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INTRODUCTION

Galveston Island is a Very young geologic feature when compared with the Earth: recent

T4l

(0)

C

th,

development.

stimates place Earth’s age at approximately 4.5 billion years. Galveston Island and other Texas

arrier islands, on the other hand, began forming as submerged bars no more than 4,500 to
000 yr ago, according to radiocarbon dating of shells (Fisk, 1959). The following descriptions

f'development history, present shoreline conditions, and processes and environments have been

modified from LeBlanc and Hodgson (1959), Bernard and others (1970), Fisher and others

(1972), Morton, (1974), McGowen and others (1977), Weise and White (1980), and Paine and
Morton (1989).

The origin of barrier islands has been debated for years. It is obvious, however, that barriers
re formed and modified by different processes or combinations of processes (Schwartz, 1971),

epending on such variables as sediment source, sediment type and supply, rate and direction of

relative sea-level changes, basin shape, slope of the continental shelf, direction and strength of

irrents and waves, and magnitude of tides. Three of the most discussed theories of barrier-island

rigin are (1) development of a barrier island from an offshore shoal or submerged sandbar,

a4

2) development by spit accretion (building) resulting from longshore drift, and (3) development

y drowning of the area landward of mainland beach sand ridges (Wanless, 1974) (fig. 1). One

ossible explanation for the origin of Galveston Island is that it developed from offshore shoals

(fig. 1a), later growth being aided by spit accretion (fig. 1b). The offshore shoals might have been

fd mainland beach ridges submerged during a rise in sea level (fig. 1c). All three processes,
orsequently, may have played a role in the origin of Galveston Island. It is very likely, moreover,

at various segments of the island underwent different processes at different rates during their
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HISTORY OF ISLAND DEVELOPMENT

Geologists generally agree upon the basic stages in Galveston Island’s development, although

the precise time that each stage occurred is still debated. A discussion of the development of

jalveston Island should begin with geologic events immediately preceding its origin. Figure 2 is a

hematic representation of the stages leading to the formation of Texas barrier islands, based on

7

eBlanc and Hodgson’s (1959) interpretation of the history of the Texas Gulf Coast. The figure is

npt meant to reveal the exact geography of the coastline at the various stages but, rather, to show a

eries of models illustrating probable relationships among sea level, rivers, divides, subaqueous
hoals, and islands.

Beginning about 30,000 yr B.P., near the end of the Pleistocene, sea level was low in

response to the last episode of glaciation, and rivers along the Texas coast, as well as throughout

the world, could no longer shift from their courses. Dropping sea level caused extensive erosion of

reams into older, underlying fluvial and deltaic deposits. By the time sea level had droppéd more

than 400 ft—and rivers were building deltas along a new shoreline scores of miles out on the

b
d

bntinental shelf—deep, broad, scalloped-shaped valleys were being cut across the earlier

leistocene fluvial delta plains. The incised valleys of the Trinity and San Jacinto Rivers record this

vent.

About 18,000 yr ago, near the end of the final (Wisconsin) glacial stage at the end of the

leistocene, worldwide sea level was about 300 to 450 ft lower than it is now (Curray, 1960). At

that time, the shoreline lay much farther gulfward on what is now the submerged continental shelf

prdering the Gulf of Mexico. Rivers draining Texas carried sediments across the shelf and

Y

posited them in the Gulf in areas that are now about 50 mi offshore. Upstream, however, rivers

s¢oured deep valleys across the Coastal Plain and emergent inner shelf (fig. 2a).

By about 4,500 yr ago, and after a long period of glacial melting, sea level reached within

roximately 15 ft of present sea level (fig. 3). The final small changes in sea level have resulted

\J

friom compaction of sediment, subsidence of the Gulf Coast area, and minor glacial fluctuations
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Figure 2. Sketches representing several stages in the history of the southern Texas coast:

(a) 18,000 yr ago, (b) 4,500 yr ago, (c) 2,800 yr ago, and (d) at present. The sketches do not
indicate exact conﬁguratlons of the shoreline but, rather, show relationships among sea level,
rivers, divides, subaqueous shoals, and 1slands After WCISC and White (1980).
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(fig. 2b) and became the bays and estuaries along the present Texas coast.

