Play Analysis and Digital Portfolio of Major Oil Reservoirs in the Permian Basin: Application and Transfer of Advanced Geological and Engineering Technologies for Incremental Production Opportunities # Annual Report Reporting Period Start Date: January 14, 2002 Reporting Period End Date: January 13, 2003 Shirley P. Dutton, Eugene M. Kim, Ronald F. Broadhead, William Raatz, Cari Breton, Stephen C. Ruppel, Charles Kerans, and Mark H. Holtz April 2003 Worked Performed Under DE-FC26-02NT15131 Prepared by ## **Bureau of Economic Geology** The University of Texas at Austin University Station, P.O. Box X Austin, TX 78713-8924 and **New Mexico Bureau of Geology and Mineral Resources** New Mexico Institute of Mining and Technology Socorro, NM 87801 # Play Analysis and Digital Portfolio of Major Oil Reservoirs in the Permian Basin: Application and Transfer of Advanced Geological and Engineering Technologies for Incremental Production Opportunities # **Annual Report** Reporting Period Start Date: January 14, 2002 Reporting Period End Date: January 13, 2003 Shirley P. Dutton, Eugene M. Kim, Ronald F. Broadhead, William Raatz, Cari Breton, Stephen C. Ruppel, Charles Kerans, and Mark H. Holtz April 2003 Worked Performed Under DE-FC26-02NT15131 Prepared by # **Bureau of Economic Geology** The University of Texas at Austin University Station, P.O. Box X Austin, TX 78713-8924 and **New Mexico Bureau of Geology and Mineral Resources** New Mexico Institute of Mining and Technology Socorro, NM 87801 # **DISCLAIMER** This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability for responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. # **Abstract** A play portfolio is being constructed for the Permian Basin in west Texas and southeast New Mexico, the largest petroleum-producing basin in the United States. Approximately 1,300 reservoirs in the Permian Basin have been identified as having cumulative production greater than 1 MMbbl of oil through 2000. Of these major reservoirs, approximately 1,000 are in Texas and 300 in New Mexico. On a preliminary basis, 32 geologic plays have been defined for Permian Basin oil reservoirs and assignment of each of the 1,300 major reservoirs to a play has begun. The reservoirs are being mapped and compiled in a Geographic Information System (GIS) by play. Detailed studies of three reservoirs are in progress: Kelly-Snyder (SACROC unit) in the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play, Fullerton in the Leonardian Restricted Platform Carbonate play, and Barnhart (Ellenburger) in the Ellenburger Selectively Dolomitized Ramp Carbonate play. For each of these detailed reservoir studies, technologies for further, economically viable exploitation are being investigated. # **Contents** | ABSTRACT | v | |--|----| | INTRODUCTION | 1 | | EXECUTIVE SUMMARY | 7 | | EXPERIMENTAL METHODS | 9 | | RESULTS AND DISCUSSION | 9 | | Definition of the Permian Basin | 9 | | Identifying Reservoirs Having >1 MMbbl Cumulative Production | 11 | | Texas | 12 | | New Mexico | 14 | | Procedure Used for Obtaining Cumulative Production for New Mexico Reservoirs | 18 | | Total Permian Basin Production | 20 | | Defining Plays | 20 | | Texas | 20 | | New Mexico | | | Assigning Reservoirs to Plays | | | Locating and Mapping Reservoirs in GIS | 27 | | Texas | 27 | | New Mexico | 30 | | RESERVOIR CHARACTERIZATION OF KEY RESERVOIRS | 35 | | Barnhart | 35 | | SACROC | 39 | | Fullerton | 41 | | CONCLUSIONS | | |---|----| | ACKNOWLEDGMENTS | 44 | | REFERENCES | | | LIST OF ACRONYMS AND ABBREVIATIONS | 51 | | APPENDIX A. Oil reservoirs in the Texas part of the Permian Basin having a cumulative production of >1 MMbbl | 52 | | APPENDIX B. Oil reservoirs in the New Mexico part of the Permian Basin having a cumulative production of >1 MMbbl | 65 | | | | | | | | <i>Figures</i> | | | Major subdivisions and boundaries of the Permian Basin in west Texas and southeast New Mexico | 2 | | Stratigraphic nomenclature for the Paleozoic section in the Permian Basin | 3 | | Counties in Texas and New Mexico in the Permian Basin geologic province | 11 | | 4. Relationship between a field and its constituent reservoirs | 15 | | 5. All production from a named reservoir may not be in pressure communication | 16 | | 6. Example of draft play map in Texas showing reservoir outlines for the Devonian Thirtyone Ramp Carbonate play and reservoirs having >1 MMbbl cumulative production | 30 | | 7. Example of draft play map in Texas showing reservoir outlines for the San Andres Karst-Modified Platform Carbonate play and reservoirs having >1 MMbbl cumulative production | 31 | | | | | 8. | Example of draft play map in Texas showing reservoir outlines for the Abo Platform Carbonate play and reservoirs having >1 MMbbl cumulative production | 32 | |-----|--|----| | 9. | Location of reservoirs being studied in detail in this project | 36 | | Tal | <i>bles</i> | | | 1. | Preliminary list of Permian Basin oil plays | 21 | | 2. | Example of play data table for the Devonian Thirtyone Ramp Carbonate play | 33 | | 3. | Example of play data table for the San Andres Karst-Modified Platform Carbonate play | 34 | # **Introduction** This 2-year PUMP project, now well under way, has made significant progress toward all goals and objectives. This report describes the work accomplished on the project during the first year. The target of the project is the Permian Basin of west Texas and southeast New Mexico (fig. 1), the largest petroleum-producing basin in the United States. The Permian Basin produced 18 percent of the total U.S. oil production in 1999, and it contains an estimated 23 percent of the proved oil reserves in the United States (EIA, 2000). Moreover, this region has the biggest potential for additional oil production in the country, containing 29 percent of estimated future oil reserve growth (Root and others, 1995). More than in any other region, increased use of preferred management practices in Permian Basin oil fields will have a substantial impact on domestic production. Production in the Permian Basin occurs from Paleozoic reservoirs, from Ordovician through Permian (fig. 2). Original oil in place (OOIP) in the Texas part of the basin alone was about 106 billion barrels (Bbbl) of oil (EIA, 2000). After reaching a peak production of more than 665 million barrels (MMbbl) per year in the early 1970's, Permian Basin oil production has continuously fallen. By 1999, production had fallen to less than 300 MMbbl, or half its peak production. Despite the continuing fall in production, the Permian Basin still holds a significant volume of oil. Although about 30 Bbbl of oil has been produced to date, this production represents only about 28 percent of the OOIP. Of the huge remaining resource in the basin, as much as 30 Bbbl of mobile oil remains as a target for improved technology and recovery strategies (Tyler and Banta, 1989). **Figure 1.** Major subdivisions and boundaries of the Permian Basin in west Texas and southeast New Mexico (modified from Hills, 1984; Frenzel and others, 1988). The Permian Basin is subdivided into the Northwest Shelf, Delaware Basin, Central Basin Platform, Midland Basin, Val Verde Basin, and Eastern Shelf. |) [| 7 | Virgilian | -302 <i>-</i> | Cisco | Cisco | Cisco | Cisco | |-----|---------------|---------------|--|------------------------|-------------------------|---------------|----------------------------| | | PENNSYLVANIAN | Missourian | | Canyon | Canyon | Canyon | Canyon | | | YLW | Desmoinesian | | Strawn | Strawn | Strawn | Strawn | | | NS | Atokan | | Atoka | Atoka | Atoka | Atoka | | | PE | Morrowan | 323 | Morrow | Morrow | Morrow | Morrow | | | A
N | Chesterian | 323 | Barnett | | Barnett | Barnett | | | IPPI | Meramecian | * ************************************ | | | | | | | MISSISSIPPIAN | Osagean | | Mississippian | Mississippian | Mississippian | Mississippian | | | SIW | Kinderhookian | 363 | | | | | | | | Famennian | 505 | Woodford | Woodford | Woodford | Woodford | | | | Frasnian | | | | | | | | AN | Givetian | | | | | | | | DEVONIAN | Eifelian | | | | | | | | DE\ | Emsian | | | | | <u> </u> | | | | Pragian | | Thirtyone | | Thirtyone | Thirtyone | | | | Lochkovian | | Frame | | Frame | Frame | | | _ | Pridolian | 417 | en | roup | L Group | Fasken ink | | | SILURIAN | Ludlovian | | 꽃 [도] | Mristen Group
Fasken | Fasken
ink | Fasken
ink
Wristen G | | | il U | Wenlockian | | Fas
Wink
Wriste | Wrisi
T | Fag
Wink | Fas
Wris | | | Ø | Llandoverian | | Fusselman | Fusselman | Fusselman | Fusselman | | | | Ashgillian | 443 - | | | | | | | _ | Caradocian | | Montoya | Montoya | Montoya | Montoya | | | CIAN | Llandeilian | | U Tulip Creek | U Tulip Creek | U Tulip Creek | U Tulip Creek | | | ORDOVIC | Llanvirnian | |
McLish Oil Creek Joins | McLish Oil Creek Joins | Oil Creek | McLish Oil Creek Joins | | | ORD | | | ග් Joins | ගි Joins | ගි Joins | ගි Joins | | | 0 | Arenigian | | Ellenburger | Ellenburger | Ellenburger | Ellenburger | | | | Tremadocian | 495 | | | | | | | CAMBRIAN | | 100 | Cambrian | Cambrian | Cambrian | Cambrian | **FIGURE 2a.** Stratigraphic nomenclature for the Cambrian through Pennsylvanian section in the Permian Basin. From S. C. Ruppel, personal communication, 2003. | (b) | System | Epoch/
Series/
Stage | Time
(m.y.) | | elaware
Basin _E | 1
W | NW Shelf
/ E | N | CBP
S | Midland
N Basin S | |-----|----------|----------------------------|----------------|-------------------|-------------------------------|-------------|------------------------|--|---------------------------------------|----------------------| | | | Stage | 251 | | wey Lake | ┢ | | H | ewey Lake | | | | | Ochoan | | Rustler
Salado | | Rustler | | | Rustler | Rustler | | | | | | | | | Salado | | Salado | Salado | | | | | | | Castile | L | Castile | | | | | | | | | | | | Tansill | | Tansill | Tansill | | | | * . | | | | اي | Yates | c | Yates | Yates | | | | | | ۵ | Bell
Canyon | Artesia Gp. | Seven
Rivers | Capitan | Seven
Rivers | Seven
Rivers | | | | | | Group | | Arte | Queen | | Queen | Queen | | | | | | ain | | | Grayburg | | Grayburg | Grayburg | | | | Guadalupian | | Mount | Cherry
Canyon | s | Upper
an Andres | 8 | Upper
an Andres | San Andres | | | | | | Delaware Mountain | Brushy
Canyon | | | | | | | | PERMIAN | A | | <u> </u> | | | | | | | | | ERN | | | | | | Lower | | Lower | | | | <u>a</u> | | | | | s | an Andres | s | San Andres | L | Glorieta | L | Glorieta | Spraberry | | | | Leonardian | | Bone Spring | | | Upper
ear Fork | Upper Clear Fork Middle Clear Fork Tubb Lower Clear Fork | | | | | | | | | | | Tubb I ⊨ | | ear Fork Tubb | Dean | | | | | | | | С | Tubb E Cower Sear Fork | | Lower 👸 | Dodin | | | | | | | | Α | bo/Wichita | A | .bo/Wichita | | | | | · . | | |) | | | | | | | | | Wolfcampian | | W | olfcamp/ | ۱ | Volfcamp | ١ | Nolfcamp | Wolfcamp | QAd2434(a)x | | | | | | | | | | | * * * * * * * * * * * * * * * * * * * | | **FIGURE 2b.** Stratigraphic nomenclature for the Permian section in the Permian Basin. From S. C. Ruppel, personal communication, 2003. The Permian Basin is a mature area in which much of the future production will result from improved recovery from existing fields. One way of increasing recovery in a reservoir is to apply methods that have been used successfully in similar reservoirs. In order to do so, however, it is necessary to understand how reservoirs group naturally into larger families, or plays. A *play* is an assemblage of geologically similar reservoirs exhibiting the same source, reservoir, and trap characteristics (White, 1980). Plays are delineated primarily according to the original depositional setting of the reservoirs or, less commonly, their relation to regional erosional surfaces or diagenetic facies (Galloway and others, 1983). Because of their relative geologic homogeneity, reservoirs in the same play have similar production characteristics. Characteristics of better known fields may be extrapolated with relative confidence to other reservoirs within the same play. Reservoir development methods that have been demonstrated to work well in one reservoir should be applicable to other reservoirs in the play. The Bureau of Economic Geology (BEG) and the New Mexico Bureau of Geology and Mineral Resources (NMBGMR) have teamed up to conduct this play analysis of the Permian Basin. The objectives of the project are to (1) develop an up-to-date portfolio of oil plays in the Permian Basin of West Texas and southeast New Mexico, (2) study key reservoirs from some of the largest or most active plays to incorporate information on improved practices in reservoir development in the portfolio, and (3) widely disseminate the play portfolio to the public via CD, the Internet, and other media. The oil-play portfolio will contain play maps that locate all reservoirs in the play having a cumulative production of >1 MMbbl through December 31, 2000. Play maps will be linked to a database listing cumulative production and other reservoir information. The portfolio will also include a summary description of each play, including key reservoir characteristics and preferred management practices, where possible. Reservoir-characterization studies of key reservoirs from three of the largest and most active plays in the Permian Basin are being conducted as part of this project. The reservoirs being studied are Kelly-Snyder (SACROC unit) in the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play, Fullerton in the Leonardian Restricted Platform Carbonate play, and Barnhart (Ellenburger) in the Ellenburger Selectively Dolomitized Ramp Carbonate play. The geologic heterogeneity in these reservoirs is being investigated in order that production constraints that would apply to all reservoirs in that play become better understood. For each of these detailed reservoir studies, technologies for further, economically viable exploitation are being investigated. The information on improved practices in reservoir development will be incorporated into the portfolio. A project Web site has been established on the BEG Web site at http://www.beg.utexas.edu/resprog/permianbasin/index.htm. A link to the project Web site has been established at the NMBGMR Web site, from http://geoinfo.nmt.edu/resources/petroleum/home.html. | | | * . | |--------|---|-------| | | | | | | | | | | • | | | • | | | | | | | | | | | | | | | | · · | | | | | | | | | | | | | | 21.5 | | | | | | | | L. J. | | | | | | | | | | | | | | | | 1 | ; - | | | | | | | | | | | | | | | | | | :
: | # **Executive Summary** The target of this PUMP project is the Permian Basin of West Texas and southeast New Mexico, the largest petroleum-producing basin in the United States. More than in any other region, increased use of preferred management practices in Permian Basin oil fields will have a substantial impact on domestic production. The Bureau of Economic Geology (BEG) and the New Mexico Bureau of Geology and Mineral Resources (NMBGMR) have teamed up to conduct this play analysis of the Permian Basin. The objectives of the project are to (1) develop an up-to-date portfolio of oil plays in the Permian Basin of West Texas and southeast New Mexico, (2) study key reservoirs from some of the largest or most active plays to incorporate information on improved practices in reservoir development in the portfolio, and (3) widely disseminate the play portfolio to the public via CD, the Internet, and other media. The oil-play portfolio will contain play maps that locate all reservoirs in the play having cumulative production of >1 MMbbl. Play maps will be linked to a database listing cumulative production and other reservoir information. The portfolio will also include a summary description of each play, including key reservoir characteristics and preferred management practices, where possible. During the first year of the project, all reservoirs in the Permian Basin having cumulative production >1 MMbbl of oil were identified, and cumulative production through December 31, 2000, was determined. A total of about 1,000 reservoirs in Texas and 300 reservoirs in New Mexico had produced >1 MMbbl of oil through 2000. A reservoir database was established that lists the Railroad Commission of Texas (RRC) reservoir number and district (Texas only), official field and reservoir name, year the reservoir was discovered, depth to the top of the reservoir, and cumulative production through 2000. In Texas, cumulative production is listed only under the final reservoir name into which one or more other reservoirs had been transferred. Thirty-two plays covering both the Texas and New Mexico parts of the Permian Basin were defined, although there may be further refinement of these plays next year. Plays were defined on the basis of structural and tectonic setting, reservoir stratigraphy, reservoir lithology, depositional environment of the reservoir, and fluid type. Gas plays are not included in this project. Each of the 1,300 reservoirs having >1 MMbbl cumulative oil production has been tentatively assigned to a play. For several reservoirs, questions remain about the play assignments, so some of these designations may change during the coming year as more information about the reservoirs is acquired. Mapping and compilation of the 1,300 major oil reservoirs in the Permian Basin began this year. Different procedures are being used for reservoirs in Texas and New Mexico because of the different data available in each state. In both states, the mapping of the reservoir outlines is being done by play in ArcView™GIS. The final reservoir shapefile for each play contains the geographic location of each reservoir and all associated reservoir information within the linked dBASE data table. The final GIS product of this process will be an ArcView project file containing the base map, the newly created series of play-specific reservoir shapefiles, and the play-boundary shapefile. Reservoir-characterization studies of key reservoirs from three of the largest or most active plays in the Permian Basin are being conducted. Detailed studies of the following reservoirs are in progress: Kelly-Snyder (SACROC unit) in the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play, Fullerton in the Leonardian Restricted Platform Carbonate
play, and Barnhart (Ellenburger) in the Ellenburger Selectively Dolomitized Ramp Carbonate play. In the SACROC unit, large volumes of the platform carbonate previously modeled as layer cake can be shown to consist of erosionally generated slope wedges associated with major eustatic sea-level falls. Complex promontories and reentrants mark the edges of the field, and large windward-leeward asymmetries control reservoir-quality distribution. A 3-D reservoir model developed for the unit using 3-D seismic and wireline data should greatly aid ongoing efforts for enhanced recovery in this reservoir using the WAG [water alternating gas (CO₃)] process. The effectiveness of high-pressure air injection (HPAI) technology is being tested in the Barnhart Ellenburger reservoir. Characterization of the reservoir architecture at Barnhart field is critical because of the complexity of the fractured and karsted Ellenburger Group carbonates that compose the reservoir. The distribution of karst features and the distribution, abundance, and orientation of natural fractures and their impact on high-pressure air injection are being studied. The goal of the Fullerton study is to develop techniques for improving the resolution and predictability of key reservoir properties leading to the construction of more accurate reservoir models for simulation and exploitation. Integration of cycle-stratigraphic, rock-property, and 3-D seismic data is being conducted and will provide a basis for predicting the distribution of reservoir rock and fluid properties that is more robust than is currently obtainable from more conventional methodologies. # **Experimental Methods** No experimental methods or equipment is being used for this study. Information is obtained from published and publicly available sources and from commercially available databases. Reservoir locations in Texas are derived from producing-well location information in Landmark Graphic's Datastar™and DrillingInfo.com, Inc. The ArcView™GIS software package is used for mapping the reservoirs. # **Results and Discussion** # Definition of the Permian Basin In order for plays in the Permian Basin to be defined, it was necessary to determine the basin boundaries. The Permian Basin in southeast New Mexico is subdivided into the Delaware Basin, Central Basin Platform, and Northwest Shelf (fig. 1). On the south and east, the New Mexico part of the basin is continuous with the Texas part of the basin. On the west, the basin is bounded by the Guadalupe, Sacramento, Sierra Blanca, and Capitan Mountains. To the north, the Permian Basin is bounded by the Sin Nombre Arch of DeBaca County and the Roosevelt Uplift of Roosevelt County. The Permian Basin in Texas is subdivided into the Delaware Basin, Central Basin Platform, Midland Basin, Northwest Shelf, Eastern Shelf, and Val Verde Basin (fig. 1). The Matador Arch forms the northern boundary and separates the Midland Basin from the Palo Duro Basin (fig. 1). The southern boundary is the Marathon-Ouachita Fold Belt, and the western boundary is formed by the Diablo Platform. The eastern boundary is more difficult to define. Reservoirs on the Eastern Shelf of the Midland Basin are traditionally considered to be in the Permian Basin geologic province (Galloway and others, 1983). The Eastern Shelf, however, grades eastward onto the Concho Platform and Bend Arch in the North-Central Texas geologic province, with no clearly defined eastern limit. For this study, the eastern boundary of the Permian Basin was selected to follow the approximate position of the shelf edge during Wolfcampian (Camp Colorado Limestone) time (Brown and others, 1987). The counties that occur in the Permian Basin are shown in figure 3. This definition of the Permian Basin is very similar to that of Hills (1984). The current structural features of the Permian Basin (fig. 1) developed during Late Mississippian and Early Pennsylvanian time (Hills, 1984; Frenzel and others, 1988). Prior to this time, a shallow basin called the Tobosa Basin (Galley, 1958) existed in this area. Some plays extend from the Permian Basin east into North Central Texas. So that truncating plays can be avoided, those that occur mainly in the Permian Basin will be presented in their entirety, even if some of the reservoirs on the east side of the play actually occur in counties in the North Central Texas geologic province. Plays that occur mainly in North-Central Texas are not included in this project, even if a few of the reservoirs within the play are in the Permian Basin. However, so that cumulative production for the Permian Basin can be totaled, reservoirs having production of >1 MMbbl that are assigned to a North-Central Texas play but occur in Permian Basin counties will be identified in a separate table in the final database compilation. These reservoirs are in the Pennsylvanian/Lower Permian Reef/Bank play. Of the approximately 75 reservoirs having produced >1 MMbbl in this play, 14 of them occur in the Permian Basin. FIGURE 3. Counties in Texas and New Mexico in the Permian Basin geologic province. # Identifying reservoirs having >1 MMbbl cumulative production The *Atlas of Major Texas Oil Reservoirs* (Galloway and others, 1983) contains information about reservoirs having cumulative production of >10 MMbbl of oil. In the current project, the coverage has been expanded greatly to include smaller but significant-sized reservoirs having cumulative production of >1 MMbbl of oil through December 31, 2000. ### **Texas** The production records of the Railroad Commission of Texas (RRC) were used to identify all reservoirs in the Texas part of the Permian Basin that had produced >1 MMbbl of oil through 2000. Cumulative production data were obtained from the 2000 Oil and Gas Annual Report (Railroad Commission of Texas, 2001), along with the official field and reservoir name, RRC District, year the reservoir was discovered, and depth to the top of the reservoir. Condensate production was not included. The RRC unique reservoir number was obtained for each reservoir using the online database at http://driller.rrc.state.tx.us/Apps/WebObjects/acti. Approximately 1,000 reservoirs have produced >1 MMbbl of oil in the Texas part of the Permian Basin. Those reservoirs are listed, by Railroad Commission District, in Appendix A. Many reservoirs were initially designated as separate reservoirs by the RRC but subsequently transferred into another reservoir. In this report, cumulative production is listed only under the final reservoir name (as of 2000) into which one or more other reservoirs had been transferred. Reservoirs that had other reservoirs transferred into them are highlighted by gray shading in Appendix A. The cumulative production value for these reservoirs represents total production, including production both before and after the reservoirs were combined. This method of reporting differs from that of the RRC in its annual reports. RRC reports list production from a reservoir from the time of discovery until its transfer into another reservoir. Once the reservoir has been combined with another, the production from the original reservoir continues to be listed year after year, never increasing because all new production is assigned to the new reservoir. We chose not to follow this method because some production that should be reported as part of the total production from a reservoir would be lost if the reservoir did not produce >1 MMbbl before it was transferred into another reservoir. An example should help clarify this compilation method. Conger (Penn) reservoir in District 8, Glasscock County, is listed in the 2000 Oil & Gas Annual Report (Railroad Commission of Texas, 2001) as having produced 19,249,341 bbl of oil through 2000. In Appendix A, however, Conger (Penn) is listed as having produced 20,406,213 bbl. This discrepancy occurs because three other reservoirs were transferred into Conger (Penn)— Big Salute (Canyon), Conger (Canyon), and Conger (Cisco). Big Salute produced 872,144 bbl of oil from the time it was discovered in 1974 until it was transferred into Conger (Penn) in 1978. Conger (Canyon) and Conger (Cisco) reservoirs produced 49,631 and 235,127 bbl, respectively, before they were transferred into the Conger (Penn) reservoir. Because the goal of this report is to show total production from major oil reservoirs, we have added the production from these three reservoirs to the total shown for Conger (Penn). Otherwise, this production would not have been included because none of these three reservoirs produced >1 MMbbl before being transferred into Conger (Penn). ### **New Mexico** Oil and gas reservoirs (pools) in New Mexico are named according to rules promulgated by the Oil Conservation Division (OCD) of the New Mexico Energy, Minerals and Natural Resources Department. Each reservoir, or pool, has two components to its name. The first part of the reservoir name is the field name; the field name is geographic and denotes an aerially continuous oil or gas accumulation. The second part is stratigraphic and is derived from the principal stratigraphic unit (formation) from which the pool is productive (fig. 4). Ideally, in the definition of a reservoir, all productive zones in the defined reservoir should be restricted to a single stratigraphic unit and should be in pressure communication with one another. In practice, however, a well may be completed in several isolated zones in a formation, and production from these zones is commingled. Production from each zone is not tracked separately. Therefore, production units recognized as reservoirs often approximate the ideal definition of a reservoir but sometimes produce from multiple hydraulically isolated zones within a single formation (fig. 5). For most New Mexico reservoirs, most or all production has been obtained from a single stratigraphic unit or formation. In these cases, the assignment of a reservoir to a play is straightforward because most
plays have a stratigraphic component to their definition. In some reservoirs, however, the OCD has permitted significant commingling of oil and gas production across formational boundaries. In these cases, the stratigraphic component of the pool name contains two or more formational names (for example, the Justis Blinebry Tubb Drinkard pool). In cases where both formational names have been assigned to the same play (for example, production from the Blinebry, **FIGURE 4.** Relationship between a field and its constituent reservoirs (or pools). The field name is Bueno. The reservoirs are (1) Bueno San Andres, (2) Bueno Abo, (3) Bueno Upper Silurian, (4) Bueno Montoya, and (5) Bueno Ellenburger. From New Mexico Bureau of Mines and Mineral Resources (1993). **FIGURE 5.** All production from a named reservoir may not be in pressure communication. In this case, wells 1, 2, and 3 produce from zone B and are in pressure communication with one another. However, well 3 has commingled production from zones A and B that are hydraulically isolated from one another. In this case, the reservoir is considered to consist of both zones A and B because production from each of the two zones is not recorded separately. In most New Mexico reservoirs, this is not the case, but this example is applicable to some New Mexico reservoirs. Tubb, and Drinkard members of the Yeso Formation is assigned in entirety to the Leonardian Restricted Platform Carbonate play), assignment of the reservoir to a play is straightforward. However, if the formations were assigned to different plays (for example, the Loco Hills Queen Grayburg San Andres pool), then production from the reservoir is divided between two plays. For these pools, records of numerous individual wells were examined to ascertain whether one constituent formation provided the overwhelming percentage of the production or whether all the listed formations contributed major percentages of production. In most cases, it was found that one formation contributed the dominant amount of production, and the pool was assigned to the play associated with that formation. This assignment is apparent if only a few wells were completed in a second formation or if wells completed solely in one of the formations recovered only minor volumes of oil (strippertype wells). In a few cases however, it became apparent that multiple formations are major contributors to production from a single pool. In these cases, the pools will be cross-listed in multiple plays because it is not possible to assign fractional parts of commingled production to a single reservoir stratum. These cross-listed pools are generally very large, and it is certain that each of the constituent formations has contributed >1 MMbbl cumulative production. Finally, a complication occurs in some lower Paleozoic reservoirs (mainly Devonian and Silurian) where the formational name is inaccurate with respect to modern stratigraphic interpretations. For example, fields that produce from what is now recognized as the Silurian Wristen Group have been historically called Devonian, and this Devonian descriptor is used in the pool name. Because these name designations are official, they are left unchanged in the database, but a column has been added that correctly identifies the producing formation. # Procedure used for obtaining cumulative production for New Mexico reservoirs The following approach was used to determine cumulative production data for each reservoir. - 1. Cumulative production data for each reservoir were obtained from the 1993 Annual Report of the New Mexico Oil and Gas Engineering Committee. The cumulative production data tabulated by reservoir are available only in this hardcopy report and are not available digitally. The production data were entered into an Excel spreadsheet along with the reservoir name and the productive stratigraphic unit. Cumulative production data tabulated by reservoir in pre-1994 reports of the New Mexico Oil and Gas Engineering Committee are valid. The 1993 report lists cumulative data as of December 31, 1993. - 2. Annual oil production data for each reservoir for years subsequent to 1993 were obtained from the 1994, 1995, 1996, 1997, 1998, 1999, and 2000 Annual Reports of the New Mexico Oil and Gas Engineering Committee. These data were entered into the Excel spreadsheet that contains the 1993 cumulative production data. The annual production data in the post-1993 reports, as tabulated by reservoir, are valid. However, cumulative production data by reservoir, as tabulated by reservoir, in the post-1993 reports are not valid because they do not include historical production from several types of wells, including - a. older wells that had formerly produced from the reservoir but were subsequently plugged and abandoned, - older wells that had formerly produced from the reservoir but were subsequently recompleted to another zone, - c. some production from wells whose operator had changed during the lifetime of the well; in some cases, production prior to an operator-name change is not included in the cumulative production data for a well or for wells in a reservoir. The problems with post-1993 cumulative production data result from a change in the New Mexico production data system in 1994, which omitted data described in a, b, and c above. 3. Cumulative production for each reservoir was calculated by taking the annual production from 1994 through 2000 and adding it to the cumulative production data obtained from the 1993 annual report. Reservoirs in the New Mexico part of the Permian Basin having cumulative production of >1 MMbbl are listed by county in Appendix B, along with producing formation, discovery date, and depth. ## **Total Permian Basin Production** Cumulative production through 2000 from the major oil reservoirs in the Permian Basin, those reservoirs having cumulative production of >1 MMbbl, was 28.9 Bbbl. Of that, 24.5 Bbbl was produced in Texas and 4.5 Bbbl in New Mexico. # Defining plays Plays can generally be considered as groups of reservoirs that have similar geologic parameters, such as a common stratigraphic unit, reservoir lithology, reservoir depositional environment, structural and tectonic setting, or trapping mechanism. Plays are defined on the basis of structural and tectonic setting, reservoir stratigraphy, reservoir lithology, depositional environment of the reservoir, and fluid type. Gas plays are not included in this project. ### **Texas** Thirty-two plays covering both the Texas and New Mexico parts of the Permian Basin were defined during the first year of the project (table 1). There may be further refinement of these plays in the coming year. The plays in Texas have been extensively modified from those defined in the *Atlas of Major Texas Oil Reservoirs* (Galloway and others, 1983) on the basis of the past 20 years of research on Permian Basin reservoirs. The oil atlas and more recent play assessments of the Permian Basin by Tyler and others (1991), Holtz and Kerans (1992), Holtz and others (1992), Holtz (1993), Holtz and others (1993), Ruppel and Holtz (1994), and Dutton and others (2000) provided the foundation on which the Texas play assessment was based. Table 1. Preliminary list of Permian Basin oil plays. | Plays in Texas | Plays in New Mexico | |--|--| | <u>mian</u> | | | <u>Guadalupian</u> | | | Artesia Platform Sandstone | Artesia Platform Sandstone | | Queen Tidal-Flat Sandstone | | | Delaware Basin Submarine-Fan Sandstone | Delaware Basin Submarine-Fan Sandstone | | Grayburg High Energy Platform Carbonate— | | | Ozona Arch | | | Grayburg Platform Carbonate | | | Grayburg Platform Mixed Clastic/Carbonate | Grayburg Platform Mixed Clastic/Carbonate | | Grayburg Lowstand Carbonate | | | | Upper San Andres and Grayburg Platform Mixed | | San Andres Platform Carbonate | San Andres Platform Carbonate | | San Andres Karst-Modified Platform Carbonate | | | Eastern Shelf San Andres Platform Carbonate | | | Northern Shelf San Andres Platform Carbonate | | | | | | <u>Leonardian</u> | | | Spraberry/Dean Submarine-Fan Sandstone | | | | Bone Spring Basinal Sandstone and Carbonate | | Leonardian Restricted Platform Carbonate | Leonardian Restricted Platform Carbonate | | Abo Platform Carbonate | Abo Platform Carbonate | | <u>Wolfcampian</u> | | | Wolfcamp Platform Carbonate | Wolfcamp Platform Carbonate | | Wolfcamp/Leonard Basinal Carbonate | Wolfcamp/Leonard Basinal Carbonate | | | Wolfcamp Granite Wash | ### Table 1. Continued. ## **Plays in Texas Plays in New Mexico Pennsylvanian** Upper Pennsylvanian and Lower Permian Slope and Basinal Sandstone Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate Pennsylvanian Platform Carbonate Northwest Shelf Upper Pennsylvanian Carbonates Northwest Shelf Strawn Patch Reef **Mississippian** Mississippian Platform Carbonate Siluro-Devonian **Devonian Thirtyone Ramp Carbonate Devonian Thirtyone Ramp Carbonate** Devonian Thirtyone Deep-Water Chert Wristen Buildups and Platform Carbonate Wristen Buildups and Platform Carbonate Fusselman Shallow Platform Carbonate Fusselman Shallow Platform Carbonate **Ordovician** Simpson Cratonic Sandstone Simpson Cratonic Sandstone Ellenburger Karst-Modified Restricted Ellenburger Karst-Modified Restricted Ramp Carbonate Ramp Carbonate Ellenburger Selectively Dolomitized Ramp Carbonate ### **New Mexico** Play definition in New Mexico also relied heavily on previous play-definition work in New Mexico (New Mexico Bureau of Mines and Mineral Resources, 1993) and in Texas (Galloway and others, 1983; Kosters and others, 1989), as well as ongoing play-definition work for the Texas part of this project. Insofar as possible, plays used in New Mexico are extensions of plays defined in Texas. Several plays cross the border between Texas and New Mexico. Structural- and tectonic-setting analysis considers whether the play is
