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The objectives of this project are to define undrained or incompletely
drained reservoir compartments controlled primarily by depositional
heterogeneity in a low-accommodation, cratonic Midcontinent
depositional setting, and, afterwards, to develop and transfer to
producers strategies for infield reserve growth of natural gas. Integrated
geologic, geophysical, reservoir engineering, and petrophysical
evaluations are described for complex, difficult-to-characterize, fluvial
and deltaic reservoirs in Boonsville (Bend Conglomerate Gas) field, a
large, mature gas field located in the Fort Worth Basin of North Texas.
The purpose of this project is to demonstrate approaches to overcoming
the reservoir complexity and target the gas resource, and to do so by
using state-of-the-art technologies that can be applied by a large cross
section of Midcontinent operators.

Reserve growth resources in the Midcontinent region total as much as

41 Tcf. The region contains the second-largest natural gas reserve growth
resource after the Texas Gulf Coast and provides an appropriate resource
target for secondary gas recovery (SGR) research following the Gulf
Coast project. Secondary or incremental gas may be contained in
reservoirs (even those that have conventional porosity and permeability)
that are untapped or bypassed or that have incompletely drained areas that
are a function of depositional facies, diagenetic, and even structural
heterogeneity. The Midcontinent reservoirs selected for this project have
more deltaic components than do the dominantly fluvial reservoirs that
were the focus of the Gulf Coast SGR project. Further, the Midcontinent
reservoirs studied were deposited in a cratonic basin that had relatively
low accommodation space and a higher frequency of sea-level fluctuation
than did depositional patterns in the Tertiary of the Gulf Coast Basin.
Pennsylvanian Midcontinent sandstones are complex, but it is this
complexity that creates the opportunity for additional infield gas recovery.

Pressure and production data confirm the existence of compartmented or
poorly drained gas reserves throughout much of the Bend Conglomerate,
suggesting that additional reserves will be found when well spacing is
reduced to 80 acres. Three styles of reservoir compartmentalization were
identified in Midcontinent clastic gas reservoirs from the Boonsville
analysis: structural, stratigraphic, and a combination of these two styles.



Structural compartments are caused by low-displacement faulting that acts
as a partial barrier to gas flow and is commonly associated with karst
collapse in deeper carbonate rocks; these features extend vertically as
much as 2,500 ft in the project area. This previously unknown karst
collapse phenomenon, identified by means of the 3-D seismic survey,
may be a widespread influence on the deposition of younger sediments in
the Midcontinent.

Stratigraphic compartments may be surface bounded, facies bounded, or
cement bounded. Combination-style compartments have both structural
and stratigraphic elements and are most commonly surface and fault
bounded. The best natural gas reservoirs in Boonsville field occur
predominantly as lowstand, valley-fill, conglomeratic sandstones
overlying erosional surfaces. Isopach mapping indicates a strong
relationship between reservoir distribution and structurally low areas on
the pre-Atoka seismic time structure surface, suggesting that subtle
elevation differences at the pre-Atoka stratigraphic level controlled the
geographical location of incised valleys and the fluvial and fluvio-deltaic
axes in which high-energy reservoir facies were concentrated.

Interpretation of these complex reservoirs was aided by a 26-mi2 3-D
seismic survey. Seismic resolution was maximized by using specialized
small (10 oz) directional, explosive-source charges; a high data-sampling
rate (1 ms); and staggered source and receiver lines that allowed the data
to be stacked into high-fold 110- x 100-ft bins for general interpretation
or into lower fold 55- x 55-ft bins when interpretations requiring detailed
lateral resolution were needed. Precise calibration of thin-bed depths to
seismic traveltime was accomplished by recording detailed vertical
seismic profile (VSP) data and explosive-source velocity checkshot data
at several locations within the 3-D seismic grid.

Whereas the 3-D seismic survey clearly identified the importance of the
karst collapse features to reservoir compartmentalization, the ability of the
3-D survey to identify stratigraphic entrapments was more variable. Some
sequences, such as the Upper and Lower Caddo, were imaged quite well,
once calibrated to well control, and seismic attribute analyses provided
excellent agreement with net reservoir distributions generated from
sequence stratigraphic interpretations. In other instances, the 3-D data did
not always provide conclusive answers. Individual systems tracts and
reservoir sandstones that are subsets of genetic sequences were
sometimes difficult to trace in the 3-D data, particularly when the acoustic
impedance of these units was approximately the same as the acoustic
impedance of the bounding beds or if the units were extremely thin.

Judging from the hydrocarbon distribution in the project area, the gas
reserves expected in any particular Bend sequence will be approximately
200 MMscf or less, on average, when well spacing is reduced to

80 acres, whereas gas reserves of at least 400 MMscf will typically be
required for new wells to be economically attractive. Although individual
Bend completions may still encounter gas reserves in excess of

400 MMscf (some recent wells have), it appears that multiple stacked
completion opportunities will be needed in new infield wells. Review of
the 3-D seismic data suggests that these stacked trapping geometries often
exist throughout the Bend interval. Thus, a reasonable approach to
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identifying new well locations may be to focus 3-D seismic evaluation on
these apparent stacked trapping geometries in areas having the highest
likelihood of encountering multiple completion opportunities. An alternate
strategy is to use the 3-D data to identify fault-bounded blocks that have
no penetrations in subregional or field-scale areas where the pre-Atoka
time structure is low and the total Atoka net reservoir isopachs are thick,
again increasing the potential for finding multiple vertically stacked
completion opportunities.