P

W

rown and others 1976). The old river valleys carved during the lower stand of sea level flooded

Parts of the Trinity and San Jacinto valleys were drowned by marine water, producing

estuaries known as Trinity and Galveston Bays. Modern shoreline erosion has since enlarged the

X ‘

1ys, and the deeper parts of the submerged valleys have been filled slowly by bay sediment,

although relict meander-cut valley walls are still well defined along the west side of Galveston Bay.

Several thousand years ago, when sea level stabilized near today’s level, sand shoals (or bars)

hiat had formed just offshore began to merge. The old submerged river delta and barrier-island
deposits laid down farther seaward during times of lower sea level (Pleistocene glacial episodes)
were eroded to supply sand for the joining sandbars. As waves and currents carried the eroded
sdnd in toward the shore from the submerged deposits and along the shore from n'vlers, the bars
byilt up and emerged as a chain of short barrier islands (fig. 2¢). These initial islands were
positioned primarily on the divides between the old Pleistocene river valleys. The stream valleys

th]us served as broad tidal passes leading to bays and lagoons behind the emerging islands.

Much of the sand transported by longshore drift (currents moving parallel to the shore) was

deposited on the downcurrent ends of the barrier islands, resulting in spit accretion (fig. 4). After a

history of shifting, abandonment, and reestablishment by storm breaches, many tidal inlets were

entually closed. A number of short islands were consequently joined to form the longer island

present today (fig. 2d).

The barrier islands were built vertically, principally by eolian (wind) processes, and slightly

gulfward, by marine processes, as sand carried in from the shelf was added to the shorefaces of
the islands. They also built bayward by storm washover deposition. Radiocarbon dating has been

used to determine the age and sequence of development of Galveston Island (fig. 5).

When sea level approached its approximately present level, five principal natural changes

began along the coast: (1) deeper parts of the Trinity and San Jacinto estuaries began to fill with

sediment eroded from the walls of drowned valleys; (2) the Trinity and San Jacinto bayhead deltas

began their slow filling of the uppermost parts of the estuaries; (3) headward erosion by short
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figure 4. Spit accretion. Sand carried by longshore currents is deposited on the downcurrent end
)f a barrier island. The upcurrent end of the adjacent island may erode, causing the tidal inlet to |
hift in the direction in which the currents move. The tidal inlet will be closed, however, if the rate °
of accretion exceeds the rate of erosion. After Weise and White (1980). g
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streams continued within Pleistocene interdistributary areas, where significant compaction of mud

now occurring; (4) East Bay and West Bay developed as elongate lagoons behind Bolivar
ninsula, which grew southwestward by spit deposition and shoreface deposition from eroded

ltaic headlands near High Island, and behind Galveston and Follets Islands, which developed as

o/

alescing, exposed offshore bars that also grew seaward by shoreface deposition; and

marshes encroached upon subsiding Pleistocene delta deposits and bay areas that were filled by

rm washover fans and bay-margin deposits.

he

ar

sl

Barrier-Island and Peninsula Accretion

When sea level reached its 4,500-yr-B.P. level, sands eroded from Pleistocene deltaic

adlands, and submerged Pleistocene sands on the inner shelf moved southwestward by

longshore currents and shoreward by wind-generated waves. These sands were deposited as spits

d offshore bars that eventually coalesced into the present 55 mi2 of sand that compose Bolivar

Peninsula, Galveston Island, and Follets Island sandstone bodies. Relict beach ridges testify to a

ow seaward growth or accretion by sand from longshore and onshore currents. Shoreface sands

grade gently seaward into shelf mud and silt. High-energy, shifting tidal passes have maintained

CQ

mmunication between bays and the Gulf, and persistent winds and hurricanes blow beach sand

into dune ridges. Storms have breached the low, narrow sandstone bodies many times, building

washover fans landward into shallow bays. The back sides of the barriers are fringed by tidal sand

marsh.

During the past 4,500 yr, compaction of sediment and slow subsidence of the Gulf Coast

bdsin have resulted in relative changes in‘sea level of about 10 to 15 ft.

