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Objectives

To assess the coalbed methane potential in the Greater Green Rlver Basin on the basis of geologic
and hydrologic controls-identified in the San-Juan and Sand Wash Basins, to evaluate the coal and
coalbed methane resources, and to identify fairways for future exploration and development.

Technical Perspective

Coalbed methane production is established in the Greater Green River Basin. Large coal and gas
resources and high gas contents in some coal beds triggered initial development along the southeast
basin margins and around the Rock Springs Uplift. Results to date have been disappointing, however.
Coalbed wells have yielded little gas and large volumes of water. A thorough knowledge of the major
geologic and hydrologic controls on occurrence and producibility of coalbed methane is critical to
efficient evaluation, exploration, and exploitation of these resources in the Greater Green River Basin.
Recent reports to GRI compared the geologic and hydrologic controls on coalbed methane producibility
in the San Juan and Sand Wash Basins. On the basis of lessons learned in those basins, in this report we
review coalbed methane potential of the Greater Green River Basm

Results

The structurally complex Greater Green River Basin is bounded by the Wyoming-Idaho Overthrust
Belt in the west and by basement-cored thrust faults on the remaining three sides. The basin has four
subbasins (Green River, Great Divide, Washakie, and Sand Wash Basins) separated by the Rock Springs
Uplift, and Wamsutter and Cherokee Arches. Maximum horizontal compressive stress orientations-
have rotated about a vertical axis with time, a configuration that is reflected in cleat orientations,
which are currently northeast in the north and central parts of the basin and are north-northwest in the
southeast. The Upper Cretaceous Mesaverde Group and lower Tertiary Fort Union Formation, contain-
ing coals that have a maximum combined net thickness of greater than 300 ft (>91.4 m), are the major .
coalbed methane targets. Coal rank ranges from subbituminous to high-volatile A bituminous, except
in deeper subbasins;, where coal rank is medium-volatile bituminous and higher. Most of the coalbed
gases are thought to be secondary biogenic or migrated thermogenic. Gas contents are less than
200 scf/ton (<6.24 m3/t) at depths drilled to date. Conventional trapping will be required to enhance
gas content in low-rank coals. Permeable, normally pressured and artesian coal seams occur as deep
as 8,000 ft (2,440 m), above regional hydrocarbon overpressure. Areas of pressure transition and
convergent flow are extensive and are thought to have high production potential. To date, cumulative
.gas and water production, mostly from Mesaverde (Williams Fork) coals at Dixon field, is 134 MMscf
(3.8 MMm?) and 6.8 MMbbl (1.1 MMm?) of water, respectively, for a basinwide gas-water ratio of
approxmately 20 scf/bbl (~3.6 m¥/m?). Average completion depth is 2,671 ft (814 m). Coal and coalbed
methane resources are very large: 1,276 billion short tons (1,158 billion t). and 314 Tcf (8.89 Tm?).
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Coal and gas resources in the Mesaverde Group and Fort Union Formation are 627 brlllon tons -
- (569 billion t) and 264 Tcf (7.47 Tm?) and 649 billion tons (589 billion t) and 50 Tcf (1.42 Tm?),

respectively. The deeper drilling required to penetrate higher rank, higher gas content coals is thought - »

justified in'the Mesaverde Group at the northwest end of the Cedar Mountain fault system in the Sand
Wash Basin, along the east margin of the Washakie Basin, and around the northeast flank of the Rock
Springs Uplift and in the Fort Union Formation on the Sandy Bend Arch and in the Big Piney area.

Technical Approach

The Greater Green River Basin is descrlbed in terms of its structures, genetic stratigraphy, -coal
occurrence and sedimentology, thermal maturity and gas content, composition, origin, and hydrology.
Tectonicand stratrgraphlc setting, as well as basin margin and intrabasin uplifts associated with basement- -~
cored thrust faults, is described in order to document fairways where coalbed methane production
may be favored because of fracture-enhanced permeability and conventional trapping of gas. Coalbed
cleats and stress orientations were recorded so that varratlons of permeability anisotropy within coalbed
reservoirs could be determined.:

Thickness data from more than 500 geophysical well logs were compiled from Mesaverde and
Fort Union coal beds and interbedded sandstones, the major coal- and gas-bearing stratigraphic units.
Coal-seam continuity was determined using density and gamma-ray log profiles. A grld of interlocking
cross sections was made to identify and define genetic stratigraphy and to define major coal-bearing
horizons. These data include (1) net and maximum coal thickness, (2) number, continuity, and depth
of coal beds, (3) net and maximum sandstone thickness in.coal-bearing intervals, and (4) coal-
sandstone relations. Coal and sandstone characteristics and their regional trends were used to define -
coalbed methane exploration falrways and to calculate coal and gas resources. '

Vitrinite-reflectance and proximate analyses from more than 50 wells were used to construct
coal-rank maps and to evaluate thermal maturation history. The relation between volatile matter
(dry, ash-free basis) and vrtrlnlte-reflectance values (R ) was used to convert volatile matter to calculated
vitrinite-reflectance values in basins where sufficient data were available. Structure, heat flow, subsurface
temperature, and vitrinite-reflectance depth maps were also used to determine and constrain thermal
maturity trends. Vitrinite-reflectance profiles were used to evaluate the relationship between depth
and coal rank and to predict at what depth the threshold of significant gas generation from coal beds
‘could be expected. Compositional data on coalbed gases were also collected and were used to
(1) determine coalbed gas origin, (2) explore the possibility of gas migration, and (3) evaluate the
relation between coal rank and gas composition.

Stratigraphic, structural, topographic, and precipitation data were combined with hydraulic head -
and hydrochemical data to delineate ground-water circulation patterns. The direction of ground-water
flow was inferred from the potentiometric surface, hydrochemistry, topographic gradient, and structural
dip. Pressure regime was evaluated from shut-in pressures recorded in drill-stem tests. Regional
permeability contrasts were inferred mainly from the pressure regime.

Gas and coal resources were calculated from digitized structure, topographic, and net-coal-thickness
maps on a 3.5-mi? (9.1-km?) grid, using plots of gas content versus depth, density, and coal volume.
Production data from 57 coalbed methane wells were tabulated. Major coalbed methane fields were
described and drilling activity summarized. Production was evaluated to establish typical rates and the
range of gas and water production. Coalbed methane exploration fairways were identified using an
evolving basin-scale coalbed methane producnblllty model. '

Project Implications

This report assesses the coalbed methane potential of the Greater Green River Basin and |dent|f|es
the most promising fairways for future coalbed methane research, development, and production. The
report transfers technology from earlier studies of the San Juan and Sand Wash Basins to the Greater
Green River Basin and advances our understanding of geologic and hydrologic controls on coalbed
methane occurrence and produc1b1|rty in the United States.

Richard A..McBane and JohnT. Hansen
GRI Project Managers
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Executive Summary and Introductlon

Douglas S. Hamilton, Roger Tyler, |
William R. Kaiser, and Andrew R. Scott

Methane from coal beds, an important emerging
source of natural gas in the Lower 48 States, is set to
make a substantial contribution to the United States
domestic gas resource base. Production of coalbed gases
has increased nearly fivefold since 1990, accounting for
3 percent of U.S. gas production and 5 percent of proved
reserves by the end of 1992 (Oil and Gas Journal, 1993).
However, 96 percent of this gas was produced from just
two basins, the San Juan and Black Warrior, and current
development represents only a fraction of the estimated
675 Tcf (19.1 Tm?) of coalbed methane resources in place
in U.S. basins (ICF Resources, 1990; Scott and others,
this volume; Kaiser and others, 1993a). The Gas Research
Institute (GRI), on behalf of the U.S. natural gas industry,
is actively fostering development in other U.S. basins. As
part of this effort, the GRI has commissioned
investigations of the western interior basins: San Juan,
Greater Green River, Piceance, Powder River, and Raton,
which, by virtue of their tremendous coal tonnages,
contain 558 Tcf (16 Tm?) of methane, or 83 percent of
the nation’s total coalbed methane resource.

This report focuses on the Greater Green River Basin
~and aims at- assessing its coalbed methane potential
through integrated hydrologic and geologic studies. The
Greater Green River Basin report is the latest of the
GRI-sponsored investigations of the western interior
basins and complements the earlier reports of McFall and
others (1986), Kelso and others (1988), and Stevens and
others (1992); the detailed studies of the San Juan (Ayers
and others, 1991) and Sand Wash (Kaiser and others,
1993a) Basins; and the four-basin overview report of Tyler
and others (1991).

This report also embodies the current |deas of the
Bureau of Economic Geology’s continuing assessment of
the geologic and hydrologic conditions necessary for
producibility of coalbed methane. The comprehensive
studies of the San Juan (containing 88 Tcf; Ayers and
others, 1991) and Sand Wash Basins (containing 101 Tcf;
Kaiser and others, 1993a) indicate that coalbed methane

producibility is profoundly influenced by several key v

geologic and hydrologic controls, including tectonics,
structure, deposition, hydrologic setting, coal rank, and
gas content (Kaiser and others, in press). These controls
and their influence on producibility are discussed in terms
of the Upper Cretaceous Mesaverde Group and lower
“Tertiary Fort Union Formation in'the Greater Green River
Basin. Their relative importance is assessed in the context
of lessons learned in the:San Juan and Sand Wash Basins.

‘Tectonic and
Structural Setting

The tectonic and structural setting of a basin is the
most fundamental underlying control on coalbed
methane resources because it (1) determines the
subsidence regime that in turn determines sedimentation
patterns and the locus of peat accumulation, (2) dictates
whether coalification proceeds to ranks sufficient for

~ thermogenic gas generation through burial and thermal

history, (3) orients stress-induced fractures in the coal’s
cleat network and determines whether the fractures are
open to enhance permeability, (4) defines drilling depth

© totarget coalbed reservoirs, and (5) creates structures for

conventional trapping of gas.

* The Greater Green River Basin is located in the Rocky
Mountain Foreland, a major tectonic element between
the Wyoming-ldaho Overthrust Belt and the North
American Craton. During Cretaceous time this foreland
was a rapidly subsiding, elongate, asymmetric trough
occupied by the Western Interior Seaway, a shallow
continental seaway extending from the Gulf of Mexico

“to the Canadian Arctic. Periodic thrust faulting and uplift

in the Overthrust Belt caused sediment to be shed
eastward into the seaway, resulting in episodic
advancement eastward of the Late Cretaceous shorelines.
These wedges of clastic sediment include the thick
Mesaverde Group coals currently being targeted. for
coalbed methane. During the Laramide Orogeny, in Late
Cretaceous and early Tertiary time, the Rocky Mountain
Foreland was broken into a number of smaller basins by

‘thick-skinned thrusting. Basement-involved thrusts

elevated highlands, which shed sediment into the newly
formed intermontane basins. Thick sequences of lower
Tertiary intermontane fluvial-lacustrine sediments host
the Paleocene Fort Union Formation’s thickest coal seams,
which are also being targeted for coalbed methane
exploration and development. Organic accumulation and
peat preservation was favored by rapid subsidence and
syntectonic sedimentation.

The present structural configuration of the Greater
Green River Basin began to emerge during the late
Laramide Orogeny. Then an initial episode of erosion
occurred, followed by a period of widespread magmatism
and volcanism in the Oligocene, and finally an episode
of renewed tectonic uplift about 10 Ma. By the end of
the Pliocene, the basin’s present structural configuration,



'topography, surface dramage, and hydrodynamncs were
largely established.
Local tectonic.and/or compactlon induced folds and

faults that are present throughout the basin may be more

" important controls as sites of fracture-enhanced
permeability and conventional trapping of gas. Structural
complexity (folds and faults) may favor the presence of
fracture-enhanced permeability and conventional
trapping of gas, but it also causes steep dips and deep
burial of target coal seams. Most of the coal seams are
"deeply buried except along the southeast margin of the
basin (Sand Wash and Washakie Basins), at-the Rock
Springs Uplift, and on the north end of the Moxa Arch
(La Barge Platform), where coals are less than 6,000 ft
(<1,830 m) deep. : :

Stratigraphic and
Depositional Setting

Depositional setting imposes a strong control on
coalbed methane producibility because it determines the
size, thickness orientation, and stratigraphy of the coalbed
reservoirs. The processes of peat accumulation and its
preservation as coal require a delicately balanced
subsidence rate that maintains optimum water table levels
but excludes disruptive clastic sediment influx.

- Depositional setting defines the substrate upon which peat
growth begins and within which peat swamps proliferate.
Size of the coal bed is thus controlled by the area of
sediment bypass in the peat swamp, and coalbed

thickness is determined by the length of time the swamp.

remains uninterrupted by sediment influx. Depositional
.architecture dictates the orientation of the coals. Coastal
plain coals, for example, are strike aligned and parallel
to the orientation of the shoreline systems. Fluvial coals,

in contrast, are commonly dip oriented and closer in’

geometry to the fluvial-channel belts. Sandstone
distribution and coal distribution are generally intimately
associated, and an understanding of depositional
“architecture and sand-body geometry can enable
prediction of coalbed distribution throughout a basin.
Large net-coal thickness is critical to establishing a
coalbed gas resource, and individual coalbed thickness
indicates productivity.