located in the deep Delaware Basin or on the platform area of the Central Basin Platform and Northwest Shelf. When plays productive from strata older than Pennsylvanian are looked at, structural and tectonic setting is not considered because the Permian Basin did not become segmented into its tectonic subdivisions until the Pennsylvanian (Hills, 1984). Reservoir stratigraphy and lithology are also important factors used in the definition of plays. In southeast New Mexico, all plays are limited to welldefined stratal units or formations. Most stratal units are composed of multiple lithologic types, but significant reservoirs may be limited to only one lithology. Identification of reservoir lithology in a multilithologic stratal unit helps explain reservoir trends and productive characteristics of reservoirs. Depositional environment, also used in play definition, is intimately tied to structural and tectonic setting, reservoir lithology, and reservoir stratigraphy. For example, carbonate debris flows are generally confined to a basinal setting immediately basinward of a shelf edge characterized by well-developed shelf-margin carbonate buildups. # Assigning reservoirs to plays A total of about 1,000 reservoirs in Texas and 300 reservoirs in New Mexico had produced >1 MMbbl of oil through 2000. During this first year of the project, each of these reservoirs was tentatively assigned to a play. For several reservoirs, however, questions remain about the play assignments, and so many of these designations may change during the coming year as more information about the reservoirs is acquired. Assignment of reservoirs to one of the 27 plays in Texas is based primarily on published information and information in hearing files of the Railroad Commission of Texas. Reservoir interval, depositional setting, tectonic and structural setting, postdepositional karstification, and trapping mechanism were attributes used to assign reservoirs to plays. Publications of the BEG, the NMBGMR, the West Texas Geological Society, the Roswell Geological Society, and the Permian Basin Section SEPM, as well as discussions with BEG and NMBGMR researchers, were used to make play assignments. The field summaries published by the Bureau of Economic Geology (1957) and the West Texas Geological Society (1982, 1987, 1990, 1994, 1996) were particularly helpful. The task of assigning reservoirs to plays in New Mexico is not especially difficult, although it requires meticulous checking of several data attributes of each reservoir. The main data attributes include (1) productive stratal unit (formation), (2) tectonic and structural location within the Permian Basin, (3) reservoir lithology, and (4) depositional environment of the reservoir. The locations of all New Mexico reservoirs have been plotted on reference base maps at the NMBGMR. The basin-scale maps indicate the field name and the OCD-assigned stratigraphic component of pool names. This information provides rough data on the productive stratal unit. The location on the base maps allows reference of the pool location to regional tectonic and structural elements. Information on reservoir lithology was obtained primarily from the field summaries published by the Roswell Geological Society (Roswell Geological Society, 1956, 1960, 1967, 1977, 1988, 1995). The Roswell Geological Society volumes present short, 1- to 2-page summaries of reservoirs that give information on the reservoir name, lithology, trapping mechanism, depth, and discovery date, as well as several other parameters. Because not all reservoirs have been summarized in these volumes, when summaries were not available, other sources of data were used. Major sources of data are the well records, sample descriptions, and logs on file at the Subsurface Library of the NMBGMR. Descriptions of some reservoirs and plays have been published (LeMay, 1960, 1972; Malek-Aslani, 1985; Gawloski, 1987; Grant and Foster, 1989; New Mexico Bureau of Mines and Mineral Resources, 1993; Baldonado and Broadhead, 2002). Ongoing thesis work at New Mexico Tech and the NMBGMR proved indispensable in assigning Silurian and Devonian reservoirs to plays. Data on depositional environments of reservoirs were obtained from published studies. Especially important were the works of LeMay (1960), Milner (1978), Wright (1979), Presley and McGillis (1982), Malek-Aslani (1985), Wiggins and Harris (1985), Cys (1986), Ward and others (1986), Gawloski (1987), Mazzullo and Reid (1987), Kerans (1988), Harms and Williamson (1988), Elliott and Warren (1989), Foster and Grant (1989), Saller and others (1989), Verseput (1989), Malisce and Mazzullo (1990), Mazzullo (1990), Borer and Harris, (1991a, b), Keller (1992), New Mexico Bureau of Mines and Mineral Resources (1993), Montgomery and others (1999), and Baldonado and Broadhead (2002). Eighteen plays have been recognized in southeast New Mexico (table 1). Most of the plays are continuous across the New Mexico–Texas border, but five are unique to New Mexico. In most cases, the play names established in Texas can also be used in New Mexico because of identical stratigraphy, tectonic setting, and depositional environments. The San Andres and Grayburg Formations (Permian) in New Mexico and Texas have produced very large volumes of oil from numerous reservoirs, several of which have produced more than 100 MMbbl. Both the Grayburg Platform Mixed Clastic/Carbonate play and the San Andres Platform Carbonate play, defined in Texas, have been recognized in New Mexico. In New Mexico, however, a third play has been recognized, the Upper San Andres and Grayburg Platform Mixed play. The need for this third play is driven by two factors. First, in New Mexico, production in several large reservoirs has been commingled extensively from both the San Andres and Grayburg Formations and there is difficulty separating San Andres production from Grayburg production. Second, significant volumes of production in this play have been contributed from high-permeability sandstone reservoirs in the lower part of the Grayburg Formation, so the play must encompass clastic as well as carbonate reservoirs. Examination of well records indicates that, in some fields, it is possible that a majority of the production may have been obtained from the Grayburg sandstones, with perhaps secondary—but still significant—production coming from the carbonates. # Locating and mapping reservoirs in GIS Mapping of the 1,300 oil reservoirs in the Permian Basin having cumulative production of >1 MMbbl was begun this year. Different procedures are being used for reservoirs in Texas and New Mexico because of the different data available in each state. ### **Texas** Mapping of the approximately 1,000 reservoirs in Texas was well under way at the end of the first year of the project, with a total of 594 reservoirs having been mapped. The reservoirs are being mapped in groups, according to their preliminary play designations. Even though the final play designation for each reservoir will not be completed until next year, the reservoirs can be initially mapped. If in the future it is determined that a reservoir should be in a different play, it can easily be reassigned and linked to the new play. Numerous data sources were utilized for mapping reservoirs in the Permian Basin of Texas. The initial dataset accessed is from Landmark Graphic's Datastar™product. The Datastar™product, compiled from data maintained by Whitestar Corporation, provides oil and gas well spots, land grids, and cultural information for the entire U.S. If an area is outlined, all these data are extracted from Datastar™in a GIS shapefile format. These shapefiles are then imported into the ArcView™GIS software package. The imported shapefiles store information including API numbers, latitude, longitude, well name, and field/reservoir name, as well as numerous other data columns. Of particular interest is the field/reservoir name of each well; this name is used to classify the location of wells in a reservoir. Through the field/reservoir name, the shapefiles are refined by the deletion of all reservoirs that do not compose the play of interest. In addition, the Texas abstract and county-line shapefiles are available for display, along with the well locations. After the initial mapping of reservoirs, other data sources are used to verify the locations, which is accomplished by comparing the mapped reservoirs with well location data obtained from DrillingInfo.com, Inc. Well location and production data are provided, and a search based on the field/ reservoir name yields a spotting of wells. Wells without any production are deleted, and the display of well locations is compared with the initial mapping of reservoirs. If discrepancies exist, corrections are made to the shapefile. Other nondigital maps that are used for data verification include the BEG oil and gas atlases (Galloway and others, 1983; Kosters and others, 1989), the Geomap Company Permian Basin Executive Reference Map (Geomap Company, 1998), the Structurmaps, Ltd., Permian Basin structure map (Structurmaps Ltd., 1970), and the Midland Map Company Permian Basin regional base map (Midland Map Company, 1997). Well production is compared using Lasser Inc.'s Texas production database (Lasser Data Pages, 2003), as well as RRC production reports (Railroad Commission of Texas, 2001). Actual mapping of reservoir outlines is done entirely in ArcView GIS using Texas abstract and county-line shapefiles as the base map and the previously extracted well-location shapefile as the basis for the geographic location of each reservoir outlined. Each play mapped has a well-location shapefile that has an associated point-attribute table (PAT) stored as a dBASE file containing detailed information about each point feature. The records in the PAT can be sorted and then selected on the basis of the field/reservoir name, thus isolating the cluster of wells that make up a particular
reservoir. In order to keep the distance from the well locations to the reservoir boundary consistent for each reservoir mapped, selected wells are buffered by 0.5 mi, creating a temporary shapefile of polygons that is used as a guide in creating the actual reservoir outline. For each play, a new shapefile of reservoir outlines is created using the temporary shapefile of buffered wells as a guide. With each polygon, or reservoir, that is added to the new shapefile, a new record is added to the associated attribute table. When a shapefile is edited or added to in ArcView, the associated attribute table is also editable. This feature enables the reservoir outlines added to be given code names, which can later be linked to the complete reservoir data table. After all the reservoirs in a given play are drawn and coded, a map is printed for verification. Once the printed map of reservoirs has been checked, necessary edits are made to the shapefile within ArcView. The final reservoir shapefile for each play contains the geographic location of each reservoir (figs. 6, 7) and all associated information within the linked dBASE data table, such as the field/reservoir name, RRC district and county, depth to top, and cumulative production (tables 2, 3). The final GIS product of this process will be an ArcView project file containing the base maps, the newly created series of play-specific reservoir shapefiles, and the play-boundary shapefile. The reservoir outlines generated by this process are intended to show the approximate location, size, and shape of each reservoir, but they are not precise boundaries. The reservoir shapes, therefore, should not be used to calculate subsurface reservoir area for accurate volumetric determinations. **FIGURE 6.** Example of a draft play map in Texas showing reservoir outlines for the Devonian Thirtyone Ramp Carbonate play, showing reservoirs having >1 MMbbl cumulative production. #### **New Mexico** Those fields with >1 MMbbl production have been placed into geologic plays that, wherever possible, coincide with play names established by the BEG (table 1). In many cases these play groupings do not match the existing New Mexico pool groupings. An entirely new database is being created that (1) eliminates all New Mexico pools with <1 MMbbl production, (2) reorders the New Mexico pool database to reflect groupings based on the newly defined play types, (3) adds production data by pool. This new database collection is being entered into ArcView GIS using pool shapefiles outlining field boundaries copied from the preexisting New Mexico pools project. When **FIGURE 7.** Example of a draft play map in Texas showing reservoir outlines for the San Andres Karst-Modified Platform Carbonate play and reservoirs that have >1 MMbbl cumulative production. completed, each PUMP-defined play will be able to be displayed separately or in combination with any or all other plays. A page-size example of a play map, the Abo Platform Carbonate play in New Mexico, is shown in figure 8. The GIS data tables for New Mexico contain the following headers: Field, Pool, Reservoir, County, Discovery Year, Depth, Oil- vs. Gas-Dominated Production, Cumulative Production, Primary Play Name, Secondary Play Name, and Tertiary Play Name. **FIGURE 8.** Example of a draft play map showing the Abo Platform Carbonate play in New Mexico and reservoirs that have >1 MMbbl cumulative production. Table 2. Example of play data table for the Devonian Thirtyone Ramp Carbonate play. Shading indicates a combined reservor. | RRC_RESN | RRC | FLDNAME | RESNAME | COUNTY | DISCYR | DEPTHTOP C | UMPROD | |----------|-----|---------------------------|-------------------|----------------|--------|------------|------------| | 272725 | 0 8 | ANDREWS, N. | DEVONIAN | ANDREWS | 1960 | 10424 | 7,844,331 | | 273028 | 4 8 | ANDREWS, SOUTH | DEVONIAN | ANDREWS | 1953 | 11075 | 10,316,428 | | 460522 | 2 8 | AZALEA | DEVONIAN | MIDLAND | 1957 | 11520 | 1,714,524 | | 516633 | 3 8 | BAKKE | DEVONIAN | ANDREWS | 1956 | 10500 | 17,106,630 | | 920216 | 6 8 | BLOCK 9 | DEVONIAN | ANDREWS | 1960 | 12540 | 1,540,950 | | 2390714 | 2 8 | DEEP ROCK | DEVONIAN | ANDREWS | 1963 | 10063 | 1,713,689 | | 2539516 | 6 8 | DORA ROBERTS | DEVONIAN | MIDLAND | 1955 | 12010 | 2,528,808 | | 2884311 | 1 8 | EMBAR | DEVONIAN | ANDREWS | 1954 | 9346 | 1,335,402 | | 2889916 | 6 8 | EMMA | DEVONIAN | ANDREWS | 1954 | 10192 | 5,753,019 | | 3317628 | 4 8 | FUHRMAN-MASCHO | DEVONIAN | ANDREWS | 1956 | 10000 | 1,835,504 | | 3565231 | 0 8 | GOLDSMITH | FIGURE 5 DEVONIAN | ECTOR | 1956 | 7760 | 1,358,571 | | 3917633 | 2 8 | HARPER | DEVONIAN | ECTOR | 1962 | 10005 | 10,515,508 | | 3996940 | 0 8 | HEADLEE | DEVONIAN | ECTOR | 1953 | 11756 | 14,167,925 | | 3997150 | 0 8 | HEADLEE, N. | DEVONIAN | ECTOR | 1956 | 12210 | 6,195,590 | | 9135010 | 0 8 | TRIPLE-N | DEVONIAN | ANDREWS | | 10600 | 1,072,723 | | 9253425 | 8 0 | UNIVERSITY BLOCK 9 | DEVONIAN | ANDREWS | 1954 | 10450 | 23,606,166 | RRC_RESN = Railroad Commission of Texas reservoir number RRC = Railroad Commission of Texas district number FLDNAME = Field name RESNAME = Reservoir name DISCYR = Discovery year DEPTHTOP = Depth in feet to top of reservoir CUMPROD = Cumulative production in barrels through December 31, 2000 Table 3. Example of play data table for the San Andres Karst-Modified Platform Carbonate play. | RRC_RESN | RRC | FLDNAME | RESNAME | COUNTY | DISCYR | DEPTHTOP | CUMPROD | |----------|-----|----------------|------------|----------|--------|----------|---------------| | 21766001 | 7C | CROCKETT | | CROCKETT | 1938 | 1571 | 4,762,786 | | 58840001 | 7C | MCCAMEY | | UPTON | 1925 | 2100 | 135,137,987 | | 88567700 | 8 | TAYLOR LINK W. | SAN ANDRES | PECOS | 1984 | 1800 | 1,640,304 | | 90286001 | 8 | TOBORG | | PECOS | 1929 | 500 | 43,045,830 | | 99295001 | 8 | YATES | | PECOS | 1926 | 1500 | 1,381,373,107 | RRC_RESN = Railroad Commission of Texas reservoir number RRC = Railroad Commission of Texas district number FLDNAME = Field name RESNAME = Reservoir name DISCYR = Discovery year DEPTHTOP = Depth in feet to top of reservoir CUMPROD = Cumulative production in barrels through December 31, 2000 # Reservoir Characterization of Key Reservoirs Reservoir-characterization studies of key reservoirs from three of the largest or most active plays in the Permian Basin are being conducted as part of this project. The reservoirs being studied are Kelly-Snyder (SACROC unit) in the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play, Fullerton in the Leonardian Restricted Platform Carbonate play, and Barnhart (Ellenburger) in the Ellenburger Selectively Dolomitized Ramp Carbonate play (fig. 9). The geologic heterogeneity in these reservoirs is being investigated so that production constraints that would apply to other reservoirs in that play can be better understood. For each of these detailed reservoir studies, technologies for further, economically viable exploitation are being investigated. The information on improved practices in reservoir development will be incorporated into the play portfolio. #### **Barnhart** Barnhart field in Reagan County, Texas (fig. 9), produces from the Ellenburger Group and is part of the Ellenburger Selectively Dolomitized Ramp Carbonate play. This is a major, deep-basin carbonate reservoir play in the Permian Basin that contains a remaining mobile oil fraction of as much as 900 MMbbl of oil (Tyler and Banta, 1989). The Ellenburger reservoir in Barnhart field is composed of shallow-water, Lower Ordovician carbonates containing both dolostone and limestone (Gomez and others, 2001) at a depth of about 9,000 ft. **FIGURE 9.** Location of reservoirs being studied in detail in this project: Kelly-Snyder (SACROC unit) in the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play, Fullerton in the Leonardian Restricted Platform Carbonate play, and Barnhart (Ellenburger) in the Ellenburger Selectively Dolomitized Ramp Carbonate play. Discovered in 1941, Barnhart field has produced about 16 MMbbl of an estimated 115 MMbbl OOIP from the Ellenburger (Galloway and others, 1983; Tyler and others, 1991). The poor recovery efficiency at Barnhart is due to the loss of reservoir energy caused by pressure decline in the solution-gasdrive reservoir. Reservoir pressure has declined from its original 3,920 psi to the current 1,600 psi. Current production from the field is less than 21,000 bbl per year from six active wells. Secondary recovery has never been implemented in the field owing to the high cost of drilling required. Goldrus Producing Company operates the Barnhart (Ellenburger) Unit, which comprises >5,000 acres (about one-half of the field). In conjunction with the BEG and the field royalty owner, the University of Texas System, Goldrus installed a two-well pilot to test the effectiveness of high-pressure air injection (HPAI) technology in the Barnhart Ellenburger reservoir. HPAI, a tertiary oil-recovery technology, works by creating downhole combustion of oxygen and oil to produce flue gas (nitrogen and carbon dioxide) that serves, at the same time, to repressurize and flood the reservoir. Goldrus is testing HPAI at Barnhart because the technology requires fewer injectors than more conventional secondary and tertiary recovery operations. Results from the pilot confirm that combustion is taking place in the reservoir (documented by the generation of elevated levels of CO_2 and N_2 gases in the producing well) and show increased oil production, indicating that reservoir drive energy is being restored. This pilot consists of a single vertical injection well and a horizontal producing well. Air injection was initiated in the vertical injection well and has verified the ability to maintain stabilized air-injection rates of 1,500 thousand cubic feet per day (Mcfd). Injection rates and volumes are well within range for
commercial development. A positive production response has been monitored in the horizontal producing well, and there has been no evidence to indicate adverse directional permeability that would inhibit the sweep efficiency of this process. Oil production from the second well is already three to five times the rates observed before HPAI. Natural gas production is also high: as much as 30 to 50 times higher than from other field wells. Characterization of the reservoir architecture at Barnhart field is especially critical because of the complexity of the fractured and karsted Ellenburger Group carbonates that compose the reservoir. Key issues that are being studied at Barnhart field are (1) the distribution of karst features and their impact on flow and (2) the distribution, abundance, and orientation of fractures and their impact on flow. Work to date has established that fractures are abundant in the Ellenburger reservoir at Barnhart field on the basis of study of sidewall cores, conventional cores, and image logs (Gomez and others, 2001). A preliminary analysis of fracture types and orientations using sidewall cores and a conventional core has been completed using scanning electron-microscope-based cathodoluminescence (SEM-CL) for observing and imaging microfractures in carbonates. The next step is to integrate the fracture data with data from karst modeling studies to develop a refined model of the orientation and distribution of fractures in the reservoir. These models will be used to identify optimal patterns of injector-producer spacing and orientation. Efficient deployment and spacing of injectors and producers is key to the success of the HPAI project. If HPAI technology is successful in Barnhart field, it can be applied to other reservoirs in the Ellenburger Selectively Dolomitized Ramp Carbonate play, as well as reservoirs in the Ellenburger Karst-Modified Restricted Ramp Carbonate play. The Ellenburger plays contain a resource of about 900 MMbbl of remaining mobile oil that could be targeted for application of HPAI in the Permian Basin. #### **SACROC** Detailed reservoir studies are being conducted of the SACROC unit in the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play. The SACROC (Scurry Area Canyon Reef Operators Committee) unit, which incorporates nearly all of Kelly-Snyder field, is the largest producing unit of the Horseshoe Atoll play. Since discovery in the 1940's, primary, secondary, and tertiary recovery activities have been extensive, with more than 1,500 wells in this, the first CO₂ flood in West Texas. In spite of this history, only the basics of the unit's stratigraphic and petrophysical architecture were understood. This study is based on data from well log and core-based examination of the northern third of the unit, including 550 wells, 3,500 ft of core, and 26 mi² of 3-D seismic data. The 700-ft-thick reservoir column consists of Canyon and Cisco carbonates that change from layered cyclic, open-shelf, subtidal cycles having minimal diagenetic overprint (lower and mid-Canyon) to high-energy, shoal-related cycles having frequent exposure surfaces (upper Canyon-lower Cisco) and increased evidence of cycle and sequence-scale erosion (Kerans, 2001). Early Cisco deposition was characterized by dramatic changes in depositional style, including growth of pinnacle reefs and the formation of complex, fractured, muddy, crinoid-dominated facies that resemble Waulsortian deeper-water buildups. Seismic data were used extensively in constructing the stratigraphic framework and allowed significant advances in understanding of the stratigraphic architecture that were not possible with logs alone. Seismic data were also fully integrated into 3-D geologic model through the following processes. - Seismic data were first inverted to impedance and then porosity using a range of approaches, including standard Hampson Russell software and the neural-network technique. - Two geologic models having the same layering were built in time and depth spaces. The seismic and inverted data cubes were first loaded in a 3-D time model and then copied into the 3-D depth model. - 3-D porosity distributions were modeled using the seismically inverted porosity data constrained by 450 wireline logs. The end result of this modeling effort, utilizing modern geologic, geophysical, and modeling practices, is a 3-D volume that is drastically different from that previously generated. Huge volumes of the platform previously modeled as a layer cake can be shown to consist of erosionally generated slope wedges associated with major icehouse eustatic sea-level falls. Complex promontories and reentrants similar to the present-day Bahama platform mark the edges of the field, and large windward-leeward asymmetries control reservoir-quality distribution. This modern model of SACROC should greatly aid ongoing efforts for enhanced recovery using WAG (water alternating gas) processes and related practices. An estimated 700 MMbbl of unrecovered mobile oil remains in the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play (Tyler and Banta, 1989). #### **Fullerton** The third reservoir-characterization study is being done on the Clear Fork reservoir of Fullerton field, Andrews County (fig. 9), in the Leonardian Restricted Platform Carbonate play. This reservoir was discovered in 1941 and had produced nearly 306 MMbbl of oil through 2000. Study of the Fullerton Clear Fork reservoir has been subdivided into three phases. The first two phases, Phase 1 and Phase 2, are focusing, in turn, on two small areas of the reservoir; Phase 3 will involve study of the remaining parts of the reservoir and an integration of all three areas. The goal of the Fullerton study is to develop techniques for improving the resolution and predictability of key reservoir properties leading to the construction of more accurate reservoir models for simulation and exploitation. The integration of cycle-stratigraphic, rock-property, and 3-D seismic data provides a basis for predicting the distribution of reservoir rock and fluid properties that is more robust than is currently obtainable from more conventional methodologies. The goal is being met by constructing an integrated outcrop and subsurface core-based, cycle-stratigraphic framework for the lower Clear Fork and Abo reservoir intervals at Fullerton field. More than 5,000 m of core from the field is being integrated with outcrop analogs in the Sierra Diablo Mountains of west Texas to develop a cycle-stratigraphic framework for petrophysically and seismically based definition of reservoir rock properties. During the past year, the stratigraphic architecture has been established through correlation of wireline logs guided by core and outcrop studies of facies and cyclicity. A porosity model has been developed that creates a basis for calculation of porosity for wells in the study area. Rock fabrics have been defined by sampling, analysis, and description of cores and used to create transforms for calculating permeability and oil saturation from porosity data. A preliminary 3-D model of the Phase 1 area was constructed that incorporates stratigraphic architecture, rock fabric data, and petrophysical data. Next, a fine-grid 3-D geologic model was built and tested using 33 horizons and 85 wireline logs and containing porosity, permeability, and initial water saturation data. Permeability and water saturation were calculated using rock-fabric-based relationships. This 5.2-million-cell model comprises 149 columns, 110 rows, and 320 layers. Porosity, permeability, and water saturation were modeled deterministically with a 2,000-ft search radius. In general, the lowermost sequence of the Lower Clear Fork has the best porosity and permeability. The Wichita has good porosity but relatively lower permeability and porosity. The estimated OOIP for the Phase 1 area calculated from this model is 185 MMbbl. Because only 40 MMbbl has been produced to date from this area, 145 MMbbl, or about 80 percent of the OOIP, probably remains. When one considers that the Phase 1 model area is one of the most completely developed parts of the field, these data suggest that a very large target resource remains in the field as a whole. Reservoir characterization of the entire reservoir, including imaging of rock fabrics and reservoir architecture and fluid flow modeling and simulation, will provide key insights into the best practices for improved recovery of this huge resource. Successful application of these new approaches in other Clear Fork reservoirs throughout the Permian Basin will target more than 2.5 Bbbl of remaining oil. These techniques may also apply to platform-carbonate reservoirs in other plays. ## **Conclusions** Good progress has been made on the Permian Basin PUMP project during the past year. All reservoirs in the Permian Basin having cumulative production of >1 MMbbl of oil were identified, and cumulative production through December 31, 2000, was determined. A total of about 1,000 reservoirs in Texas and 300 reservoirs in New Mexico had produced >1 MMbbl of oil through 2000. A reservoir database was established that lists the RRC reservoir number and district (Texas only), official field and reservoir name, year reservoir was discovered, depth to top of the reservoir, and cumulative production through 2000. Thirty-two plays covering both the Texas and New Mexico parts of the Permian Basin were defined. There may be further refinement of these plays next year. Each of the 1,300 reservoirs having >1 MMbbl cumulative oil production has been tentatively assigned to a play. Because questions remain about the play assignments of several reservoirs, some of these designations may change during the coming year as more information about the fields is acquired. Mapping of the 1,300 major oil reservoirs in the Permian Basin began this year. The mapping of reservoir outlines is being done by play in ArcView™GIS.