PRESENT SHORELINE CONDITIONS

There appears to be a natural sequence of stages in the life of a barrier shoreline: (1)an

accretionary, or building, phase; (2) a phase of stability, or equilibrium; and finally, (3) a stage of
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rosion, or destruction (McGowen and others 1977). Various segments of Galveston Island

probably have experienced these phases at different rates and at different times.

- On the basis of long-term beach stability, the Gulf shoreline of Galveston Island can be

divided into three zones (Paine and Morton, 1989): (1) a zone of sand accumulation between the

awall and Bolivar Roads (East Beach), (2) a zone characterized by very little beach sand in front

of the Galveston seawall, and (3) a generally recessional zone between the west end of the seawall

d San Luis Pass (West Beach).
Most of East Beach advanced between 1974 and 1982 (fig. 6). Rates of shoreline advance

creased toward the northeast from 3.5 ft/yr near the seawall (station 4) to 23.4 ft/yr adjacent to
c jetty (station 1). Rates of East Beach advance were higher than those observed between 1956
d 1970, when only the two stations nearest the jetty advanced, station 3 remained stable, and

ations 4 and 5 eroded (Morton, 1974). Rates of advance between 1974 and 1982, however, were

below the long-term (1930 through 1970) rates along East Beach.

The shoreline along the seawall (stations 5 to 12) was relatively stable between 1974 and

1982. Significant accumulations of sand are found only in pockets adjacent to the short groins
protruding into the Gulf; in many areas, riprap protecting the base of the seawall is the shoreline.
lﬁates of erosion are lower than longer term (1933 through 1973) rates simply because no beach

remains.

The 9 mi of shoreline west of the seawall (stations 13 to 21) retreated between 1974 and

1982. Retreat rates increased from 2.3 ft/yr 9 mi from the seawall (station 21) to 11.6 ft/yr at the

west end of the seawall. Rates were even more recessional between 1956 and 1973. Long-term
(1933 through 1973) rates in this area were also recessional but lower than rates during more

recent monitoring periods (1956 through 1973 and 1974 through 1982).

The highest rates of shoreline movement between 1974 and' 1982 on Galveston Island were
ecorded along 3 mi of beach east of San Luis Pass (stations 28 to 31). Shoreline adjacent to the

pass retreated as much as 33.8 fi/yr; slightly farther east, it eroded more slowly (3.3 to 9.8 ft/yr at

10
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stations 28 and 29). In most of this area, retreat between 1974 and 1982 occurred at a rate much

higher than the long-term (1930 through 1973) average.

The shoreline between the erosional beaches near San Luis Pass and the area west of the
sgawall (stations 22 to 27) was stable or slowly advancing (as much as 1.9 ft/yr) between 1974
and 1982. Beach profiles conducted by the U.S. Army Corbs of Engineers (1968 through 1980)
substantiate the stability of this segment between 1973 and 1980.

A beach replenishment project on Galveston Island in the area seaward of the seawall was

completed in 1995. Sand was transported from channel-dredging operations to the beach area

between the jetties along the seawall. The sand provided by this operation replaced beach sand that

had been depleted and removed by erosion.
DEPOSITIONAL ENVIRONMENTS AND PROCESSES

Beach

Beaches (fig. 7) that are accreting or building seaward have two distinct zones: (1) forebeach,
the ‘seaward-sloping, smooth part of the beach that is affected daily by swash, and (2) backbeach,
which is normally separated from the forebeach by a berm. Because certain segments of Galveston
Island are building outward or are in equilibrium, they display both forebeach and backbeach

Zzones.

Beach segments that have ongoing erosion or that have physical energy exceeding sediment

>

availability have relatively narrow forebeaches and backbeaches, and backbeaches may commonly

be missing. They consist of high proportions of shell to sand in the lower and upper swash zones.

Berms as much as 5 ft high separate the forebeach and backbeach.