In the Greater Green River Basin, the coal- bearlng
stratigraphic interval extends from the Upper Cretaceous
Frontier Formation through to the base of the lower
Tertiary Wasatch Formation, but the Upper Cretaceous
Mesaverde Group and lower Tertiary Fort Union
Formation are the main targets. Upper Cretaceous
depositional systems were predominantly wave-

dominated deltas and barrier/strandplains that formed'

linear clastic. shorelines. The thickest coal seams were

préserved on the coastal plain landward and parallel to
these ancient shorelines. In the Mesaverde Group, the
Rock Springs and Williams Fork Formations host thick,

~continuous, shore-parallel coal beds. The Rock Springs

coals reach a maximum net:coal thickness of a little more
than 100 ft (33 m) in as many as 12 coal beds along an

8.5-mi-wide (13.4-km) zone on the flanks of the Rock

Springs Uplift that extends from the town of Rock Springs,
Wyoming, northeast for approximately 60 mi(~197 km)
and southwest for-40 mi (131 km). The coals thin rapidly
to the southeast, where they are bounded by shoreline
sandstones. By late Mesaverde Williams Fork time,
southeastward progradation of the shorelines had
established favorable coal-forming conditions in the
southeastern Sand Wash Basin, in the Craig, Colorado,
area. The northeast-oriented Williams Fork coals extend
in the subsurface for at least 40 mi (131 km) before being
exposed at outcrop along the south and northeast margins
of the Sand Wash Basin. Maximum net-coal thickness in
the Craig area is 220 ft (67 m) in as many as 40 coal
beds. The dominant strike-elongate (northeast) orientation

~of the Rock Springs and Williams Fork coals and their

overlap with sandstone-poor coastal plain areas behind
the paleoshorelines indicate that the coastal plain systems
provided optimal conditions of subsidence, water table -

level, and shelter from clastic influx for peat to accumulate

and be preserved. The coals thin to the west and north—
west in both units, suggesting that peat growth and
preservation in that direction was inhibited by disruptive
clastic influx and lowering of water table levels associated
with the transition landward into slightly elevated fluvial
environments.

The stratigraphy that provides the framework for
analyzing the Mesaverde coals was defined by several
regional unconformities and widespread marine flooding
events. The Mesaverde Group is divided into upper and
lower units by the Trout Creek marker, a widespread
marine flooding event. The lower Mesaverde is further
subdivided by the regionally extensive Moxa
unconformity that separates the coal-bearing Rock Springs
Formation from the younger, aggradational part of the
Iles Formation to the east. The upper Mesaverde,
consisting of the Williams Fork Formation and overlying
Almond barrier/strandplain facies, is divided into five
genetic depositional sequences that are each bounded
by regionally extensive shale markers representing marine
flooding surfaces basinward and nondepositional hiatal
surfaces (or surfaces of sediment starvation) landward.

‘The shale marker that bounds Williams Fork genetic units

2 and 3 is the most prominent of the markers and
correlates with the Pine Ridge unconformity to the west.
This unconformity is readily identified across the west
half of the Greater Green River Basin.

In contrast to the coals of the Upper Cretaceous, the
lower Tertiary coals, hosted by fluvial-lacustrine



- sediments, show strong evidence of syntectonlc control.
The lower Tertiary coal beds (lower coal-bearing unit;
Fort Union Formation) are thick and widespread. The
maximum net-coal thickness of 140 ft (42.7 m) occurs in
' the depositional center of the Green River Basin, but net
- coal thickness exceeds 80 ft (24.4 m) in all subbasins.
“Individually the coal beds can be as much as 40 ft (12.2)
thick, extending laterally typically' more than 10 mi (>16
km). Syntectonic control is indicated by marked thinning
of the coals over the major structural features, the Rock
Springs Uplift, Moxa Arch, and Pinedale Anticline, and
subtle thinning across the Cherokee and Wamsutter
Arches. The syntectonic control is further suggested by
the relationship between trends in coal thickness and
sandstone distribution of the Fort Union fluvial systems.

" Net coal is thickest along the depositional axes of the:

greater basin, and on the basis of detailed studies in the

Sand Wash Basin (Tyler and McMurry, 1993), is thought'

to overlap the trend of high net sandstone. The coals thus

occupy the same axial position as the fluvial systems.

This suggests that tectonism provided optimal subsidence
rates for peat accumulation, periodically shutting down
the sediment supply to the intermontane fluvial systems.

Channel-fill sandstones focused ground-water flow to
initiate peat swamps maintain water table levels, and

. preserve peat.
To correlate the major coal-bearing horizons in the
Paleocene Fort Union Formation, lithostratigraphic zones

and -units in the Upper Cretaceous and lower Tertiary.

rocks were defined. These lithostratigraphic zones include
the Fox Hills Sandstone, the Lance Formation, the massive
Cretaceous and: Tertiary (K-T) sandstone unit, the Fort
Union Formation, and the Wasatch Formation.

Nearshore-marine and marginal-marine deposits of the - .

~ Fox Hills Sandstone intertongue with offshore marine

deposits of the underlying Lewis Shale and fluvial deposits -

of the overlying Lance Formation. An intermontane fluvial

sandstone sequence overlies and intertongues with the

Lance Formation and is overlain and intertongues with
the lower coal-bearing unit of the Fort Union Formation:
This sequence of rock, referred to as the massive KT
sandstone unit, contains the regional Upper Cretaceous
and Tertiary unconformity. Laramide uplift and erosion
of parts of the Mesaverde Group Lewis Shale, Fox Hills

“Sandstone, and Lance Formation along the basin margins
and Rock. Springs Uplift resulted in the angular
unconformity between the Fort Union Format|on and the
underlying sediments.

Characteristic syntectonic sedimentary facies of the ‘

~ coal-bearing Paleocene Fort Union Formation in the basin
“include a narrow conglomerate facies adjacent to

basement-cored thrusts, a narrow sandstone-mudstone-

coal facies just basinward, a basinal thrustward-
‘thickening mudstone facies associated with
basement-cored thrusts, and a wide distal sandstone—

mudstone=coal facies (Tyler and McMurry, 1993). On'the
basis of this facies architecture; the Fort Union Formation

“may be operationally divided into the lower coal-bearing
-unit, the gray-green mudstone unit, the basin sandy unit,
‘and the upper shaly unit. Depositionally the lower coal- -

bearing unit contains thick, laterally continuous coal beds

“that occur associated with bed- and mixed-load
channel-fill sandstone sequences. The channel-fill
'sandstone sequences are considered to be part of a much
- larger intermontane fluvial trunk-stream system that
flowed through the Greater Green River Basin and exited |

on the east edge of the Great Divide Basin. An increase
in the suspended load carried by the fluvial system
through tectonism and/or major upstream avulsion
resulted in the formation of extensive floodplains and

‘coal deposits. Coal beds are thicker and more numerous

in floodplain areas above and on the flanks of the thickest
sandstones. o

Coal Rank, Gas Content,

and Gas Composition

e In comparison with other western interior basins such
as the San Juan, Piceance or Raton Basins, the Greater

‘Green River Basin is characterized by relatively low coal

rank. Although reaching semianthracite rank in the deep
Washakie Basin, coal ranks at exploitable drilling depths
more typically range from high-volatile C to high-volatile
A bituminous and have thus barely reached the threshold
of thermogenic gas generation. In the Mesaverde Group,

‘coal rank along the basin margins and around the Rock

Springs Uplift is subbituminous to high-volatile C
bituminous, increasing with depth to high-volatile A
bituminous at around 7,500 ft (~2,286 m). Only: below
these ‘depths have the coals reached ranks sufficient to

generate large volumes of thermogenic gas. Fort Union
_coal rank is also low, ranging from subbituminous along

the basin margins and the Rock Springs Uplift to low-

, volatnle bituminous in the Washakie Basin.

Consistent with the coal rank trends, gas contents of
the Greater Green River Basin coals are generally low;
dry, ash-free gas content values are typically less than
200 scf/ton (<6.24 m?/t) in the Mesaverde coals and less

“than 100 scf/ton (<3.12 m3t) in the Fort Union coals.
“However, despite generally low gas contents, areas of

high gas content do exist. Areas having higher Mesaverde
gas contents in the' Sand Wash Basin are located (1) in an.
area of artesian overpressure along the Cherokee Arch

‘and (2) along the northwestward-trending Cedar

Mountain fault system where ground-water flow turns

upward at the transition between hydropressure and . -

hydrocarbon overpressure (Scott and Kaiser, 1993). Gas

~contents average 350 scf/ton (10.92 m*/t) in Rock Springs



~ coals north of the Rock Springs Uplift. The gas content
- profile in these coals is not fully understood, however,
" because gas content decreases with increasing depth. This

- atypical profile is not readily explained, but it may reflect
. aPleistocene recharge event and generation of secondary
‘biogenic gases. Gas contents of approximately 500 scf/

ton (~15.6 m*t). were reported in Fort Union

subbituminous coals in the Big Piney area and may reflect

_conventional trapping of gas.

Greater Green River Basin coalbed gases are early
_thermogenic, thermogenic, and secondary biogenic. The
Mesaverde coalbed gases are early thermogenic and/or

secondary biogenic in the hydropressured parts of the

basin and predominantly thermogenic in deeper parts of -

the basin near the hydropressure-hydrocarbon

. overpressure boundary. Fort Union coals are lower rank
and, therefore, the coalbed gases are predominantly early

thermogenic and/or secondary biogenic, although

_thermogenic gas may be more important in the deeper '

- parts of the basin, where the coals approach or exceed
high-volatile A bituminous rank. :

Thermal maturity is the biggest |mped|ment to
coalbed methane potential of the Greater Green River
Basin. However, mechanisms that enhance gas contents
of the generally low rank coals, such as updip gas
migration from thermally mature coals at depth,
generation of secondary blogemc gas in dynamic flow
systems, and conventional trapping at the transition of

“hydropressure and hydrocarbon overpressure,; have been

demonstrated in a number of areas. More than likely these
“same mechanisms have operated in other parts of the

basin where data are: currently sparse. Exploration and’
development strategies should allow for these

“mechanismes.

Hydrology

Hydrology affects coalbed methane producibility.in -
several ways. In a typical coalbed methane reservoir, for

example, hydrodynamics promotes sorption of gas on
the coal surface by maintaining reservoir pressure. Where
the coalbed methane reservoir is dominated by (or has a
component of) conventional trapping, vigorous
ground-water flow provides the means (in solution or by
entrainment) for long distance migration of the coalbed
gases to the trap and introduces bacteria for generating
secondary biogenic gases. Although hydrodynamics

clearly helps enrich gas content for commercial

production, it can also be detrimental, if production is
- attempted close to recharge areas and too much water is
“produced.

Hydrologic characterization can reveal much about

reservoir conditions because hydraulic gradient, pressure
regime, and hydrochemistry reflect an aquifer’s ability to

accept and transmit fluid and, thus, regional permeabilitj) '
contrasts. An-example in the Fruitland Formation, San
Juan Basin, shows enhanced permeablllty correlating with

~gentle. hydraulic gradients, artesian’ overpressure, and

low-chloride formation waters. We would argue that
artesian overpresstire requires enhanced permeability and
recharge at an elevated outcrop and aquifer confinement
in the subsurface. The presence of low-chloride water
also indicates active flow and permeable pathways.

' Underpressure in contrast, reflects hydrologic isolation,

reduced permeability, and limited recharge in the absence

of a high-permeability drain. Exceptionally high coal gas
production occurs at the transmon between pressure, :

regimes.:
In_our basin-scale conceptual model (Kaiser -and

-others,in press) producibility of coalbed methane is

enhanced when. hydrodynamics are favorable. We

© suggest that optimal conditions occur when ground water

flows through coals of high rank and gas content

orthogonally toward no-flow boundaries (regional
hingelines, fault systems, facies changes and/or discharge
areas), enabling efficient sweeping of gas for eventual
resorption and conventional trapping basinward. The

- extent to which these optimal conditions are met in the
Greater Green River Basin is assessed in the Mesaverde
“and Fort Union coal-bearing stratigraphic units. '

Recharge into the Mesaverde aquifer occurs primarily. .
at outcrop along the east margin of the Greater - Green

. River Basin, in the foothills of the Sierra-Madre Uplift,

Park Range, and Williams Fork Mountains. Ground water

flows westward, from the wet elevated basin margin,

down hydrologic gradient, to discharge eventually

- basinward along fault systems and facies changes that -

separate ‘hydropressure from regional hydrocarbon
overpressure in the central basin. In the Tertiary aquifer

~-system, recharge occurs primarily along the foothills of

the Sierra Madre Uplift and Park Range, Wind River,
Wyoming, and Uinta Mountains. Dynamic flow
throughout the greater basin is basinward toward
topographically low areas such as the Green River and
Little Snake River valleys for eventual discharge. Dynamic

 flow promotes generation of secondary biogenic gas,

migration of it and'thermogenic gas, and presumably"
delivery.and concentration at traps when oriented at a.
high angle to them. Ground-water flow in the Mesaverde
aquifer is dynamic in the eastern Sand ‘Wash and

“'Washakie Basins but is restricted off the flanks of the Rock

Springs Uplift and in the Green River Basin by low
precipitation, high evaporation rates, and faults.
Hydrodynamics in the Green River Basin is difficult to
assess because the Mesaverde is fault- severed from the
wet basin margin and receives little direct recharge.
Sluggish ground-water flow is postulated in-the basin
interior, but data are limited and identification of pressure
transition zones that may favor coalbed ‘methane
accumulatlon was impossible. :



In the deep central part of the eastern Greater Green
River Basin, hydrocarbon overpresstring dominates the
~ Mesaverde aquifer, being flanked by hydropressured strata
- above approximately 8,000 ft (~2,440 m). No pressure

regime regionally dominates in the hydropressured -

‘section, but artesian overpressure occurs locally on the
eastern Cherokee Arch and along the east margin of the
Washakie Basin. A large fault system, the Savery fault
system, separates hydrocarbon overpressured and
hydropressured strata along the east margin of the
Washakie Basin. The potential for conventional trapping,

“upward flow at the pressure boundary, and generation of -

~ biogenic gas may favor coalbed methane accumulation.
The same can be said of the Cedar Mountain fault system

" in the Sand Wash Basin. The transition ‘zone between .

hydropressure and hydrocarbon overpressure on the east
side of the Rock Springs Uplift may also indicate potential
for upward flow and hydrodynamic conditions favorable
to coalbed methane accumulation at depth. The transition
~ zone may signify a no-flow boundary caused by extensive
diagenesis, where meteoric water moving basinward has
mixed with late compactional fluids moving out of the
“basin. Mixing of chemically disparate waters would favor
mineral precipitation and permeability reduction.