The final reservoir shapefile for each play contains the geographic location of each reservoir and all associated reservoir information within the linked dBASE data table. The final GIS product of this process will be an ArcView project file containing the base map, the newly created series of play-specific reservoir shapefiles, and the play-boundary shapefile. Reservoir-characterization studies of key reservoirs from three of the largest or most active plays in the Permian Basin are being conducted. Detailed studies of the following reservoirs are in progress: Kelly-Snyder (SACROC unit) in the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play, Fullerton in the Leonardian Restricted Platform Carbonate play, and Barnhart (Ellenburger) in the Ellenburger Selectively Dolomitized Ramp Carbonate play. The geologic heterogeneity in these reservoirs is being investigated so that we can better understand production constraints that would apply to all reservoirs in that play. For each of these detailed reservoir studies, technologies for further, economically viable, exploitation are being investigated. The information on improved practices in reservoir development will be incorporated into the portfolio. ### **Acknowledgments** This research was funded by the U.S. Department of Energy under contract number DE-FC26-02NT15131, Daniel F. Ferguson, project manager. Support was also provided by the Bureau of Economic Geology's University Lands project and the *Characterization of San Andres and Grayburg Reservoirs* project, as well as the New Mexico Bureau of Geology and Mineral Resources. F. Jerry Lucia generously provided his expertise on Permian Basin geology and hydrocarbon production. Drafting was by the Graphics staff of the Bureau of Economic Geology under the direction of Joel L. Lardon, Graphics Manager. Others contributing to the publication of this report were Lana Dieterich, word processing and editing, and Jamie H. Coggin, layout. ### References - Baldonado, D., and Broadhead, R., 2002, Preliminary investigation of the regional stratigraphy of Siluro-Devonian carbonates, Tobosa Basin, New Mexico, *in* Hunt, T.J., and Lufholm, P.H., eds., The Permian Basin: preserving our past—securing our future: West Texas Geological Society, Publication 02-111, p. 55-69. - Borer, J.M., and Harris, P.M., 1991a, Lithofacies and cyclicity of the Yates Formation, Permian Basin: implications for reservoir heterogeneity: American Association of Petroleum Geologists Bulletin, v. 75, p. 726-779. - Borer, J.M., and Harris, P.M., 1991b, Depositional facies and model for mixed siliciclastics and carbonates of the Yates Formation, Permian Basin, *in* Lomando, A.J., and Harris, P.M., eds., Mixed carbonate-siliciclastic sequences: Society of Economic Paleontologists and Mineralogists, Core Workshop 15, p. 1-133. - Brown, L.F., Jr., Solis Iriarte, R.F., and Johns, D.A., 1987, Regional and stratigraphic cross sections, Upper Pennsylvanian and Lower Permian strata (Virgilian and Wolfcampian Series), North-Central Texas: The University of Texas at Austin, Bureau of Economic Geology, 27 p. plus plates. - Bureau of Economic Geology, 1957, Occurrence of oil and gas in West Texas, *in* Herald, F.A., ed., The University of Texas, Bureau of Economic Geology, Publication No. 5716, 442 p. - Cys, J.M., 1986, Lower Permian grainstone reservoirs, southern Tatum Basin, southeastern New Mexico, *in* Ahlen, J.L., and Hanson, M.E., eds., Southwest Section of AAPG Transactions and Guidebook of 1986 Convention, Ruidoso, New Mexico: New Mexico Bureau of Mines and Mineral Resources, p. 115-120. - Dutton, S.P., Zirczy, H.H., Tremblay, T.A., and Scott, A.R., 2000, Update of oil and gas reservoir data base, Permian and Fort Worth Basins, Texas: The University of Texas at Austin, Bureau of Economic Geology, final report prepared for the U.S. Geological Survey under order no. 99CRSA1102, 31 p. - EIA, 2000, U.S. crude oil, natural gas, and natural gas liquid reserves, 1999 Annual Report, DOE/EIA-0216(99), 156 p. - Elliott, L.A., and Warren, J.K., 1989, Stratigraphy and depositional environments of lower San Andres Formation in subsurface and equivalent outcrops: Chaves, Lincoln, and Roosevelt counties, New Mexico: American Association of Petroleum Geologists Bulletin, v. 73, p. 1307-1325. - Frenzel, H.N., and 13 others, 1988, The Permian Basin, *in* Sloss, L.L., ed., Sedimentary Cover—North American Craton: U.S.: Boulder, Colorado, Geological Society of America, The Geology of North America, v. D-2, p. 261-306. - Galley, J.E., 1958, Oil and geology in the Permian Basin of Texas and New Mexico, - *in* Weeks, L.G., ed., Habitat of oil: American Association of Petroleum Geologists Special Publication, p. 395-446. - Galloway, W.E., Ewing, T.E., Garrett, C.M., Tyler, N., and Bebout, D.G., 1983, Atlas of major Texas oil reservoirs: The University of Texas at Austin, Bureau of Economic Geology, 139 p. - Gawloski, T.F., 1987, Nature, distribution, and petroleum potential of Bone Spring detrital sediments along the Northwest shelf of the Delaware Basin; *in* Cromwell, D., and Mazzullo, L., eds., The Leonardian facies in west Texas and southeast New Mexico and Guidebook to the Glass Mountains, west Texas: Permian Basin Section Society of Economic Paleontologists and Mineralogists, Publication 87-27, p. 84-105. - Geomap Company, 1998, Executive reference map, Permian Basin, Dallas, Texas, scale 1 inch = 32,000 ft. - Gomez, L.A., Gale, J.F.W., Ruppel, S.C., and Laubach, S.E., 2001, Fracture characterization using rotary-drilled sidewall cores: an example from the Ellenburger Formation, West Texas, *in* Viveiros, J.J, and Ingram, S.M., eds., The Permian Basin: Microns to satellites, looking for oil and gas at all scales: West Texas Geological Society, Publication 01-110, p. 81-89. - Grant, P.R., Jr., and Foster, R.W., 1989, Future petroleum provinces in New Mexico—discovering new reserves: New Mexico Bureau of Mines and Mineral Resources, 94 p. - Harms, J.C., and Williamson, C.R., 1988, Deep-water density current deposits of Delaware Mountain Group (Guadalupian), Delaware basin, Texas and New Mexico: American Association of Petroleum Geologists Bulletin, v. 72, p. 299-317. - Harris, D.C., 1990, Ramp buildups in the lower Strawn limestone (Penn.): controls on stratigraphic reservoir variability, *in* Flis, J.E., and Price, R.C., eds., Permian Basin oil and gas fields: innovative ideas in exploration and development: West Texas Geological Society, Publication 90-87, p. 91-101. - Hills, J.M., 1984, Sedimentation, tectonism, and hydrocarbon generation in Delaware Basin, west Texas and southeastern New Mexico: American Association of Petroleum Geologists Bulletin, v. 68, p. 250-267. - Holtz, M.H., 1993, Estimating oil reserve variability by combining geologic and engineering parameters: Society of Petroleum Engineers Hydrocarbon Economics and Evaluation Symposium, Dallas, Texas, Paper No. 25827, p. 85-95. - Holtz, M.H., Garrett, C.M., Jr., and Tremblay, T.A., 1993, Update of Atlas of Major Texas Oil Reservoirs Data Base and Atlas of Major Texas Gas Reservoirs Data Base: The University of Texas at Austin, Bureau of Economic Geology contract report prepared for the U.S. Geological Survey under Contract No. 1434-93-C-40079, 14 p. plus data tape. - Holtz, M.H., and Kerans, C., 1992, Characterization and categorization of West Texas Ellenburger reservoirs, *in* M.P. Candelaria and C.L. Reed, eds., Paleokarst, karst-related diagenesis, and reservoir development: examples from Ordovician-Devonian age strata of West Texas and the Mid-Continent: Permian Basin Section-SEPM, Field Trip Guidebook, Publication No. 92-33, p. 45-54. - Holtz, M.H., Ruppel, S.C., and Hocott, C.R., 1992, Integrated geologic and engineering determination of oil-reserve-growth potential in carbonate reservoirs: Journal of Petroleum Technology, v. 44, p. 1250-1257. - Keller, D.R., 1992, Evaporite geometries and diagenetic traps, lower San Andres, Northwest shelf, New Mexico, *in* Cromwell, D.W., Moussa, M.T., and Mazzullo, L.J., eds., Transactions, Southwest Section AAPG: West Texas Geological Society, Publication SWS 92-90, p. 183-193. - Kerans, C., 1988, Karst-controlled reservoir heterogeneity in Ellenburger Group carbonates of west Texas: American Association of Petroleum Geologists Bulletin, v. 72, p. 1160-1183. - Kerans, C., 2001, Stratigraphic and diagenetic controls on reservoir architecture of a non-reefal icehouse isolated platform—Sacroc Unit, Horseshoe Atoll, Texas (abs.): American Association of Petroleum Geologists Bulletin, v. 85, p. 386-387. - Kosters, E.C., Bebout, D.G., Seni, S.J., Garrett, C.M., Jr., Brown, L.F., Jr., Hamlin, H.S., Dutton, S.P., Ruppel, S.C., Finley, R.J., and Tyler, N., 1989, Atlas of major Texas gas reservoirs: The University of Texas at Austin, Bureau of Economic Geology, and Gas Research Institute, 161 p. - Lasser Data Pages, 2003, Texas production database, Fort Worth, Texas, http://www.lasser.com/data/data.html. - LeMay, W.J., 1960, Abo reefing in southeastern New Mexico, *in* A symposium of oil and gas fields of southeastern New Mexico, 1960 supplement: Roswell Geological Society p. xvii-xxi. - LeMay, W.J., 1972, Empire Abo field, southeast New Mexico, *in* King, R.E., ed., Stratigraphic oil and gas fields—classification, exploration methods, and case histories: American Association of Petroleum Geologists, Memoir 16, p. 82-106. - Malek-Aslani, M., 1985, Permian patch-reef reservoir, North Anderson Ranch field, southeastern New Mexico, *in* Roehl, P.O., and Choquette, P.W., eds., Carbonate petroleum reservoirs: New York, Springer-Verlag, p. 265-276. - Malisce, A., and Mazzullo, J., 1990, Reservoir properties of the desert Shattuck Member, Caprock field, New Mexico, *in* Barwis, J.H., McPherson, J.G., and Studlick, J.R.J., eds., Sandstone petroleum reservoirs: New York, Springer-Verlag, p. 133-152. - Mazzullo, L.J., 1990, Implication of sub-Woodford geologic
variations in the exploration for Silurian-Devonian reservoirs in the Permian Basin, *in* Flis, J.E., - and Price, R.C., eds., Permian Basin oil and gas fields: innovative ideas in exploration and development: West Texas Geological Society, Publication 90-87, p. 29-42. - Mazzullo, L.J., and Reid, A.M., II, 1987, Stratigraphy of the Bone Spring Formation (Leonardian) and depositional setting in the Scharb field, Lea County, New Mexico, *in* Cromwell, D., and Mazzullo, L., eds., The Leonardian facies in west Texas and southeast New Mexico and Guidebook to the Glass Mountains, west Texas: Permian Basin Section Society of Economic Paleontologists and Mineralogists, Publication 87-27, p. 107-111. - Midland Map Company, 1997, Producing zone map, the Permian Basin, West Texas and Southeast New Mexico: Midland, Texas, 1 inch = 32,000 ft. - Milner, S., 1978, Genesis, provenance, and petrography of the Glorieta Sandstone of eastern New Mexico: New Mexico Bureau of Mines and Mineral Resources, Circular 165, 25 p. - Montgomery, S.L., Worrall, J., and Hamilton, D., 1999, Delaware Mountain Group, west Texas and southeastern New Mexico, a case of refound opportunity: Part 1—Brushy Canyon: American Association of Petroleum Geologists Bulletin, v. 83, p. 1901-1926. - New Mexico Bureau of Mines and Mineral Resources, 1993, Atlas of major Rocky Mountain gas reservoirs: New Mexico Bureau of Mines and Mineral Resources, 206 p. - Presley, M.W., and McGillis, K.A., 1982, Coastal evaporite and tidal-flat sediments of the upper Clear Fork and Glorieta formations, Texas panhandle: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations No. 115, 50 p. - Railroad Commission of Texas, 2001, 2000 Oil and gas annual report, volume I: Austin, Texas, Railroad Commission of Texas Oil and Gas Division, 648 p. - Root, D.H., Attanasi, E.D., Mast, R.F., and Gautier, D.L., 1995, Estimates of inferred reserves for the 1995 USGS National Oil and Gas Resource Assessment: U.S. Geological Survey Open-File Report 95-75L, 29 p. - Roswell Geological Society, 1956, A symposium of oil and gas fields of southeastern New Mexico: Roswell Geological Society, 376 p. - Roswell Geological Society, 1960, A symposium of oil and gas fields of southeastern New Mexico, 1960 supplement: Roswell Geological Society, 129 p. - Roswell Geological Society, 1967, A symposium of oil and gas fields of southeastern New Mexico, 1967 supplement: Roswell Geological Society, 185 p. - Roswell Geological Society, 1977, A symposium of oil and gas fields of southeastern New Mexico, 1977 supplement: Roswell Geological Society, 220 p. - Roswell Geological Society, 1988, A symposium of oil and gas fields of southeastern New Mexico, 1988 supplement: Roswell Geological Society, 336 p. - Roswell Geological Society, 1995, A symposium of oil and gas fields of southeastern New Mexico, 1995 supplement: Roswell Geological Society, 360 p. - Ruppel, S.C., and Holtz, M.H., 1994, Depositional and diagenetic facies patterns and reservoir development in Silurian and Devonian rocks of the Permian Basin: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations No. 216, 89 p. - Saller, A.H., Barton, J.W., and Barton, R.E., 1989, Mescalero Escarpe field, oil from carbonate slope detritus, southeastern New Mexico, *in* Flis, J.E., Price, R.C., and Sarg, J.F., eds., Search for the subtle trap, hydrocarbon exploration in mature basins: West Texas Geological Society, Publication 89-85, p. 59-74. - Structurmaps, Ltd., 1970, The Permian Basin of west Texas and southeast New Mexico, Permian structure map showing oil & gas production: Midland, Texas, 1 inch = 29,333 ft. - Tyler, Noel, and Banta, N.J., 1989, Oil and gas resources remaining in the Permian Basin: targets for additional hydrocarbon recovery: The University of Texas at Austin, Bureau of Economic Geology Geological Circular 89-4, 20 p. - Tyler, N., Bebout, D.G., Garrett, C.M., Jr., Guevara, E.H., Hocott, C.R., Holtz, M.H., Hovorka, S.D., Kerans, C., Lucia, F.J., Major, R.P., Ruppel, S.C., and Vander Stoep, G.W., 1991, Integrated characterization of Permian Basin reservoirs, University Lands, West Texas: targeting the remaining resource for advanced oil recovery: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations No. 203, 136 p. - Verseput, T.D., 1989, Depositional setting of the Ellenburger-Langley field, Lea County, New Mexico, *in* Cunningham, B.K., and Cromwell, D.W., eds., The lower Paleozoic of west Texas and southern New Mexico—modern exploration concepts: Permian Basin Section Society of Economic Paleontologists and Mineralogists, Publication 89-31, p. 145-157. - Ward, R.F., Kendall, C.G. St. C., and Harris, P.M., 1986, Upper Permian (Guadalupian) facies and their association with hydrocarbons—Permian Basin, west Texas and New Mexico: American Association of Petroleum Geologists Bulletin, v. 70, p. 239-262. - West Texas Geological Society, 1982, Selected oil & gas fields in West Texas, a reprint of symposium vol. I, II, and III: Midland, Texas, Publication No. 82-75, 691 p. - West Texas Geological Society, 1987, Selected oil & gas fields in West Texas vol. IV: Midland, Texas, Publication No. 87-83, 130 p. - West Texas Geological Society, 1990, Selected oil & gas fields in West Texas vol. V: Midland, Texas, Publication No. 90-86, 208 p. - West Texas Geological Society, 1994, Selected oil & gas fields in West Texas vol. VI: Midland, Texas, Publication No. 94-96, 325 p. - West Texas Geological Society, 1996, Selected oil & gas fields in West Texas vol. VII: Midland, Texas, Publication No. 96-99, 284 p. - White, D. A., 1980, Assessing oil and gas plays in facies-cycle wedges: American Association of Petroleum Geologists Bulletin, v. 64, p. 1158–1178. - Wiggins, W.D., and Harris, P.M., 1985, Burial diagenetic sequence in deep-water allochthonous dolomites, Permian Bone Spring Formation, southeast New Mexico, *in* Crevello, P.D., and Harris, P.M., eds., Deep-water carbonates: buildups, turbidites, debris flows and chalks: SEPM, Core Workshop No. 6, p. 140-173. - Wright, W.F., 1979, Petroleum geology of the Permian Basin: West Texas Geological Society, 98 p. # **List of Acronyms and Abbreviations** Bbbl Billion barrels BEG Bureau of Economic Geology GIS Geographic Information System HPAI High-pressure air injection MMbbl Million barrels NMBGMR New Mexico Bureau of Geology and Mineral Resources OCD Oil Conservation Division of the New Mexico Energy, Minerals and Natural Resources Department OOIP Original oil in place PUMP Preferred upstream management practices RRC Railroad Commission of Texas SACROC Scurry Area Canyon Reef Operators Committee SEPM Society for Sedimentary Geology WAG Water alternating gas Appendix A. Oil reservoirs in the Texas part of the Permian Basin having a cumulative production of >1 MMbbl. Reservoirs are in alphabetical order by RRC districts. Production shown for fields that have had others combined into them represents the totals. Combined fields are highlighted. | RRC_RESN | RRC | FLDNAME | RESNAME | COUNTY | DISCYR | DEPTHTOP | CUMPROD | |----------------------|----------------------------|------------------------|-------------------------|-----------------|--------------|---------------|---------------------------| | _
587166 | 7C | ADAMC | BEND | UPTON | 1958 | 9236 | 1,289,736 | | 587332 | 7C | ADAMC | DEVONIAN | UPTON | 1953 | 10490 | 5,208,779 | | 587498 | 7C | ADAMC | ELLENBURGER | UPTON | 1953 | 11575 | 1,162,037 | | 2220900 | 7C | AMACKER-TIPPET, SW | 9100 | UPTON / | 1980 | 9344 | 5,264,842 | | 2207380 | 7C | AMACKER-TIPPETT | ELLENBURGER | UPTON | 1953 | 11890 | 17,917,650 | | 2207608 | .7C | AMACKER-TIPPETT | STRAWN | UPTON | 1954 | 9870 | 1,842,947 | | 2207912 | 7C | AMACKER-TIPPETT | WOLFCAMP | UPTON | 1954 | 9090 | 5,567,355 | | 2212111 | 7C | AMACKER-TIPPETT, S. | BEND | UPTON | 1961 | 9848 | 6,908,189 | | 2213250 | 7C | AMACKER-TIPPETT, SE | BEND 10600 | UPTON | 1966 | 10637 | 4,159,301 | | 2220700 | 7C | AMACKER-TIPPETT, SW | WOLFCAMP | UPTON | 1977 | 9218 | 16,046,136 | | 2220710 | 7C | AMACKER-TIPPETT, SW. | WOLFCAMP A | UPTON | 1988 | 9069 | 4,442,155 | | 2718400 | 7C | ANDREW A. | CANYON | IRION | 1979 | 7390 | 3,321,404 | | 3602550 | 7C | ARLEDGE | PENN SAND | COKE | 1974 | 5270 | 1,191,965 | | | 7C | ATKINSON, W. | SAN ANGELO | TOM GREEN | 1965 | 816 | 2,311,838 | | 5143300 | 7C | BAKER RANCH | CANYON | IRION | 1978 | 7019 | 2,298,589 | | 5783001 | 7C | BARNHART | ELICOEL MAN | REAGAN | 1941 | 9008 | 16,446,688 | | 7109500 | 7C | BENEDUM | FUSSELMAN | UPTON | 1966
1947 | 11110
7593 | 2,931,937 | | 7109875 | 7C | BENEDUM | SPRABERRY | UPTON
REAGAN | 1923 | 3000 | 24,699,962
133,973,558 | | 7919001 | 7C | BIG LAKE
BLOCK 42 | PENN | UPTON | 1956 | 9450 | 2,559,545 | | 9450200
9521500 | 7C
7C | BLOCK 49 | 2450 | REAGAN | 1955 | 2456 | 2,134,823 | | 932 1300 | 7C | BLOODWORTH, NE. | 5750 CANYON | NOLAN | 1967 | 8,124 | 3,710,179 | | 12175852 | 7C | BRONTE | 4800 SAND | COKE | 1952 | 4838 | 6,075,918 | | 12244075 | 7C | BROOKS | CANYON K | IRION | 1973 | 6494 | 1,072,548 | | 14981710 | 7C | CAMAR | STRAWN-OIL | SCHLEICHER | 1959 | 4324 | 3,754,255 | | 14988250 | 7C | CAMAR, SW. | STRAWN | SCHLEICHER | 1959 | 4445 | 2,117,614 | | 17991500 | 7C | CHRISTI | CANYON 6800 | IRION | 1971 | 6824 | 1,192,011 | | 18500001 | 7C | CLARA COUCH | | CROCKETT | 1941 | 2186 | 6,596,133 | | 20101500 | 7C. | CONGER, SW | PENN | REAGAN | 1979 | 8134 | 2,675,544 | | 20482001 | 7C | COPE | | STERLING | 1951 | 6031 | 12,672,984 | | 20844500 | 7C | CORVETTE | WOLFCAMP | UPTON | 1991 | 9388 | 4,826,776 | | 21766001 | 7C | CROCKETT | | CROCKETT | 1938 | 1571 | 4,762,786 | | 23380300 | 7C | DAVIS | ELLENBURGER | UPTON | 1950 | 13050 | 1,370,746 | | 25930426 | 7C | DOVE CREEK | CANYON -D- | IRION | 1965 | 6540 | 3,140,304 | | 25930284 | , 7C | DOVE CREEK | CANYON-C- | TOM GREEN | 1965 | 6497 | 1,205,124 | | 28393333 |
7C | ELKHORN | ELLENBURGER | CROCKETT | 1951 | 7185 | 12,109,347 | | 29292400 | | ESCONDIDO | FUSSELMAN | CROCKETT | 1963 | 8560 | 1,060,327 | | 29894333 | 7C | F&H | CISCO | SCHLEICHER | 1958 | 2612 | 1,032,823 | | 30243500 | | FARMER | SAN ANDRES | CROCKETT | 1953 | 2240
7245 | 28,675,225 | | 31236666 | | FLAT ROCK | SPRABERRY | UPTON | 1951
1966 | 7245
2816 | 1,781,814 | | 32142200 | 7C | FORT TERRETT RANCH | CANYON 2800 | SUTTON
UPTON | 1959 | 10186 | 3,274,564
2,154,464 | | 32449400 | | FRADEAN | ELLENBURGER
DEVONIAN | UPTON | 1964 | 10633 | 1,765,137 | | 32555666 | 7C
7C | FRANCO
GRAYSON | DEVONIAN | REAGAN | 1928 | 3050 | 1,482,688 | | 36565001
38156001 | 7C | HALFF | | CROCKETT | 1951 | 1680 | 3,991,162 | | 40295400 | . 7C | HELUMA | ELLENBURGER | UPTON | 1956 | 10590 | 4,097,691 | | 40295600 | | HELUMA | PENN. | UPTON | 1956 | 8030 | 1,930,528 | | 40296500 | | HELUMA, EAST | DEVONIAN | UPTON | 1973 | 8740 | 4,563,131 | | 40300500 | | HELUMA, SE | DEVONIAN | UPTON | 1979 | 9024 | 1,613,983 | | 42341500 | | HOLT RANCH | ELLENBURGER | CROCKETT | 1965 | 7897 | 2,380,554 | | 43445500 | 7C | HULLDALE | PENNSYLVANIAN REEF | SCHLEICHER | 1950 | 5772 | 26,827,284 | | 43447333 | 7C | HULLDALE, NORTH | PENN. REEF | SCHLEICHER | 1951 | 5690 | 1,168,869 | | 44042125 | 7C | I. A. B. | HARRIS SAND | COKE | 1970 | 5275 | 1,097,186 | | 44042750 | | I. A. B. | PENN 5070 | COKE | 1957 | 5063 | 1,023,437 | | 44045600 | | I. A. B., NE. | PENN. 5150 | COKE | 1961 | 5192 | 2,978,833 | | 44717500 | ususan taman banda da sace | IRION 163 | ELLEN | IRION | 1977 | 8916 | 2,605,958 | | 45580666 | | JAMESON | STRAWN | COKE | 1952 | 5800 | 43,573,486 | | 46935500 | | JOHN SCOTT | GRAYBURG | REAGAN | 1953 | 2534 | 5,505,146 | | 49099500 | | KETCHUM MT. | CLEAR FORK | IRION | 1955 | 4548 | 9,226,117 | | 49413200 | | KING MOUNTAIN | DEVONIAN | UPTON | 1956 | 10459 | 1,870,050 | | 49413400 | | KING MOUNTAIN | ELLENBURGER | UPTON | 1955 | 11775
8764 | 6,890,744 | | 49415545 | | KING MOUNTAIN, N. | CISCO | UPTON | 1975
1987 | 9046 | 2,014,219
8,076,439 | | 54590300 | | LONE JOE DEEP | FUSSELMAN | IRION
UPTON | 1925 | 2100 | 135,137,987 | | 58840001 | | MCCAMEY
MCKAY CREEK | CABALLOS | TERRELL | 1925 | 6238 | 1,173,298 | | 59560300
60698664 | | MERTZON | SAN ANGELO | IRION | 1955 | 1648 | 3,430,892 | | 61204875 | | MIDWAY LANE | 1300 | CROCKETT | 1953 | 1300 | 1,712,554 | | 61204500 | | MIDWAY LANE | PERMIAN | CROCKETT | 1956 | 1124 | 7,686,681 | | 61204001 | | MIDWAY LANE | | CROCKETT | 1947 | 7596 | 4,555,520 | | 61269500 | | MIETHER | GRAYBURG | UPTON | 1956 | 3241 | 1,049,526 | | 65023666 | | NEVA, WEST | STRAWN | SCHLEICHER | 1951 | 6217 | 14,618,884 | | 65674001 | | NOELKE | | CROCKETT | 1940 | 1133 | 5,595,084 | | 66878333 | | OHARROW | CANYON | SCHLEICHER | 1955 | 4756 | 1,248,808 | | 67284001 | | OLSON | | CROCKETT | 1940 | 1828 | 16,082,538 | | 67768142 | | отто | CANYON | SCHLEICHER | 1957 | 4618 | 1,173,362 | | 67999333 | 7C | OZONA, NW. | CANYON | CROCKETT | 1963 | 6675 | 1,913,927 | | RRC_RESN | RRC | FLDNAME | RESNAME | COUNTY | DISCYR | DEPTHTOP | CUMPROD | |----------------------|----------|-------------------------------|------------------------------|-----------------------|--------------|---------------|--------------------------| | 68349001 | 7C . | PAGE | | SCHLEICHER | 1939 | 5725 | 5,121,365 | | 70279125 | 7C | PEGASUS | DEVONIAN | UPTON | 1952 | 12353 | 1,442,855 | | 70279250 | 7C | PEGASUS | ELLENBURGER | UPTON | 1949 | 12530 | 96,008,159 | | 70279375 | 7C | PEGASUS C | FUSSELMAN | MIDLAND | 1958 | 12100 | 3,378,847 | | 70279500 | 7C | LOMOOD | PENNSYLVANIAN | UPTON | 1951 | 10470 | 17,127,951 | | 70279625 | 7C | PEGASUS | SAN ANDRES | MIDLAND | 1954
1952 | 5584
8255 | 11,051,115 | | 70279750
73085500 | 7C
7C | PEGASUS
PRICE | SPRABERRY
GRAYBURG | UPTON
REAGAN | 1952 | 2410 | 16,174,394
6,437,211 | | 73243500 | 7C | PROBANDT | CANYON | TOM GREEN | 1975 | 7169 | 1,468,833 | | 73468001 | 7C | PURE-BEAN | CANTON | CROCKETT | 1952 | 1360 | 1,876,345 | | 74450300 | 7C | RAMON | LEONARD | SCHLEICHER | 1980 | 2617 | 1,177,882 | | 74505500 | 7C | RANCH | STRAWN | CROCKETT | 1953 | 8156 | 3,744,987 | | 77622500 | 7C | ROCK PEN | CANYON | IRION | 1976 | 7145 | 3,205,731 | | 77622550 | 7C | ROCK PEN | CLEAR FORK | IRION | 1988 | 3840 | 1,181,195 | | 77841333 | 7C | RODMAN-NOEL | GRAYBURG | UPTON | 1953 | 1745 | 1,143,800 | | 82663568 | 7C | SHANNON | SAN ANDRES | CROCKETT | 1943 | 2406 | 12,449,849 | | 83703001 | 7C | SIMPSON | 2012121 | CROCKETT | 1938 | 1985 | 1,118,315 | | 83873250 | 7C | SIXTY SEVEN | CANYON | IRION | 1966 | 6684 | 1,081,381 | | 83873750 | 7C | SIXTY SEVEN | STRAWN REEF | IRION | 1956
1988 | 6898 | 2,867,254 | | 84819850
85279200 | 7C
7C | SOUTHWEST MESA
SPRABERRY | WOLFCAMP
TREND AREA | CROCKETT
GLASSCOCK | 1952 | 6268
6785 | 1,463,139
433,832,105 | | 85279400 | 7G | SPRABERRY | TREND AREA CL. FK. | REAGAN | 1955 | 6194 | 11,327,959 | | 85447300 | 7C | SRH | CLEAR FORK | REAGAN | 1995 | 4837 | 1,266,029 | | 87015881 | 7C | SUGG RANCH | CANYON | STERLING | 1987 | 7860 | 7,615,629 | | | 7C | T. D. | 6575 | TOM GREEN | 1982 | 6592 | 1,001,559 | | 89134750 | 7C | TEXEL | PENNSYLVANIAN | UPTON | 1954 | 9143 | 1,621,367 | | 89198500 | 7C | TEXON, S | GRAYBURG | REAGAN | 1968 | 3266 | 1,275,271 | | 89201500 | 7C | TEXON, W. | SPRABERRY | REAGAN | 1964 | 6923 | 2,924,301 | | 90007498 | 7C | TILLERY | PENN. | SCHLEICHER | 1953 | 3568 | 1,885,797 | | 90188415 | 7C | TIPPETT | LEONARD, LOWER | CROCKETT | 1962 | 5067 | 4,979,264 | | 90188001 | 7C | TIPPETT | WOLFOLLO | CROCKETT | 1947 | 6100 | 3,627,887 | | 90196666 | 7C
7C | TIPPETT, W. | WOLFCAMP LO. HUECO | CROCKETT | 1967
1968 | 5564
5012 | 1,365,836 | | 90196333
90314400 | 7C | TIPPETT, WEST
TODD | SAN ANDRES | CROCKETT | 1951 | 1440 | 1,469,047
2,183,638 | | 90315333 | 7C | TODD, DEEP | CRINOIDAL | CROCKETT | 1940 | 5778 | 41,017,729 | | 90315666 | 7C | TODD, DEEP | ELLENBURGER | CROCKETT | 1940 | 6232 | 44,300,279 | | 91424475 | 7C | TRIUMPH | WOLFCAMP | UPTON | 1992 | 8530 | 3,362,056 | | 93264001 | 7C | VAUGHN | N. | CROCKETT | 1947 | 1445 | 13,265,577 | | 93410710 | 7C | VELREX | HENDERSON UPPER | SCHLEICHER | 1964 | 6406 | 1,008,498 | | 95445666 | 7C | WATER VALLEY | SAN ANDRES | TOM GREEN | 1948 | 1035 | 4,159,900 | | 95867500 | 7C | WEGER | SAN ANDRES | CROCKETT | 1955 | 2268 | 2,934,749 | | 95869001 | 7C | WEGER, NORTH | 21222 | CROCKETT | 1955 | 2318 | 1,173,145 | | 96324500 | 7C | WENDKIRK | CISCO | COKE | 1953 | 3696 | 4,559,984 | | 97834500 | 7C | WILSHIRE | ELLENBURGER
PENNSYLVANIAN | UPTON | 1951
1952 | 11944
9810 | 41,080,326 | | 97834750
98796001 | 7C
7C | WILSHIRE
WORLD | PENNSTEVANIAN | UPTON
CROCKETT | 1932 | 2600 | 1,374,833
45,886,544 | | 98803500 | 7C | WORLD, WEST | STRAWN | CROCKETT | 1954 | 8190 | 8,632,607 | | 99023001 | 7C | WYATT | 31101011 | CROCKETT | 1940 | 1224 | 1,937,617 | | 99658500 | 7C | ZAN-ZAN | MID. CANYON | IRION | 1988 | 6014 | 1,174,262 | | 250750 | 8 | A. W. | FUSSELMAN | WINKLER | 1964 | 9717 | 1,348,292 | | 292203 | 8 | ABELL | DEVONIAN | CRANE | 1953 | 5245 | 11,901,722 | | 292580 | 8 | ABELL | PERMIAN 3800 | PECOS | 1949 | 3800 | 1,000,919 | | 292500 | 8 | ABELL | PERMIAN-GENERAL | CRANE | 1975 | 4200 | 1,658,580 | | 292725 | 8 | ABELL | SILURIAN - MONTOYA, N. W. | CRANE | 1962 | 5110 | 1,432,119 | | 292667 | 8 | ABELL | SILURIAN-MONTOYA | PECOS | 1948 | 4936 | 12,619,167 | | 292001 | 8 | ABELL | 0.540.500% | PECOS | 1940 | 5400 | 8,106,194 | | 292058 | 8 | ABELL | CLEAR FORK
PERMIAN 2200 | PECOS
PECOS | 1950
1949 | 3555
2200 | 1,043,523 | | 292551
293625 | 8
8 | ABELL
ABELL, EAST | MCKEE | PECOS | 1956 | 5415 | 1,074,575
2,322,612 | | 293875 | 8 | ABELL, EAST | WADDELL, W. SEG. | PECOS | 1957 | 6090 | 2,014,539 | | 296500 | 8 | ABELL, NORTHWEST | MCKEE SAND | PECOS | 1949 | 5432 | 1,435,103 | | 2596200 | 8 | ANDECTOR | ELLENBURGER | ECTOR | 1946 | 8545 | 177,718,593 | | 2596400 | 8 | ANDECTOR | MCKEE | ECTOR | 1948 | 7635 | 3,374,471 | | 2596800 | 8 | ANDECTOR | WADDELL | ECTOR | 1948 | 7835 | 2,029,953 | | 2725500 | 8 | ANDREWS | PENNSYLVANIAN | ANDREWS | 1954 | 9220 | 15,502,674 | | 2725750 | 8 | ANDREWS | WOLFCAMP | ANDREWS | 1953 | 8596 | 22,785,915 | | 2725760 | 8 | ANDREWS | WOLFCAMP-PENN. | ANDREWS | 1995 | 9380 | 3,692,443 | | 2727250 | 8 . | ANDREWS, N. | DEVONIAN | ANDREWS | 1960 | 10424 | 7,844,331 | | 2727500 | 8 | ANDREWS, NORTH | ELLENBURGER | ANDREWS | 1959 | 12349 | 28,873,225 | | 2727750 | 8 | ANDREWS, NORTH | STRAWN | ANDREWS | 1959 | 9589
11075 | 3,673,474 | | 2730284 | 8
8 | ANDREWS, SOUTH | DEVONIAN
WOLFCAMP | ANDREWS
ANDREWS | 1953
1953 | 11075
9183 | 10,316,428
15,169,599 | | 2730852
3278001 | 8
8 - | ANDREWS, SOUTH
APCO-WARNER | WOLI OAWF | PECOS | 1933 | 4600 | 12,564,506 | | 3520500 | 8 | ARENOSO | STRAWN DETRITUS | WINKLER | 1965 | 8587 | 22,978,851 | | 3644852 | 8 | ARMER | 6350 | CRANE | 1955 | 6340 | 4,779,874 | | 3644568 | 8. | ARMER | TUBB | CRANE | 1955 | . 4865 | 1,441,098 | | 4184666 | 8 | ATAPCO | QUEEN | CRANE | 1959 | 2140 | 1,351,920 | | 4184333 | 8 | ATAPCO | DEVONIAN | CRANE | 1959 | 5520 | 1,398,972 | | 4228664 | 8 | ATHEY | WOLFCAMP 10900 | PECOS | 1967 | 11263 | 2,411,926 | | 4605080 | 8 | AZALEA | ATOKA | MIDLAND | 1973 | 10898 | 2,996,387 | | 4605222 | 8 | AZALEA | DEVONIAN | MIDLAND | 1957 | 11520 | 1,714,524 | | 4605444 | . 8 . | AZALEA | GRAYBURG | MIDLAND | 1967 | . 4088 | 2,064,038 | | 4690300 | 8 | B.C. | CANYON | HOWARD | 1985 | . 9041 | 1,226,734 | | RRC_RESN | RRC | FLDNAME | RESNAME | COUNTY | DISCYR | DEPTHTOP | CUMPROD | |----------------------|---------------|--------------------------------------|---------------------------|------------------------|--------------|----------------|--------------------------| | 5166333 | 8 | BAKKE | DEVONIAN | ANDREWS | 1956 |
10500 | 17,106,630 | | 5166444 | 8 | BAKKE | ELLENBURGER | ANDREWS | 1956
1956 | 12400
8956 | 23,722,974 | | 5166555
5166888 | 8
8 | BAKKE
BAKKE | PENN.
