properties are not conducive to ground-water production within the
Balcones Fault Zone. Updip of the Balcones Fault Zone, in Kendall, Kerr, and Bandera

Counties, water from the Hosston is commonly used for domestic and livestock
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purposes. But in these areas, the aquifer lies at relatively shallow depths and is close
to its outcrop (recharge) area; hence, it does not exhibit elevated water temperatures.
Also, no continuous water data link this part of the Hosston with the main part of the
study region farther east; therefore, we omitted that part of the Hosston from our

consideration of aquifer properties.

Water Level of the Hosston/Trinity

The water level map for the Hosston/Trinity is based on data collected by the
Texas Department of Water Resources during November 1976 (fig. 53). Because the
data points used to construct this map were collected at nearly the same time, the
contour lines approximate the potentiometric surface at that time. Assuming that
these contours delineate the potentiometric surface, flow paths can be constructed
(Hall, 1976), and possible ground-water divides are discernible. Also, cones of
depression are easily seen on this map, and they correlate with areas of major
withdrawal from the aquifer. Zones of intensive ground-water production also affect
the locations of ground-water divides and the convergence of flow lines; thus water
level (potentiometric surface) is a result of the natural aquifer conditions and the
intensity of human use of the ground-water supply.

The most notable area where water level has declined in apparent response to
human use is along the "Interstate-35 growth corridor" (Allen, 1975; Baldwin, 1974)
from Waco north to Ellis and Johnson Counties. As noted by Hayward and others
(1979), the effect of this "trough of depression" is to reverse the potentiometric
gradient for the Hosston aquifer east of the trough, and this probably eliminates
recharge east of the I-35 corridor. The trough might also adversely affect water
quality because of movement of lower-quality waters from downdip areas farther east
in response to the reversal of the "normal" potentiometric surface. Other local areas
of depressed water level occur in western Travis County in response to intensive
residential development along the lakes there, and in Tarrant and Dallas Counties,
owing to local municipal, residential, and industrial uses in those urban areas.

The apparent "natural" effects on the water level of the Hosston aquifer include
the various structural features of the region and the configuration of sand bodies. In
general, the water level surface is oriented in the same direction as structural dip,
except where intensive use results in depression cones or troughs. But because of
artesian conditions, the dip of the water level is subdued compared with the inclination

of the aquifer host formation; commonly the water level surface dips basinward at

{
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EXPLANATION

E’ Outcrop of Trinity Sonds in Central Texas
Outcrop of Trinity Sands (Antlers) ond Poluxy

*  Control point; woter level measured during November 1976
Contour interval = 50f1 (1524 m);
datum is mean seo level

Approximate dividing line between the Hosston
\ oquifer {to the south) and the "Trinity Sands
\ Undifferentiated"” (to the north)
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0 e 80Km

INDEX
Figure 53. Water level contours for the Hosston/Trinity aquifer.
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approximately 4 ft/mi (0.8 m/km). Hence, in the eastern part of the aquifer, the
water commonly rises more than 2,000 ft (610 m) under artesian pressure.

Various local effects on water level occur throughout the region. Areas of
relatively high water level correspond to high net-sand thicknesses, and the San
Marcos Platform, which is an area of thin net sands, delineates an apparent ground-
water divide. Other examples include the water level <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>