Resources and
’ o
Production
In the Greater'vGreen'River Basin, coal and gas
resources total 1,277 billion short tons (1,158 billiori t)

and 314 Tcf (8.89 Tm?), respectively. The Mesaverde
Group contains 627 billion.tons (569 billiont)-and

264 Tcf (7.47 Tm?),-accounting for 49 and 84 percent of »

the total resources, respectively. The Fort Union
Formation contains 649 billion tons (589 billion t) and

50 Tcf (1.42 Tm?3), accounting for 51.and 16 percent of

the total resources, respectively. At depths of less than
7,500 ft (<2,286.m) coal and gas resources are 688 billion
tons (624 billion t)and 84 Tcf (2.38 Tm?), respectively. At
- those depths, Mesaverde resources are 243 billion tons

(220 billion t).and 56 Tcf (1.58 Tm?), accounting for 35
~and 67 percent, respectively, of the resources at less than

7,500 ft (<2,286 m). Fort Union resources are 445 billion

tons (404 billion t) and 28 Tcf (0.79 Tm?), accounting for

- 65 and 33 percent of the resources, respectively.
Coalbed methane production in the Greater Green
" River Basin has been established only in the Sand Wash

Basin, where gas production from the Williams Fork

- Formation has been minimal and water production has
been excessive. Cumulative gas and water production is
134 MMscf (3.8' MMm?) and 6.8 MMbbl (1.1 MMm?),
* respectively, for a cumulative basinwide gas-water ratio
of ‘approximately 20 scf/bbl (~3.6 m*m?). Among the

11-wellsin Dixon field, 3 struCturaIIy high wells currently
produce gas at rates of less than 40 Mcf/d (<1.1 Mm?/d).

Initially, eight wells were flowing artesian and served

as dewatering wells; they flowed at rates ranging
from 600 to 1,000 bbl/d (95 to 159 m?/d) for a per-well

. average of approximately 700 bbl/d (~111 m?d) in 1991.

Upon production, rates have declined to approximately
500 bbl/d (~64 m?/d). In Craig Dome field, 16 plugged
and abandoned wells produced no gas and large volumes
of water (~500 bbl/d [~80 m%d] per well) over a 12-to .~
18-mo test period. Nine Fort Union coalbed wells were .
completed, production tested, plugged, and abandoned.
During test periods ranging from 9 d to 7 mo, the wells
made zero to negligible volumes of gas and tens of
thousands of barrels of water (thousands of cubic meters).
Because of proximity to the recharge area and:high
permeability, economically dewatering (depressuring)
coal beds near the basin margin-may be impossible.
Disposal costs of large volumes of produced water can
adversely affect project economics to the extent that -

* development may be deemed -uneconomical.

Along the northeast flank of the Rock Springs Upllft
coals ‘of the Fort Union, Almond, and Rock Springs
Formations were tested. Only Rock Springs coals
showed commercial promise. Production forecasts
predicted recoveries of 1to 3 Bcf/160 ac (28 to 84 MMm?/
65 ha) and peak rates of 240 to 1,200 Mcf/d (6.79 to
34.00 Mm?/d). Despite these promising forecasts, test
results were disappointing. During a 530-d production
test, the most successful well (2. UPRC-1) averaged
78 Mcf/d ( 2.2-Mm?d) and 200 bwpd (32 m%d) froma
50-ft (15.3-m) interval (Stevens, 1993). Development
was stopped in 1992 prlmanly by low gas prices and

~ disappointing test results and secondarily by

environmental-concern over disposal of produced water.
A pair of northern wells, completed in Fort Union and -
Almond coals, were tested for 4 mo and produced less-
than 100 Mcf/d (<2.8 Mm?/d); low permeability and low
gas content (~200 scf/ton {~6.24 m?/t]) doomed these
wells. ' : E

_Exp'loration Fairways

The Greater Green River Basin is a largely untested,
frontier coalbed methane basin, in which deeper drilling
will ‘be required to penetrate higher-rank, higher-gas-
content Mesaverde and Fort Union coals. Gas contents -
of the Mesaverde Group, between 6,000 and 7,500 ft
(1,830 and 2,286 m), are approximately 350 scf/ton
(~10.92 m*/t) and exceed 500 scf/ton (15.60 m?/t) below
7,500 ft (2,286 m). Mesaverde and Fort Union coal
distribution and steep structural dip limit deeper drilling
to the Sand Wash Basin, eastern Washakie Basin,
northeast flank of the Rock Springs Uplift, the Sandy Bend
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Figure ES-1. Exploration target areas, Greater Green River Basin.




~ Arch, and the La Barge Platform in the Big Piney area

(fig. ES-1).

~Inthe Sand Wash Basin (fig. ES-1) northwest of Craig,
_ the Cedar Mountain fault system terminates in-a zone of
“ convergence along the boundary between hydropressure

~and regional overpressure. Higher-rank, high-gas-content

- Mesaverde coals are present in the area, suggesting high

~production potential. Along the east margin of the

Washakie Basin (fig. ES-1), normally pressured and
artesian overpressured coals have gas contents ranging
~from 250 to 350 scf/ton (7. 80 to 10.92 m*/t). However,
although excessive water production has limited

producibility, it is predicted to decrease northward

~coincident with decreasing recharge. On the north-
~ eastern Rock Springs Uplift (fig. ES-1), coals of the Rock

Springs Formation have been targeted for development:

because thickness, resources, and gas content are
- favorable. Net-coal thickness in ‘5-ft (1.5-m) seams

" exceeds 40 ft (12 'm) (Kaiser, 1992), gas resources at -

less than 7,500 ft (<2,286 m) are approximately 9 Tcf

. (~0.25 Tm?), rank ranges from hvCb to hvAb, and gas
. content averages 350 scf/ton (10.92 m/t) over a 1,000-ft

(305-m) interval. However, an atypical gas-content profile
shows decreasing gas content with depth-and implies a
* narrow exploration fairway, which may constrain future

. development. Thick Rock Springs coals on the southwest *

flank of the Rock Springs Uplift are probably too deep
~for economic drilling, thus eliminating these coals as near-
- term coalbed methane targets.

Although generally thin, Almond coals are not
primary coalbed methane targets, they are possible

secondary targets in the:course of conventional Almond -

gas' development in the deeper, overpressured: parts of
the Washakie Basin. Reservoir volumetrics clearly
demonstrate that Almond gas production does not only

~originate from the targeted upper Almond sandstone
1993). Examples are numerous where

(Iverson,
- cumulative gas production has exceeded, or will soon

exceed, the total gas in place in the perforated upper

- sandstone. Iverson (1993) attributed the extra gas to
laminated sandstones (below the upper sandstone) that
‘were interconnected after hydraulic fracturing.
-Undoubtedly they contribute gas, but numerous thin coals
are present in the upper Almond and may instead be the

major contributors and thus should be considered for
completion. Completion practices should be reevaluated

“to consider dual completion of tight sandstones and coals,

as is done inthe Piceance Basm for hlgher-yleld Ionger—
lived gas wells.

Fort Union: Formation coals are present throughout
much of the basin, but recorded gas contents are low
(~100 scf/ton [~3.12-m’/t] or less) and thus considered
secondary coalbed methane targets. However, structural -
and/or stratigraphic trapping may enhance gas contents.
In the Big Piney area (fig. ES-1), on the La Barge Platform,
where considerable Fort Union conventional oil and
gas production has.been established, gas contents of

approximately 500 scf/ton (~15.6 m*/t) were reported in’
“subbituminous coals. The coals” low rank and area’s

location, flanking the deep Pinedale Basin, are circum-

stantial evidence of updip migration and conventional
trapping of thermogenic gases. In the northern Green
River Basin, more than 100.net ft (>30 m) of coal is -
present, individual coals ranging to 40 ft (12.2 m) in .
thickness. These coals have never been tested and may
be prospective on the Sandy Bend Arch (fig. £S-1). Again,

~ migrated thermogenic gas and secondary biogenic gas

are postulated sources of gas. Ground water flows -
orthogonally to the arch and may bring dissolved and/or .

entrained gas to the arch for resorption and trapping.

Exploration strategy in the Greater Green River Basin.
must-be to maximize gas content and minimize water
production through integrated geologic, hydrologic, and
engineering studies. To do so, we must fine-tune three- -
dimensional modeling of regional system tracts within .
the regional tectonic, structural, and hydrologic
framework. In addition, delineating reservoirs on a field
scale and determining reservoir-scale physical properties

- should be achieved. Greater emphasis should be placed
_-on identifying conventional traps (no-flow boundaries).

Conventionally trapped gas and solution gas that can be

‘produced with less associated water are overlooked

sources of coalbed methane. Proximity to recharge areas
should be avoided because water production has been
excessive to date. High water production may be the
primary technological challenge facing commercial

development in the Greater Green River Basin.



‘Tectonic and Strat|graph|c Setting
‘and Coal Occurrence of the

Upper Cretaceous Mesaverde Group and
Lower Tertiary Fort Union Formation,

Greater Green River Basin
Roger Tyler and Douglas S. Hamilton

Geologic Overview

The Greater Green River Basin, Wyoming’s largest
coal-bearing area, covers approximately 15,000 mi?
(~38,870 km?) of southwestern Wyoming and 5,600 mi?
(14,511 mi?) of northwestern Colorado (figs. 1 and 2).
Tectonic fragmentation of the Rocky Mountain Foreland
during latest Cretaceous to earliest Oligocene Laramide
deformation resulted in the Greater Green River Basin
being bounded by the Gros Ventre, Wind River, and
Granite Mountain Uplifts to the north; the Lost Soldier
and Wertz Anticlines, Rawlins Uplift, and Hatfield and
Miller Hill Anticlines to the east; the Sierra Madre and
Park Uplifts to the southeast; and the Axial:Arch and White
River and Uinta Uplifts to the south (figs: 1 and 2) (Berg,
1961, 1962, 1983; Armstrong and Oriel;, 1965; Royse
and others, 1975; Smithson and others, 1978;.Gries,
1981, 1983; Garing and Tainter, 1985; Tyler and Tremain,
1993). The Greater Green River Basin encompasses four
intrabasin uplifts (the north-trending Moxa Arch and Rock
Springs Uplift and the east-trending Wamsutter and
Cherokee Arches) and four subbasins (Green River, Great
Divide, Washakie, and Sand Wash) (fig. 2). Sedimentary
rocks ranging from Cambrian through Tertiary in each
basin reach a maximum thickness of 32,000 ft (9,750 m).
- Most (~23,000 ft; ~7,012 m) of these rocks are Late
Cretaceous, Paleocene, and Eocene in age (fig. 3)
(Dickinson, 1989). Depth to Cretaceous coal-bearing strata
varies from outcrop to more than 16,000 ft (>4,877 m)
below land surface in the east and from outcrop.to more
than 12,000 ft (>3,658 m) in the west (fig. 4). Lower
Tertiary Fort Union coal-bearing strata range from outcrop
to nearly 10,000 ft (3,048 m) in depth (fig. 5).

Tectonism has- also affected depositional patterns,
coal occurrence, hydrodynamics, and thermal maturity
(gas generation) and has determined the distribution and

orientation of faults, folds, and fractures within the basin. .

Emplacement of uplifts along basement-cored thrust
sheets, verging perpendicular to maximum horizontal
stresses, has implications for fracture and fault genesis in
buried and less deformed parts of the Greater Green River
Basin. Compression-along salients in the thrust belt of
the Tertiary uplifts has resulted in east-, northeast-, and
northwest-oriented fractures and faults. The range of
fracture and fault strikes implies that after deposition of
the Mesaverde Group in the Late Cretaceous and'

- Cenozoic, the maximum horizontal stresses rotated about
" a vertical axis. Such fractures and faults play a role in

fluid-flow patterns by providing permeable pathways for
both gas and water. Systematic fractures (face cleats) and
faults generally parallel current maximum horizontal
stress directions in the Greater Green River Basin.

Tectonic and
Stratigraphic Setting

The Overthrust Belt (Wyoming-Idaho Overthrust Belt)
(figs. 1 and 2), a region of north-trending folds and thin-
skinned, generally west-dipping imbricate thrust faults,
moved eastward during Late Cretaceous to early Tertiary
times (fig. 6). The Greater Green River Basin, to the east
of the Overthrust Belt, is a structurally complex
intermontane basin. During the Cretaceous, the area of
the present Greater Green River Basin was near the west
margin of the Western Interior Seaway, a shallow sea that

‘extended from north to south across much of the North

American midcontinent (Kauffman, 1977). The Western
Interior Seaway occupied a foreland basin bounded on
the west by the Cordilleran thrust belt. Greatest
subsidence and deposition occurred along the west
margin of the seaway, adjacent to the overthrust belt.
Initiation of deformation in the thrust belt during the Early
to Late Cretaceous Sevier Orogeny coincided with'a major
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Figure 3. Coal-bearing stratigraphic and hydrologlc confining units, Greater Green River Basin. Modified from Baars and others

(1988).

episode of subsidence of the Western Interior Seaway

(Heller and others, 1986), and sediments derived from

the uplifts to the west gradually filled the basin, causing
the northeast-trending shoreline to advance eastward.

‘ Numerous transgressions and regressions of the
shoreline recorded in the Cretaceous sediments reflect
episodic thrust-belt deformation and eustatic change. The
basin records three major progradational cycles in Late

- Cretaceous, pre-Laramide sequences (fig. 3). Each cycle
extended deltaic and coastal-plain deposits farther
‘basinward than had the preceding cycle, indicating an
overall filling of the Western Interior Seaway. Progradation
extended coal-bearing strata (Frontier Formation) as far
east as the Rock Springs Uplift during the first cycle.