WOLFCAMP | ANDREWS
ANDREWS | 1956 | 8492 | 12,336,328
25,048,339 | | 5524664 | 8 | BAR-MAR | DEV. | CRANE | 1965 | 5258 | 5,143,157 | | 5524830 | 8 | BAR-MAR | TUBB | CRANE | 1965 | 3962 | 1,022,337 | | 5859333 | 8 | BARROW | ELLENBURGER | ECTOR | 1955 | 13578 | 1,436,411 | | 6378284 | 8 | BAYVIEW | GLORIETA | CRANE | 1961 | 3008 | 2,595,807 | | 6385500
6671166 | 8
8 | BAYVIEW, W.
BEDFORD | GLORIETA
DEVONIAN | CRANE
ANDREWS | 1965
1945 | 3023
8777 | 1,026,923
19,358,362 | | 6671332 | 8 | BEDFORD | ELLENBURGER | ANDREWS | 1950 | 11018 | 7,884,926 | | 6671498 | 8 | BEDFORD | FUSSELMAN | ANDREWS | 1951 | 9702 | 1,854,661 | | 6853333 | 8 | BELDING | YATES | PECOS | 1964 | 2672 | 1,138,199 | | 8044400 | 8 | BIG SPRING | FUSSELMAN | HOWARD | 1955
1971 | 9589
7914 | 7,238,047 | | 8735500
8739500 | 8
8 | BLALOCK LAKE, E.
BLALOCK LAKE, S. | WOLFCAMP
WOLFCAMP | GLASSCOCK
GLASSCOCK | 1971 | 8246 | 5,978,078
10,256,922 | | 8740500 | 8 | BLALOCK LAKE, SE | WOLFCAMP | GLASSCOCK | 1981 | 8245 | 9,974,801 | | 9230142 | 8 | BLOCK 11 | DEVONIAN | ANDREWS | 1951 | 8230 | 11,110,212 | | 9230426 | 8 | BLOCK 11 | FUSSELMAN | ANDREWS | 1961 | 7956 | 1,069,231 | | 9236333 | 8 | BLOCK 11, SW. | DEVONIAN
ELLENBURGER | ANDREWS
ANDREWS | 1952
1952 | 8160
10884 | 5,113,708
4,705,759 | | 9250400
9250001 | . 8
. 8 | BLOCK 12
BLOCK 12 | ELLENBUNGEN | ANDREWS | 1946 | 7170 | 3,003,421 | | 9251333 | 8 | BLOCK 12, EAST | ELLENBURGER | ANDREWS | 1953 | 10117 | 9,262,118 | | 9288500 | 8 | BLOCK 17, SOUTHEAST | DELAWARE | WARD | 1956 | 5003 | 1,722,191 | | 9116500 | 8 | BLOCK 2 | GRAYBURG | ANDREWS | 1957 | 4736 | 3,116,332 | | 9358270
9358450 | 8
8 | BLOCK 31
BLOCK 31 | CONNELL
DEVONIAN | CRANE
CRANE | 1948
1945 | 10170
8812 | 1,083,545
223,850,169 | | 9358540 | 8 | BLOCK 31 | ELLENBURGER | CRANE | 1945 | 10291 | 6,266,474 | | 9358630 | 8 | BLOCK 31 | GRAYBURG | CRANE | 1956 | 3200 | 4,918,490 | | 9359250 | 8 | BLOCK 31, EAST | ATOKA | CRANE | 1965 | 8122 | 1,225,223 | | 9362500 | 8 | BLOCK 31, NW. | PENN UPPER | CRANE | 1969 | 7907 | 4,489,708 | | 9172250 | 8
8 | BLOCK 6
BLOCK 6, NE | DEVONIAN
SILURIAN | ANDREWS
ANDREWS | 1952
1974 | 12530
12471 | 4,478,026
3,623,929 | | 9175500
9188250 | 8 | BLOCK 7 | DEVONIAN | MARTIN | 1950 | 12280 | 5,209,687 | | 9202166 | 8 | BLOCK 9 | DEVONIAN | ANDREWS | 1960 | 12540 | 1,540,950 | | 9202332 | 8 | BLOCK 9 | ELLENBURGER | ANDREWS | 1958 | 12508 | 3,542,455 | | 8944750 | 8 | BLOCK A-28 | WICHITA-ALBANY | ANDREWS | 1964 | 7463 | 1,690,793 | | 8958200 | - 8
8 | BLOCK A-34
BLOCK A-34 | ELLENBURGER
GLORIETA | ANDREWS
ANDREWS | 1954
1955 | 13250
5910 | 4,378,343
3,112,350 | | 8958400
8958800 | 8 | BLOCK A-34 | STRAWN | ANDREWS | 1954 | 9916 | 1,100,472 | | 8958500 | 8 | BLOCK A-34 | SAN ANDRES | ANDREWS | 1979 | 4676 | 1,120,760 | | 8962500 | 8 | BLOCK A-34, NORTHWEST | GLORIETA | ANDREWS | 1955 | 5914 | 1,402,909 | | 8990333 | 8 | BLOCK A-49 | DEVONIAN | ANDREWS | 1965 | 8637 | 2,088,379 | | 8990666
10821500 | 8
8 | BLOCK A-49
BOURLAND | ELLENBURGER
SAN ANDRES | ANDREWS
ECTOR | 1962
1952 | 11200
4352 | 1,623,307
1,125,033 | | 11082333 | 8 | BOYDELL, S. | CLEAR FORK, LO. | ANDREWS | 1967 | 7089 | 2,325,116 | | 11240500 | 8 | BRADFORD RANCH | ATOKA | MIDLAND | 1979 | 11221 | 5,717,992 | | 11601500 | 8 | BRAZOS | SAN ANDRES | MIDLAND | 1982 | 4433 | 1,934,677 | | 11751200 | 8 | BREEDLOVE | SPRABERRY | MARTIN
MARTIN | 1962
1951 | 8350
12078 | 2,400,927
31,736,195 | | 11751001
11752666 | 8
8 | BREEDLOVE
BREEDLOVE, EAST | SPRABERRY | MARTIN | 1962 | 8180 | 2,347,842 | | 11756500 | 8 . | BREEDLOVE, SOUTH | SPRABERRY | MARTIN | 1962 | 8084 | 3,979,507 | | 12230333 | 8 | BROOKLAW | CLEAR FORK, LOWER | PECOS | 1969 | 3460 | 2,195,374 | | 12448200 | 8 | BROWN & THORP | CLEAR FORK | PECOS | 1951 | 3028 | 6,882,219 | | 12449800 | 8 | BROWN & THORP, EAST
BRYANT -G- | TUBB
DEVONIAN | PECOS
MIDLAND | 1965
1979 | 3125
12002 | 2,681,183
1,643,736 | | 12763333
12978600 | 8 | BUCKWHEAT | SILURO-DEVONIAN | HOWARD | 1989 | 10182 | 1,488,718 | | 14155001 | 8 | BYRD | | WARD | 1942 | 2700 | 1,148,651 | | 14215250 | 8 | C. C. GUNN | CANYON REEF | HOWARD | 1987 | 7564 | 1,006,890 | | 15499380 | 8 | CAPRITO | DELAWARE MIDDLE | WARD | 1974
1949 | 6164
3520 | 5,587,028
20,386,507 | | 14200400
14200800 | - 8
- 8 | C-BAR
C-BAR | SAN ANDRES
TUBB | CRANE
CRANE | 1949 | 5320
5320 | 2,622,880 | | 17029001 | 8 | CHAPMAN | 1000 | REEVES | 1948 | 2900 | 1,578,789 | | 18254600 | 8 | CIRCLE BAR | ELLEN | ECTOR | 1962 | 12758 | 3,816,623 | | 18593666 | 8 | CLARK | SAN ANDRES | STERLING | 1949 | 890 | 1,568,965 | | 19113750 | 8 | COAHOMA, N. | FUSSEL | HOWARD
GLASSCOCK | 1969
1984 | 8791
7947 | 2,778,608
10,587,410 | | 19235700
19541001 | 8
8 | COBRA
COLEMAN RANCH | WOLFCAMP | MITCHELL | 1946 | 2560 | 10,496,867 | | 19543500 | 8 | COLEMAN RANCH, N. | CLEAR FORK | MITCHELL | 1953 | 3050 | 4,051,150 | | 19665200 | 8 | COLLIE | DELAWARE | WARD | 1981 | 4725 | 3,479,423 | | 20004666 | 8 | CONCHO BLUFF | QUEEN | CRANE | 1956 | 4131 | 8,689,957 | | 20006500 | 8
8 | CONCER CONCER | QUEEN
PENN | ECTOR
GLASSGOCK | 1956
1978 | 4490
7739 | 15,394,816
20,406,213 | | 20097700
20607001 | 8
8 | CONGER
CORDONA LAKE | I LINE | CRANE | 1949 | 5470 | 32,578,669 | | 20609666 | 8 | CORDONA LAKE NORTH | TUBB 4500 | CRANE | 1966 | 4546 | 1,061,583 | | 20615500 | 8 | CORDONA LAKE, WEST | DEV. | CRANE | 1965 | 5561 | 1,490,496 | | 21287250 | 8 | COWDEN | CISCO | ECTOR | 1955 | 8846
5220 | 6,348,910 | | 21289400 | . 8
. 8 | COWDEN, NORTH
COWDEN, NORTH | CLEAR FORK
DEEP | ECTOR
ECTOR | 1970
1939 | 5239
5170 | 5,850,903
69,141,846 | | 21289600
21289001 | 8 | COWDEN, NORTH | DELI | ECTOR | 1930 | 4400 | 541,669,047 | | 21289180 | 8 | COWDEN, NORTH | CANYON | ECTOR | 1973 | 9094 | 1,428,470 | | 21292875 | 8 | COWDEN, SOUTH | 13800 | ECTOR | 1966 | 13900 | 2,744,404 | | 21292125 | 8 | COWDEN, SOUTH | CANYON 8790 | ECTOR | 1966 | 9202 | 43,011,248 | | RRC_RESN | RRC | FLDNAME | RESNAME | COUNTY | DISCYR | DEPTHTOP | CUMPROD | |----------------------|---------------|--------------------------------------|---------------------------------------|------------------------|--------------|----------------|---------------------------| | 21292250 | 8 | COWDEN, SOUTH | CANYON 8900 | ECTOR | 1968 | 8993 | 13,270,487 | | 21292625 | 8 | COWDEN, SOUTH | ELLENBURGER | ECTOR . | 1954 | 12883 | 5,459,419 | | 21292750 | . 8 | COWDEN, SOUTH | PENNSYLVANIAN | ECTOR | 1955 | 8360 | 1,095,207 | | 21292001 | 8 | COWDEN, SOUTH | · · · · · · · · · · · · · · · · · · · | ECTOR | 1932 | 5050 | 161,204,532 | | 21382250 | 8 | COYANOSA | DELAWARE SD. | PECOS | 1959
1970 | 4793
11614 | 1,327,118
6,299,774 | | 21382875
21384666 | 8
8 | COYANOSA
COYANOSA, N. | WOLFCAMP
DELAWARE | PECOS
PECOS | 1966 | 4809 | 3,249,484 | | 21517001 | 8 | CRANE COWDEN | DELAVANIC | CRANE | 1932 | 2550 | 5,824,566 | | 21577180 | 8 | CRAWAR | DEVONIAN, NORTH | CRANE | 1958 | 6450 | 6,308,067 | | 21577270 | 8 | CRAWAR | ELLENBURGER | CRANE | 1954 | 8236 | 1,111,683 | | 21577810 | . 8 | CRAWAR | WADDELL | WARD | 1955 | 7645 | 1,587,021 | | 21577450 | 8 | CRAWAR | GLORIETA | WARD | 1954
1962 | 4040
7430 | 1,285,530
2,497,526 | | 21597500 | 8(⊴ | CREDO | WOLFCAMP, LOWER -B- /
WOLFCAMP | STERLING
STERLING | 1962 | 7334 | 3,951,915 | | 21597250
21907555 | 8
8 | CREDO
CROSSETT | 3000 CLEAR FORK | CRANE | 1952 | 2960 | 3,022,275 | | 21907111 | 8 | CROSSETT | DEVONIAN | CRANE | 1944 | 5440 | 25,568,056 | | 21912333 | 8 | CROSSETT, S. | DETRITAL | CROCKETT | 1965 | 4924 | 16,972,491 | | 21912666 | 8 | CROSSETT, S. | DEVONIAN | CROCKETT | 1956 | 5324 | 17,145,768 | | 23131250 | 8 | DARMER | CANYON | WINKLER | 1964 | 8500 | 2,323,635 | | 23138500 | 8 | DARMER, NE. | PENN. | WINKLER
CRANE | 1978
1955 | 8256
5168 | 1,055,362
2,165,509 | | 23543666
23907142 | 8
8 | DAWSON
DEEP ROCK | DEVONIAN
DEVONIAN | ANDREWS | 1963 | 10063 | 1,713,689 | | 23907284 | 8 | DEEP ROCK | ELLENBURGER | ANDREWS | 1954 | 12252 | 14,245,387 | | 23907568 | 8 | DEEP ROCK | GLORIETA 5950 | ANDREWS | 1954 | 5700 | 13,186,510 | | 23907710 | 8 | DEEP ROCK | PENN. | ANDREWS | 1961 | 9037 | 7,857,006 | | 24396100 | 8 | DESPERADO | ATOKA | MIDLAND | 1984 | 10845 | 3,642,912 | | 24488650 | 8 | DEWEY LAKE | WOLFCAMP | GLASSCOCK
GLASSCOCK | 1982
1983 | 8449
10055 | 1,395,910
1,115,433 | | 24489380
24853400 | 8
8 | DEWEY LAKE, S. DIMMITT | STRAWN
CHERRY CANYON | LOVING | 1980 | 6226 | 8,574,522 | | 25188200 | 8 | DOLLARHIDE | CLEAR FORK | ANDREWS | 1949 | 6545 | 47,270,501 | | 25188400 | 8 | DOLLARHIDE | DEVONIAN | ANDREWS | 1955 | 8051 | 97,596,076 | | 25188600 | 8 - | DOLLARHIDE | ELLENBURGER | ANDREWS | 1947 | 10137 | 26,460,708 | | 25188800 | 8 | DOLLARHIDE | SILURIAN | ANDREWS | 1947 | 8345 | 40,980,095 | | 25189200 | 8 | DOLLARHIDE, EAST | DEVONIAN | ANDREWS
ANDREWS | 1949
1959 | 10186
12610 | 9,284,134
6,432,601 | | 25189400
25189600 | 8
8 | DOLLARHIDE, EAST
DOLLARHIDE, EAST | ELLENBURGER
SILURIAN | ANDREWS | 1949 | 11000 | 1,337,356 | | 25347750 | . 8 | DONNELLY | HOLT | ECTOR | 1950 | 5275 | 1,710,117 | | 25347875 | 8 | DONNELLY | SAN ANDRES | ECTOR | 1950 | 4305 | 8,423,063 | | 25395100 | 8 | DORA ROBERTS | CONSOLIDATED | MIDLAND | 1995 | 10341 | 2,371,206 | | 25395166 | 8 | DORA ROBERTS | DEVONIAN | MIDLAND | 1955 | 12010 | 2,528,808 | | 25395332 | 8 | DORA ROBERTS | ELLENBURGER | MIDLAND | 1954 | 12835
2291 | 50,731,918 | | 25501500 | 8 |
DORR
DOUBLE -H- | QUEEN SAND
GRAYBURG | WARD
ECTOR | 1955
1955 | 4456 | 1,045,088
4,217,866 | | 25742500
26538830 | 8
8 | DUNE | WOLFCAMP | CRANE | 1957 | 7710 | 7,564,044 | | 26538001 | 8 | DUNE | | CRANE | 1938 | 3270 | 192,685,765 | | 27739001 | 8 | EDWARDS | | ECTOR | 1935 | 3400 | 9,431,134 | | 27779500 | - 8 | EDWARDS -04-, S. | 7900 | CRANE | 1967 | 7925 | 2,312,280 | | 27746500 | 8 | EDWARDS, WEST
EL MAR | CANYON
DELAWARE | ECTOR
LOVING | 1970
1959 | 8962
4532 | 23,979,851
18,927,176 | | 28019500
28843888 | 8
8 | EMBAR | 5600 | ANDREWS | 1955 | 5606 | 6,368,089 | | 28843111 | 8 | EMBAR | DEVONIAN | ANDREWS | 1954 | 9346 | 1,335,402 | | 28843222 | 8 | EMBAR | ELLENBURGER | ANDREWS | 1942 | 7977 | 22,646,307 | | 28843666 | 8 | EMBAR | PERMIAN | ANDREWS | 1942 | 6280 | 6,779,777 | | 28899166 | 8 | EMMA | DEVONIAN | ANDREWS
ANDREWS | 1954 | 10192
13307 | 5,753,019 | | 28899249 | 8 | EMMA | ELLENBURGER
FUSSELMAN | ANDREWS | 1953
1954 | 11288 | 54,500,181
1,933,151 | | 28899332
28899415 | 8 | EMMA
EMMA | GLORIETA | ANDREWS | 1953 | 5405 | 3,630,701 | | 28899747 | 8 | EMMA | STRAWN | ANDREWS | 1958 | 9123 | 3,239,757 | | 28899001 | 8 | EMMA | *. | ANDREWS | 1939 | 4300 | 20,813,110 | | 28961568 | 8 | EMPEROR | HOLT | WINKLER | 1946 | 4765 | 9,475,152 | | 28962001 | 8 | EMPEROR, DEEP | CLEAR FORK LO | WINKLER | 1935
1962 | 3000
6097 | 11,773,170
1,131,119 | | 28963500
29507500 | 8
8 | EMPEROR, EAST
ESTES BLOCK 34 | CLEAR FORK, LO.
PENN. | WARD | 1957 | 8150 | 4,999,188 | | 30394375 | 8 | FASKEN | ELLENBURGER | ANDREWS | 1953 | 12604 | 3,641,104 | | 30394500 | 8 | FASKEN | PENN. | ECTOR | 1956 | 10158 | 5,955,633 | | 30394750 | 8 | FASKEN | WOLFCAMP | ANDREWS | 1952 | 8571 | 7,451,167 | | 30394875 | 8 | FASKEN | WOLFCAMP, NORTH | ANDREWS | 1956 | 8290 | 1,343,663 | | 30398500 | 8 | FASKEN, S. | FUSSELMAN | ECTOR
ECTOR | 1957
1960 | 12270
8475 | 1,655,361
1,298,246 | | 30398875
31768333 | 8
8 | FASKEN, SOUTH
FLYING -W- | WOLFCAMP
ELLEN | WINKLER | 1970 | 11768 | 1,003,126 | | 31768666 | 8 | FLYING -W- | WOLFCAMP | WINKLER | 1955 | 8190 | 1,525,905 | | 31768001 | 8 | FLYING -W- | | WINKLER | 1949 | 9660 | 1,944,700 | | 31908500 | 8 | FORD, EAST | DELAWARE SAND | REEVES | 1963 | 2730 | 3,401,021 | | 31913500 | 8 | FORD, WEST | 4100 | CULBERSON | | 4143 | 3,010,344 | | 32124625 | 8 | FORT STOCKTON | YATES LOWER | PECOS
PECOS | 1943
1944 | 3072
2892 | 1,770,005
34,386,845 | | 32124001
32309001 | .8
- 8 | FORT STOCKTON FOSTER | 1
0 | ECTOR | 1935 | 4300 | 284,565,604 | | 32344800 | 8 | FOUR C | SAN ANDRES | PECOS | 1975 | 2302 | 1,110,536 | | 33158250 | 8 | FUHRMAN | GLORIETA | ANDREWS | 1950 | 5612 | 11,248,689 | | 33176284 | 8 | FUHRMAN-MASCHO | DEVONIAN | ANDREWS | 1956 | 10000 | 1,835,504 | | 33176001 | 8 | FUHRMAN-MASCHO | 0500 | ANDREWS | 1930 | 4700
8658 | 119,367,788
51,119,358 | | 33230900 | 8 | FULLERTON | 8500
DEVONIAN | ANDREWS
ANDREWS | 1944 1987 | 8658
8276 | 2,734,646 | | 33230300 | 8 | FULLERTON | PEACHWA | , 1511240 | 1007 | 3273 | _,, 0 ,,0 ,0 | | RRC_RESN | RRC | FLDNAME | RESNAME | COUNTY | DISCYR | DEPTHTOP | CUMPROD | |----------------------|---------------|--------------------------------------|----------------------------------|---------------------|----------------|----------------|---------------------------| | 33230400 | 8 | FULLERTON | ELLENBURGER | ANDREWS | 1945 | 9945 | 2,067,603 | | 33230500
33230001 | 8
8 | FULLERTON FULLERTON | SAN ANDRES | ANDREWS
ANDREWS | 1945
1941 | 4785
7300 | 39,796,567
309,506,748 | | 33231250 | 8 | FULLERTON, EAST | ELLEN. | ANDREWS | 1967 | 11428 | 1,236,825 | | 33232510 | 8 | FULLERTON, NORTH | ELLENBURGER | ANDREWS | 1991 | 9872 | 1,054,548 | | 33235250
33235750 | 8
8 | FULLERTON, SOUTH
FULLERTON, SOUTH | ELLENBURGER
WOLFCAMP | ANDREWS
ANDREWS | 1948
1955 | 10600
8245 | 13,774,543
4,217,011 | | 33989001 | 8 | GARDEN CITY | , | GLASSCOCK | 1946 | 9740 | 1,128,766 | | 34001750 | 8 | GARDEN CITY, W. | WOLFCAMP 7880 | GLASSCOCK | 1966 | 7920 | 3,479,124 | | 34529666
34529200 | 8
8 | GERALDINE
GERALDINE | FORD
DELAWARE 3400 | REEVES
CULBERSON | 1957
1982 | 2557
3454 | 30,222,300
1,598,553 | | 34563400 | 8 | GERMANIA | GRAYBURG | MIDLAND | 1952 | 3940 | 5,351,696 | | 35197333 | 8 | GLASCO | DEVONIAN | ANDREWS | 1953 | 12543 | 21,207,037 | | 35197380
35652868 | 8
8 | GLASCO
GOLDSMITH | ELLENBURGER
5600 | ANDREWS
ECTOR | 1985
1947 | 13806
5600 | 2,830,825
240,096,410 | | 35652062 | 8 | GOLDSMITH | CLEAR FORK | ECTOR | 1946 | 6300 | 93,193,807 | | 35652186 | 8 | GOLDSMITH | DEVONIAN | ECTOR | 1948 | 7875 | 15,171,587 | | 35652248
35652310 | 8
8 | GOLDSMITH
GOLDSMITH | ELLENBURGER
FIGURE 5 DEVONIAN | ECTOR
ECTOR | 1947 -
1956 | 9495
7760 | 2,136,727
1,358,571 | | 35652434 | 8 | GOLDSMITH | FUSSELMAN | ECTOR | 1954 | 7763 | 4,696,451 | | 35652558 | 8 | GOLDSMITH | HOLT | ECTOR | 1952 | 5106 | 2,298,769 | | 35652001
35653777 | 8
8 | GOLDSMITH
GOLDSMITH, E. | PENNSYLVANIAN | ECTOR | 1935
1953 | 4300
8621 | 357,953,213
1,655,075 | | 35653333 | 8 | GOLDSMITH, EAST | GLORIETA | ECTOR | 1955 | 5136 | 1,360,016 | | 35653666 | 8 | GOLDSMITH, EAST | HOLT | ECTOR | 1954 | 4988 | 8,214,446 | | 35653888
35654166 | - 8
- 8 | GOLDSMITH, EAST
GOLDSMITH, N. | SAN ANDRES
DEVONIAN | ECTOR
ECTOR | 1962
1946 | 4224
7900 | 9,088,613
9,021,147 | | 35654332 | 8 | GOLDSMITH, N. | ELLENBURGER | ECTOR | 1954 | 8896 | 5,595,412 | | 35654664 | 8 | GOLDSMITH, N. | SAN ANDRES, CON. | ECTOR | 1964 | 4500 | 22,178,175 | | 35654830
35659125 | 8
8 | GOLDSMITH, N.