12
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Beach Ridge and Barrier Flat

The beach ridge and the barrier flat make up the major environment of the barrier system on
alveston Island. Terrain is characterized by a series of subparallel ridges and swales generally
riented along the main trend of the barrier island (fig. 7). Each ridge represents a former shoreline
sition during earlier stages of barrier development. The greatest céncentration of ridges on
alveston Island lies near Galveston and extends westward for about 25 mi. Ridge height is
enerally about 5 ft. Locally, ridge ‘crests have a maximum elevation of 10 ft above sea level.

ch ridges, generally paralleling the shoreline, may extend for several miles; the area of beach

ri

ne
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dges and barrier flats is widest on the northeast end of Galveston Island but becomes much

arrower on the southwest end near San Luis Pass. Certain beach ridges on Galveston Island

curve sharply toward the bay, representing spit accretion into old, relict tidal passes that have

ibsequently been filled by the migrating spits. Spit migration occurred southwestward in the
rection of present longshore drift, as indicated by the trend of curved beach ridges.

The growth of beach ridges 5 to 10 ft above sea level is a function of several interacting
pastal processes. Sand and shell material from which the ridges have been constructed was

rived from offshore and moved onshore by wind-generated currents. Under normal sea

conditions the strandline builds seaward by accumulation of sand on the beach. Spring tides and

prms raise sea level, temporarily allowing sand to accumulate as berms a few feet above mean sea

vel. With return to normal sea level, the berm is modified by wind and biologic processes.

Subsequent spring tides and storms create another berm, which is accreted to the previous berm.

Also situated between the beach and the wind-tidal flat are areas in which no obvious beach

ridges or swales exist and which constitute the vegetated barrier flat (fig. 7). The barrier flat lies

about 5 ft above mean sea level on the Gulf side of the barrier and between sea level and 5 ft along

e baysi’de. The surface of the barrier flat slopes gently bayward. Vegetation on the flat, as well as

=

the beach ridges, is predominantly grasses that are tolerant of salt spray. Locally some small

14
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ottes of oak are present. The barrier flat is formed chiefly by sediments blown from the area of

e beach ridge and also by sediments deposited by storm washovers.

Wind-Tidal Flat

A flat, barren, relatively featureless surface occurs along the back side of the barrier islands

tween the vegetated barrier flat and beach ridge and the salt marshes along the bay shore. This

area constitutes the wind-tidal flat. Inundation by salt water occurs a few times each winter during
passage of a polar front, and duration of flooding is directly related to the duration of the north

wiind. Because the area is flooded only a few days each year, most of the surface and near-surface

It water evaporates, leaving a thin salt crust on the flat surface. Although blue-green algae
purish on these flats during and shortly after flooding, the environment is largely barren of

iscular plants. Some local salt-marsh vegetation exists, and Uca, the fiddler crab, commonly

burrows the lower parts of the flats.

Salt Marsh

The back side of the barrier islands, extending bayward of the wind-tidal flat, supports salt
arshes. The marshes display an orderly plant succession from the bay line to higher parts of the
irrier. The succession is controlled by factors sﬁch as degree of inundation, salinity of the
bstrate, and height of the marsh surface above bay water level. From the bay line toward the
gher marsh areas, the typical plant succession is (1) Spartina alterniflora; (2) Batis, Salicornia,
1d Distichlis, (3) Spartina patens, Monanthochloe, Suaeda, and Borrichia; and (4) sparse marsh
getation in hypersaline areas.

Marshes are indented on the bayside by tidal cuts that are curved to the west, reflecting

general westerly longshore drift in the bays. During northers some oyster shell and shell from

her bay species are washed into the marsh, causing thin, narrow, discontinuous beaches to

develop. With the exception of shell beaches, sediments underlying the marshes become coarser or

15
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indier from the bay margin to the higher parts of the marsh. Sediments underlying low marshes

¢ generally dark gray mud or muddy sand that are intensely burrowed by worms, crustaceans,

and mollusks and mottled by penetration of plant roots. Sediments underlying higher marshes are

pminantly sand and muddy sand. Sediments of the high marsh are reworked primarily by plant

roots and fiddler crabs.