11

Equivalent strata basinward are mud-rich prodelta and
delta-front facies. The second major cycle established
coal-forming conditions in deltaic and back-barrier
settings (Mesaverde Group) beyond the present-day

-eastern. limit of the Greater Green River Basin. -Minor

regressive and transgressive cycles are recognized within -
the major Mesaverde Group cycle. The Fox Hills Sand-
stone, representing the final regressive Cretaceous.
shoreline facies of the Western Interior Seaway, and the
Lance Formation, the succeeding aggradational facies
(Irwin, 1986), record the end of Cretaceous sedimen-
tation. The Fox Hills-Lance couplet is-depositionally
equivalent and homotaxial to the prolific gas-producing
Pictured Cliffs—Fruitland couplet in the San Juan Basin.
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Basement uplifts subsequently broke the foreland of
the. Cordilleran thrust belt into smaller structural and
depositional basins during Laramide deformation (mainly
Tertiary in age, between 70 and 30 mya). This structural
event subdivided the Greater Green River Basin into
intermontane basins, such as the Green River, Great
Divide, Washakie, and Sand Wash Basins _(fig. 2).
Activation of the late Campanian phase of thrust-
emplaced uplifts and erosion along the margins of the
present-day Greater Green River Basin produced the
intermontane-fluvial deposits of the Paleocene Fort Union
Formation (Beaumont, 1979; Osmond, 1986; Tyler and
Tremain, 1993). Major lithologic components.of the Fort
Union Formation (fig. 3)-are conglomeratic sandstone and
sandstone, siltstone, shale, and coal that were deposited
in fluvial, floodplain, and lacustrine settings (Tyler and
McMurry, 1993). »

Early .Eocene time brought even greater crustal
instability to the region. The Fort Union Formation was

“uplifted throughout the region, tilted and truncated along
the margins of the basement uplift, and covered by
sandstone and variegated shale of the Wasatch Formation
(Love, 1970; McDonald, 1972,1975; Reynolds, 1976).

and Sand Wash Basins are derived from a granitic terrain’

(Ryder, 1988). In contrast, the Wasatch of the south and
west Green River.Basin was derived from a sedimentary
terrain (Oriel, 1962; Hansen, 1965). Although precise
timing of the uplifts remains controversial, preexisting
structural grain may have controlled the orientation of

" 'some uplifts. :

By middle Eocene time, structural and topographic
relief had developed to the extent that the Greater Green
River Basin probably became a closed topographic basin
containing an extensive lacustrine system. Uplift occurred

_again during the Oligocene, and extensional deformation

began in the early Miocene (Hansen, 1986). After the
Laramide Orogeny (Miocene to Pliocene), an extensional
stress regime (characterized by basin filling, faulting, and
partial-to.complete collapse of several basement uplifts)
further.-modified the structural configuration of the basin
(Hansen, 1965; Love, 1970; Reynolds, 1976; Sales, 1983;
Ryder, 1988). Extensional faulting continued at a
diminished rate into the Quaternary (Hansen, 1986).
Dikes, sills, and other intrusives were also emplaced

~during the late Tertiary (Tweto, 1979), and they locally

Sediments of the Wasatch Formation'in the northern

Green River Basin and in the Great Divide, Washakie,
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coked or metamorphosed coals to anthracite (Bass and
others, 1955). The dikes exhibit trends similar to those of
fractures and faults (Tyler and Tremain, 1993).



"Geometry and
“Age of Intrabasin Uplifts
and Subbasins

Intrabasin Uplifts

The doubly plunging Rock Springs Uplift, having
rocks as old as Santonian (Late Cretaceous) age exposed
in its core, is the most conspicuous uplift within the
Greater Green River Basin (fig. 2; Ryder, 1988). This
- 60-mi-long (97-km), 35-mi-wide (56-km), north-trending
anticline extends from the southeast part of the Wind River
Uplift to near the east end of the Uinta Uplift and separates
- the Green River Basin on the west side from the Great

Divide, Washakie, and Sand Wash Basins on the east.
Westward-facing asymmetry. and curvature of the uplift
were probably caused by east-west-oriented compression
and by east-dipping thrust faults along the west margin
of the uplift (Garing and Tainter, 1985). The thrust fault
along the west flank of the uplift must have formed in
latest Cretaceous time because its subcrop trace is buried
beneath Paleocene rocks (Love and Christiansen, 1985).
East-northeast-trending, high-angle normal faults as much
as 20 mi (32.2 km) long are common in'the area.
Intermittent growth of the Rock Springs Uplift must have
-continued at least through the middle Eocene to early
Oligocene because lacustrine rocks of that age are gently
tilted by the uplift and are cut by northeast and east-
northeast-trending normal faults (Roehlef, 1978; Ryder,
1988).
The Moxa Arch, to the west of the Rock Springs Uplift,
a broad, gently folded basement uplift inthe Green River
Basin (Stockton and Hawkins, 1985) (fig. 2), is buried
beneath uppermost Cretaceous and lower Tertiary rocks
along its entire length (Ryder, 1988). The north end of
the arch, commonly referred to as the Big Piney-La Barge
Platform, iis a prominent structural feature that projects

eastward approximately 6 mi (~9.7 km) into the basin -

(Krueger, 1968) and is associated with large
accumulations of oil and gas in the Big Piney-La Barge
- area. Drill-hole data indicate that the arch plunges to the
south and is convex eastward in-plan view (Ryder, 1988).
Angular unconformities, identified in subsurface
stratigraphic studies, indicate that the arch experienced
initial uplift and truncation in early to middle Turonian
(Baxter—Hilliard Shale) time and then during a second
period of major uplift and truncation in late Campanian
time (Roehler, 1965b; Merewether and others, 1984).
Stratigraphic studies indicate that the Moxa Arch was
highly active in latest Cretaceous and early Tertiary time.
Isopach maps of the lower Fort Union Formation show
that the arch was a positive topographic feature during
deposition of the coal-bearing sequences.

Two subtle east-west-trending uplifts, the Wamsutter
and Cherokee Arches, divide the east half of the Greater

~Green River Basin into three subbasins. (fig. 2). The

Wamsutter Arch, a broad easterly projection of the Rock
Springs Uplift, the larger of the two uplifts, separates the -
Great Divide Basin to the north from the Washakie Basin

* to the south. The Cherokee Arch separates the Washakie

Basin to the north from the Sand Wash Basin to the south.
Judging from isopach maps of Lower Tertiary rocks across
the uplifts.and the age of the youngest rocks in the uplifts,
the Wamsutter and Cherokee Arches probably developed
during the early Late Cretaceous and into Paleocene and
Eocene time. Weimer (1966) also suggested that the west
part of the Wamsutter Arch had a history of tectonic
growth going back to early Late Cretaceous time.

“Subbasins

The Green R‘iver Basin, a broad synclinal basin
covering approximately 10,000 mi? (~25,913 km?), is.

. overlain almost entirely by Eocene rocks. These rocks

dip south from 0.5° to 6°, except along the margins of

the basin, where beds are nearly horizontal or dip at

‘angles generally less than 1.5° (Bradley, 1964). The

principal synclinal axis of the basin trends north-south
and lies approximately 20 mi (~32 km) west of the axis
of the Rock Springs Uplift (fig. 2). North and northeast of
the axis, the basin is bounded by the Wind River Uplift
forming a deep syncline (fig. 7). Within this zone, the
Pinedale Anticline is an asymmetric, thrust-rooted
detachment structure that probably formed in response
to southwest-directed compression associated with

~ structural deformation of the Wind River Uplift (Law and

_small-scale faults (Mroz and others, 1983),

Johnson, 1989). Sedimentary rocks attain a thickness of
approximately 30,000 ft (~9,144 m) in the trough of the
Green River Basin Syncline (Krueger, 1960). To the east,
where the basin is bounded by the Rock Springs Uplift,
the Upper Cretaceous rocks dip 3° to 12° to the west
(McCord, 1984) (fig. 2), and on the west where the basin
is bounded by the Overthrust Belt, rocks dip 2° to 8° to
the east.

_ The Great Divide Basin, also known as the Red Desert
or Shoshone Basin, is a large topographic and structural
basin having interior drainage (fig. 8). A simple synclinal
basin modified by broad shallow folds and widespread
it has a
synclinal axis that trends north-south in the southeast and
curves around to approximately 300° in the northeast. In
the west and southwest, the strata dip from 2° to 3° toward
the east and northeast. In the east, the strata dip as much
as 20° west on the west flank of the Rawlins Uplift

(McCord, 1984).

~ The Washakie Basin, a deep synclinal basin, covers
an area of about 3,000 mi? (~7,774 km?; fig. 9). Whereas
along the basin margins the Eocene beds dip from 3° to
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From Law and Dickinson (1985). Thrust faults may limit recharge to coal-bearing units. Line of section shown in figure 1.

5° toward the center of the basin, away from the edges
of the basin, these strata are essentially horizontal
(McCord, 1984), and Upper Cretaceous sediments dip
steeply toward the center of the basin (fig. 2). This basin,
the deepest part of the eastern Greater Green River Basin,
has depths to the coal-bearing Mesaverde Group that can
‘exceed 16,000 ft (4,877 m) (fig. 9). '

The Sand Wash Basin, a southeast-trending synclinal
prong of the Washakie Basin (figs. 2 and 10), in which
basement rocks are as deep as 17,000 ft (5,182 m) below
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sea level (Tweto, 1975) and Cambrian- through Tertiary-
age rocks may be as much as 30,000 ft (9,144 m) thick
(Irwin, 1986). In the deepest part of the basin (T10N,
R96W, and T10N, R98W), the top of the Mesaverde
Group is 11,000 to 11,500 ft (3,353 to 3,505 m) below
land surface (Tyler and Tremain, 1993). Basal Mesaverde
sandstones probably attain maximum depths of 15,000
'to 16,000 ft (4,570 to 4,800 m). Upper Cretaceous and
lower Tertiary strata, comprising the Mesaverde Group,
Lewis Shale;, Fox Hills Sandstone, and Lance and Fort
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Union Formations (fig. 2), crop out mainly on the east
and southeast margins of the basin and along the Rock
~ Springs Uplift. The strata dip moderately to steeply
basinward, ranging in dip from about 5° to 20°.

Structural Setting—
Faults and Folds

The subsurface and surface structures of the Greater
Green River Basin have complex north-, northeast-,
northwest-, and west-striking faults of diverse origins,
strong north- and northwest-striking anticlinal and
synclinal folding, arid a complex history of fracture

genesis. Six major fault systems occur within the basin,

‘as mapped on the Williams Fork and Fort Union
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Formations (Tyler and Tremain, 1993). A north-south
thrust-fault system lies to the west of the Rock Springs
Uplift; a southwest-northeast-trending fault system
coincides with the Wamsutter Arch and Rock Springs
Uplift to the east of Rock Springs; a west-east-trending
strike-slip and fault system coincides with the Cherokee
Arch to the west of Baggs; a north- and northwest-trending
fault system'is located east of Baggs; and a northwest-
trending thrust and strike-slip fault system occur northwest -
and southeast of Craig (Tyler and Tremain, 1993). The
orientation of fold axes generally parallels the major faults,
showing a gradual shift from north-south on the west

‘margin of the basin to more northwest-southeast in the
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east parts of the Greater Green River Basin, suggesting
rotation of the maximum horizontal compressive stresses.
Natural fractures (cleats) similarly record a complex
genetic history as a result of Laramide and post-Laramide
structural deformation. These fault, fold, and fracture
systems and the thrusts and faults that bound the uplifts
surrounding the basin result in a highly complex structural
grain both within and along the margins of the Greater
Green River Basin (fig. 2).

Faults in the Greater Green River Basin may also
contribute to coal permeability and conventional trapping
of gas. Oil and gas fields occur on north-, northwest-,
and northeast-trending faulted structures on the flanks of
the Moxa, Wamsutter, Cherokee, and Axial Arches and
in the center of the basin associated with the Rock Springs

Uplift (figs. 4 and 5). The west-east-trending Cherokee
Arch, located north of the Wyoming—Colorado state line,
is a westward-plunging anticline cut by numerous faults.
Structural contours drawn on top of the Mesaverde Group
and the Fort Union Formation reveal a major west-east-
trending fault that splays out toward the west and east,
producing a complex normal and reverse fault system,
having a left-lateral strike-slip component (Tyler and
Tremain, 1993). To the east and northeast of the Cherokee
Arch fault system, two major north- and northwest-
trending faults extend for approximately 40 to 80 mi (~64
to 129 km) along the Mesaverde Group and Fort Union
Formation outcrop. Maximum displacements across the
fault system may be as-much as 2,500 ft (762 m);
downthrown blocks are on the west side of the faults.

18”
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The east-trending Cherokee Arch fault system and the
north-trending fault system, when traced to the southeast,
coincide with a strike-slip fault system that crops out
within the Sierra Madre Uplift (Petroleum Information
Corporation, 1992).

The southeast part of the basin is bordered by
thrust-, reverse-, and strike-slip-fault systems that parallel
thrusts and faults on the north flank of the Uinta
Mountains and Axial Arch and the basin margin (figs. 2,
4, and 5). Northwest of Craig a major system of faults
has been identified in the subsurface from geophysical
logs and seismic lines provided by Union Pacific
Resources (Tyler and Tremain, 1993). The fault system is
at least 10 mi (16 km) wide and extends approximately
30 mi (~48 km) northwest and 15 mi (24 km) southeast

~of Craig: Maximum displacements across the fault system
may be as much as 5,000 ft (1,524 m); downthrown
blocks are on the northeast side of the faults (Tyler and
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Tremain, 1993). Southeastward projection of the fault
system boundaries corresponds to northwest-trending
outcrop segments of the Mesaverde Group-Lewis Shale
contact and also coincides with thrust and reverse faults
mapped on seismic data (Livesey, 1985) and prominent
northwest-trending lineaments. Large, predominantly
northwest- and north-trending folds also occur along
the southeast border of the basin (Tweto, 1976). These
folds include the northwest-trending Williams Fork,
Beaver Creek, Breeze, and Buck Peak Anticlines
(Hancock, 1925) and the more north-trending Tow
Creek, Oak Creek, Fish Creek, and Sage Creek Anticlines
(Bass and others, 1955) on the east margins of the Sand
Wash Basin. Northwest faults, 5 to 10 mi (8 to 16 km)
long, are recorded on surface geologic maps (Hancock,
1925; Bass and others, 1955; Tweto, 1976) parallel to
the fold axes. Smaller faults, oblique to the folds, have
also been reported.



“Natural Fracture
‘Attributes in Coal

Permeability in coal largely results from fractures
(cleats) and faults. Cleat and fault characteristics were
recorded from field observations in the Mesaverde Group
and Fort Union Formation.coal beds (at approximately
36 stations, principally in.the center and southeast corner

of the Greater Green River Basin), from literature, and

from core descriptions. A survey of outcrops and mine
highwalls of interbedded lenticular, channel-fill sandstone
and coal in several locations of the Greater Green River
Basin also shows that subbituminous coal seams have
vertical to subvertical, uniformly developed, opening-

mode extension fractures (face and butt cleats) arranged.

in orthogonal map patterns that generally show little
* variation in orientation, dip, spacing, or frequency over

wide areas (Tyler and others, 1991; Tyler and Tremain,

1993).