GOLDSMITH, W. | SILURIAN
CLEAR FORK, UP. | ECTOR | 1948
1956 | 8255
5640 | 1,524,694
9,675,776 | | 35659375 | 8 | GOLDSMITH, W. | ELLENBURGER | ECTOR | 1954 | 9428 | 4,018,423 | | 35659625 | 8 | GOLDSMITH, W. | SAN ANDRES | ECTOR | 1956 | 4280 | 6,843,367 | | 35659500
35708670 | 8
8 | GOLDSMITH, W.
GOMEZ | FUSSELMAN
WOLFCAMP UPPER | ECTOR
PECOS | 1955
1977 | 8294
10620 | 2,672,229
1,227,066 | | 36924500 | 8 | GRICE | DELAWARE | LOVING | 1956 | 4510 | 10,207,517 | | 37821710 | 8 | H. S. A. | PENNSYLVANIAN | WARD | 1960 | 8808 | 3,516,869 | | 37821900
38227333 | 8
8 | H. S. A.
HALLANAN | SAN ANDRES
STRAWN | WARD
MIDLAND | 1979
1952 | 4485
10570 | 1,491,427
4,202,854 | | 38255116 | 8 | HALLEY | CLEAR FORK | WINKLER | 1961 | 5162 | 2,881,280 | | 38255174 | 8 | HALLEY | DEVONIAN | WINKLER | 1956 | 9884 | 3,425,981 | | 38255406
38255464 | 8
8 | HALLEY
HALLEY | GLORIETA
MONTOYA | WINKLER
WINKLER | 1957
1956 | 5006
10350 | 4,333,697
2,969,405 | | 38255001 | 8 | HALLEY | MONTOTA | WINKLER | 1939 | 3150 | 44,608,756 | | 38260664 | 8 | HALLEY, SOUTH | QUEEN SAND | WINKLER | 1960 | 3113 | 4,788,167 | | 39176332
39176498 | 8
8 | HARPER
HARPER | DEVONIAN
ELLENBURGER | ECTOR
ECTOR | 1962
1962 | 10005
12436 | 10,515,508
23,900,923 | | 39176830 | 8 | HARPER | STRAWN | ECTOR | 1962 | 9028 | 1,014,517 | | 39176001 | 8 | HARPER | OL ODIETA | ECTOR | 1933 | 4300 | 50,261,732 | | 39176690
39182666 | 8
8 | HARPER
HARPER, SE. | GLORIETA
ELLEN. | ECTOR
ECTOR | 1988
1965 | 5500
12505 | 1,118,476
1,829,238 | | 39969400 | 8 | HEADLEE | DEVONIAN | ECTOR | 1953 | 11756 | 14,167,925 | | 39969600 | 8 | HEADLEE | ELLENBURGER | ECTOR | 1953 | 13106 | 38,326,414 | | 39971500
40354001 | 8
8 | HEADLEE, N.
HENDERSON | DEVONIAN | ECTOR
WINKLER | 1956
1936 | 12210
3030 | 6,195,590
16,617,751 | | 40406001 | 8 | HENDRICK | | WINKLER | 1926 | 3100 | 265,038,391 | | 40752500 | 8 | HERRELL, EAST | QUEEN SAND | STERLING | 1953 | 1454 | 4,793,966 | | 42971166
42971001 | 8
8 | HOWARD GLASSCOCK HOWARD GLASSCOCK | CLEAR FORK,MI | HOWARD
HOWARD | 1970
1925 | 3705
3200 | 6,808,390
403,182,614 | | 42971332 | 8 | HOWARD-GLASSCOCK | GLORIETA | HOWARD | 1925 | 3200 | 39,431,415 | | 42971664 | 8 | HOWARD-GLASSCOCK | WOLFCAMP 7400 | HOWARD | 1970 | 7441 | 6,178,414 | | 43106200
43878600 | 8
8 | HUBBARD
HUTEX | CHERRY CANYON
DEAN | LOVING
ANDREWS | 1982
1959 | 5286
9595 | 1,145,161
2,273,165 | | 43878800 | 8 | HUTEX | DEVONIAN | ANDREWS | 1953 | 12509 | 48,354,343 | | 43926600 | 8 | HUTTO, SOUTH | WOLFCAMP | HOWARD | 1964
1957 | 7421 | 3,330,447 | | 44147500
44148500 | 8
8 | IATAN
IATAN, EAST HOWARD | SAN ANDRES | MITCHELL
HOWARD | 1926 | 2364
2700 | 2,350,479
168,656,507 | | 44149001 | 8 | IATAN, NORTH | | HOWARD | 1943 | 2908 | 3,791,827 | | 44521350 | 8 | INEZ | DEEP | ANDREWS | 1989
1961 | 11500 | 4,349,034 | | 44521498
45582200 | 8
8 | INEZ
JAMESON N. | ELLENBURGER
ELLEN | ANDREWS
MITCHELL | 1978 | 12505
7157 | 16,436,191
1,602,269 | | 45582666 | 8 | JAMESON, NORTH | STRAWN | MITCHELL | 1953 | 5866 | 9,622,521 | | 45680500 | 8 | JANELLE, SE. | TUBB | WARD | 1962
1982 | 5344
3802 | 4,843,708 | | 46296300
47007380 | 8 | JESS BURNER
JOHNSON | DELAWARE 3800
GLORIETA | REEVES
ECTOR | 1982 | 5452 | 2,828,941
8,122,905 | | 47007400 | 8 | JOHNSON | HOLT | ECTOR | 1973 | 5303 | 12,446,922 | | 47007600
47007001 | 8
8 | JOHNSON
JOHNSON | PENN | ECTOR
ECTOR | 1973
1934 | 9261
4200 | 1,132,603
35,981,707 | | 47007001
47267076 | 8 | JORDAN | CONNELL SAND | ECTOR | 1934 | 8830 | 4,445,230 | | 47267228 | 8 | JORDAN | ELLENBURGER | ECTOR | 1947 | 8914 | 31,726,443 | | 47267304 | · · 8 | JORDAN | FUSSELMAN
PENNSYLVANIAN | ECTOR
CRANE | 1951
1953 | 7420
7830 | 1,704,012
2,104,294 | | 47267456
47267608 | 8
8 | JORDAN
JORDAN | TUBB | ECTOR | 1948 | 7630
5250 | 2,104,294
3,416,506 | | · · · - | | | | | | | | | RRC_RESN | RRC | FLDNAME | RESNAME | COUNTY | DISCYR | DEPTHTOP |
CUMPROD | |----------------------|---------------|---|-----------------------------|--------------------|--------------|----------------|---------------------------| | 47267001 | 8 | JORDAN | DEL ALMADE | CRANE | 1937 | 3700 | 90,771,561 | | 48754500
49038071 | 8
8 | KEN REGAN
KERMIT | DELAWARE
ELLENBURGER | REEVES
WINKLER | 1954
1943 | 3350
10744 | 4,370,922
5,521,825 | | 49038001 | 8 | KERMIT | LELENDONOLN | WINKLER | 1928 | 2800 | 111,012,043 | | 49043333 | 8 | KERMIT, SE. | TUBB | WINKLER | 1965 | 6211 | 1,012,432 | | 49042250
49129066 | 8
8 | KERMIT, SOUTH
KEYSTONE | DEVONIAN-OIL
CLEAR FORK | WINKLER
WINKLER | 1957
1958 | 8220
5739 | 9,656,276
5,291,790 | | 49129132 | 6
B | KEYSTONE | COLBY | WINKLER | 1939 | 3300 | 75,325,366 | | 49129198 | 8 | KEYSTONE | DEVONIAN | WINKLER | 1946 | 8040 | 15,403,476 | | 49129330 | 8 | KEYSTONE | ELLENBURGER | WINKLER | 1943 | 9524 | 146,847,044 | | 49129396
49129594 | 8 | KEYSTONE
KEYSTONE | HOLT
SAN ANDRES | WINKLER
WINKLER | 1943
1960 | 4800
4465 | 44,955,406
4,308,999 | | 49129660 | 8 | KEYSTONE | SILURIAN | WINKLER | 1955 | 8500 | 30,949,283 | | 49133001 | 8 | KEYSTONE, SOUTH | | WINKLER | 1958 | 6470 | 3,276,871 | | 49138100
49411500 | 8 | KEYSTONE, SW. | SAN ANDRES
ELLENBURGER | WINKLER
ECTOR | 1981
1988 | 4446
11082 | 1,306,447 | | 51152500 | 8
8 | KING LAKE
LACAFF | DEAN | MARTIN | 1969 | 9490 | 2,059,844
8,111,254 | | 52497333 | 8 | LAWSON | SAN ANDRES | ECTOR | 1950 | 4320 | 16,068,261 | | 52567500 | 8 | LAZY R | STRAWN DETRITUS | ECTOR | 1963 | 8307 | 1,211,321 | | 52624200
52624300 | 8
8 | LEA · | CONNELL
ELLENBURGER | CRANE
CRANE | 1953
1953 | 8178
8165 | 3,431,877
20,496,500 | | 52624800 | 8 | LEA | SAN ANDRES | CRANE | 1955 | 3075 | 10,167,344 | | 52624900 | 8 | LEA | TUBB | CRANE | 1955 | 4448 | 1,842,206 | | 53000830
53002666 | 8
8 | LEHN-APCO
LEHN-APCO, NORTH | 1600
1600 | PECOS
PECOS | 1939
1946 | 1700
1945 | 3,296,731
3,200,802 | | 53002000 | 8 | LEHN-APCO, SOUTH | ELLEN | PECOS | 1977 | 4740 | 1,210,952 | | 53989250 | 8 | LITTLE JOE | DELAWARE | WINKLER | 1965 | 5034 | 1,728,191 | | 54116500 | 8 | LITTMAN | SAN ANDRES | ANDREWS | 1951 | 4313 | 1,390,768 | | 55256284
55256710 | 8
8 | LOWE | ELLENBURGER
SILURIAN | ANDREWS
ANDREWS | 1957
1953 | 13314
12818 | 11,896,530
14,948,341 | | 55818333 | 8 | LUTHER, NORTH | CANYON REEF | HOWARD | 1952 | 7950 | 1,789,764 | | 55822500 | 8 | LUTHER, SE. | SILURIAN-DEVONIAN | HOWARD | 1953 | 9855 | 28,797,594 | | 55953250
56082500 | 8
8 | LYLES
M.A.K. | CLEAR FORK
SPRABERRY | CRANE
MARTIN | 1970
1963 | 3170
8501 | 2,423,992
1,995,628 | | 56159200 | 8 | M.F.E. | GRAYBURG | ANDREWS | 1991 | 4936 | 3,556,164 | | 56378001 | 8 | MABEE | | ANDREWS | 1943 | 4704 | 115,007,221 | | 56761001
56766001 | 8.
8 | MAGNOLIA SEALY
MAGNOLIA SEALY, SOUTH | | WARD
WARD | 1939
1940 | 3000
2847 | 5,774,660
3,580,223 | | 56822125 | 8 | MAGUTEX | DEVONIAN | ANDREWS | 1953 | 12504 | 48,627,371 | | 56822250 | 8 | MAGUTEX | ELLENBURGER | ANDREWS | 1952 | 13840 | 17,610,065 | | 56822625 | 8 | MAGUTEX | QUEEN SAND | ANDREWS
PECOS | 1958
1949 | 4862
1964 | 4,868,087 | | 56949500
57324650 | 8
8 | MALICKY
MARALO | QUEEN SAND
WOLFCAMP | PECOS | 1949 | 11055 | 3,604,412
1,200,187 | | 57774275 | 8 | MARTIN | CONSOLIDATED | ANDREWS | 2000 | 7490 | 8,977,662 | | 57774332 | 8 | MARTIN | ELLENBURGER | ANDREWS | 1946 | 8400 | 36,536,319 | | 57774498
57774581 | 8
8 | MARTIN
MARTIN | MCKEE
SAN ANDRES | ANDREWS
ANDREWS | 1945
1945 | 8300
4300 | 6,816,298
2,920,470 | | 57774664 | 8 | MARTIN | TUBB | ANDREWS | 1955 | 6260 | 2,115,646 | | 58099001 | 8 . | MASON | DEL 4144 DE 0441D | LOVING | 1937 | 3900 | 3,020,075 | | 58101500
58164001 | 8
8 | MASON, N.
MASTERSON | DELAWARE SAND | LOVING
PECOS | 1952
1929 | 4055
1500 | 6,709,456
2,723,125 | | 59304250 | 8 | MCDOWELL | SAN ANDRES | GLASSCOCK | 1964 | 2341 | 2,526,387 | | 59337001 | 8 | MCELROY | | CRANE | 1926 | 2900 | 569,725,971 | | 59339500 | 8
8 | MCELROY, NORTH
MCELROY, NORTH | ELLENBURGER
SILURIAN | CRANE | 1973
1973 | 12024
11049 | 3,430,675
1,015,002 | | 59339700
59419166 | 8 | MCFARLAND | ELLENBURGER | ANDREWS | 1961 | 13898 | 5,636,171 | | 59419498 | 8 | MCFARLAND | PENNSYLVANIAN | ANDREWS | 1956 | 10423 | 5,053,412 | | 59419664 | 8 | MCFARLAND | QUEEN | ANDREWS | 1955
1955 | 4790
9134 | 42,782,895 | | 59419830
59420500 | - 8
- 8 | MCFARLAND
MCFARLAND, EAST | WOLFCAMP
QUEEN | ANDREWS | 1955 | 4789 | 8,558,308
2,560,021 | | 59563333 | 8 | MCKEE | CLEAR FORK, LOWER | CRANE | 1950 | 4050 | 1,078,221 | | 60137500 | 8 | MEANS | QUEEN SAND | ANDREWS | 1954 | 4024 | 39,045,231 | | 60137001
60138500 | 8
8 | MEANS
MEANS, EAST | STRAWN | ANDREWS
ANDREWS | 1934
1954 | 4400
10616 | 232,243,704
4,041,930 | | 60139500 | . 8 | MEANS, N. | QUEEN SAND | GAINES | 1955 | 4341 | 8,270,696 | | 60142750 | 8 | MEANS, SOUTH | WOLFCAMP | ANDREWS | 1956 | 9378 | 7,257,075 | | 60873426
60874500 | 8
8 | METZ
METZ, EAST | GLORIETTA
ELLENBURGER | ECTOR
ECTOR | 1959
1961 | 4426
9046 | 1,802,537
2,984,224 | | 61046250 | 8 | MIDDLETON | CANYON REEF | HOWARD | 1986 | 8536 | 1,285,697 | | 61118332 | 8 | MIDLAND FARMS | ELLENBURGER | ANDREWS | 1952 | 12672 | 50,853,026 | | 61118830
61118001 | 8
8 | MIDLAND FARMS MIDLAND FARMS | WOLFCAMP | ANDREWS
ANDREWS | 1954
1945 | 9539
4800 | 15,397,011
161,255,366 | | 61130001 | 8 | MIDLAND FARMS DEEP | | ANDREWS | 1986 | 11924 | 13,227,411 | | 61121666 | 8 | MIDLAND FARMS, NE. | ELLENBURGER | ANDREWS | 1953 | 12540 | 7,643,557 | | 61120500 | 8 | MIDLAND FARMS, NORTH | GRAYBURG LIBBER | ANDREWS | 1953
1969 | 4943
4780 | 16,927,251 | | 61119333
61143400 | 8 · · | MIDLAND FARMS,E
MID-MAR, EAST | GRAYBURG UPPER
FUSSELMAN | ANDREWS
MIDLAND | 1969 | 11711 | 2,460,219
2,750,895 | | 61473500 | 8 | MILLER BLOCK B-29 | PENN. | WARD | 1959 | 8104 | 2,737,993 | | 62415083 | 8 | MONAHANS | CLEAR FORK | WARD | 1945 | 4750
10550 | 19,445,953 | | 62415332
62415415 | 8
8 · | MONAHANS
MONAHANS | ELLENBURGER
FUSSELMAN | WARD
WARD | 1942
1954 | 10550
8336 | 5,318,009
1,262,546 | | 62415747 | 8 | MONAHANS | QUEEN SAND | WARD | 1960 | 3269 | 6,505,467 | | 62416666 | 8 | MONAHANS, E. | PENN., LO. | WINKLER | 1964 | 8873 | 1,325,184 | | RRC_RESN | RRC | FLDNAME | RESNAME | COUNTY | DISCYR | DEPTHTOP | CUMPROD | |----------------------|------------|------------------------------|---------------------------------------|---------------------|--------------|---------------|-------------------------| | 62417360 | 8 | MONAHANS, N. | ELLENBURGER | WINKLER | 1955 | 11990 | 8,663,172 | | 62418666 | 8 | MONAHANS, NE. | PENN DETRITAL, UP | WINKLER | 1968 | 8128 | 3,878,539 | | 62417110 | 8 | MONAHANS, NORTH | CLEARFORK | WINKLER | 1987 | 5610 | 1,146,607 | | 62417270 | 8 | MONAHANS, NORTH | DEVONIAN | WINKLER | 1955 | 9447 | 6,347,324 | | 62417450 | 8 | MONAHANS, NORTH | FUSSELMAN | WINKLER | 1957 | 10026 | 1,944,511 | | 62417630 | 8 | MONAHANS, NORTH | MONTOYA | WINKLER | 1956 | 10080 | 1,036,863
8,027,310 | | 62420666 | 8
8 | MONAHANS, SOUTH | QUEEN | WARD
WARD | 1961
1931 | 3108
4600 | 4,146,637 | | 62494001
62703200 | 8 | MONROE
MOONLIGHT | ELLENBURGER | MIDLAND | 1983 | 13325 | 1,014,717 | | 62703400 | . 8 | MOONLIGHT | MISSISSIPPIAN | MIDLAND | 1984 | 11599 | 1,162,891 | | 62711300 | 8 | MOORE | DEEP FSLM | HOWARD | 1982 | 10032 | 5,073,129 | | 62711001 | 8 | MOORE | | HOWARD | 1937 | 3200 | 15,258,997 | | 62781500 | 8 | MOOSE | QUEEN | ECTOR | 1958 | 4512 | 9,078,764 | | 63143500 | 8 | MOSS | GRAYBURG | ECTOR | 1955 | 3543 | 1,627,164 | | 64890500 | 8 | NELSON | ELLENBURGER | ANDREWS | 1946 | 10384 | 5,070,077 | | 64890750 | 8 | NELSON | WICHITA | ANDREWS | 1948 | 7160
2400 | 2,354,254 | | 64995001 | - 8
8 | NETTERVILLE
NIX | CLEARFORK | PECOS
ANDREWS | 1934
1989 | 7036 | 3,325,351
2,269,877 | | 65567300
65572001 | 8 | NIX, SOUTH | CLEAN ONK | ANDREWS | 1954 | 7386 | 3,279,283 | | 65766111 | 8 | NOLLEY | CANYON | ANDREWS | 1967 | 10384 | 2,131,200 | | 65766333 | 8 | NOLLEY | DEVONIAN | ANDREWS | 1967 | 12311 | 4,321,428 | | 65766444 | 8 | NOLLEY | ELLEN. | ANDREWS | 1968 | 13939 | 2,678,693 | | 65766888 | 8 | NOLLEY | WOLFCAMP | ANDREWS | 1951 | 9227 | 30,459,183 | | 65967400 | 8 | NORMAN | DEVONIAN | GAINES | 1961 | 12214 | 7,734,263 | | 65967600 | 8 | NORMAN | ELLENBURGER | GAINES | 1970 | 13865 | 2,195,849 | | 66588001 | 8 | OATES
OCEANIC | PENNSYLVANIAN | PECOS
HOWARD | 1947
1953 | 790
8140 | 1,595,709
24,059,565 | | 66669500
66672500 | 8
8 | OCEANIC, N.E. | PENNSYLVANIAN | BORDEN | 1968 | 8135 | 1,495,837 | | 67074500 | 8 | OLDS | DELAWARE | REEVES | 1958 | 3029 | 1,340,153 | | 67604500 | 8 | ORLA, SOUTH | DELAWARE SAND | REEVES | 1953 | 3562 | 1,044,747 | | 68222080 | 8 | P&P | DEVONIAN | CRANE | 1995 | 5508 | 1,375,704 | | 69193426 | 8 | PARKER | GRAYBURG, SAN ANDRES | ANDREWS | 1935 | 4800 | 4,322,184 | | 69193568 | 8 | PARKER | PENNSYLVANIAN | ANDREWS | 1954 | 9087 | 8,334,854 | | 69193710 | 8 | PARKER | WOLFCAMP | ANDREWS | 1953 | 8554 | 5,501,626 | | 69200500 | 8 | PARKER, WEST | PENN. | ANDREWS | 1967 | 9046
10440 | 1,151,180 | | 69233498
69233664 | 8
8 | PARKS
PARKS | PENNSYLVANIAN
SPRABERRY | MIDLAND
MIDLAND | 1950
1957 | 7770 | 15,249,943
7,815,355 | | 69233400 | 8 | PARKS | FUSSELMAN-MONTOYA | MIDLAND | 1983 | 12405 | 1,143,084 | | 69351166 | 8 | PAROCHIAL-BADE | CLEAR FORK | STERLING | 1954 | 2211 | 4,764,467 | | 69351498 | 8 | PAROCHIAL-BADE | QUEEN SAND | STERLING | 1951 | 1103 | 2,031,854 | | 69873001 | 8 | PAYTON | * | PECOS | 1938 | 2000 | 14,835,765
 | 70129348 | 8 | PECOS VALLEY | DEVONIAN 5400 | PECOS | 1953 | 5771 | 8,388,267 | | 70129580 | . 8 | PECOS VALLEY | HIGH GRAVITY | PECOS | 1928 | 1800 | 20,014,222 | | 70129638 | 8 | PECOS VALLEY | LOW GRAVITY | PECOS | 1928 | 1600 | 6,747,210 | | 70129812 | 8 | PECOS VALLEY | PERMIAN, LOWER | PECOS
ECTOR | 1956
1948 | 5140
4410 | 3,236,057
2,805,483 | | 70537924
70537066 | 8
8 | PENWELL
PENWELL | 4500
CLEAR FORK | ECTOR | 1953 | 4996 | 1,878,499 | | 70537330 | 8 | PENWELL | ELLENBURGER | ECTOR | 1946 | 8888 | 14,203,574 | | 70537396 | 8 | PENWELL | FUSSELMAN | ECTOR | 1953 | 7490 | 1,848,684 | | 70537462 | 8 | PENWELL | GLORIETA | ECTOR | 1953 | 4420 | 7,345,775 | | 70537001 | 8 | PENWELL | | ECTOR | 1926 | 3800 | 100,075,474 | | 70661300 | 8 | PERRIWINKLE | CANYON | MARTIN | 1985 | 9420 | 1,062,980 | | 71267500 | 8 | PHOENIX | GRAYBURG | MARTIN | 1972 | 3930 | 4,620,068 | | 71542400 | 8 | PINAL DOME | CHERRY CANYON
8300 | LOVING
GLASSCOCK | 1984
1982 | 6485
8552 | 1,432,297
2,181,282 | | 72810500
73103666 | 8
8 | POWELL
PRICHARD | ELLENBURGER | ANDREWS | 1953 | 13475 | 1,061,819 | | 73167500 | 8 | PRIEST & BEAVERS | QUEEN | PECOS | 1957 | 2180 | 2,387,501 | | 73926500 | 8 | QUITO | DELAWARE SAND | WARD | 1953 | 4934 | 2,444,299 | | 73933500 | 8 | QUITO, WEST | DELAWARE | WARD | 1955 | 4732 | 5,329,219 | | 74793333 | 8 | RATLIFF | ELLENBURGER | ECTOR | 1954 | 13559 | 3,368,635 | | 76184333 | 8 | RHODA WALKER | CANYON 5900 | WARD | 1967 | 6192 | 17,234,663 | | 74041100 | . 8 | RK | DEVONIAN | MARTIN | 1975 | 11815
3000 | 21,538,949 | | 77247600 | 8 | ROBERDEAU | CLEAR FORK, UPPER
CLEAR FORK LOWER | CRANE
CRANE | 1963
1965 | 3330 | 2,149,749
1,184,878 | | 77252111
77252888 | - 8
- 8 | ROBERDEAU, S. ROBERDEAU, S. | TUBB | CRANE | 1967 | 3321 | 2,161,929 | | 77953250 | 8 | ROJO CABALLOS | DELAWARE | PECOS | 1962 | . 5253 | 1,097,828 | | 78279300 | 8 | ROSE CREEK, N | WOLFCAMP | STERLING | 1982 | 5084 | 1,582,370 | | 78936600 | 8 | RUNNING W | TUBB | CRANE | 1962 | 4340 | 1,197,246 | | 78936800 | 8 | RUNNING W | WADDELL | CRANE | 1954 | 6148 | 25,266,119 | | 78938500 | 8 | RUNNING W, N. | HOLT | CRANE | 1964 | 4008 | 1,093,983 | | 79131666 | 8 | RUWE-COB | PENN REEF | HOWARD
REEVES | 1967
1958 | 7424
2968 | 1,207,162
5,913,660 | | 79423500 | 8
8 | SABRE
SAINT LAWRENCE | DELAWARE
STRAWN | GLASSCOCK | 1983 | 9890 | 1,469,268 | | 79659700
80473248 | 8 | SAINT LAWRENCE
SAND HILLS | JUDKINS | CRANE | 1960 | 3000 | 12,616,500 | | 80473310 | 8 | SAND HILLS | MCKNIGHT | CRANE | 1944 | 3420 | 128,500,389 | | 80473372 | 8 | SAND HILLS | ORDOVICIAN | CRANE | 1936 | 6300 | 13,143,342 | | 80473620 | 8 | SAND HILLS | SAN ANGELO, UPPER | CRANE | 1963 | . 3618 | 3,375,873 | | 80473682 | 8 | SAND HILLS | TUBB | CRANE | 1930 | 4500 | 102,067,768 | | 80473868 | 8 | SAND HILLS | WOLFCAMP | CRANE | 1958 | 5684 | 2,537,187 | | 80474500 | 8 | SAND HILLS, EAST | ELLENBURGER | CRANE | 1968 | 5703 | 2,253,367 | | 80475500 | 8 | SAND HILLS, N. | ELLENBURGER | CRANE,
CRANE | 1957
1943 | 6030
3883 | 1,177,511
2,899,960 | | 80481001
81021250 | 8
8 | SAND HILLS, WEST
SARA-MAG | CANYON REEF | HOWARD | 1943 | 7580 | 3,937,283 | | 0 102 1230 | 9 | 5, (A-11/A-0 | J O | | | | -,, | | RRC_RESN | RRC | FLDNAME | RESNAME | COUNTY | DISCYR | DEPTHTOP | CUMPROD | |----------------------|------------|---|--|----------------------|--------------|----------------|--------------------------| | 81392001 | 8 | SCARBOROUGH | | WINKLER | 1927 | 3200 | 37,034,546 | | 81394001 | 8 | SCARBOROUGH, NORTH | | WINKLER | 1947 | 3286 | 3,443,096 | | 81738200
81738250 | 8
8 | SCOTT
SCOTT | CHERRY CANYON
DELAWARE | REEVES
WARD | 1978
1946 | 6134
4239 | 1,013,358
5,416,369 | | 81821333 | 8 | SCREWBEAN, NE. | DELAWARE | REEVES | 1961 | 2519 | 1,224,697 | | 81952500 | 8 | SEALY, SOUTH | YATES | WARD | 1946 | 2700 | 1,229,767 | | 82275500 | 8 | SERIO | GRAYBURG | ANDREWS | 1970 | 4806 | 4,834,677 | | 82570100
82570200 | · 8 | SHAFTER LAKE
SHAFTER LAKE | CLEAR FORK
DEVONIAN | ANDREWS
ANDREWS | 1948
1947 | 6910
9425 | 10,252,003
27,459,338 | | 82570300 | 8 | SHAFTER LAKE | ELLENBURGER | ANDREWS | 1948 | 11685 | 6,629,516 | | 82570500 | 8 | SHAFTER LAKE | SAN ANDRES | ANDREWS | 1953 | 4482 | 49,810,814 | | 82570600 | 8 | SHAFTER LAKE | WOLFCAMP | ANDREWS | 1951 | 8405 | 12,195,348 | | 82570700
82572666 | 8 | SHAFTER LAKE
SHAFTER LAKE, N. | YATES
SAN ANDRES | ANDREWS
ANDREWS | 1952
1952 | 3054
4559 | 1,951,628
1,231,741 | | 82822001 | 8 | SHEARER | SAN ANDICES | PECOS | 1938 | 1400 | 4,684,529 | | 82864664 | 8 | SHEFFIELD | ELLENBURGER | PECOS | 1952 | 9272 | 2,366,006 | | 83292500 | 8 | SHIPLEY | QUEEN SAND | WARD | 1928 | 3075 | 29,037,233 | | 83977500
84257333 | 8
8 | SLATOR
SMITH | SAN ANDRES
CLEAR FORK | ECTOR
ANDREWS | 1957
1950 | 4172
7340 | 2,416,337
1,213,636 | | 84469001 | 8 | SNYDER | OLLAKT OKK | HOWARD | 1937 | 2800 | 43,595,719 | | 85104001 | . 8 | SPENCER | | WARD | 1941 | 2900 | 3,071,702 | | 85280300 | 8 | SPRABERRY | TREND AREA | MIDLAND | 1952 | 8000 | 489,365,061 | | 85280400
85280500 | 8
8 | SPRABERRY
SPRABERRY | TREND AREA CL. FK. TREND AREA DEAN-WLFCP | MIDLAND
GLASSCOCK | 1955
1966 | 7000
9022 | 3,375,768
10,704,270 | | 87018550 | 8 | SUGG RANCH | CANYON DIST 08 | STERLING | 1987 | 7860 | 6,483,258 | | 87025500 | 8 | SULLIVAN | DELAWARE | REEVES | 1957 | 2665 | 1,861,453 | | 87073333 | 8 | SULPHUR DRAW | DEAN 8790 | MARTIN | 1966 | 9442 | 13,147,477 | | 87143500 | 8 | SUN VALLEY N | TUBB, LOWER | PECOS
PECOS | 1969
1969 | 3272
3363 | 1,874,552 | | 87145500
87599284 | 8 ·
8 | SUN VALLEY, N.