Subaqueous Sand Flats

The barrier island extends some distance beyond the marsh line into the bay; this extension is

marked by a shallow sand flat that terminates rather abruptly in water between 2 and 6 ft deep.

and flats are commonly stabilized by marine grasses—for example, bayward of Follets Island—

that are commonly designated as grassflats. Other parts of the sand flat are barren or only slightly
vegetated. Sediments that accumulate on the grassflats and sand flats are chiefly fine-grained sands
derived from the adjacent tidal passes and tidal deltas. Sand is transported to the west along the

bayside of Galveston and Follets Islands by longshore current set up by wind-generated waves

(fig. 8).

Tidal Passes and Tidal Deltas

Natural breaks between barriers through which there is tidal exchange between bay and Gulf

Warers are termed #idal passes. Sediments move into the bay with flood tides, and part of the
sediment load accumulates as fan-shaped bodies near the terminus of the tidal channel; these
compose flood-tidal deltas (fig. 9). During ebb tide, sediments are transported from the bay
seaward through the tidal pass. Because physical processes are much stronger on the Gulf side of
the barriers than on the bayside, much of the sediment is moved immediately southwestward by
longshore currents. Accordingly, ebb-tidal deltas are poorly developed and form a simple seaward
bulge, along with some sand shoals near the mouth of the pass. Unlike flood-tidal deltas, the ebb-

tidal deltas of the Texas Coast never become emergent environments.

16
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sure 9. Modern tidal-delta facies, San Luis Pass, West Bay, Brazoria and Galveston Counties,

xas. These facies are developed by ebb- and flood-tidal currents. Marsh environments occupy
much of the shallow delta fan. After Fisher and others (1972).

] i
D.

18




Major tidal passes on the Texas Coast, such as Bolivar Roads at Galveston (fig. 8), are

situated over buried Pleistocene valleys. Depth of the buried relict valley at Bolivar Roads is .
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roximately 260 ft. These valleys are filled in their deepest parts by river gravels and sands,

|

icceeded upward by deltaic sediments, estuarine deposits, and, near the surface, by tidal-channel

:posits; Deposits in the deeper parts of the tidal channels consist of a broken shell lag. Channels

|

¢ unstable; they tend to migrate in the direction of longshore drift. As the channel migrates it is

licessively filled by spit accretion.

Flood-tidal deltas consist of shell ahd sands near the mouth of the main tidal channel,

diments becoming finer on the distal parts of the deltas toward the bay. Tidal deltas become

|

emergent when storms raise the water level in the bay, allowing sediment to build vertically. With

Ibsidence of the storm and associated high tides, parts of the flood delta become emergent and

ay be subsequently stabilized by marsh vegetation. Mud, Moody’s, and Bird Islands on the

|

1yside of San Luis Pass are examples of emergent flood-tidal deltas (fig. 9).

‘Washover Channels and Fans -

During hurricane surges and Storrns, the barrier island locally may be breached (fig. 10).

orm-generated currents cut channels through the barrier and carry sand to the bayside, where it is

|

sposited as a washover fan. During normal periods, sand transported by longshore currents fills

|

heals these washover channels along the Gulf side. They may be reopened during subsequent

SU

rms. The washover fans along the bayside, consisting mainly of ﬁnvegetated sand, ultimately

=

y become stabilized by marsh vegetation.

HYDROLOGIC CONDITIONS

Sands that have accumulated to form Galveston Island proVide a natural reservoir for ground
ater. A cross section of the island (fig. 11) illustrates the relative proportion of sand available and

generalized representation of the base of the fresh-water lens. Fresh ground water is commonly

19
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present a few feet below the surface. Near the base of the fresh-water lens the water becomes

brackish and grades into more saline water with depth.

The amount of fresh water that can be stored in the barrier-island sands is directly

proportional to the amount of sand that has accumulated above sea level. Because the maximum

dge height on Galveston Island is only 5 to 10 ft above sea level, very little storage capacity exists

far fresh water. Wells that obtain water from the fresh-water lens are commonly only a few feet

deep and are used only to supply water for livestock.

Several water wells on Galveston Island penetrate Pleistocene sands known as the Chicot

aquifer at depths of about 300 ft.
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