Cleat Strike

In the west and central parts of the Greater Green
River Basin, average face-cleat strikes are east to northeast
(060° to 090°) (fig. 11), and butt-cleat strikes are north to
northwest (N to 330°) in Cretaceous and Tertiary coals.
In'the southeastern Greater Green River Basin, face cleats
generally strike northwesterly. Boreck and others (1977)

and Khalsa and Ladwig (1981) measured north-northwest

face cleats in seven mines in the southeast part of the
basin. They reported face cleats striking at 003°in T4N,
R86W, 353°in T4N, R85W, between 300° and 335° in
T5N, RB6W-R87W, and 315° in 6N, R87W. Face-cleat
orientations measured at 26 stations in the Sand Wash
Basin generally trend northwestward (fig. 11; Tyler and
others, 1991, 1992a, b; Laubach and others, 1992a, b;
Tyler and Tremain, 1993), parallel to the current maximum
horizontal stress direction (Zoback and Zoback, 1989)
and the major northwest-trending faults in the area. South
of Craig, face cleats form two mutually crosscutting and
“abutting cleat sets that strike both northwestward and
northeastward. We tentatively interpret these orientations
to indicate the presence of at least two major, possibly
contemporaneous, face-cleat sets that are related to
maximum horizontal compressive stresses during late Late
Cretaceous to early Tertiary times. These mutually
~ abutting crosscutting fracture sets may also enhance
permeability (Tremain and others, 1991a, b). Field
mapping of Cretaceous and younger joints and analysis
“of linear features at multiple scales on the Rock Springs
Uplift and within the Great Divide and Washakie Basins
consistently demonstrate regional structural trends of
N60°E to N80°E and N25°W to N60°W. (Jaworowski,

1993). Locally, north-northeast- and north-northwest-
trending photolineations are also apparent on the northern
Rock Springs Uplift and in the northern Washakie Basin
(Jaworowski, 1993), corresponding to the north-northeast-
trending systematic joints and face cleats and north-
northwest-trending nonsystematic joints and face cleats
along the Rawlins Uplift of Laubach and others (1992a,
b) and Grout and Verbeek (1992a, b). Generally, regional
face-cleat strikes in-the basin form parallel to tectonic
shortening, and they are typically oriented at right angles
to orogenic thrust fronts. '

"On the Rock Springs Uplift, local variations in cleat
strike are associated with low-amplitude folds caused by
differential compaction (Tyler and others, 1991; Laubach
and others, 1993, 1994a, b). Studies of folded
subbituminous coal beds at Kemmerer and Rock Springs
mines suggest that cleat strike, dip, spacing, frequency,
and type can vary on the flanks and under fluvial-deltaic
channel-fill sandstones. No typical regional face cleats
are evident; instead, closely spaced normal faults have
replaced face cleats. These faults have striated slip
surfaces that are mineralized and curviplanar, the latter
being concave and convex, forming sigmoidal pat-
terns. The spacing of the faults, from 1 to 6 inches (2.5 to
15 cm), is similar to regional face-cleat spacing. Cutoff
angles of 45° to 60° between coal bedding and fault cleats
indicate that they are not simply reactivated face cleats
but closely spaced, shear-related, mode-1I fault cleat sets
that formed instead of opening-mode (mode-1) cleats
during coalification (Tyler and others, 1991). These fault
cleats, occurring along with localized zones of opening-
mode face-cleat systems, could compartmentalize and
channelize gas and water flow to create structural traps
in which gas could accumulate. Any ability to predict
varying cleat characteristics and reservoir com-
partmentalization would be extremely useful in methane

. exploration because areas of degasification could then
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be identified using structural and lithofacies maps.

Cleat Spacing

In many coals, cleat spacing varies with coal rank,
coal lithotype, ash content, and bed thickness (Ammosov
and-Eremin, 1960) and with position relative to structural
deformation. The spacing between cleats is currently used
in reservoir modeling to. indicate potential fracture .
permeability (Mavor and others, 1991a, b). Cleat spacing

in the Greater Green River Basin ranges from 0.5 inch

(1.3 cm) to more than 12 inches (>30.5 cm) in fractures -
of different sizes. Cleat spacing is less than 0.5 inch
(1.3 cm) in the smallest tertiary cleats, 0.5 to 2 inches
(1.3 to 5 cm) in secondary cleats within coal layers or
coal lithotypes, more than 2 inches (>5 c¢m) in primary
cleats that extend the entire height of a coal lithotype,
and more than 12 inches (>30 cm) in master cleats that
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cut through an entire coal seam, including thin, noncoal
interbeds. Cleat frequency, the inverse of spacing, ranges

from less than one cleat per inch (2.5 ¢m) to more than

five cleats per inch. One- to 2-inch (2.54-to 5.1-cm)

cleat spacing was recorded in a Mesaverde coal at4,914

1o 4,923 ft (1,498 to 1,500 m) in the Helmerich and
Payne Colorado State No. 1-31 well (Sec. 31, T7N,

R88W). Spacing between butt cleats in-a Fort Union -

coal, from approximately 5,000 ft deep (~1,524 m) in
the Chevron Federal Land Bank (F.L.B.) No. 15-4C, is
0.25 inch (0.6 cm). Thin vitrain bands in Fort Union coals,
as in most coals, are closely cleated, on the order of
~ <0.25 inch (<0.6 cm) in a Fort Union coal from:2,072 to
2,077 ft (631 to 633.m) in the F.L.B. No. 1-29 well
(Sec. 29, T7N, R92W) (Tyler and Tremain, 1993).

Cleat Mineralization

Minerals deposited in cleats can obstruct the
permeability of fracture systems in coal seams. Although
cleats in many Greater Green River Basin coals have only
insignificant cleat-filling minerals in outcrop, several
instances of mineralization have been noted. Calcite fills
some cleats in mine exposures near Savery, Wyoming.
Along with pyrite, calcite lines cleats in a few coals cored
in the USGS C-IC-H well (Sec 23. T4N, R93W). Calcite
was also reported throughout cleats in an 8-ft (2.4-m)
coal cored in the Helmerich & Payne Colorado State
No. 1-31 well. Hancock (1925) reported several instances
of selenite (gypsum) along joint planes in blocky coals at
a few old mines and prospects. Minor amounts of pyrite
are also frequently reported in coal mines and cores. The
pyrite occurs as isolated rosettes on cleat surfaces in fresh
coal samples. Reddish-brown staining. in outcropping
coals and associated sandstones may be weathered pyrite
formerly present in the cleats and joints (Tyler and
Tremain, 1993).

Stress Regime

The interpretation and timing of the orientation of
the principal shortening direction in the Greater Green
‘River Basin are controversial. The major compressive
force during the Laramide Orogeny were east-west
(Livesey, 1985), southwest-northeast (Gries, 1983), west-
southwest—east-northeast (Stone, 1975) or typically
oriented at right angles to.orogenic thrust fronts and
parallel to tectonic shortening (Laubach and others,

are consistent with reglonal tectonic patterns of the Rocky -
Mountain Foreland. Spatially the orientation of faults and
fold axes shows a gradual change from almost north-south
on the west margin of the basin, adjacent to the Overthrust
Belt, to northeast in the center of the basin, to a more

_ northwest-southeast orientation in the east parts of the

basin, suggesting rotation of maximum horizontal stresses

-about a vertical axis.

Laramide and post-Laramide stresses associated with

- genesis of natural fractures (cleats) have similarly rotated
- about a vertical axis. Upper Cretaceous and lower Tertiary

coal beds are cut by a complex network of extensional
fractures ‘and cleats. Fracture data reveal at least three
principal face-cleat strikes, which correspond to stress
variations in the Greater Green River Basin. Regionally
the Mesaverde Group has dominant face-cleat strikes to
the northeast along the Overthrust Belt, the Rock Springs
Uplift, and the east margin of the Washakie Basin and to
the northwest within the eastern Sand Wash Basin. But
evidence of mutually abutting northwest and northeast
face-cleat strikes exists in the southern Sand Wash Basin.
A gradual change in face-cleat strike from the northeast
along the west margin of the basin to the northwest on
the southeast edge of the basin suggests a shifting of
principal horizontal stresses from late Mesozoic through
Cenozoic time. A record of Laramide and post-Laramide
stress rotation has also been documented in joints in the
Piceance and Washakie Basins (Verbeek and Grout 1986;
Grout and Verbeek, 1992a, b).

Currently the Greater Green River Basin lies within
the Cordilleran Extension stress province, north of the

"Colorado stress province and west and southwest of the

Mid-Plate stress province (fig. 12; Zoback and Zoback,
1989). Sparse stress-direction measurements suggest that
the maximum horizontal compressive stress orientation
is north-northwest in the southeast parts of the Greater
Green River Basin, northeast near Pinedale, and north-
south in the area northwest of the Overthrust Belt (figs. 2
and 12). Zoback and Zoback (1989) tentatively included
southwestern Wyoming in this Cordilleran Extension
stress province because their data indicate horizontal
stress orientations consistent with nearby regions of the

‘Basin and Range and because available focal mechanisms .

1992a, b; Tyler and Tremain, 1993). Dynamic analysis of -

subsurface and surface structures. in northwestern
Colorado (Stone, 1975; Tyler and Tremain, 1993) indicates
that structural patterns of the Greater Green River Basin
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suggest normal faulting. In addition; this area (as well as
the rest of the Cordilleran Extension stress province)
coincides with-a broad zone of high regional elevation
and heat flow. , ,
" Results of hydraulic fracture experiments in the
Greater Green River Basin confirm northeast maximum
horizontal stress in the Pinedale area and suggest that
locally, hydraulic fractures may have multiple,
nonparallel wings (Power and others, 1976). Passive
surface seismic detection of hydrofracture hypocenters
in the Pinedale area indicated that hydraulically induced
fractures grew northeast (030° to 045°) (Power and others,
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Figure 12. Maximum horizontal compressive stress orientations of the western United States. Stress provinces are delineated by
thick, solid and dashed lines: CC = Cascade convergent province; PNW = Pacific Northwest; SA = San Andreas province;
CP = Colorado Plateau interior; SGP = Southern Great Plains. Thin dashed lines mark the 3,609-ft (1,100-m) elevation contour
based on 1° average elevations. Small boxes correspond to four selected basins: 1 = Greater Green River Basin; 2 = Piceance
Basin; 3 = Powder River Basin; and 4 = Raton.Basin. Modified from Zoback and Zoback (1989).
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1976). The induced fracture also showed predominant

growth of one wing, a curved fracture trajectory, and

possible growth of a third fracture wing at right angles to
the principal northeast-trending fracture. This pattern may
result from the induced fracture intersecting with a natural
fracture zone or fault and possible reactivation of the
fracture zone or fault.

Stratigraphicand
Depositional Setting of
Coal-Bearing Formations

The coal- and coalbed-methane-bearing formations -

in the Greater Green River Basin occur in Upper
Cretaceous and lower Tertiary strata (Tyler and others,
1991, 19924, b; Tyler and Tremain; 1993) (fig. 3). The
Upper Cretaceous contains several coal-bearing,
nonmarine stratigraphic units (Frontier, Rock Springs, lles,
Williams Fork, Almond, and Lance Formations) deposited
in coastal-plain, delta-plain, and back-barrier settings,
landward of delta-front and barrier-island systems (Haun,
1961; Asquith, 1970; Roehler,:1990). Fluvial coals are
also present in the Upper Cretaceous units (Hamilton,
1993). Lower Tertiary Fort Union and Wasatch Formation

coal-bearing units in the Greater Green River Basin were

deposited in fluvial-floodplain and lacustrine settings.
The complex tectonic, structural, and depositional
history of the Greater Green River Basin is reflected in its
stratigraphy. Regional correlation of stratigraphic units
across the basin is made difficult because of (1) multiple
unconformities, (2) missing or duplicate sections related
to faulting, (3) scarcity of consistent marker beds over
considerable thicknesses of nonmarine section, and (4)
deposition in separate subbasins. In particular, the Rock
Springs Uplift separates the Greater Green River Basin
into east and west halves, and structural arches further
subdivide the east basin into three subbasins. The east
half of the basin contains the Great Divide, Washakie,
and Sand Wash Basins; the west half contains the Green
. River Basin and Pinedale Anticline (fig. 2). Despite
correlation difficulties, a regional stratigraphic framework
was established in this study and correlation across the
entire Greater Green River:Basin was achieved (fig. 13).

The stratigraphic framework focuses on the coal-bearing

packages, the major stratigraphic units delineated being
the Mesaverde Group and the Fort Union Formation.
Within the - Mesaverde. Group, regional
unconformities and widespread marine flooding events
were identified that allowed subdivision of a sequence.
The group is divided into upper and lower units by the
widespread Trout Creek marker, which is attributed to a
marine flooding event basinward and its equivalent

surface of nondeposition landward (figs. 14 through 16).

The lower Mesaverde Group is further subdivided by the
regionally extensive Moxa unconformity, which overlies
the coal-bearing Rock Springs Formation near the Rock

~Springs Uplift but cuts more deeply to the west and erodes

the Rock Springs Formation west of R108W to R109W
(fig. 14). Basinward (southeast), the Moxa unconformity
passes gradually into its correlative conformity surface -

~ near the lower, predominantly progradational part of the -
‘lles Formation in the Sand Wash Basin and east parts of

the Washakie Basin. The Moxa unconformity and its
correlative conformity surface thus provide a good

_operational boundary that distinguishes the Rock Springs

Formation from the aggradational part of the lles -
Formation. This stratigraphic relationship is consistent
with the relative ages determined from palynofloras by
Miller (1977), who found that the lles Formation is mostly
younger than the Rock Springs Formation. Only the lower,
progradational part of the Iles Formation is a time
equivalent of the Rocks Springs Formation.