SWEETIE PECK | TUBB, LOWER
ELLENBURGER | MIDLAND | 1950 | 13128 | 1,261,965
10,038,376 | | 87599568 | 8 | SWEETIE PECK | PENNSYLVANIAN | MIDLAND | 1960 | 10342 | 2,158,236 | | 88071928 | 8 | TXL | WOLFCAMP, NORTH | ECTOR | 1959 | 7535 | 4,584,422 | | 88073500 | 8 | T X L, NORTH | WADDELL | ECTOR | 1961 | 9386 | 2,716,712 | | 88562001
88567700 | 8
8 | TAYLOR LINK
TAYLOR LINK W. | SAN ANDRES | PECOS
PECOS | 1929
1984 | 1800
1800 | 15,896,612
1,640,304 | | 89408205 | 8 | THISTLE | CABALLOS NOVACULITE | PECOS | 1984 | 2679 | 1,291,062 | | 89690250 | 8 | THREE BAR | DEVONIAN | ANDREWS | 1945 | 8385 | 41,023,054 | | 90286001 | 8 | TOBORG | ************************************** | PECOS | 1929 | 500 | 43,045,830 | | 90781200 | 8 | TORO n | DELAWARE | REEVES
STERLING | 1961
1963 | 5158
6746 | 1,059,893 | | 91336498
91350100 | 8 | TRIPLE M
TRIPLE-N | WOLFCAMP UPPER DEVONIAN | ANDREWS | 1957 | 10600 | 3,109,333
1,072,723 | | 91350300 | 8 | TRIPLE-N | GRAYBURG | ANDREWS | 1964 | 4338 | 8,690,502 | | 91350600 | 8 | TRIPLE-N | PENN., UPPER | ANDREWS | 1958 | 8912 | 16,084,222 | | 91450333 | 8 | TROPORO | DEVONIAN | CRANE | 1957 | 5404 | 5,576,672 | | 91455500
91630001 | 8 ·
8 | TROPORO, N
TUCKER | DEVONIAN | CRANE
CRANE | 1979
1946 | 5555
5770 | 1,261,495
2,241,122 | | 91803200 | 8 | TUNIS CREEK | DEVONIAN | PECOS | 1982 | 6835 | 3,607,730 | | 91817001 | 8 | TUNSTILL | | REEVES | 1947 | 3270 | 12,199,635 | | 91818500 | 8 | TUNSTILL, EAST | DELAWARE | LOVING | 1959 | 3652 | 2,870,757 | | 91903333 | 8
8 | TURNER-GREGORY | CLEAR FORK | MITCHELL | 1955
1957 | 2668
4895 | 10,555,530
14,599,875 | | 92141333
88071174 | . 8 | TWOFREDS
TXL | DELAWARE
DEVONIAN | LOVING
ECTOR | 1944 | 4895
8050 | 58,747,516 | | 88071232 | 8 | TXL | DEVONIAN-MAIN PAY G | ECTOR | 1970 | 8075 | 2,465,157 | | 88071290 | 8 | TXL | ELLENBURGER | ECTOR | 1949 | 9600 | 129,551,707 | | 88071522 | . 8 | TXL | PENNSYLVANIAN | ECTOR | 1956 | 8450 | 1,045,392 | | 88071580
88071638 | 8
8 | TXL
TXL | SAN ANDRES
SILURIAN | ECTOR
ECTOR | 1952
1946 | 4380
8465 | 12,508,307
9,307,489 | | 88071696 | 8 | TXL | TUBB | ECTOR | 1950 | 6158 | 56,553,202 | | 92304500 | 8 | USM | QUEEN | PECOS | 1964 | 3368 | 2,219,718 | | 92450001 | 8 | UNION | | ANDREWS | 1943 | 7459 | 16,655,594 | | 92548250 | 8 | UNIVERSITY BLOCK 13 | DEVONIAN | ANDREWS | 1960
1960 | 8826 | 1,478,228
14,978,243 | | 92548500
92534250 | 8 | UNIVERSITY BLOCK 13
UNIVERSITY BLOCK 9 | ELLEN.
DEVONIAN | ANDREWS
ANDREWS | 1954 | 10800
10450 | 23,606,166 | | 92534500 | . 8 | UNIVERSITY BLOCK 9 | PENN. | ANDREWS | 1954 | 8956 | 15,782,648 | | 92534750 | 8 | UNIVERSITY BLOCK 9 | WOLFCAMP | ANDREWS | 1953 | 8430 | 28,350,317 | | 92618125 | 8 | UNIVERSITY WADDELL | DEVONIAN | CRANE | 1949 | 9040 | 70,267,302 | | 92618250 | 8 | UNIVERSITY WADDELL | ELLENBURGER | CRANE
HOWARD | 1947
1955 | 10620
3080 | 9,039,824
6,542,943 | | 93233333
93308001 | 8
8 | VAREL
VEALMOOR | SAN ANDRES | HOWARD | 1948 | 7934 | 39,565,153 | | 93310001 | 8 | VEALMOOR, EAST | | HOWARD | 1950 | 7414 | 62,692,195 | | 93485300 | 8 | VENTEAM | ELLENBURGER | ECTOR | 1995 | 13250 | 1,996,282 | | 93852750 | 8 | VINCENT | CLEAR FORK, LOWER | HOWARD | 1977 | 4410 | 3,111,060 | | 93854500
93857500 | . 8
. 8 | VINCENT, N.
VINCENT, S. | PENNSYLVANIAN REEF
STRAWN | HOWARD
HOWARD | 1957
1964 | 7444
7839 | 2,558,261
1,195,546 | | 93860500 | 8 | VINCENT, WEST | PENN. | HOWARD | 1957 | 7454 | 1,116,613 | | 93958100 | 8 | VIREY | CONSOLIDATED | MIDLAND | 1995 | 10844 | 3,429,592 | | 93958250 | 8 | VIREY | ELLENBURGER | MIDLAND | 1954 | 13276 | 30,877,195 | | 93958375 | 8 | VIREY | FUSSELMAN | MIDLAND | 1955 | 12234
4299 | 1,425,380 | | 93958525
94439400 | 8
8 | VIREY
W. T. FORD | QUEEN
ELLENBURGER | MIDLAND
ECTOR | 1988
1991 | 4299
12260 | 1,991,053
1,072,228 | | 94439400 | 8 | W.A.M., SOUTH | FUSSELMAN | STERLING | 1965 | 8677 | 2,470,860 | | 94482001 | 8 | WADDELL | | CRANE | 1927 | 3500 |
108,369,174 | | 94640500 | 8 | WAGON WHEEL | PENN | WARD | 1979 | 8812 | 9,445,581 | | | | | | | | | | | RRC_RESN | RRC | FLDNAME | RESNAME | COUNTY | DISCYR | DEPTHTOP | CUMPROD | |----------------------|---------------|-------------------------------------|---------------------------------------|--------------------|--------------|---------------------|--------------------------| | 94648166 | 8 ; | WAHA | DELAWARE | PECOS | 1960 | 7 4800 | 1,535,150 | | 94650333 | 8 | WAHA, NORTH | DELAWARE SAND | REEVES | 1960 | 4917 | 6,771,248 | | 94656086
94656111 | 8
8 | WAHA, W.
WAHA, WEST | CONSOLIDATED DELAWARE DELAWARE | REEVES
REEVES | 1974
1961 | 6504
5034 | 2,843,944 | | 94747001 | 8 | WALKER | DELIVARE | PECOS | 1940 | 2016 | 2,514,728
9,482,673 | | 95138406 | 8 | WARD, SOUTH | PENN. DETRI.,UP. | WARD | 1963 | 7700 | 1,631,943 | | 95138001
95152475 | 8
8 | WARD, SOUTH | WICHITA ALBANY | WARD | 1938 | 2700 | 108,366,864 | | 95152475 | 8 | WARD-ESTES, N.
WARD-ESTES, NORTH | WICHITA - ALBANY | WARD
WARD | 1995
1929 | 6581
3000 | 1,247,410
412,799,795 | | 95108090 | 8 | WAR-SAN | CONSOLIDATED | MIDLAND | 1995 | 10794 | 3,223,679 | | 95108375 | 8 | WAR-SAN | ELLENBURGER | MIDLAND | 1954 | 13070 | 14,916,750 | | 95108500
95122200 | 8
8 | WAR-SAN
WAR-WINK | FUSSELMAN
CHERRY CANYON | MIDLAND
WARD | 1954
1965 | 12514 | 2,095,899 | | 95123875 | 8 | WAR-WINK, E. | 7000 / | WINKLER | 1905 | 6037
7092 | 3,251,201
1,127,453 | | 95129600 | 8 | WAR-WINK, S. | WOLFCAMP | WARD | 1976 | 12758 | 12,741,227 | | 95130900 | 8 | WAR-WINK, W. | WOLFCAMP | WARD | 1976 | 11545 | 2,865,482 | | 95970200
96166333 | 8
8 | WEINER
WELLAW | COLBY SAND
CLEAR FORK, LO. | WINKLER
PECOS | 1941 | 3200 | 9,239,506 | | 96291333 | . 8 | WEMAC | ELLENBURGER | ANDREWS | 1967
1954 | 3094
13306 | 1,181,678
5,847,947 | | 96291666 | 8 | WEMAC | WOLFCAMP | ANDREWS | 1953 | 8708 | 4,239,021 | | 96296500 | 8 | WEMAC, SOUTH | WOLFCAMP | ANDREWS | 1962 | 8786 | 1,701,980 | | 96373400
96563001 | 8
8 | WENTZ
WESTBROOK | CLEAR FORK | PECOS
MITCHELL | 1953
1921 | 2415
3100 | 5,045,383
106,699,704 | | 96565500 | 8 | WESTBROOK, EAST | CLEAR FORK | MITCHELL | 1975 | 3166 | 2,233,993 | | 96742300 | 8 | WHEAT | CHERRY CANYON | LOVING | 1979 | 6610 | 2,118,654 | | 96742001 | 8 | WHEAT | DEMONIAN | LOVING | 1925 | 4300 | 22,583,024 | | 96756200
96756400 | 8 | WHEELER
WHEELER | DEVONIAN
ELLENBURGER | WINKLER
WINKLER | 1945
1942 | 8590
10697 | 10,348,368
17,952,199 | | 96756600 | 8 | WHEELER | SILURIAN | WINKLER | 1945 | 9300 | 2,711,661 | | 96756800 | 8 - | WHEELER | WOLFCAMP | ECTOR | 1959 | 7604 | 5,753,930 | | 96875001 | 8
8 | WHITE & BAKER | VATEO | PECOS | 1934 | 1100 | 5,575,897 | | 97201500
98817775 | 8 | WICKETT, SOUTH
WORSHAM | YATES DELAWARE SAND | WARD
REEVES | 1952
1960 | 2640
4932 | 1,894,254
1,691,018 | | 99070200 | 8 | WYNNE | CLEAR FORK, UP. | CRANE | 1972 | 3090 | 1,435,782 | | 99275250 | 8 | YARBROUGH & ALLEN | DEVONIAN | ECTOR | 1954 | 8505 | 3,569,192 | | 99275375 | 8 | YARBROUGH & ALLEN | ELLENBURGER | ECTOR | 1947 | 10490 | 40,502,338 | | 99275750
99295333 | 8 | YARBROUGH & ALLEN
YATES | WADDELL
SMITH SAND | ECTOR
PECOS | 1950
1944 | 10110
1100 | 1,235,313
4,356,435 | | 99295001 | 8 | YATES | · · · · · · · · · · · · · · · · · · · | PECOS | 1926 | | 1,381,373,107 | | 99409500 | 8 | YORK | ELLENBURGER | ECTOR | 1955 | 12395 | 2,636,804 | | 99583600
99733500 | 8
8 \ | YUCCA BUTTE, W
ZEBULON | STRAWN | PECOS
HOWARD | 1975
1988 | 8304
10324 | 1,889,536 | | 448200 | 8A | ACKERLY | DEAN SAND | DAWSON | 1954 | 8172 | 1,448,904
49,582,865 | | 450375 | 8A | ACKERLY, NORTH | CISCO | DAWSON | 1972 | 8766 | 1,106,255 | | 450900 | 8A | ACKERLY, NORTH | SPRABERRY | DAWSON | 1977 | 7739 | 2,936,419 | | 450250
570500 | 8A
8A | ACKERLY, NORTH
ADAIR | CANYON REEF
WOLFCAMP | DAWSON
TERRY | 1958
1950 | 9154
8505 | 1,198,872
52,422,109 | | 570001 | 8A | ADAIR | VVOLI OVIVII | GAINES | 1947 | 4874 | 66,079,283 | | 573500 | 8A | ADAIR, NORTHEAST | WOLFCAMP | TERRY | 1954 | 8846 | 1,326,016 | | 702750 | 8A | ADCOCK | SPRABERRY | DAWSON | 1972 | 7556 | 1,268,187 | | 1406001
1964333 | 8A
8A | ALEX
ALSABROOK | DEVONIAN | TERRY
GAINES | 1945
1953 | 5150
11135 | 1,623,604
3,815,802 | | 1964666 | 8A | ALSABROOK | WOLFCAMP | GAINES | 1953 | 9125 | 1,053,164 | | 2404333 | 8A | AMROW | DEVONIAN | GAINES | 1954 | 12628 | 15,980,351 | | 2711001 | 8A
8A | ANDREW NOODLE CREEK | CLEAR FORK, LOWER | KENT
HOCKLEY | 1969 | 4010 | 1,063,283 | | 3172500
3177500 | 8A | ANTON
ANTON, SOUTH | STRAWN | HOCKLEY | 1959
1957 | 6502
9952 | 1,045,786
1,178,657 | | 3180001 | 8A | ANTON, WEST | | HOCKLEY | 1950 | 6655 | 2,517,174 | | 3194001 | 8A | ANTON-IRISH | | HALE | 1944 | 5348 | 200,803,233 | | 3250510
5229500 | 8A
8A | APCLARK | STRAWN
WOLFCAMP | BORDEN | 1996 | 8534 | 1,231,864 | | 8234002 | 8A | BALE, EAST
BILLY | ABO | GAINES
LAMB | 1972
1995 | 10005
6674 | 1,636,763
1,168,302 | | 8618375 | 8A | BLACKWATCH | SAN ANDRES | GAINES | 1995 | 4624 | 1,324,791 | | 8930333 | 8A | BLOCK A-7 | DEVONIAN | GAINES | 1959 | 11100 | 1,699,349 | | 9060333
10406500 | 8A | BLOCK D | DEVONIAN
CAN ANDRES | YOAKUM | 1957 | 11923 | 1,931,322 | | 10556500 | 8A
8A | BONANZA
BOOMERANG | SAN ANDRES
PENNSYLVANIAN REEF | COCHRAN
KENT | 1980
1955 | 4893
6582 | 2,070,837
3,293,149 | | 10560500 | 8A | BOOMERANG, S. | STRAWN LIME | KENT | 1964 | 6623 | 5,589,563 | | 11308200 | 8A | BRAHANEY | DEVONIAN | YOAKUM | 1979 | 11372 | 8,824,267 | | 11308333
11308001 | 8A
8A | BRAHANEY
BRAHANEY | MISSISSIPPIAN | YOAKUM | 1960 | 10880
5301 | 4,268,423
54,223,283 | | 11313300 | 8A | BRAHANEY, NORTHWEST | DEVONIAN | YOAKUM | 1945
1982 | 11893 | 14,748,050 | | 11314200 | 8A | BRAHANEY, W. | DEV | YOAKUM | 1981 | 11645 | 1,447,939 | | 11334300 | 8A | BRALLEY | SILURIAN | YOAKUM | 1991 | 13108 | 1,927,011 | | 12060500
12118500 | 8A
8A | BRITT
BROADVIEW, WEST | SPRABERRY
CLEAR FORK | DAWSON . | 1957
1960 | 7396
5565 | 1,095,217
3,389,002 | | 12116300 | 8A | BRONCO STORY | SILURO-DEVONIAN | YOAKUM | 1952 | 11692 | 14,292,254 | | 12376666 | 8A | BROWN | WICHITA - ALBANY | GAINES | 1960 | 8004 | 4,550,006 | | 12376001 | 8A | BROWN | OTDAMAI | GAINES | 1948 | 6030 | 5,380,103 | | 12476400
12469333 | 8A
8A | BROWNFIELD, S. BROWNFIELD, SOUTH | STRAWN
CANYON | TERRY
TERRY | 1981
1950 | 10613
9330 | 1,349,752
5,252,940 | | 12469666 | 8A | BROWNFIELD, SOUTH | FUSSELMAN | TERRY | 1968 | 12020 | 5,524,831 | | 12961500 | 8A | BUCKSHOT | 4950 | COCHRAN | 1956 | 5010 | 11,816,602 | | | | | | | | | | | RRC_RESN | RRC | FLDNAME | RESNAME | COUNTY | DISCYR | DEPTHTOP | CUMPROD | |----------------------|----------|---------------------------------|------------------------------|------------------|-----------------------|---------------|--------------------------| | 13047001 | 8A | BUENOS | | GARZA | 1949 | 3397 | 1,834,059 | | 14627333 | 8A | CAIN | SPRABERRY | GARZA
GARZA | 1959
1959 | 4916
7652 | 1,370,936
1,047,176 | | 14627666
15724500 | 8A
8A | CAIN
CARM-ANN | STRAWN
SAN ANDRES | GANES | 1939 | 4779 | 1,307,285 | | 16580001 | 8A | CEDAR LAKE | OAN ANDRES | GAINES | 1939 | 4800 | 105,374,960 | | 16585500 | 8A | CEDAR LAKE, SE. | SAN ANDRES | DAWSON | 1953 | 4940 | 1,649,672 | | 16860333 | 8A | CHAMPMON | DEV. | GAINES | 1959 | 12735 | 1,334,656 | | 18436333 | 8A | CLAIREMONT | PENN., LOWER | KENT | 1950 | 6742 | 15,880,427 | | 18437333 | 8A | CLAIREMONT, EAST | STRAWN | KENT | 1960
1956 | 6494
9740 | 1,456,046 | | 18535500
18790700 | 8A
8A | CLARA GOOD
CLAYTON RANCH, N. | FUSSELMAN
SPRABERRY | BORDEN
BORDEN | 1985 | 5738 | 1,158,807
2,273,366 | | 19346142 | 8A | COGDELL | AREA | KENT | 1949 | 6796 | 264,228,838 | | 19346284 | 8A | COGDELL | FULLER SAND | KENT | 1950 | 4985 | 1,234,509 | | 19346426 | 8A) | COGDELL | SAN ANDRES | KENT | 1951 | 1475 | 1,455,502 | | 19347250 | 8A | COGDELL, EAST | CANYON | SCURRY | 1958 | 6813 | 5,745,654 | | 19351333 | 8A
8A | COGDELL, SE.
CORAZON | CANYON 6800
SAN ANDRES | SCURRY
SCURRY | 1970
1953 | 6832
2139 | 1,935,449
5,457,029 | | 20553500
20787001 | 8A | CORRIGAN | SANANDRES | TERRY | 1950 | 11475 | 4,235,262 | | 20788500 | 8A | CORRIGAN, EAST | FUSSELMAN | TERRY | 1952 | 11615 | 4,669,363 | | 21090500 | 8A | COULTER | SPRABERRY | GARZA | 1979 | 5296 | 1,184,144 | | 21959500 | 8A | CROTON CREEK, E. | TANNEHILL | DICKENS | 1969 | 4574 | 1,285,205 | | 22576333 | 8A | D. E. B.
D. E. B. | WOLFCAMP, ZONE B | GAINES
GAINES | 1960
1960 | 9200
9400 | 22,699,269
1,468,007 | | 22576666
24377300 | 8A
8A | DEROEN | MISSISSIPPIAN | DAWSON | 1981 | 10182 | 2,002,217 | | 24562142 | 8A | DIAMOND -M- | CANYON LIME AREA | SCURRY | 1948 | 6569 | 248,878,432 | | 24562284 | 8A | DIAMOND -M- | CLEAR FORK | SCURRY | 1940 | 3170 | 9,832,055 | | 24562710 | 8A | DIAMOND -M- | WOLFCAMP | SCURRY | 1952 | 5310 | 2,596,809 | | 22660500 | 8A | D-L-S | SAN ANDRES | HOCKLEY
TERRY | 1971
1979 | 5161
13342 | 13,371,869
1,005,286 | | 25243500
25544001 | 8A
8A | DOMINION
DORWARD | SILURIAN | GARZA | 1950 | 2456 | 26,776,688 | | 25585500 | 8A | DOSS | CANYON | GAINES | 1949 | 8850 | 1,712,794 | | 25728500 | 8A | DOUBLE J | CANYON REEF | BORDEN | 1969 | 6641 | 4,335,241 | | 25957600 | 8A | DOVER | STRAWN | GARZA | 1985 | 8123 | 1,268,004 | | 26606333 | 8A | DUNIGAN | ELLENBURGER | BORDEN | 1958 | 8737 | 1,136,041 | | 26706333 | 8A | DUPREE | FUSSELMAN | DAWSON
DAWSON | 1960
1984 | 11670
8277 | 1,608,926
1,375,136 | | 27451500
27664500 | 8A
8A | ECHOLS
EDMISSON | SPRABERRY
CLEAR FORK | LUBBOCK | 1957 | 5143 | 14,122,508 | |
27668500 | 8A | EDMISSON, N.W. | CLEAR FORK | LUBBOCK | 1979 | 5446 | 2,958,886 | | 28829500 | 8A | ELZON, W. | STRAWN 6950 | KENT | 1967 | 6972 | 1,674,677 | | 28873500 | 8A | EMERALD | SILURIAN | YOAKUM | 1988 | 12372 | 1,550,264 | | 30559166 | 8A | FELKEN | SPRABERRY | DAWSON | 1955 | 7490 | 5,863,624 | | 30776500
31222300 | 8A
8A | FIELDS
FLANAGAN | DEVONIAN
CLEARFORK, CONS. | YOAKUM
GAINES | 1954
1 94 9 | 12030
7142 | 4,042,266
34,993,943 | | 31222600 | 8A | FLANAGAN | DEVONIAN | GAINES | 1949 | 10345 | 2,600,285 | | 31690250 | 8A | FLUVANNA | ELLENBURGER | BORDEN | 1952 | 8358 | 3,079,237 | | 31690750 | BA | FLUVANNA | STRAWN | BORDEN | 1954 | 7769 | 13,893,241 | | 31690001 | 8A | FLUVANNA | FILEN | BORDEN | 1951 | 8173 | 5,788,200 | | 31697166
31697847 | 8A
8A | FLUVANNA, SW.
FLUVANNA, SW. | ELLEN.
STRAWN, UPPER | BORDEN
BORDEN | 1968
1973 | 8306
7902 | 1,559,708
3,048,201 | | 31893333 | 8A | FORBES | GLORIETA | CROSBY | 1955 | 3605 | 8,897,397 | | 33190001 | 8A | FULLER | | SCURRY | 1951 | 5147 | 7,431,645 | | 33191250 | 8A | FULLER, EAST | CANYON | SCURRY | 1961 | 6846 | 2,016,286 | | 33191500 | 8A | FULLER, EAST | FULLER -B- | SCURRY | 1961 | 4935 | 1,251,629 | | 33196332 | 8A | FULLER, SE. | FULLER
FULLER -C- | SCURRY
SCURRY | 1957
1961 | 5032
5029 | 1,233,168
1,356,946 | | 33196498
34113125 | 8A
8A | FULLER, SE.