This assessment of Midcontinent sandstone natural gas reservoirs in
Boonsville field integrated four key disciplines: geology, geophysics,
reservoir engineering, and petrophysics. The entire Atoka Group (Lower
and Upper) in the project area was divided into 13 third-order genetic
stratigraphic sequences. To our knowledge, this is the first public,
comprehensive genetic sequence analysis that relates these prolific
Pennsylvanian gas reserv01rs to their seismic response and to gas
productivity. A 26-mi? 3-D seismic survey was acquired and interpreted
to test methods for delineating reservoirs in thin-bed, hard-rock
environments. Reservoir facies frameworks, assessed by integrating
geological and geophysical approaches, were combined with engineering
and petrophysical evaluations of produced gas volumes and reservoir
quality.

The compartmentalization of Boonsville field has been demonstrated to
have more than one origin. The field, much more complex than originally
described, offers a challenge to effective infield drilling. The use of new
technologies and the intelligent integration of results of these technologies
have shown that fields as complex as Boonsville and their associated
problems can be understood and effective production strategies applied.
The use of the information gained from this project will have value to
other Midcontinent fields and to many basins that have structural and
depositional compartmentalization.
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INTRODUCTION

Contained herein is Volume II of a two-volume report that describes an assessment of
Midcontinent sandstone natural gas reservoirs in Boonsville field, a major gas field in the
Fort Worth Basin of North-Central Texas. The field demonstration reported in this volume
was conducted as part of the Secondary Gas Recovery (SGR) Infield Reserve Growth
Joint Venture between the Gas Research Institute (GRI) and the U.S. Department of
Energy (DOE), additional support being provided by the State of Texas. Substantial
financial contributions were made to this work by OXY USA Inc., Enserch Operating
Limited Partnership, and Threshold Development/Arch Petroleum Company, the three field
operators who had producing properties inside the 26-mi2 study area.

Volume I of this report is organized around a series of case studies that evolved from
our study of Boonsville field and from the infield wells that were drilled as a result of the
project study. The technical details involved in the major disciplines—geology, reservoir
engineering, petrophysics, and geophysics—that were integrated in this reservoir
characterization have been segregated into this second volume of the report and are

presented as a series of appendices.
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APPENDIX A

GEOLOGIC EVALUATION OF THE BOONSVILLE PROJECT AREA

Introduction

More than 90 percent of the 2.6 Tcf of natural gas produced at Boonsville field has
come from conglomeratic sandstones deposited in the Fort Worth Basin during the Atoka
Stage of the Middle Pennsylvanian Period (Fig. Al; Blanchard and others, 1968;
Thompson, 1982). The distribution, porosities, and permeabilities of Boonsville
sandstones and many other Upper Paleozoic sandstone reservoirs in Midcontinent basins
are typically erratic and unpredictable. Previous investigations have concluded that trapping
mechanisms are due predominantly to sandstone facies pinch-outs and permeability pinch-
outs due to diagenetic cements (Glover, 1982; Lahti and Huber, 1982; Thompson, 1982).
Effective characterization and exploitation of these fields are difficult because the sandstone
reservoirs, typically thin and discontinuous, represent a variety of complexly intermingled
depositional environments and facies and commonly contain pore-occluding diagenetic
cements. As compared with other times in geologic history, the fundamental geological
controls on reservoir architecture and stacking patterns in marine basins were unique during
the Pennsylvanian Era. Specifically the mechanisms that combined to produce complex,
compartmentalized reservoirs at the Fort Worth, and many other Midcontinent Basins were:

- Relatively low accommodation setting (i.e., shallow basin)

- High-amplitude, high-frequency sea-level fluctuations

. Tectonic jostling during sedimentation

- Temporal variations in sediment source material

- High rates of sediment supply
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Figure Al. Time-rock stratigraphic column for post-Mississippian strata in the Boonsville
Project Area. Modified from Thompson (1982).
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Tropical paleoclimate
The purpose of the geological investigatioﬁ was to determine how these unique
geological circumstances shaped reservoir architecture in this important natural gas
province and to outline predictive development strategies that pinpoint optimal infill drilling
sites. This appendix describes the geological conditions and concepts, data base, methods
of evaluation, and general geological interpretétions of the Boonsville Project Area that

represent the foundation upon which development strategies were built.

Hydrocarbon Habitat

Gas accumulations in Quachita foreland basins, including Bend Conglomerate gas in
the Fort Worth Basin, occur as large, pervasive, deep basin accumulations (Masters, 1979;
Meckel and others, 1992). Pennsylvanian gas reservoirs in these basins, typically
underpressured, produce little to no water and are relatively tight (typically less than
10 md). They are hydraulically separated from updip/overlying, more permeable, normally
pressured water-bearing units (Meckel and others, 1992). The source of the natural gas is
probably the abundant humic materials (land-derived, macerated plant material) in shales
that encase the sandstone reservoirs (Meckel and others, 1992). Other Ouachita foreland
basins having similar habitats, include the Arkoma, Val Verde, and Black Warrior Basins,

and possibly the Kerr and Marfa Basins (Fig. 1.3).

- Global Stratigraphic Context

Present-day continental margins are comprised of thick, well-preserved Mesozoic and
Cenozoic deposits that contain seismically resolvable depositional sequences (Vail and
others, 1977; Ross and Ross, 1988). Thick continental margin wedges also formed during
the Late Paleozoic; however, individual depositional sequences are much more difficult to

identify in the Late Paleozoic wedges because, generally too extensively deformed, they

A4



contain long-ranging, deep-water fossils that are difficult to <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>