The upper Mesaverde is grouped into the Williams
Fork Formation throughout the Greater Green River Basin
and includes the lower part of the AlImond Formation as
formally defined at the Rock Springs Uplift (Sears, 1924).
We restrict the use of the term Almond Formation to the

“barrier=strandplain facies that are traditionally classified

as the “upper Almond” at the Rock Springs Uplift (Hale,
1950; Jacka, 1965; Weimer, 1965, 1966; Van Horn,
1979). The Williams Fork Formation can be divided into
four genetic depositional sequences that are each
bounded by regionally extensive shale markers. These
markers are interpreted as marine flooding surfaces in
basinward positions and nondepositional hiatal surfaces
or surfaces of sediment starvation in landward positions
(Hamilton, 1993; fig. 17). The shale marker that divides
genetic units 2 and 3 .is the most regionally extensive
and extends westward until it is eroded by the Pine Ridge
unconformity (fig. 16). This unconformity underlies the
Canyon Creek Member (Smith, 1961) of the Ericson

‘Sandstone. The shale marker that divides genetic units 1

and 2 extends across the Sand Wash and eastern
Washakie Basins but is also eroded by the Pine Ridge
unconformity to the west (figs. 15, 18). The bounding
shale marker between units 3 and 4, the most extensive
of the markers, extends throughout the Greater Green
River Basin. The boundary between the Williams Fork
and Almond Formation (as defined herein) is a further
extensive shale marker (figs. 14 through 16).

Although definition of the Cretaceous stratigraphic

_units above the Almond Formation, such as the Lewis.
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Shale, Fox Hills Sandstone, and Lance Formation, are
consistent with formal usage, subsurface correlations of
the Paleocene Fort Union Formation in the Greater Green
River Basin are complicated by the scarcity of regional
marker beds. Different sources of clastic material
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resistivity shale marker beds. Modified from Hamilton (1993).
Location of type log shown in figure 13.

involving similar or different rock types, mixed
environments of deposition (for example, coarse clastics
deposited into a floodplain or lacustrine environment),
and unconformities further complicate the stratigraphy
of the Fort Union Formation (Masters, 1961; Colson,
1969; Beaumont, 1979; Tyler and McMurry, 1993). To
correlate the major coal-bearing horizons in the Fort
Union Formation, we defined operational litho-
stratigraphic zones and units in the Upper Cretaceous
and lower Tertiary rocks (fig. 19): the Fox Hills Sandstone,
the Lance Formation, the Massive Cretaceous and Tertiary
(K/T) Sandstone unit, the Fort Union Formation, and the
Wasatch Formation. The Massive K/T Sandstone unit is
host to a regional unconformity that separates Cretaceous
from Tertiary rocks. The Massive K/T Sandstone unit
intertongues  with the underlying Lance Formation and
the overlying fluvial Paleocene Fort Union Formation.
Uplift and erosion of parts of the Mesaverde Group and
Lewis Shale, Fox Hills Sandstone, and Lance Formation
along the basin margins and Rock Springs Uplift resulted
in an angular unconformity between the Fort Union
Formation and the underlylng sediments (figs. 14, 20
through 23). .

.Similar Upper Cretaceous and lower Tertiary
lithostratigraphic zones were defined by Colson (1969),
Beaumont (1979), Honey and Hettinger (1989), Honey
and Roberts (1989), Hettinger and Kirschbaum (1991),
and Hettinger and others (1991) in the eastern Greater
Green River Basin (figs. 20 through 23). The Fox Hills
Sandstone was deposited in nearshore-marine and
marginal-marine environments during the final regressive
phase of the Western Interior Seaway (Tyler and McMurry,
1993). Nearshore-marine and marginal-marine deposits
of the Fox Hills Sandstone intertongue with offshore-
marine deposits of the underlying Lewis Shale and

. continental deposits of the overlying Lance Formation

(Gill and others, 1970). The upper contact of the Fox

" Hills Sandstone with the Lance Formation is placed on

top of the highest regressive marine sandstone (fig. 22).
Fluvial deposits of the Lance Formation conformably
overlie and intertongue with the Fox Hills Sandstone (Tyler

-~ and McMurry, 1993). The formation is 800 to 1,000 ft

(244 to 305 m) thick in the southeastern Greater Green
River Basin (Tyler and McMurry, 1993) and 200 ft (61 m)
or less along the flanks of the western Green River Basin

-(Moxa Arch) and the Rock Springs Uplift. In the west part

32

of the basin and on the Rock Springs Uplift, the Lance
Formation thins dramatically as a result of erosional
truncation associated with the Cretaceous/Tertiary
unconformity. Where present in the deeper part of the
basin, the Lance Formation is characterized by
multistoried channel-fill sandstone bodies and thin,
interbedded shale and coal beds (Tyler and McMurry,
1993). The basal 150 to 200 ft (46 to 61 m) of the .
formation commonly contains from one to five lenticular
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Figure 19. Type log showing
location of coal and stratigraphic
nomenclature of the Upper
Cretaceous Mesaverde Group and
Paleocene Fort Union Formation,
southeastern Greater Green River
Basin. Coal beds identified from
density and sonic logs where

available. Location of type log.

shown in figure 13.
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coal beds 1 to 10 ft (0.3 to 3.1 m) thick (fig. 22). Locally
these coal beds merge into single seams that are 15 to
20 ft (4.6 to 6.1 m) thick but laterally discontinuous. In
the eastern Sand Wash Basin, a second and third coal

package is locally present about 250 and 500 ft (~76 to. -

152 m) above the base of the formation. These packages,

which contain one or two discontinuous coal beds, are

minor coalbed methane targets.

An interval dominated by a thick sandstone sequence
overlies and intertongues with the upper zone of the
Lance Formation and is overlain by and intertongues with
the lower coal-bearing unit of the Fort Union Formation
(figs. 20 through 23). This sequence of rock, referred to
as the Massive K/T Sandstone unit (unnamed Cretaceous
and Tertiary sandstones of Hettinger and others [1991]
““and Ohio Creek Sandstone of Irwin [1986]), is identified

on geophysical logs by its commonly great thickness -

_ (hundreds of feet) and stratigraphic position below the-

coal-bearing Fort Union Formation. The Massive K/T

Sandstone contains a regional unconformity as manifested

in an erosional surface and floral hiatus (palynomorphs) -

(Hettinger and others, 1991), and it may be further
subdivided into lower and upper zones on the basis of
the presence of this regional unconformity. The lower
zone is partly laterally equivalent to some of the sandstone
in the upper part of the Lance Formation (Hettinger and
others, 1991). The lower zone, separated from the upper

zone by the erosional surface, is commonly depicted in

outcrop (eastern and southeastern Greater Green River
‘Basin) by a distinct conglomerate horizon, representing
the unconformity between Cretaceous and Tertiary-rocks.
Palynological evidence indicates that the lower zone is
Late Cretaceous and the upper zone is Paleocene
(Hettinger and others, 1991). The upper (Paleocene)
sandstone overlying the basal conglomerate horizon is

as muchas 220 ft-(67 m) thick in the eastern: Greater.

Green River Basin and consists of multistoried sandstone
sequences (figs. 21 through 23). Interbedded with the
sandstone bodies are a few thin (<10-ft-thick {<3.1-m])
shales. To the west, the upper zone is thinner-and contains
sandstones that intertongue with shale and coal beds that
are equivalent to the basal part of the lower coal-bearing
unit of the Fort Union Formation.

The operational base of the coal-bearing Paleocene
Fort Union Formation is placed on top of the Massive
K/T Sandstone unit. The Fort Union Formation may be
operationally subdivided into lower coal-bearing, gray-
green mudstone, basin-sandy, and upper shaly units (Tyler
and McMurry, 1993) (figs. 20, 21, 22, and 23). Although
in the southeastern Greater Green River Basin, the lower
coal-bearing unit is overlain by the noncoal gray-green
mudstone, basin-sandy, and upper shaly units (fig. 23),
it is overlain only by the basin-sandy and upper shaly
units in the western and northeastern Greater Green River
Basin (figs..21 and 23). Regionally the Fort Union

Formation, ‘as defined ‘here, thickens to the north band
west from: 1,300 ft (396 m) in the Sand Wash Basin

(T8N, R91W) to between 3,000 and 4,000 ft (914 and

1,219.m) in the Washakie and Great Divide Basins
(T20N, R91W) and then thins farther west to between
2,000 and 2,400 ft (609.6 and 731.5 m) on the Rock
Springs Uplift (T19N, R98W) and to between 3,000 and
3,400 ft (914 and 1,036 m) on the Moxa Arch in the
western Green River Basin (T25N, R111W). Thickness vari-
ations of the Fort Union Formation reflects its depositional
setting, periods of nondeposition, or both, and erosion along
the Eocene-Paleocene (Wasatch Formation—Fort Union
Formation) unconformity. The Paleocene Fort Union
Formation is considered a major coal and coalbed
methane target in the Greater Green River Basin. Because
the Wasatch Formation and overlying strata are minor
coal-bearing and coalbed methane targets, they are not
discussed in great detail in this report.

Upper Cretaceous
Coal-Bearing Units

The Rock Springs and Williams Fork Formations are
the major coal-bearing units in the Upper Cretaceous
Mesaverde Group, whereas the Frontier, Iles, Almond,
and Lance Formations are minor coal-bearing units. The
coal-bearing strata are less than 6,000 ft (<1,892 m) deep
on the north edge of the Moxa Arch, on the north and.
east flanks of the Rock Springs Uplift, and along the east
margin of the Sand Wash, Washakie, and Great Divide
Basins (fig. 24). Structural dips are steep from the outcrop -
belt to the basin centers, and the coal-bearing strata are
more than 18,000 ft (>5,486 m) deep in the Washakie
and Great Divide Basins and 13,000 ft (3,962 m) in the
Sand Wash Basin. In the west part of the Greater Green

‘River Basin, depths of coal-bearing rocks vary greatly.

The Mesaverde Group is less than 2,000 ft (<600 m) deep.

- on the La Barge Platform near the edge of the Overthrust

Belt (Asquith, 1966). However, it is more than 13,000 ft -
(>3,960 m) deep in the Pinedale Basin in the extreme
northwest part of the basin and more than 11,000 ft
(>3,353 m).deep in the Green River Basin, 15 mi (24 km)
southwest off the south flank of the Rock Springs Uplift
(figs. 2 and 4).

:Frontier Formation

The Frontier Formation, separated from the overlying
Mesaverde Group by the marine Hilliard—Baxter Shale

(equivalent to the Mancos Shale in the east half of the

'35

Greater Green River Basin), consists of north- to northeast-
trending, eastward-thinning wedges of deltaic and
shoreline sandstones that intertongue with marine shales.
Individual progradational Frontier wedges contain more
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Figure 20. South-north stratigraphic cross section
D-D’, Green River Basin, Greater Green River
Basin, illustrating operationally defined strati-

graphic units. Thickest and most continuous

Paleocene Fort Union Formation coal beds lie in
the deepest part of the basins above thickest
Massive K/T Sandstone development. Line of section
shown in figure 13.
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Figure 21. West-east stratigraphic cross section
E-F’, Great Divide Basin, Greater Green River
Basin, illustrating operationally defined strati-
graphic_units. Thickest and most continuous

" Paleocene Fort Union Formation coal beds lie in

the eastern Sand Wash ‘Basin above thickest
Massive K/T Sandstone development. Line of
section shown in figure 13.
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than 200 ft (>60 m) of net sandstone along the basin axis
.near the Overthrust Belt (Hamlin, 1991). Thin coal beds

'~ (individual seams commonly less than 10 ft [<3 m] thick)
formed in coastal-plain environments landward

(westward) of the paleoshoreline. Thickest Frontier coal

beds (individual seams -as much as-20 ft [6 m] thick) are"

~ exposed on the west margin of the basin (McCord, 1984).
However, Frontier coal beds are thin (<5-ft [<1.5 m] thick)

and are more than 14,000 ft (>4,270 m) deep along the

south end of the Moxa Arch, only 25 mi (40 km) east of
outcrop. Along the north end of the Moxa Arch, Frontier
coal beds are 6,000 to 7,000 ft (1,830 to 2,130 m) deep
- (Hamlin, 1991). Frontier Formation coal beds are
considered minor coalbed methane targets in the western
Greater Green River Basin.

Rock Springs Formation

~~ The Rock Springs Formation is an important coal-
bearing unit and potential coalbed methane target in the
northwest part of the Great Divide Basin. Regional coal
thickness trends indicate that net coal is at a maximum
along an 8.5-mi-wide (13.4-km) zone that extends
northeast from T22N, R102W, where it averages 100 ft
(33 m) in thickness (fig. 25). Although absence of well
control makes defining coal distribution trends to the
northwest difficult, the coals thin gradually in that
direction and tend to be oriented northwesterly. The coals
are absent west of R108-109W because the Rock Springs
Formation is eroded by the Moxa unconformity. To the
southeast, the coals thin rapidly and are lost beyond a
northeast-trending line from T21N, R101W, to T26N,
RI5W. Levey (1985) investigated the geologic controls
on Rock Springs coal distribution along the outcrop and
in mine sections around the west, north, and northeast
flanks of the Rock Springs Uplift. He interpreted the Rock
Springs Formation as a wave-dominated delta system and
described extensive coal deposits that developed
fandward of, and on top of, cuspate to-arcuate delta-front
sheet sandstones. He also described less extensive upper
“delta-plain-fluvial coals in the nonmarine components
of the Rock Springs Formation.

The subsurface distribution of the coals (fig. 25),
similar to that in the outcrop belt, indicates a comparable
depositional setting. The northeast-oriented trend of thick
coals accumulated on the coastal plain landward of the
shoreline sandstones, and the rapid southeast thinning
~ of the coals coincides with the shoreline position.
Northwesterly reorientation of the coals landward

suggests that the peats there accumulated in dip-oriented -

trends between fluvial-delta distributaries.