GARZA | GLORIETA | GARZA | 1956 | 3758 | 1,449,452 | | 34113160 | 8A | GARZA | GLORIETA, S. DEEP | GARZA | 1985 | 3692 | 4,388,968 | | 34113001 | 8A | GARZA | | GARZA | 1926 | 2900 | 116,170,788 | | 34113425 | 8A | GARZA | SAN ANDRES, DEEP | GARZA | 1985 | 3465 | 9,648,491 | | 34438500 | · 8A | GEORGE ALLEN | SAN ANDRES | GAINES
GAINES | 1956
1998 | 4934
7670 | 1,255,323
1,355,740 | | 34742450
34849500 | 8A
8A | GIEBEL
GILL | CFA
PENN. REEF 6900 | SCURRY | 1970 | 6937 | 1,155,277 | | 34961250 | 8A | GIN | MISS. | DAWSON | 1965 | 11403 | 1,148,179 | | 34961750 | 8A | GIN | SPRABERRY | DAWSON | 1965 | 8068 | 6,412,068 | | 34970500 | 8A | GIN, NORTH | 8000 | DAWSON | 1975 | 8029 | 3,602,421 | | 33473250 | 8A | G-M-K | SAN ANDRES | GAINES | 1957 | 5598 | 15,599,746 | | 33477500 | 8A | G-M-K, SOUTH
GOOD | SAN ANDRES | GAINES
BORDEN | 1963
1949 | 5450
7905 | 16,777,664
49,768,450 | | 35738001
35741500 | 8A
8A | GOOD, NORTHEAST | CANYON REEF | BORDEN | 1953 | 8066 | 3,509,246 | | 35744666 | 8A | GOOD, SE. | FUSSELMAN | BORDEN | 1958 | 9692 | 10,453,193 | | 35744333 | . 8A | GOOD, SE. | CANYON REEF | BORDEN | 1959 | 8123 | 1,095,717 | | 37356666 | 8A | GUINN | SAN ANDRES | LYNN | 1961 | 4031 | 1,875,859 | | 37695500 | A8 | H&L
HAMILTON | GLORIETA | GARZA
HOCKLEY | 1967
1980 | 3397
6459 | 2,838,452
1,207,473 | | 38455500
38686500 | 8A
8A | HAMILTON
HANFORD | CLEARFORK
SAN ANDRES | GAINES | 1977 | 5421 | 11,999,935 | | 38832333 | 8A | HAP | DEVONIAN | GAINES | 1955 | 12356 | 1,588,017 | | 38866333 | 8A | HAPPY | ELLENBURGER | GARZA | 1958 | 8281 | 3,075,019 | | 38866666 | 8A | HAPPY | STRAWN | GARZA | 1958 | 7951 | 1,839,792 | | 38866600 | 8A | HAPPY | SPRABERRY LIME | GARZA | 1989 | 4970 | 7,336,714 | | 39242333 | 8A
8A | HARRIS | QUEEN | GAINES
GAINES | 1957
1949 | 4148
5965 | 1,672,816
77,544,178 | | 39242001
39717500 | 8A
8A | HARRIS
HAVEMEYER | SAN ANDRES | GAINES | 1977 | 5488 | 1,175,130 | | 40716333 | 8A | HERMLEIGH | STRAWN | SCURRY | 1953 | 6530 | 1,051,427 | | | | | | | | | | | RRC_RESN | RRC | FLDNAME | RESNAME | COUNTY | DISCYR | DEPTHTOP | CUMPROD | |----------------------|----------|--------------------------------|-------------------------------|--------------------|---------------------|----------------|--------------------------| | 41769001 | 8A | HOBBS, EAST | | GAINES | 1949 | 6390 | 1,623,627 | | 41816333 | 8A | НОВО | PENNSYLVANIAN | BORDEN | 1951 | 7100 | 12,964,339 | | 42401400
42499500 | 8A
8A | HOMANN
HOOPLE | SAN ANDRES
CLEAR FORK | GAINES
LUBBOCK | 1977
1976 | 5328
4432 | 2,058,353
14,531,548 | | 43083250 | 8A | HUAT | CANYON | GAINES | 1961 | 10470 | 6,037,105 | | 43731666 | 8A | HUNTLEY | 3400 | GARZA | 1954 | 3387 | 16,691,235 | | 43731333 | 8A | HUNTLEY | GLORIETA | GARZA | 1954 | 3966 | 7,649,424 | | 43732500 | 8A | HUNTLEY, EAST | SAN ANDRES | GARZA | 1956 | 3138 | 8,883,820 | | 44238500 | 8A | IDALOU NORTH | STRAWN | LUBBOCK | 1970 | 9264 | 2,063,298 | | 44245500
44313666 | 8A
8A | IDALOU, NORTH
ILLUSION LAKE | CLEARFORK, LO
SAN ANDRES | LUBBOCK
LAMB | 1979
1957 | 5650
4116 | 2,252,994
2,274,312 | | 45726550 | 8A | JANICE | WOLFCAMP | YOAKUM | 1981 | 8937 | 1,577,530 | | 45991666 | 8A | JAYTON, WEST | STRAWN SAND | KENT | 1963 | 6466 | 1,938,821 | | 46132500 | 8A | JENKINS | SAN ANDRES | GAINES | 1950 | 4543 | 3,162,188 | | 46132001 | 8A | JENKINS | | GAINES | 1948 | 9100 | 1,441,170 | | 46134250 | 8A | JENKINS, NORTH | CANYON | GAINES | 1952 | 8590 | 1,079,745 | | 46134500
46564750 | 8A
8A | JENKINS, NORTH
JO-MILL | CLEAR FORK
SPRABERRY | GAINES
BORDEN | 1954
1954 | 7148
7105 | 2,690,500
108,593,322 | | 47187001 | 8A | JONES RANCH | OI TO DELIVE | GAINES | 1945 | 11200 | 7,849,382 | | 48338500 | 8A | KAY | WOLFCAMP REEF | GAINES | 1959 | 10349 | 1,976,465 | | 48583664 | 8A | KELLY SNYDER | CLEAR FORK, LOWER | SCURRY | 1956 | 3320 | 1,227,148 | | 48583498 | A8 | KELLY-SNYDER | CISCO SAND | SCURRY | 1952 | 6180 | 15,359,584 | | 48583001
49113750 | 8A | KELLY-SNYDER | CODADEDDY HODED | SCURRY | 1948 | | 1,264,215,085 | | 49125500 | 8A
8A | KEY
KEY WEST | SPRABERRY, UPPER
SPRABERRY | DAWSON
DAWSON | 1963
1982 | 6978
7680 | 1,040,170
1,404,146 | | 49460500 | 8A | KINGDOM | ABO REEF | TERRY | 1970 | 8120 | 57,666,707 | | 49678500 | 8A | KIRKPATRICK | PENN. | GARZA | 1961 | 7902 | 1,534,724 | | 51742333 | . 8A | LAMESA, WEST | MISS. | DAWSON | 1959 | 11280 | 1,903,803 | | 51742666 | 8A | LAMESA, WEST | SPRABERRY | DAWSON | 1960 | 7999 | 2,640,850 | | 51812500
51812750 | 8A
8A | LANDON
LANDON | DEVONIAN
STRAWN | COCHRAN
COCHRAN | 1949
1947 | 10913
10340 | 1,676,236 | | 51812750 | 8A | LANDON | STRAWN | YOAKUM | 1947 | 5100 | 1,210,407
7,100,093 | | 52872001 | 8A | LEE HARRISON | | LUBBOCK | 1941 | 4870 | 15,622,248 | | 52916500 | A8 | LEEPER | GLORIETA | TERRY | 1958 | 5896 | 14,672,329 | | 53411070 | 8A | LEVELLAND | ABO | HOCKLEY | 1976 | 7566 | 1,521,730 | | 53411710 | 8A | LEVELLAND | STRAWN | HOCKLEY | 1957 | 10120 | 1,044,056 | | 53411001
53411852 | 8A
8A | LEVELLAND
LEVELLAND | WICHITA-ALBANY | COCHRAN
HOCKLEY | 1945
1965 | 4927
7488 | 642,609,421 | | 53414500 | 8A | LEVELLAND, NE. | STRAWN | HOCKLEY | 1964 | 10084 | 1,039,496
3,448,189 | | 53759333 | 8A | LINKER | CLEAR FORK | HOCKLEY | 1961 | 7162 | 1,953,860 | | 54098500 | A8 | LITTLEFIELD | SAN ANDRES | LAMB | 1953 | 4030 | 4,806,609 | | 55578500 | 8A | LUCY, NORTH | PENN | BORDEN | 1973 | 7830 | 2,259,712 | | 55975500 | 8A | LYN KAY | 6150 | KENT | 1975 | 6164 | 1,157,730 | | 56382200
58027500 | 8A
8A | MABEN
MARY TWO | CISCO
DEVONIAN | KENT
YOAKUM | 1989
1981 | 5664
13220 | 1,481,691
1,388,687 | | 60989200 | 8A | MICHELLE KAY | CISCO | KENT | 1983 | 5835 | 2,252,054 | | 62079500 | 8A | MIRIAM | GLORIETA 4740 | LYNN | 1966 | 4867 | 1,145,553 | | 63289500 | 8A | MOUND LAKE | FUSSELMAN | TERRY | 1962 | 11320 | 2,532,705 | | 56432700 | 8A | MTS | SAN ANDRES | DAWSON | 1984 | 4922 | 3,011,168 | | 63799500 | A8 | MUNGERVILLE | PENNSYLVANIAN | DAWSON | 1951 | 8570 | 9,030,669 | | 64217500
64221666 | 8A
8A | MYRTLE, NW.
MYRTLE, W. | STRAWN
STRAWN | BORDEN
BORDEN | 1967
1956 | 8030
8072 | 1,013,491
2,662,450 | | 64626380 | 8A | NAVIGATOR | TANNEHILL B | DICKENS | 1996 | 4418 | 1,273,061 | | 66373250 | 8A | ODC | DEVONIAN | GAINES | 1956 | 11993 | 2,812,852 | | 66373750 | 8A | ODC | SAN ANDRES | GAINES | 1956 | 5450 | 4,775,959 | | 67899400 | 8A | OWNBY | CLEAR FORK, UPPER | YOAKUM | 1959 | 6592 | 22,886,861 | | 67899001 | 8A | OWNBY WEST | OAN ANDDEO | YOAKUM | 1941 | 5350 | 19,365,908 | | 67905500
68101500 | 8A
8A | OWNBY, WEST
P. H. D. | SAN ANDRES
GLORIETA | YOAKUM
GARZA | 1953
1955 | 5307
4296 | 1,518,031
2,535,850 | | 68101001 | 8A | P. H. D. | OLOKIL IX | GARZA | 1944 | 3565 | 10,800,728 | | 69563250 | 8A | PATRICIA | FUSSELMAN | DAWSON | 1959 | 12020 | 3,983,286 | | 69570500 | 8A | PATRICIA, WEST | SPRABERRY | DAWSON | 1962 | 8370 | 1,228,314 | | 71260500 | 8A | PHIL WRIGHT | SPRABERRY | DAWSON | 1982 | 7832 | 3,699,781 | | 72213500 | 8A | POLAR, EAST | PENNSYLVANIAN | KENT | 1950 | 6855 | 1,993,424 | | 72214500
72225500 | 8A
8A | POLAR, NORTH
POLLAN | ELLENBURGER
ELLENBURGER | KENT
GARZA | 1950
1978 | 7780
7733 | 1,439,914
2,931,773 | | 72552500 | 8A | POST | GLORIETA | GARZA | 1950 | 2700 | 15,161,894 | | 72560500 | 8A | POST, WEST | STRAWN | GARZA | 1979 | 8482 | 1,099,724 | | 72995470 | 8A | PRENTICE | 5100 | YOAKUM | 1974 | 5240 | 1,877,441 | | 72995498 | 8A | PRENTICE | 6700 | YOAKUM | 1950 | 6700 | 150,194,889 | | 72995166 | 8A | PRENTICE
PRENTICE | CLEAR FORK, LOWER | YOAKUM | 1955 | 8130
5040 | 3,778,472 | | 72995001
72999500 | 8A
8A | PRENTICE, NW. | SAN ANDRES | YOAKUM
YOAKUM | 1951
1969 | 5940
5164 | 48,873,597
3,740,591 | | 74590075 | 8A | RAND-PAULSON | CANYON | HOCKLEY | 1995 | 9638 | 1,123,263 | | 75552500 | 8A | REEVES | SAN ANDRES | YOAKUM | 1957 | 5544 | 33,359,158 | | 75780001 | 8A | REINECKE | | BORDEN | 1950 | 6791 | 85,247,005 | | 75781500 | 8A | REINECKE, E. | CANYON | BORDEN | 1966 | 6794 | 1,281,886 | | 76043500
76093666 | 8A
8A | REO
REVILO | JO MILL, LOWER GLORIETA | BORDEN | 1980
1955 | 7350
2624 | 3,638,537
13,908,430 | | 76707001 | 8A | RILEY, NORTH | OLONIL IA | GAINES | 1955 | 6930 | 44,651,363 | | 77316852 | 8A | ROBERTSON |
SAN ANDRES | GAINES | 1952 | 4700 | 2,221,921 | | 77318666 | 8A | ROBERTSON, N. | CLEAR FORK 7100 | GAINES | 1956 | 7114 | 176,656,655 | | 77318900 | 8A | ROBERTSON, N. | SAN ANDRES | GAINES | 1976 | 4704 | 5,011,781 | | RRC_RESN | RRC | FLDNAME | RESNAME | COUNTY | DISCYR | DEPTHTOP | CUMPROD | |----------------------|----------|---------------------------|------------------------|------------------|--------------|----------------|------------------------| | 77643333 | 8A | ROCKER -A- | CLEAR FORK | GARZA | 1958 | 3236 | 1,269,266 | | 77643666 | 8A | ROCKER -A- | GLORIETA | GARZA | 1955 | 3082 | 4,308,818 | | 77643001 | 8A | ROCKER -A- | | GARZA | 1950 | 2422 | 7,180,789 | | 77647333 | 8A | ROCKER -A-, NW. | SAN ANDRES | GARZA | 1959 | 2772 | 2,248,354 | | 78167001 | 8A | ROPES | | HOCKLEY | 1950 | 9290 | 25,593,426 | | 78168500 | 8A | ROPES, E. | CLEAR FORK | HOCKLEY | 1964 | 6036 | 3,017,622 | | 78175333 | 8A | ROPES, WEST | CISCO SAND | HOCKLEY | 1953 | 9875 | 7,217,081 | | 78525500 | 8A | ROUGH DRAW, N. | NOODLE CREEK | KENT | 1963 | 4140 | 1,620,751 | | 79002166 | 8A | RUSSELL | CLEARFORK 7000 | GAINES | 1943 | 7300 | 63,297,892 | | 79002332 | 8A | RUSSELL | GLORIETA 6100 | GAINES | 1942 | 6100 | 9,018,065 | | 79004750 | 8A | RUSSELL, NORTH | 6600 | GAINES | 1957 | 6736 | 2,412,699 | | 79004250 | 8A | RUSSELL, NORTH | DEVONIAN | GAINES | 1948 | 11125 | 79,739,814 | | 79007500 | 8A | RUSSELL, S. | SAN ANDRES | GAINES | 1964 | 4859 | 2,395,124 | | 79393750 | 8A | SABLE | SAN ANDRES | YOAKUM | 1957 | 5258 | 10,835,456 | | 79887001 | 8A | SALT CREEK | | KENT | 1950 | 6200 | 356,369,037 | | 79891500 | 8A | SALT CREEK, SOUTH | PENN., LOWER | KENT | 1952 | 6622 | 1,403,717 | | 81913500 | 8A | SEAGRAVES | SILURO - DEVONIAN | GAINES | 1955 | 13028 | 4,944,608 | | 81913750 | 8A | SEAGRAVES | STRAWN | GAINES | 1956 | 11243 | 1,049,161 | | 81917666 | 8A | SEAGRAVES, S. | SILURO - DEVONIAN | GAINES | 1955 | 12997 | 1,783,158 | | 81987400 | 8A | SEAN ANDREW | PENN. | DAWSON | 1994 | 8329 | 1,296,502 | | 82225040 | 8A | SEMINOLE | DEVONIAN | GAINES | 1977 | 11500 | 5,811,135 | | 82225142 | 8A | SEMINOLE | SAN ANDRES | GAINES | 1936 | 5032 | 602,619,981 | | 82225284 | 8A | SEMINOLE | SAN ANGELO | GAINES | 1947 | 6536 | 8,777,639 | | 82225568 | 8A | SEMINOLE | WOLFCAMP LIME | GAINES | 1963 | 9259 | 1,455,586 | | 82225710 | 8A | SEMINOLE | WOLFCAMP REEF | GAINES | 1962 | 9162 | 1,452,509 | | 82226500 | 8A | SEMINOLE, EAST | SAN ANDRES | GAINES | 1959 | 5450 | 10,892,763 | | 82228800 | 8A | SEMINOLE, NE. | SAN ANDRES | GAINES | 1986 | 5427 | 1,897,871 | | 82229750 | 8A | SEMINOLE, NW. | DEVONIAN FB 2 | GAINES | 1964 | 11456 | 1,508,906 | | 82231500 | 8A | SEMINOLE, SE. | SAN ANDRES | GAINES | 1964 | 5310 | 3,007,614 | | 82231540 | 8A | SEMINOLE, SE. | STRAWN | GAINES
GAINES | 1973 | 10792
11136 | 2,249,644 | | 82233200 | . 8A | SEMINOLE, W. | DEVONIAN ED O | | 1956
1957 | 10554 | 1,271,248
1,783,937 | | 82233400 | 8A | SEMINOLE, W. | DEVONIAN FB 2 | GAINES
GAINES | 1957 | 8742 | 1,473,334 | | 82233600 | 8A | SEMINOLE, W. | LEONARD | GAINES | 1948 | 5042 | 47,466,149 | | 82233001 | 8A | SEMINOLE, WEST | 1700 | SCURRY | 1923 | 1759 | 66,480,174 | | 82710498 | 8A
8A | SHARON RIDGE | CLEAR FORK | SCURRY | 1950 | 2994 | 40,352,615 | | 82710166 | 8A | SHARON RIDGE
SLAUGHTER | CLEAR FORK 7190 | HOCKLEY | 1966 | 7332 | 2,696,681 | | 83991400 | | SLAUGHTER | CLEAR TORK 7 190 | COCHRAN | 1937 | | 1,207,424,888 | | 83991001
84258500 | 8A
8A | SMITH | SPRABERRY | DAWSON | 1950 | 7940 | 1,541,626 | | 79303666 | 8A | S-M-S | CANYON SAND | KENT | 1954 | 6100 | 11,405,716 | | 84345001 | 8A | SMYER | Chitiononie | HOCKLEY | 1944 | 5980 | 48,419,531 | | 84347666 | 8A | SMYER, N. | STRAWN | HOCKLEY | 1956 | 9968 | 6,354,886 | | 84347333 | 8A | SMYER, NORTH | CANYON | HOCKLEY | 1956 | 9630 | 5,195,857 | | 84470750 | 8A | SNYDER, N | STRAWN ZONE B | SCURRY | 1950 | 7300 | 7,936,335 | | 85281001 | 8A | SPRABERRY | PERMIAN | DAWSON | 1946 | 3930 | 2,381,850 | | 85282001 | 8A | SPRABERRY, DEEP | | DAWSON | 1949 | 6420 | 11,213,033 | | 85282500 | 8A | SPRABERRY, DEEP | SPRABERRY, LO. | DAWSON | 1957 | 7592 | 13,701,528 | | 85292450 | 8A | SPRABERRY, W. | DEEP, SPRABERRY | DAWSON | 1988 | 7018 | 13,023,206 | | 85292750 | 8A | SPRABERRY, WEST | PENN. | DAWSON | 1953 | 8060 | 2,293,014 | | 85743666 | 8A | STATEX | CISCO REEF | TERRY | 1952 | 10032 | 2,870,697 | | 86175500 | 8A | STINNETT, SE. | CLEAR FORK | LUBBOCK | 1963 | 4585 | 2,749,554 | | 86252400 | 8A | STOCKYARD | CLEARFORK, UPPER | GAINES | 1991 | 6480 | 1,976,951 | | 87157200 | 8A | SUNDOWN | ABO | HOCKLEY | 1978 | 7926 | 1,056,569 | | 87173100 | 8A | SUNILAND | | LYNN | 1978 | 3803 | 9,769,796 | | 87640500 | 8A | SWENSON-BARRON | ELLEN. | GARZA | 1977 | 8000 | 13,153,109 | | 87646500 | 8A | SWENSON-GARZA | STRAWN | GARZA | 1971 | 7356 | 1,390,411 | | 88611568 | 8A | TEAS | PENN. 8100 | GARZA | 1958 | 8069 | 3,892,415 | | 88611142 | 8A | TEAS | ELLENBURGER | GARZA | 1958 | 8396 | 1,100,062 | | 88760100 | 8A | TEN GALLON | CANYON LIME | SCURRY | 1992 | 6760 | 1,173,235 | | 88969800 | 8A | TEX-FLOR | WOLFCAMP | GAINES | 1977 | 9152 | 1,810,349 | | 88977142 | 8A | TEX-HAMON | CANYON | DAWSON | 1962 | 10060
9555 | 1,399,045
6,356,866 | | 88977284 | 8A | TEX-HAMON | DEAN | DAWSON | 1967
1962 | 11574 | 16,869,275 | | 88977426 | 8A | TEX-HAMON | FUSSELMAN | DAWSON | 1962 | 11675 | 4,833,739 | | 88977710 | 8A | TEX-HAMON | MONTOYA | DAWSON
GAINES | 1983 | 7498 | 5,335,900 | | 89010700 | A8 | TEX-MEX, SE. | WICHITA ALBANY | GAINES | 1956 | 8290 | 1,886,905 | | 89024333 | 8A | TEX-PAC | CLEAR FORK
DEVONIAN | GAINES | 1962 | 12285 | 7,998,812 | | 89038500 | A8 | TEX-SIN
THREE WAY | SAN ANDRES | GARZA | 1958 | 3493 | 2,192,455 | | 89732500 | 8A
8A | THREE-O-THREE | SAN ANDRES | GAINES | 1991 | 5538 | 1,244,903 | | 89715400 | 8A | TLOC | SAN ANDRES | TERRY | 1980 | 4904 | 1,457,257 | | 88000500
90268333 | 8A | TOBE | STRAWN | GARZA | 1951 | 7451 | 1,733,188 | | 90365300 | 8A | TOKIO | FUSSELMAN | TERRY | 1979 | 12871 | 1,415,477 | | 90369666 | 8A | TOKIO, SOUTH | WOLFCAMP | TERRY | 1953 | 9860 | 3,114,383 | | 90694125 | 8A | TONTO | CANYON SAND | SCURRY | 1955 | 6690 | 3,093,714 | | 90697500 | 8A | TONTO, NE. | CISCO 5030 | SCURRY | 1966 | 5046 | 1,700,852 | | 91318500 | 8A | TRIPLE D | PENN. REEF | DAWSON | 1958 | 8497 | 1,088,474 | | 91406500 | 8A | TRIPP | DEVONIAN | GAINES | 1964 | 12577 | 1,657,515 | | 91115500 | 8A | TRI-RUE | REEF | SCURRY | 1956 | 6862 | 6,516,418 | | 91621001 | 8A | TSTAR · | ABO | HOCKLEY | 1996 | 8039 | 3,223,835 | | 91670700 | - 8A | TUFBOW | STRAWN | GARZA | 1979 | 7599 | 1,300,773 | | 91784700 | 8A | TUMBLEWEED, NW. | TANNEHILL | DICKENS | 1986 | 4108 | 2,021,841 | | 92290333 | 8A | U-LAZY -S- | ELLENBURGER | BORDEN | 1957 | 8633 | 2,338,392 | | 92290666 | 8A | U-LAZY -S- | PENNSYLVANIAN | BORDEN | 1958 | 8084 | 3,015,323 | | | | | | | | | | | | RRC_RESN | RRC | FLDNAME | RESNAME | COUNTY | DISCYR | DEPTHTOP | CUMPROD | |---|----------|------|-------------------|---------------------------------------|---------|--------|----------|---------------| | | 93234500 | A8 | VAREL | GLORIETA | SCURRY | 1955 | 2680 | 1,559,599 | | | 94114001 | 8A | VON ROEDER | | BORDEN | 1959 | 6835 | 19,299,794 | | | 94114666 | 8A | VON ROEDER | WOLFCAMP | BORDEN | 1964 | 6063 | 1,020,734 | | | 94116001 | 8A | VON ROEDER, NORTH | | BORDEN | 1954 | 6835 | 10,322,342 | | | 94748666 | 8A | WALKER | DEVONIAN | COCHRAN | 1967 | 11818 | 1,692,316 | | | 95245500 | 8A | WARHORSE | CLEARFORK, UP. | TERRY | 1975 | 6801 | 3,346,790 | | | 95397600 | 8A | WASSON | WICHITA ALBANY | GAINES | 1960 | 11038 | 11,639,560 | | | 95397800 | 8A | WASSON | WOLFCAMP | GAINES | 1956 | 8448 | 6,060,592 | | | 95397001 | 8A | WASSON | | YOAKUM | 1937 | 4900 | 1,840,501,580 | | - | 95431001 | 8A | WASSON 72 | | YOAKUM | 1940 | 7200 | 109,696,671 | | | 95400333 | 8A | WASSON, NE. | CLEAR FORK | YOAKUM | 1954 | 7800 | 20,763,808 | | | 95402333 | 8A | WASSON, S. | WICHITA - ALBANY | GAINES | 1962 | 7711 | 4,652,147 | | | 94215500 | 8A | WBD : | SAN ANDRES | YOAKUM | 1969 | 5288 | 1,056,403 | | | 96062001 | A8 | WELCH | | DAWSON | 1941 | 5000 | 168,998,863 | | | 96068666 | A8 | WELCH, SE. | SPRABERRY | DAWSON | 1952 | 7690 | 7,826,429 | | | 96180001 | 8A | WELLMAN | | TERRY | 1950 | 9712 | 74,181,795 | | | 96187333 | . 8A | WELLMAN, SW. | SAN ANDRES | TERRY | 1966 | 5509 | 2,982,644 | | | 96188333 | A8 | WELLMAN, W. | SAN ANDRES | TERRY | 1966 | 5583 | 2,607,101 | | | 96202500 | 8A | WELLS | DEVONIAN | DAWSON | 1955 | 12083 | 8,760,790 | | | 96408166 | 8A | WESCOTT | DEV. | GAINES | 1964 | 12360 | 3,933,775 | | | 96408664 | 8A | WESCOTT | STRAWN | GAINES | 1954 | 11008 | 5,564,505 | | | 96487500 | 8A | WEST | DEVONIAN | YOAKUM | 1957 | 11058 | 23,898,463 | | | 96487001 | 8A | WEST | | YOAKUM | 1938 | 5100 | 2,668,047 | | | 97057500 | 8A | WHITHARRAL | CLEAR FORK, LO. | HOCKLEY | 1971 | 6938 | 3,909,654 | | | 94432500 | 8A | WTG | GLORIETA | GARZA | 1979 | 3232 | 2,712,643 | | | 99343001 | 8A | YELLOWHOUSE | · · · · · · · · · · · · · · · · · · · | HOCKLEY | 1944 | 4463 | 15,574,053 | | | 99347500 | 8A | YELLOWHOUSE, S. | SAN ANDRES | HOCKLEY | 1957 | 4705 | 2,457,147 | Appendix B. Oil reservoirs in the New Mexico part of the Permian Basin having a cumulative production of >1 MMbbl. Reservoirs are in alphabetical order within counties. | FIELD NAME | RESERVOIR UNIT | COUNTY | DISCYR | DEPTHTOP | CUMPROD | |---|-----------------------------------|--------------------|--------------|---------------|-------------------------| | Cato (San Andres) | San Andres | Chaves | 1966 | 3414 | 16,254,326 | | Caprock (Queen) | Queen | Chaves & Lea | 1950 | 3030 | 74,210,930 | | Chaveroo (San Andres) | San Andres | Chaves & Roosevelt | 1965 | 4184 | 24,500,761 | | Chisum (Devonian) | Fusselman | Chaves | 1950 | 6490 |
1,222,275 | | Diablo (San Andres) | San Andres | Chaves | 1963 | 4950 | 1,332,827 | | Double L (Queen) | Queen | Chaves | 1971 | 1980 | 3,511,218 | | Little Lucky Lake (Devonian) | Silurian | Chaves | 1958 | 11050 | 1,826,075 | | Sulimar (Queen) | Queen | Chaves | 1968 | 1960 | 2,334,105 | | Tobac (Pennsylvanian) | Upper Pennsylvanian | Chaves | 1964 | 9058 | 9,227,853 | | Tom Tom (San Andres) | San Andres | Chaves | 1967 | 3914 | 3,539,296 | | Tomahawk (San Andres) | San Andres | Chaves & Roosevelt | 1977 | 4144 | 2,339,193 | | Twin Lakes (San Andres) | San Andres | Chaves | 1965 | 2600 | 5,306,383 | | Artesia (Queen Grayburg San Andres) | Queen Grayburg San Andres | Eddy | 1923 | 1884 | 32,271,228 | | Atoka (Glorieta Yeso) | Glorieta Yeso | Eddy | 1983 | 2660 | 4,031,176 | | Atoka (San Andres) | San Andres | Eddy | 1950 | 1680 | 6,999,883 | | Avalon (Delaware) | Delaware | Eddy | 1980 | 2550 | 4,952,379 | | Barber (Yates) | Yates | Eddy | 1937 | 1442 | 1,973,771 | | Benson North (Queen Grayburg) | Queen Grayburg | Eddy | 1954 | 2844 | 3,468,936 | | Big Eddy (Strawn) | Strawn | Eddy | 1966 | 11333 | 1,402,000 | | Brushy Draw (Delaware) | Delaware | Eddy | 1958 | 3200 | 6,967,405 | | Burton Flat East (Strawn) | Strawn | Eddy | 1976 | 10600 | 2,990,681 | | Burton Flat North (Wolfcamp) | Wolfcamp | Eddy | 1975
1987 | 9160
5625 | 3,226,531 | | Cabin Lake (Delaware) | Delaware | Eddy
Eddy | | | 3,798,138 | | Catclaw Draw East (Delaware) | Delaware
Delaware | Eddy | 1990
1976 | 3074
5200 | 1,219,588
1,010,544 | | Cedar Canyon (Delaware) Dagger Draw North (Upper Penn) | Upper Pennsylvanian | Eddy | 1976 | 7550 | 48,909,673 | | Dagger Draw North (Opper Penn) | Upper Pennsylvanian | Eddy | 1971 | 7506 | 16,214,241 | | Dos Hermanos (Yates Seven Rivers) | Yates Seven Rivers | Eddy | 1955 | 1631 | 1,605,623 | | Eagle Creek (San Andres) | San Andres | Eddy | 1959 | 1292 | 4,321,284 | | Empire (Abo) | Abo | Eddy | 1957 | 6014 | 225,140,765 | | Empire (Yates Seven Rivers) | Yates Seven Rivers | Eddy | 1926 | 1600 | 1,291,409 | | Esperanza (Delaware) | Delaware | Eddy | 1969 | 3400 | 1,272,693 | | Fren (Seven Rivers) | Seven Rivers | Eddy | 1943 | 1940 | 6,680,361 | | Getty (Yates) | Yates | Eddy | 1954 | 1343 | 1,822,000 | | Golden Lane (Strawn) | Strawn | Eddy | 1969 | 11098 | 1,448,602 | | Grayburg Jackson (Seven Rivers Queen Grayburg San Andres | | Eddy & Lea | 1929 | 3100 | 128,043,260 | | Hackberry North (Yates Seven Rivers) | Yates Seven Rivers | Eddy | 1953 | 2047 | 3,468,223 | | Henshaw (Wolfcamp) | Wolfcamp | Eddy | 1960 | 8822 | 3,401,748 | | Henshaw West (Grayburg) | Grayburg | Eddy | 1956 | 2745 | 5,024,733 | | Herradura Bend (Delaware) | Delaware | Eddy