Local, detailed studies of the Rock Springs Formation
indicate that at least 12 coal beds, which average 6 ft
(1.8 m) in thickness, are present (McCord, 1984). Levey
(1985) grouped these coal beds into three types (A, B,

and C) and related them to specific depositional
environments (fig. 26). The thickest, type-A coal beds,
can be as much as 22 ft (6.7 m) thick. Extending for
500 mi? (1,300 km?) or more, they overlie delta-front
sandstones. Levey (1985) attributed these coals to a lower
delta-plain setting. Type-B coal beds, more variable in
thickness and less continuous than type-A and having an

area of 50 to 200 mi? (130 to 520 km?), formed in an

upper delta-plain setting. Type-C coal beds, which formed
on abandoned-delta lobes, are the thinnest in the Rock
Springs Formation; they are less than 10 ft (<3 m) thick
and have an areal extent of only 50 mi? (130 km?).
Sandstone distribution in the Rock Springs Formation
is highly variable. Delta-front (shoreline) sandstones,
which extend northeastward in the basin, are 50 to
140 ft (15 to 43 m) thick at the Rock Springs Uplift,
whereas distributary-channel sandstones are 200 to
800 ft (61 to 240 m) wide and 20 to 55 ft (6 to 17 m)
thick (fig. 27). Rock Springs distributary-channel
sandstones are flanked by thin (2- to 15-ft-thick [0.6- to
4.5-m]) crevasse splay sandstones, which were platforms
where peat accumulated locally and which partly -
controlled coalbed continuity (Tyler and others, 1991).
Recent exploration for coalbed methane in the Rock
Springs Formation (Triton Oil and Gas Exploration)
indicates geologic and reservoir conditions favorable for:

~commercial development (Kelso and others, 1991).

lles Formation

The lles Formation is'a minor coal-bearing unit in
the Greater Green River Basin. Although the maximum
net coal thickness of 32 ft (9.8 m) occurs in the
easternmost part of the Great Divide Basin (fig. 28), net
coal thickness elsewhere is typically less than 15 ft
(<4.5 m). No apparent trends to net coal thickness exist
regionally, although Boyles and Scott (1981) documented

" a northeastward trend to the thickest seams (individual

seams as much as 10 ft'[3 m] thick) in outcrops to the
south of Craig, Colorado. These coals are oriented parallel
to the paleoshoreline. Other, thinner (3- to 6-ft-thick [0.9-
to 1.8-m]) lles coal beds at these outcrops overlie thin
(<5-ft-thick [<1.5-m]) crevasse splay sandstones that were
platforms where peat accumulated locally ininterchannel
swamps (W. A. Ambrose, Bureau of Economic Geology,
personal communication, 1993).

Boyles and Scott (1981) interpreted progradational

~ shoreface sandstones at the base of the Iles Formation.in
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the outcrops south of Craig, and similar progradatlonal
sandstone units are present in the subsurface. The main
body of the lles Formation, however, displays
aggradational log facies on gamma-ray and SP logs that
are interpreted-as interbedded channel sandstones and

floodplain deposits of a mixed-load fluvial system. The

channel sandstones vary from 5 to 35 ft (1.5 to 10.6 m)
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Figure 25. Net-coal-thickness map, Rock Springs Formation. Thickest net coal occurs in a strike-oriented (northeast) trend
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Thicker coals

Thinner coals

Characteristics ‘Type A

Type B Type C

Thick coal seams

Cq’al thickness 3-221t (0.9 - 6.7 m)‘

Variable coal-seam thickness
1-17.5f (0.3 -5.3m) .

Thin coal seams
1-81t(0.3- 2.4 m)

Large areal extent

Areal extent >500 mi2 (>1300 km?)

Variable areal-extent
50 — 250 mi2 (130 — 650 km?)

Medium areal extent
50 mi2 (130 km?

' o _Coals associated with active
Generalized

deltaic progradation on lower
depositional | delta plain. Coals developed
setting on top of delta-front

foreshore environment.

Coals developed in upper
delta plain. Landward of
delta-front sandstones,
in.interchannel areas.

Coals associated with
abandoned delta lobes.
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Figure 26. Depositional setting of three types of coal beds in the Rock Sprmgs Formation, Rock.Springs Upllft Modified from |

" Levey (1985).

in thickness and are characterized by blocky electric log
patterns having upward-fining tops. Interbedded, fine-
--grained floodplain deposits, as much as 80 ft (24.4 m)
thick, display slightly serrate log patterns. The lles
Formation is a minor coal- bearmg and coalbed methane
target.

Williams Fork Formation

net coal thickness in the Washakie Basin averaging
30 ft (9.1 m) and 15 ft (4.5 m) in the Great Divide. In
local areas in the latter two subbasins, net coal thick-:

- ness.exceeds 50 ft-(15 m). In the southeast part of the

The thickest and most extensive of the Upper

Cretaceous Greater Green River Basin coals, which occur
in the Williams Fork Formation in the east half of: the
Sand Wash Basin, are the Greater Green River Basin’s

- prime coalbed methane targets. The maximum net coal

thickness of 220 ft (67 m) is contained in as many as

40 coal beds, and individual coalbed thickness can

~range from 20 to 30.ft (6 to 9 m) (fig. 29). Net coal
. thickness in the eastern Sand Wash Basin is typically as
much as 100 ft thick (30 m) (fig. 29). The coals, thinning
gradually westward, are from 25to 55 ft (7.6 to 16.7 m)
thick in the west half of the Sand Wash Basin. The coals
thin substantially north of the Colorado-Wyoming border,

Washakie Basin, net coal thickness averages 70 ft
(21.3 m) over a six-township area centered on T14N,
R92W (fig. 29). In the Great Divide Basin, net coal thick-
ness exceeds 50 ft (15 m) in T25 26N, R103-99W, and
in T20-21N, R92-90W. The Williams Fork coals, from
10 to 20 ft (3.1 to 6.2 m) thick west of the Rock Springs
Uplift (fig. 29), are absent west of R109W because of
postdepositional erosion associated with the Pine Ridge
unconformity. The unconformity eroded most deeply
along the Moxa Arch (R111-113W), where Ericson Sand-
stone facies lie directly on the Hilliard Shale (fig. 30).
Previous workers identified wave-dominated deltaic
and fluvial deposits in the Williams Fork Formation
(Boyles_and Scott, 1981; Siepman, 1985) and thought
that the wave-dominated deltaic sandstones provided
platforms for peat to accumulate (Siepman, 1985). In this
study, we identify a northwesterly gradation in the

Williams Fork Formation from linear shoreline systems
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Figure 27. Schematic section and characteristics of coal beds and sandstones in major coal bearing units at the Rock Springs ‘

Uplift, Greater Green River Basin.

(in the southeast Sand Wash Basin) to coastal- -plain
systems (in the central Sand Wash and southeast Washakie
Basins) that in turn grade to an alluvial piedmont (over
the west half of the Sand Wash and Washakie Basins and
most of the Great Divide Basin; fig. 29). Several
depositional cycles within this general framework cause
the location of the shoreline, coastal-plain, and alluvial
piedmont systems to fluctuate through time. In the Sand
Wash Basin area, detailed mapping of sandstone
distribution and coal occurrence of the four Williams Fork
genetic units provides depositional architecture models
for extrapolating to other parts of the Greater Green River
Basin and allowing investigation of the geologic controls
on peat accumulation and preservation as coal.

The first genetic depositional sequence, unit 1, is a
clastic wedge that extended coal-bearing coastal-plain
deposits beyond the present-day structural basin margin.

" Three depositional systems have been identified in the
unit (Hamilton, 1993). A linear shoreline system domi-
nated the easternmost part of the basin and was backed
landward by a coastal-plain system, which in turn graded
westward into-an alluvial-plain system (fig. 31). Units 2
and 3 are clastic wedges displaying a similar arrangement
of depositional systems (figs. 32, 33), but these units did
not prograde as far basinward. Unit 4 deposition differs
markedly from that of the underlying units; it was
dominated by a low- to moderate-sinuosity mixed-load
fluvial system oriented northwest-southeast (fig. 34).
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Figure 28. Schematic section and characteristics of coal beds and sandstones in major coal- bearmg units in the Sand Wash and

Washakie Basins, Greater Green River Basin.

Units 1 and 2 contain the thickest, most laterally
extensive coals (figs. 35, 36), and the northeast-southwest
alignment of coal-seam thickness trends is pronounced.
The coals are thickest near Craig, where net coal thickness
averages 90 ft (27.4 m) and 40 ft (12.2 m) in units 1 and
2, respectively. Unit 3 coals are thickest northwest of Craig
(average 30 ft [9.2 m]) and north of Baggs (average 40 ft
[12.2 m]), and they display a similar northeast-southwest
orientation, although a strong northwest-southeast
component to the net coal thickness trends also exists
(fig. 37). Thickest unit 4 coals (average 40 ft [12.2 m])
occur in a trend of isolated pods that extends north-
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westerly from the outcrop belt near Craig (fig. 38). Coal
occurrence in all units concentrates in the east half of
the basin, and, except in unit 4, no significant coal lies
west of the Little Snake River.

Williams Fork coal distribution is strongly controlled
by the depositional systems. Coals in units 1 through 3
are dominantly strike oriented (northeast) and overlap
with sandstone-poor coastal-plain areas behind the
paleoshorelines. The coastal plain is an area of sediment
bypass, permitting uninterrupted peat accumulation. It
is also the ideal location for peat preservation because
the water table is maintained at optimum levels
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Figure 29. Net-coal-thic'kness map; Williams Fork Formation. Thickest coals in the Sand Wash Basin are associated with the
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immediately behind the shorelines systems. Thinning of
the coals to the west and northwest suggests that peat
growth and preservation were inhibited on the alluvial
piedmont because clastic influx from laterally migrating
fluvial channels caused a disruption and water-table levels
associated with the rising gradient of the piedmont surface
became lower. In unit 4, and in the most landward of the

" unit 3 coals, the dominant dip-elongate (southeast)

orientation  and association with sandstone-poor areas
between major sandstone-rich belts indicate that
optimum coal-forming conditions occurred in the
interchannel positions between large fluvial-channel axes
(Hamilton, 1993).

Almond Formation

The 'Almond Formation in the eastern and
southeastern Greater Green River Basin was deposited
in a wave-dominated delta system; at the Rock Springs
Uplift, back-barrier facies of the formation grade seaward
(eastward) into north-trending barrier-island sandstones
(fig.-39) (Weimer, 1965; Roehler, 1988, 1990). Almond
barrier-island complexes are more than 60 mi (>96 km)
long and approximately 4 mi (~6.4 km) wide; net
sandstone thickness in these complexes is as much as
100 ft (30 m) thick (McCubbin and Brady, 1969) (fig. 27).
Coal beds east of the Rock Springs Uplift have an average
thickness of 3:ft (0.9 m) and are present at the top of at

“least four barrier-island sandstones. These coal beds split

where they override tidal-inlet sandstones (Roehler,
1988). Almond net-coal thickness east of the Rock Springs
Uplift ranges from 6 to 12 ft (1.8 to 3.6 m) in three to four

~ seams (fig. 27). Many Almond coal seams extend for 12 mi

(19.2 km) along depositional strike (Roehler, 1988),
whereas they extend only 5to 10 mi (8 to 16 km) eastward

along depositional dip (McCubbin and Brady, 1969).

In the Sand Wash Basin, net coal thickness ranges

“from 15 to 25 ft (4.5 to 7.6 m) in three areas: west of
- Craig, Colorado; southeast of the Rock Springs Uplift,

where the coals trend northwest; and west of the
Sweetwater—Carbon county line, where the coals trend
northeastward (fig. 40). Comparison between net-coal-
thickness and percent-sandstone maps (figs. 40, 41)
suggests two relationships between coal distribution and
depositional setting. The northwest-oriented coals
correspond to low sandstone percentage and occupy a
coastal-plain position behind the barrier core of the

~strandplain system. The northeast-trending coals- lie in

an area of low sandstone percentage adjacent to a major

" delta distributary (Hamilton, 1993). Peat growth probably
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initiated on the stable subdelta platform constructed by
the distributary- channel complex and was maintained by

freshwater discharge delivered by the distributary

complex. Almond Formation coal beds are minor coalbed
methane targets in the eastern Greater Green River Basin.
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Figure 39. Paleogeography of ‘the dpper_ Almond Formation

and lower Lewis Shale, east half of the Greater Green River

Basin. Modified from Roehler (1990).

Lance Formation

The Lance Formation, the youngest Cretaceous
stratigraphic unit in the Greater Green River Basin,

overlies and intertongues with nearshore-marine deposits’

of the Fox Hills Sandstone. The formation consists of
brackish and nonmarine shales, lenticular sandstones,
and coal beds (Land, 1972). The Lance Formation,
. approximately 900 ft (~274 m) thick in the eastern Greater
- Green River Basin (Masters, 1961), is separated from the
overlying Fort Union Formation by a regional
-unconformity.

Coal beds, thicker and more abundant in the lower
part of the Lance Formation above the platform Fox Hills
sandstone, range from a few inches to 8 ft (2.4 m) in

thickness at the Rock Springs Uplift (fig. 27) (Tyler and

McMurry, 1993). Locally these coal beds merge into single
seams that can be 16 to 22 ft (4.9 to 6.7 m) thick (Glass,
1981). However, these coal beds have a limited lateral
extent and can be traced for only a few hundred to several

thousand feet in outcrop, where they grade into
carbonaceous shales (Land, 1972). Sandstones in the

“coal-bearing part of the Lance Formation are thin (<10 ft

[<3 m]) and pinch out over a few hundred feet (fig. 27).

~ Lance Formation coal beds are minor coalbed methane

targets in the eastern Greater Green River Basin.

Lower Tertiary
Coal-Bearing Units

-~ Tertiary Fort Union coal- bearlng units vary greatly in
burial depth and reach a maximum of 12,000 ft (3,658 m)
in the central parts of the Washakie and Great Divide
Basins (Tyler and Tremain, 1993). To the west the Tertiary
coals are more than 10,000 ft (>3,048 m) deep in the
Pinedale basin area (Law and Spencer, 1989), less than
2,000 ft (<600 m) deep on the La Barge Platform, and
more than 10,000 ft (>3, 048 m) deep in the Green River
Basin.’