Eddy | 1977
1985 | 11086
6062 | 1,012,833 | | Herradura Bend East (Delaware)
High Lonesome (Queen) | Delaware
Queen | Eddy | 1939 | 1800 | 1,555,292
4,609,851 | | Humble City (Strawn) | Strawn | Eddy | 1972 | 11429 | 1,303,341 | | Indian Basin (Upper Pennsylvanian) | Upper Pennsylvanian | Eddy | 1963 | 7370 | 8,971,697 | | Indian Basin (Upper Pennsylvanian) | Upper Pennsylvanian | Eddy | 1993 | 7400 | 4,302,744 | | Indian Draw (Delaware) | Delaware | Eddy | 1973 | 3262 | 3,316,622 | | Ingle Wells (Delaware) | Delaware | Eddy | 1989 | 8100 | 7,458,269 | | Jackson (Abo) | Abo | Eddy | 1961 | 6910 | 1,053,208 | | Livingston Ridge (Delaware) | Delaware | Eddy | 1989 | 7091 | 5,155,100 | | Loco Hills (Queen Grayburg San Andres) | Queen Grayburg San Andres | Eddy | 1949 | 2200 | 48,282,690 | | Los Medanos (Delaware) | Delaware | Eddy | 1990 | 4218 | 2,894,378 | | Lost Tank (Delaware) | Delaware | Eddy & Lea | 1991 | 6783 | 2,688,111 | | Loving (Brushy Canyon) | Brushy Canyon | Eddy | 1993 | 6050 | 4,945,114 | | Malaga (Delaware) | Delaware | Eddy | 1951 | 2770 | 1,006,678 | | Maljamar (Grayburg San Andres) | Grayburg San Andres | Eddy & Lea | 1939
1951 | 3690
2770 | 158,141,214 | | Maljamar (Paddock) | Paddock | Eddy | | | 1,299,622 | | Mason North (Delaware)
Millman East (Grayburg) | Delaware
Grayburg | Eddy & Lea
Eddy | 1954
1959 | 4115
2413 | 4,737,873
7,402,866 | | Millman East (Grayburg) Millman East (Queen Grayburg San Andres) | Queen Grayburg San Andres | Eddy | 1959 | 2413 | 7,402,866 | | Nash Draw (Brushy Canyon) | Brushy Canyon | Eddy | 1992 | 6713 | 1,495,514 | | Old Millman Ranch (Bone Spring) | Bone Spring | Eddy | 1991 | 6140 | 1,211,918 | | Parkway (Delaware) | Delaware | Eddy | 1988 | 4135 | 3,307,433 | | Penasco Draw (San Andres Yeso) | San Andres Yeso | Eddy | 1982 | 2250 | 2,284,403 | | Red Lake (Queen Grayburg San Andres) | Queen Grayburg San Andres | Eddy | 1934 | 1945 | 12,719,172 | | Red Lake East (Queen Grayburg) | Queen Grayburg | Eddy | 1960 | 1560 | 1,439,093 | | Sand Dunes (Cherry Canyon) | Cherry Canyon | Eddy | 1970 | 6020 | 1,076,059 | | Sand Dunes West (Delaware) | Delaware | Eddy | 1992 | 7820 | 5,938,672 | | Shugart (Delaware) | Delaware | Eddy | 1958 | 4970 | 1,640,470 | | Shugart (Siluro-Devonian) | Devonian | Eddy : | 1957 | 12362 | 1,114,333 | | Shugart (Yates Seven Rivers Queen Grayburg) | Yates Seven Rivers Queen Grayburg | Eddy
Eddy | 1937
1986 | 3440
7680 | 28,507,187
8,808,302 | | Shugart North (Bone Spring) | Bone Spring
Grayburg | Eddy | 1941 | 2900 | 28,338,035 | | Square Lake (Grayburg San Andres) Square Lake North (Queen Grayburg San Andres) | Queen Grayburg San Andres | Eddy | 1987 | 3300 | 2,690,235 | | Tamano (Bone Spring) | Bone Spring | Eddy | 1985 | 8100 | 2,733,675 | | Travis (Upper Pennsylvanian) | Upper Pennsylvanian | Eddy | 1977 | 9825 | 1,986,681 | | · · · · · · · · · · · · · · · · · · · | * k | | | | | | FIELD NAME | RESERVOIR UNIT | COUNTY | DISCYR | DEPTHTOP | CUMPROD | |--|--|------------|--------|----------|------------------------| | Turkey Track (Seven Rivers Queen Grayburg San Andres) | Seven Rivers Queen Grayburg San Andres | Eddy | 1950 | 1655 | 3.885.863 | | Airstrip (Bone Spring) | Bone Spring | Lea | 1979 | 9329 | 2,427,057 | | Airstrip North (Bone Spring) | Bone Spring | Lea | 1986 | 9600 | 1,322,012 | | Allison (Pennsylvanian) | Upper Pennsylvanian | Lea | 1954 | 9673 | 23,833,082 | | Anderson Ranch (Devonian) | Silurian | Lea | 1953 | 13374 | 8,732,227 | | Anderson Ranch (Wolfcamp) | Wolfcamp | Lea | 1953 | 13374 | 4,235,028 | | Anderson Ranch North (Cisco Canyon) | Upper Pennsylvanian | Lea | 1984 | 11498 | 1,321,870 | | Anderson Ranch North (Cisco Carryon) Anderson Ranch North (Wolfcamp) | Wolfcamp | Lea | 1960 | 9823 | 6,652,176 | | | Atoka | Lea | 1965 | 12240 | | | Antelope Ridge (Atoka) | | | | | 2,239,920 | | Arrowhead (Grayburg) | Grayburg | Lea | 1957 | 6500 | 32,921,348 | | Bagley (Pennsylvanian) | Upper Pennsylvanian | Lea | 1949 | 9190 | 4,339,919 | | Bagley (Siluro-Devonian) | Silurian | Lea | 1949 | 10950 | 28,461,902 | | Bagley North (Permo Penn) | Permo-Pennsylvanian | Lea | 1957 | 10000 | 52,951,956 | | Baish (Wolfcamp) | Wolfcamp | Lea | 1962 | 9800 | 1,068,654 | | Bar-U (Pennsylvanian) | Upper Pennsylvanian | Lea | 1964 | 9100 | 1,364,117 | | Baum (Upper Pennsylvanian) | Upper Pennsylvanian | Lea | 1955 | 9940 | 15,224,467 | | Blinebry O & G (Blinebry) | Blinebry | Lea | 1945 | 5600 | 41,171,199 | | Bough (Devonian) | Silurian_ | Lea | 1965 | 11920 | 3,798,039 | | Bough (Permo Penn) | Permo-Pennsylvanian | Lea | 1949 | 9617 | 6,329,000 | | Bowers (Seven Rivers) | Seven Rivers | Lea | 1935 | 3553 | 4,234,123 | | Bronco (Siluro-Devonian) | Siluro-Devonian | Lea | 1955 | 11700 | 16,048,762 | | Bronco (Wolfcamp) | Wolfcamp | Lea | 1953 | 11700 | 2,086,478 | | Bronco West (Devonian) | Devonian | Lea | 1965 | 12170 | 1,420,225 | | Brunson (Ellenburger) | Ellenburger | Lea | 1945 | 8059 | 27,654,212 | | Brunson (Fusselman) | Silurian | Lea | 1980 | 7200 | 1,162,659 | | Brunson South (Abo Drinkard) | Abo Drinkard | Lea | 1988 | 6750 | 10,117,489 | | Buckeye (Abo) | Abo | Lea | 1965 | 8950 | 2,529,960 | | Caprock East (Devonian) | Fusselman | Lea | 1951 | 10450 | 23,613,469 | | Carter South (San Andres) | San Andres | Lea | 1955 | 5150 | 2,369,529 | | Casey (Strawn) | Strawn | Lea | 1975 | 11326 | 3,414,520 | | Cass (Pennsylvanian) | Strawn | Lea | 1944 | 3540 | 2,885,000 | | Caudill (Devonian) | Devonian | Lea | 1954 | 13585 | 5,711,745 | | Caudill (Permo Penn) | Permo Penn | Lea | 1956 | 10285 | 1,927,000 | | Cerca (Upper Pennsylvanian) | Upper Pennsylvanian | Lea | 1968 | 10397 | 1,975,473 | | Corbin (Abo) | Abo | Lea | 1959 | 8410 | 15,684,050 | | Corbin (Queen) | Queen | Lea | 1938 | 4258 | 1,550,004 | | Corbin Central (Queen) | Queen | Lea | 1985 | 4228 | 1,091,714 | | Corbin South (Wolfcamp) | Wolfcamp | Lea | 1967 | 11000 | 6,609,050 | | Corbin West (Delaware) | Delaware | Lea | 1976 | 5030 | 2,746,804 | | Crossroads (Pennsylvanian) | Upper Pennsylvanian | Lea | 1949 | 9750 | 2,170,000 | | Crossroads (Siluro-Devonian) | Devonian | Lea | 1948 | 12115 | 43,440,653 | | Crossroads East (Devonian) | Devonian | Lea | 1956 | 12173 | 2,540,103 | | Crossroads South (Devonian) | Devonian | Lea | 1954 | 12250 | 3,272,563 | | Crossroads West (Devonian) | Silurian | Lea | 1959 | 12000 | 2,063,579 | | Cruz (Delaware) | Delaware | Lea | 1961 | 5081 | 1,034,285 | | Dean (Devonian) | Devonian | Lea | 1955 | 13600 | 3,034,645 | | Dean (Permo Penn) | Permo-Pennsylvanian | Lea | 1955 | 11500 | 6,165,150 | | Denton (Devonian) | Siluro-Devonian | Lea | 1949 | 11360 | 101,227,563 | | Denton (Wolfcamp) | Wolfcamp | Lea | 1950 | 5656 | 41,755,373 | | Denton South (Devonian) | Siluro-Devonian | Lea | 1955 | 13110 | 3,748,807 | | Dollarhide (Devonian) | Siluro-Devonian | Lea | 1952 | 8167 | 9,179,120 | | Dollarhide (Blenburger) | Ellenburger | Lea | 1951 | 10135 | 3,512,341 | | Dollarhide (Elleriburger) Dollarhide (Fusselman) | Fusselman | Lea | 1952 | 8710 | 6,620,935 | | Dollarhide (Queen) | Queen | Lea
 1952 | 3670 | 6,743,430 | | Dollarhide (Gueen) Dollarhide (Tubb Drinkard) | Tubb Drinkard | Lea | 1951 | 6616 | 24,207,673 | | Double A South (Abo) | Abo | Lea | 1964 | 8900 | 1,970,186 | | Double A South (lower Abo) | Abo | Lea | 1964 | 9300 | 1,076,771 | | Double X (Delaware) | Delaware | Lea | 1961 | 4914 | 1,400,945 | | Drinkard (Drinkard) | Drinkard | Lea | 1944 | 6500 | 74,707,203 | | Echols (Devonian) | Siluro-Devonian | Lea | 1951 | 11500 | 4,622,000 | | Echols North (Devonian) | Devonian | Lea | 1952 | 12057 | 1,416,811 | | EK (Bone Spring) | Bone Spring | Lea | 1975 | 9450 | 1,883,915 | | E-K (Yates Seven Rivers Queen) | Yates Seven Rivers Queen | Lea | 1954 | 4387 | 6,559,436 | | | Queen | Lea | 1957 | 4387 | 1,315,635 | | E-K East (Queen)
El Mar (Delaware) | Delaware | Lea | 1959 | 4550 | 6,255,832 | | El mar (Delaware) Eumont (Yates Seven Rivers Queen) | Yates Seven Rivers Queen | Lea | 1953 | 2950 | 75.072.680 | | Eurice Monument (Grayburg San Andres) | Grayburg San Andres | Lea | 1929 | 3950 | 392,454,534 | | Eunice Monument (Grayburg San Andres) Eunice North O & G (Blinebry Tubb Drinkard) | Blinebry Tubb Drinkard | Lea | 1929 | 5700 | 24,720,888 | | Eunice North O & G (Blinebry Tubb Drinkard) Eunice South (San Andres) | San Andres | Lea | 1969 | 3910 | 1,613,611 | | | Seven Rivers Queen | Lea | 1930 | 3610 | 32,423,951 | | Eunice South (Seven Rivers Queen) Flying M (San Andres) | San Andres | Lea | 1964 | 4400 | 11,164,009 | | | Permo-Pennsylvanian | Lea | 1965 | 9020 | 1,211,000 | | Flying M South (Bough) | Fusselman | Lea | 1956 | 12809 | 1,865,501 | | Four Lakes (Devonian) | Fusserman
Silurian | Lea | 1955 | 7587 | 1,326,698 | | Fowler (Devonian) | Silunan
Ellenburger | Lea
Lea | 1955 | 9505 | 17,012,002 | | Fowler (Ellenburger) | Upper Yeso | Lea | 1950 | 5705 | 4,923,367 | | Fowler (upper Yeso) | Devonian | Lea
Lea | 1970 | 12850 | 4,923,367
3,115,656 | | Garrett West (Devonian) | Devonian | Lea
Lea | 1970 | 11859 | 52,841,901 | | Gladiola (Devonian)
Gladiola (Wolfcamp) | Wolfcamp | Lea
Lea | 1950 | 9578 | 4,144,627 | | Giadioia (Wollcamp) | TTOROUTH | LJa | 1900 | : 3370 | T, 174,UC1 | | | FIELD NAME | RESERVOIR UNIT | COUNTY | DISCYR | DEPTHTOP | CUMPROD | |-----|---|--|------------|--------------|----------------|--------------------------| | | Hare (Simpson) | Simpson | Lea | 1947 | 4162 | 17,193,665 | | | Hat Mesa (Delaware) | Delaware | Lea | 1989 | 6834 | 1,976,201 | | | High Plains (Permo Penn) | Permo-Pennsylvanian | Lea | 1985 | 10400 | 1,056,081 | | . 1 | Hightower East (Upper Pennsylvanian) | Upper Pennsylvanian | Lea | 1959 | 10218 | 1,054,219 | | | Hobbs (Drinkard) | Drinkard | Lea | 1952 | 6880 | 3,091,100 | | | Hobbs (Grayburg San Andres) | Grayburg San Andres Upper Blinebry | Lea
Lea | 1928
1968 | 4000
5870 | 340,970,244
6,402,273 | | | Hobbs (upper Blinebry) Hobbs East (San Andres) | San Andres | Lea | 1951 | 4449 | 5,894,293 | | | House (Drinkard) | Drinkard | Lea | 1949 | 6980 | 1,678,305 | | | Humble City South (Strawn) | Strawn | Lea | 1982 | 11520 | 3,444,361 | | | Hume (Queen) | Queen | Lea | 1956 | 3950 | 1,389,000 | | | Jalmat (Tansill Yates Seven Rivers) | Tansill Yates Seven Rivers | Lea | 1953 | 2800 | 77,336,091 | | | Jenkins (Cisco) | Upper Pennsylvanian | Lea | 1963 | 9750 | 2,099,000 | | | Johnson Ranch (Wolfcamp) | Wolfcamp | Lea | 1985 | 13500 | 1,380,757 | | | Justis (Blinebry Tubb Drinkard) | Blinebry Tubb Drinkard | Lea | 1992 | 5720 | 30,206,714 | | | Justis (Blinebry) | Blinebry | Lea | 1958 | 7356 | 9,680,025 | | | Justis (Ellenburger) Justis (Fusselman) | Ellenburger
Fusselman | Lea
Lea | 1957
1958 | 8115
5900 | 7,663,268
10,987,716 | | | Justis (McKee) | McKee | Lea | 1957 | 7700 | 1,312,000 | | | Justis (Montoya) | Montoya | Lea | 1958 | 6886 | 4,772,033 | | | Justis (Tubb Drinkard) | Tubb Drinkard | Lea | 1959 | 5837 | 3,869,009 | | | Justis North (Fusselman) | Silurian | Lea | 1961 | 7050 | 3,356,310 | | | Kemnitz (lower Wolfcamp) | Lower Wolfcamp | Lea | 1956 | 10742 | 16,608,371 | | | Kemnitz West (Wolfcamp) | Wolfcamp | Lea | 1963 | 10678 | 1,029,531 | | | King (Devonian) | Devonian | Lea | 1956 | 12439 | 6,238,669 | | | King (Wolfcamp) | Wolfcamp
Silurian | Lea
Lea | 1951
1949 | 10142
12570 | 1,369,908
4,941,623 | | | Knowles (Devonian) Knowles South (Devonian) | Devonian | Lea | 1954 | 12140 | 9,712,376 | | | Knowles West (Drinkard) | Drinkard | Lea | 1975 | 8236 | 2,185,907 | | | Lane (Wolfcamp) | Wolfcamp | Lea | 1955 | 9700 | 1,028,000 | | | Langley (Devonian) | Siluro-Devonian | Lea | 1979 | 12150 | 1,370,899 | | | Langlie Mattix (Seven Rivers Queen Grayburg) | Seven Rivers Queen Grayburg | Lea | 1935 | 2852 | 136,874,684 | | | Lazy J (Pennsylvanian) | Upper Pennsylvanian | Lea | 1952 | 9600 | 7,630,855 | | | Lea (Bone Spring) | Bone Spring | Lea | 1960 | 9480 | 3,341,316 | | | Lea (Devonian)
Lea (Pennsylvanian) | Siluro-Devonian
Morrow | Lea
Lea | 1960
1961 | 3774
12900 | 7,800,254
1,433,818 | | | Lea Northeast (Delaware) | Delaware | Lea | 1988 | 5658 | 4,004,802 | | | Leamex (Pennsylvanian) | Upper Pennsylvanian | Lea | 1956 | 11340 | 1,367,438 | | | Leonard South (Queen) | Queen | Lea | 1948 | 3400 | 2,098,167 | | | Livingston Ridge East (Delaware) | Delaware | Lea | 1992 | 7200 | 1,992,444 | | | Lovington (Abo) | Abo | Lea | 1951 | 8340 | 33,983,198 | | | Lovington (Devonian) | Devonian | Lea | 1969 | 11570 | 1,735,773 | | | Lovington (Grayburg San Andres) | Grayburg San Andres | Lea
Lea | 1986
1952 | 4700
6150 | 14,689,351 | | | Lovington (Paddock) Lovington Northeast (Pennsylvanian) | Paddock
Strawn | Lea | 1952 | 11256 | 17,571,938
16,921,580 | | | Lovington West (Strawn) | Strawn | Lea | 1985 | 11594 | 5,162,551 | | | Lovington West (upper San Andres) | Upper San Andres | Lea | 1990 | 4700 | 13,021,692 | | | Lusk (Strawn) | Strawn | Lea & Eddy | 1960 | 11168 | 20,682,947 | | | Lusk West (Delaware) | Delaware | Lea | 1987 | 6450 | 2,753,235 | | | Lynch (Yates Seven Rivers) | Yates Seven Rivers | Lea | 1929 | 3730 | 15,935,153 | | | Maljamar (Abo) | Abo | Lea | 1959 | 8977 | 1,029,476 | | | Mason East (Delaware) | Delaware
Fusselman | Lea
Lea | 1962
1947 | 4370
7145 | 1,427,836
1,222,210 | | | McCormack (Silurian) McCormack South (Silurian) | Silurian | Lea | 1947 | 7100 | 1,015,681 | | | Medicine Rock (Devonian) | Devonian | Lea | 1961 | 12630 | 1,638,000 | | | Mesa (Queen) | Queen | Lea | 1962 | 3350 | 1,701,072 | | | Mescalero (Devonian) | Silurian | Lea | 1952 | 9850 | 5,832,949 | | | Mescalero (San Andres) | San Andres | Lea | 1962 | 4063 | 6,949,075 | | | Mescalero Escarpe (Bone Spring) | Bone Spring | Lea | 1984 | 8660 | 8,416,490 | | | Midway (Abo) | Bone Spring | Lea
Lea | 1963
1948 | 8850
7180 | 2,877,582
7,139,437 | | | Monument (Abo) Monument (Blinebry) | Abo
Blinebry | Lea | 1948 | 5660 | 10,134,918 | | | Monument (Paddock) | Paddock | Lea | 1948 | 5190 | 10,547,574 | | | Monument (Tubb) | Tubb | Lea | 1959 | 3750 | 5,109,750 | | | Monument North (Abo) | Abo | Lea | 1977 | 7300 | 1,204,844 | | | Moore (Devonian) | Silurian | Lea | 1952 | 10100 | 22,218,658 | | | Morton (Wolfcamp) | Wolfcamp | Lea | 1964 | 10310 | 2,605,976 | | | Morton East (Wolfcamp) | Wolfcamp | Lea
Lea | 1970
1980 | 10506
6008 | 1,781,208
2,678,000 | | | Nadine West (Blinebry) Nonombre (Upper Pennsylvanian) | Blinebry
Upper Pennsylvanian | Lea | 1965 | 10345 | 1,077,000 | | | Oil Center (Blinebry) | Blinebry | Lea | 1962 | 5907 | 8,244,514 | | | Paddock (Paddock) | Paddock | Lea | 1945 | 5170 | 30,191,406 | | | Paddock South (Paddock) | Paddock | Lea | 1957 | 5100 | 2,816,108 | | | Paduca (Delaware) | Delaware | Lea | 1960 | 4636 | 13,922,378 | | | Pearl (Queen) | Queen | Lea | 1955
1940 | 8198
3685 | 22,411,023
2,968,614 | | |
Pearsall (Queen) Penrose (Skelly Grayburg) | Queen
Skelly Grayburg | Lea
Lea | 1940 | 3435 | 21,616,809 | | | Quail Ridge (Bone Spring) | Bone Spring | Lea | 1962 | 9315 | 1,718,885 | | | Quail Ridge (Morrow) | Morrow | Lea | 1962 | 13300 | 1,832,787 | | | ÷ | A Committee of the Comm | | | | | | FIELD NAME | RESERVOIR UNIT | COUNTY | DISCYR | DEPTHTOP | CUMPROD | |---|---------------------------------|------------------------|--------------|---------------|--------------------------| | Querecho Plains (upper Bone Spring) | Bone Spring | Lea | 1959 | 8538 | 2,370,677 | | Ranger Lake (Pennsylvanian) | Upper Pennsylvanian | Lea | 1956 | 10300 | 5,084,059 | | Ranger Lake West (Devonian) | Silurian | Lea | 1967 | 12850 | 1,185,371 | | Red Hills (Bone Spring) | Bone Spring | Lea | 1992 | 12200 | 5,631,750 | | Red Tank (Bone Spring) | Bone Spring | Lea | 1992 | 8820 | 1,068,622 | | Red Tank West (Delaware) | Delaware | Lea | 1992 | 8330 | 4,873,021 | | Reeves (Pennsylvanian) | Strawn | Lea | 1956 | 10950 | 1,286,874 | | Rhodes (Yates Seven Rivers) | Yates Seven Rivers | Lea | 1927 | 3040 | 14,226,051 | | Saunders (Permo-Upper Penn) | Permo-Pennsylvanian | Lea | 1980 | 9800 | 38,920,906 | | Saunders East (Permo Penn) | Permo-Pennsylvanian | Lea | 1962 | 10363 | 2,716,804 | | Sawyer (San Andres) | San Andres | Lea | 1947 | 5000 | 1,664,257 | | Sawyer West (San Andres) | San Andres | Lea
Lea | 1969
1965 | 4950
3050 | 4,244,060 | | Scarborough (Yates Seven Rivers) Scharb (Bone Spring) | Yates Seven Rivers Bone Spring | Lea | 1963 | 10152 | 17,437,636
14,101,640 | | Scharb (Wolfcamp) | Wolfcamp | Lea | 1980 | 10519 | 1,199,917 | | Shipp (Strawn) | Strawn | Lea | 1985 | 11138 | 7,624,050 | | Shoe Bar (Pennsylvanian) | Upper Pennsylvanian | Lea | 1954 | 10440 | 1,056,568 | | Shoe Bar East (Devonian) | Devonian | Lea | 1968 | 13013 | 1,944,953 | | Shoe Bar North (Strawn) | Strawn | Lea | 1973 | 11275 | 1,297,324 | | Shoe Bar North (Wolfcamp) | Wolfcamp | Lea | 1973 | 10456 | 1,706,095 | | Shugart East(Delaware) | Delaware | Lea | 1985 | 5012 | 2,310,167 | | Skaggs (Drinkard) | Drinkard | Lea | 1953 | 5266 | 2,986,271 | | Skaggs (Glorieta) | Glorieta | Lea | 1958 | 5250 | 1,895,880 | | Skaggs (Grayburg) | Grayburg | Lea | 1937 | 3608 | 11,117,325 | | Stateline (Ellenburger) | Ellenburger | Lea | 1965 | 12100 | 4,191,567 | | Teague (Blinebry) | Blinebry | Lea | 1967 | 5400 | 5,074,105 | | Teague (Ellenburger) | Ellenburger | Lea | 1950 | 9700 | 2,485,768 | | Teague (Simpson) | Simpson | Lea | 1948 | 9340 | 3,473,240 | | Teague North (Ellenburger) | Ellenburger | Lea | 1988 | 10200 | 1,772,980 | | Teague Northwest (Devonian) | Devonian | Lea
Lea | 1992
1963 | 7450
9300 | 1,001,274
1,150,363 | | Teas (Bone Spring) | Bone Spring Yates Seven Rivers | Lea | 1929 | 3343 | 3,555,628 | | Teas (Yates Seven Rivers) Teas West (Yates Seven Rivers) | Yates Seven Rivers | Lea | 1959 | 3225 | 1,966,523 | | Townsend (Permo-Upper Penn) | Permo-Upper Penn | Lea | 1952 | 10400 | 24,101,823 | | Tres Papalotes (Pennsylvanian) | Upper Pennsylvanian | Lea | 1970 | 10400 | 1,942,584 | | Tres Papalotes West (Pennsylvanian) | Upper Pennsylvanian | Lea | 1972 | 10400 | 1,237,313 | | Tubb Oil & Gas (Tubb) | Tubb | Lea | 1979 | 6000 | 7,131,218 | | Tulk (Pennsylvanian) | Upper Pennsylvanian | Lea | 1965 | 9856 | 1,809,541 | | Tulk (Wolfcamp) | Wolfcamp | Lea | 1951 | 9700 | 2,429,801 | | Vacuum (Abo reef) | Abo | Lea | 1960 | 8650 | 91,163,873 | | Vacuum (Blinebry) | Blinebry | Lea | 1963 | 6600 | 2,323,848 | | Vacuum (Drinkard) | Drinkard | Lea | 1962 | 7600 | 4,363,153 | | Vacuum (Glorieta) | Glorieta | Lea | 1963 | 6100 | 73,520,926 | | Vacuum (Grayburg San Andres) | Grayburg San Andres | Lea | 1929 | 4900 | 341,873,609 | | Vacuum (Upper Pennsylvanian) | Upper Pennsylvanian | Lea | 1964 | 10000 | 6,613,696 | | Vacuum (Wolfcamp) | Wolfcamp | Lea | 1963 | 9950 | 6,660,250 | | Vacuum Mid (Devonian) | Devonian | Lea | 1963 | 11644 | 1,766,983 | | Vacuum North (Abo) | Atoko Morrow | Lea
Lea | 1963
1966 | 8500
11960 | 52,981,986
1,458,355 | | Vacuum North (Atoka Morrow) Vacuum North (lower Wolfcamp) | Atoka Morrow
Lower Wolfcamp | Lea
Lea | 1967 | 10690 | 1,952,599 | | Vacuum North (lower Wolfcamp) Vacuum South (Devonian) | Devonian | Lea | 1958 | 11546 | 8,930,675 | | Wantz (Abo) | Abo | Lea | 1950 | 6560 | 9,866,088 | | Wantz (Granite Wash) | Granite Wash | Lea | 1963 | 7270 | 7,782,243 | | Warren (Warren) | Tubb | Lea | े1958 | 6500 | 1,525,346 | | Warren Oil & Gas (Blinebry Tubb) | Blinebry Tubb | Lea | 1957 | 5900 | 5,407,698 | | Weir (Blinebry) | Blinebry | Lea | 1961 | 5700 | 1,786,126 | | Weir East (Blinebry) | Blinebry | Lea | 1962 | 5800 | 1,010,761 | | Wilson (Yates Seven Rivers) | Yates Seven Rivers | Lea | 1928 | 3815 | 9,303,607 | | Young (Queen) | Queen | Lea | 1945 | 3765 | 2,367,621 | | Young North (Bone Spring) | Bone Spring | Lea | 1980 | 8416 | 11,639,256 | | Bluitt (San Andres) | San Andres | Roosevelt | 1963 | 4500 | 2,498,864 | | Milnesand (Pennsylvanian) | Upper Pennsylvanian | Roosevelt | 1956 | 9202 | 1,001,000 | | Milnesand (San Andres) | San Andres | Roosevelt | 1958 | 4554 | 12,034,011 | | Peterson South (Fusselman) | Fusselman | Roosevelt | 1978 | 7800 | 3,386,739 | | Prairie South (Cisco) | Upper Pennsylvanian | Roosevelt
Roosevelt | 1960
1965 | 9651
4440 | 2,906,000
2,952,336 | | Todd (lower San Andres) | Lower San Andres | Roosevelt | 1965 | 4440
7580 | 2,952,336
1,115,408 | | Todd (Wolfcamp) | Wolfcamp
Upper Pennsylvanian | Roosevelt & Lea | 1971 | 9800 | 53,336,607 | | Vada (Pennsylvanian) | Opport officialism | , a Lou | .507 | 3000 | 20,000,007 |