“Fort Union Formation

Sedimentation within the Paleocene Fort Union

_Formation, defined as strata between the massive Upper

Cretaceous and lower Tertiary (K/T) sandstone unit and
the Eocene Wasatch Formation, results from syntectonic
sedimentation and Laramide basement thrusting (Tyler,
1994). Characteristic syntectonic sedimentary facies in

the basin include a narrow conglomerate facies adjacent -

to -basement-cored thrusts, a narrow sandstone=
mudstone-coal facies just basinward, a basinal
thrustward-thickening mudstone facies associated with
basement-cored thrusts, and a wide distal sandstone—
mudstone-coal facies (Tyler and MCMurry, 1993; Tyler,
1994).°0On the basis of this facies architecture, we can
further operationally divide the Fort Union Formation in
the southeastern and eastern Greater Green River Basin
into the lower coal-bearing unit, the gray-green mudstone
unit, the basin-sandy unit, and the upper shaly unit

~(fig. 42). In the western Greater Green River Basin, the

upper shaly unit is absent, and the basin-sandy unit rests
directly on the lower coal-bearing unit (fig. 43). Coal
thickness and coal-seam continuity are greatest in the
lower coal-bearing unit (figs. 20 through 23). Coals were
deposited along predominantly north-, east-, and

southeast-flowing intermontane fluvial  trunk-stream

systems and associated floodplain and lacustrine deposits
(Ritzma, 1955; Masters, 1961; Colson, 1969; Tyler and

- McMurry, 1993), where thick sandstone sequences served

- 60

as platforms for peat accumulation.

.~ In'the eastern Greater Green River Basin, lithofacies
and coal-occurrence maps of the Sand Wash Basin (Tyler
and McMurry, “1993) show that maximum coal
development corresponds to floodplain deposits above,
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and on the flanks of, south-north-oriented fluvial systems
(fig. 44); individual coal seams have maximum

- thicknesses of 20 to 50 ft (6.1 to 15.2‘m) and a combined

“maximum net coal thickness. of approximately 80 ft
(~12.2 m) (fig. 45). Thinner coal beds (3 to 10 ft [0.9 to
3.1 m] thick) also occur in the western Sand Wash Basin,
in the lower coal-bearing unit away from the main trunk
stream and in the upper shaly unit of the Fort Union
Formation (Tyler and McMurry, 1993). By comparison,
similar intermontane trunk-stream systems have been
identified in the rest of the Greater Green River Basin.

: The lower Fort Union coal-bearing ‘unit in the
Washakie and Great Divide Basins contains thick

~individual coal beds, less than 40 ft (<15.2 m) thick. Net

coal thicknesses range from O to more than 100 ft (O to
>30.1 m; fig. 46) in as many as 10 seams at depths greater
than 8,000 ft (>2,438 m) below surface.. Net coal
thickness and coal-seam continuity follow patterns similar
to those of the Sand Wash Basin, trending northward and
‘associating with north-flowing intermontane fluvial trunk-
stream systems (fig. 46).

In the western Greater Green River Basin, the lower
Fort Union coal-bearing unit, along the synclinal Green
River Basin axis, consists of some of the most continuous
and thickest individual -coal beds, as much as 40 ‘ft
(15.2. m) thick, 15 mi (24 km) northwest of the north
flank of the Rock Springs Uplift (fig. 46)..Net coal thick-
nesses range from 10 to 140 ft (3.1 to 42.7 m) in as many
as 12 seams, at depths as much as 8,000 ft (2,438 m)
below surface. At least five Fort Union coal beds are
thicker than 10 ft (3.1 m) along the south-north-trending
belt, parallel to the Green River Basin synclinal axis. To
the west, thin coal beds (<10 ft [<3 m] thick) occur at the
north end of the Moxa Arch (fig. 46), buried at depths of
less than 2,000 ft (<600 m) (Asquith, 1966). These coal
beds are discontinuous and pinch out near lenticular,
channel-fill sandstones. To the north, within the Pinedale
basin area, coal seams thicken to a maximum net-coal
thickness of approximately 140 ft (~42.7 'm) in T30N,
R11TW. Lower. Fort Union coal beds are absent east of
the Pinedale Anticline thrust fault in the northwest part
of the Greater Green River Basin (Curry, 1973; Law and
Johnson, 1989). Coal beds did not form to the east of the
thrust system because (1) floodplain environments were
unstable‘or absent, (2) coarse alluvial-fan clastics sourced
in the Wind River Uplift to the northeast were locally
being deposited, and/or (3) the Pinedale Anticline was a
positive topographic feature during the deposition of the
lower coal-bearing unit and conditions were unfavorable
for peat to accumulate.

Moreover, the net coal thickness and coal-seam
continuity in the lower coal-bearing unit is greater than
that in the upper shaly unit. In the northeast part of the
Greater Green River Basin and within the Great Divide
Basin, the upper shaly Fort Union Formation (Cherokee)
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from density and sonic logs where available. Location of type
log shown in figure 13.
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Figure 46. Net-coal-thickness map of the lower coal-bearing unit, Fort Union Formation, Greater Green River Basin. Thickest
net coal development (>100 ft [>30.5 m]).occurs above and alongside a south-north-oriented fluvial system along the west and
east flanks of the Rock Springs Uplift and along a northwest-southeast-oriented fluvial system along the west flank of the
Pinedale Anticline. PA = Pinedale Anticline, MA = Moxa Arch, RSU = Rock Springs Uplift, CA = Cherokee Arch, and WA =

~ Wamsutter Arch. ‘
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coal beds vary greatly in thickness, individual coalbed
~ thicknesses ranging from less than 10 ft (<3 m) to more
than 35 ft (>11 m), but they are laterally discontinuous
(figs. 21 and 22). Two coal beds, however, do extend for
6 to 12 mi (9.6 to 19.3 km) in the basin and range in

thickness from 10'to 32 ft (3 to 10 m) for-a combined net:

coal thickness of 60 ft (18.3 m). The thickest coal beds

formed on the stable platform prowded by the basm -sandy

" unit.

Depositionally the Fort Union Formation contalns
some of the thickest intermontane fluvial sandstone and
coalbed sequences in the Greater Green River Basin. The
thick coal beds are laterally continuous over distances

of approximately 40 mi (~64 km) and occur associated

with bed- and mixed-load channel-fill sandstone
- sequences. The channel-fill sandstone sequences within
the lower coal-bearing unit are thought to be part of a
much larger intermontane fluvial trunk-stream system that
flowed north through the Green River Basin from the
Uinta Mountain area, along the synclinal Green River
Basin axis, to the north edge of the Rock Springs Uplift,
where the fluvial trunk-stream system was diverted to
the east into the Great Divide Basin. This north-flowing
fluvial trunk-stream system merges with the southeast-
flowing trunk stream that originated on the northwest
margins of the Pinedale Basin area and the north-flowing
.. Sand ‘Wash and Washakie Basins fluvial trunk-stream
system, to exit the Greater Green River Basin on the east
edge of the Great Divide Basin. An increase in the
suspended load carried by the fluvial system through
tectonism, major upstream avulsion, or both, resulted in

true of the major north-, east-, and southeast-trending
channel-sandstone belts, which facilitated ground-water
flow basinward from recharge areas on the margins of
the Greater Gréen River Basin. Recharge occurred in the
highlands at the basin margins and ground water flowed
basinward, down hydraulic gradient in response to the
topographic gradient, eventually discharging at
topographically low areas. At these postulated sites of-
regional ground-water discharge, peat swamps originated
and ultimately spread across the floodplain as aresult of
reduced clastic influx. As a confined aquifer system,
channel-fill sandstones focused discharge to begin
organic accumulation-and subsequently to maintain the
water table at a level optimal for extensive peat
accumulation. Bounding the fluvial trunk streams are
paleotopographically high regions (such as the Moxa
Arch and Pinedale Anticline in the western Greater Green
River Basin, the Rock Springs Uplift, and the Wamsutter
and Cherokee Arches in the eastern Greater Green
River Basin) that were present during the early Paleocene:

These paleotopographically high regions, having low
subsidence rates, were areas unfavorable for peat to
accumulate-and thus had thin coal occurrence. Greatest
potential for Paleocene coalbed methane exploration and

development, therefore, exists where the coal beds are

- thickest and where they were buried to depths of more

than 6,000 ft (>1,829 m), along an arch that extends from
the Rock Springs Uplift to-the north edge of the Moxa

- Arch, north of the La Barge Platform, along the northwest,

the building of levees that stabilized the channel axes

and allowed extensive floodplains and coal deposits to
form. Coal beds are thicker and more numerous in
floodplain areas above and on the flanks of the thickest
sandstones. The considerable thickness and lateral
continuity of the coal beds-within the lower coal-bearing
unit throughout the Greater Green River Basin make it a
potential coal and coalbed methane target, whereas coals
in the upper shaly unit in the northeastern Greater
Green River Basin are shallowly buried and laterally
discontinuous and are not considered coalbed methane
targets.

Importantly, researchers demonstrated that the major
control on Paleocene Fort Union Formation peat
accumulation in the Greater Green River Basin is
deposition within a syntectonic .intermontane fluvial
trunk-stream system and associated floodplain and
lacustrine deposits. Further, coal and sandstone

development coincide; the thickest coals occur above or

on the flanks of the thickest fluvial sandstones, which act
as platforms on which coal accumulates and conduits

through which ground water flows. This is particularly

north, and northeast flanks of the Rock Springs Uplift,
and along the west limits of the Cherokee Arch.

Wasatch Formation

The Wasatch Formation exhibits net-sandstone trends
and depositional systems similar to those of the underlying
Fort Union Formation (McDonald, 1975). The main body
of the Wasatch Formation in the Sand Wash Basin and
near the Rock Springs Uplift consists of 1,500 to 2,500 ft
(457 to 762 m) of conglomeratic, lacustrine fan-delta
deposits that grade eastward into fluvial sandstones,
floodplain and lacustrine shales, and minor coal-bearing
floodplain deposits (Roehler, 1965a; Sklenar and
Anderson, 1985). In the northeast part of the Greater
Green River Basin, Wasatch coal beds are less than 10 ft
(<3 m) thick. The thickest coal beds formed in stable

swamps that were widespread in the Great Divide Basin.

 Most Wasatch coal beds are discontinuous and pinch
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out at sandy fluvial complexes over distances ranging
from 2to 10 mi (3.2 to 16:'km) (Sklenar, 1982). Wasatch

Formation coal beds are thin, discontinuous, and

shallowly buried, and thus they are not considered to be
coalbed methane targets.



" Coal Rank, Gas Content and

‘Composition, and

Origin of Coalbed Gases

- Andrew R. Scott

Coal Rank and
‘Burial History

The amount of methane generated from coal beds is-

~ primarily a function of coal rank. Onset of significant
methane generation from coal occurs at vitrinite-
reflectance values (R )ofappro><|mately0 8to 1.0 percent

(high-volatile A bituminous) (Meissner, 1984; Tang and

others, 1991). Early thermogemc methane; however, can
be derived from terrestrial organic matter at much lower

However, coal-rank trends were constrained using

measured vitrinite- reflectance data from formations

immediately above or below the formation being
evaluated. Vitrinite-reflectance values and other coal-rank

data (proximate and ultimate) were obtained from Glass
(1975), Boreck and others (1981), Tremain and Toomey
(1983), Law (1984), Roehler (1988), Lickus and“others.-

“(1989), MacGowan and others (1993), and Scott (1993a,

- levels of thermal maturity (R of approximately 0.40 per-

cent; Galimov, 1988). Determining coal-rank trends and

- burial history of coal-bearing units in the Greater Green

~ River Basin is complicated by insufficient vitrinite-
reflectance and proximate data: most of the published
vitrinite-reflectance data are from shales and sandstones

rather than from coal beds. However, coal-rank data and

thermal maturation studies by Glass (1975), Law and

others (1980), Law (1984), Pawlewicz and others (1986),:

Merewether and others'(1987), Dickinson (1989), Lickus
and others (1989), MacGowen and others (1993), and
Scott (1993a, b) provide a basis for determining vitrinite-
reflectance and coal-rank trends in the Mesaverde Group
~and. Fort Union Formation in the Greater Green Rlver
Basin.

We estimated vntrmlte reflectance and coal-rank .

trends in the Greater Green River Basin by combining

data from many sources including (1) measured data from
~the formation being evaluated, (2) proximate and ultimate

~ analyses, (3) measured vitrinite-reflectance data from
. formations immediately above or below the selected

horizon, (4) vitrinite-reflectance profiles (R versus depth), -

and (5) thermal-maturity maps showing depths to specific
vitrinite-reflectance values. The term “coal rank” defines
a specific range of thermal maturity. Coal-rank trends are
defined by vitrinite-reflectance data from shales and
sandstones in addition to coal beds. Therefore, vitrinite-
reflectance data from shales and sandstones. allowed
extrapolation of isoreflectance lines and coal-rank trends

~ to areas of the basin where coal beds are thin or absent. -

M_easufed vitrinite-reflectance values from the
formation being evaluated ‘are the most reliable data.

b). Most of the vitrinite-reflectance ‘data are from Law
(1984) .and Scott (1993a, b).. More than 105 vitrinite-
reflectance values from 41 wells in the Mesaverde Group
and 55 vitrinite-reflectance values from 21 Fort Union =

“wells were used to construct vitrinite-reflectance and
“coal-rank maps.Vitrinite-reflectance profiles and depths

to the top of the Mesaverde or base of the Fort Union
were used in areas where vitrinite-reflectance data were

" sparse or unavailable. Additionally, thermal-maturity -

maps (Pawlewicz and others, 1986; Merewether and

‘others, 1987) showing the depths to vitrinite-reflectance
~values of 0.3, 0.6, and 1.3 percent, and post-Mesaverde

isopach and structural-contour maps (Tylerand Hamilton,
1993, this volume, figs. 4 and 5) were used to supplement

" the vitrinite-reflectance data.

Vitrinite-reflectance data (Law, 1984; MacGowenand
others, 1993; Scott, 1993a, b) from individual wells were:
grouped into five regional subdivisions (fig. 47). Area I
covers the Pinedale Basin including the Pinedale
Anticline; area Il encompasses the northern Green River
Basin and the Pacific Creek area; area lll represents the.
Great Divide Basin; area IV contains the Washakie Basin;

" and area V is the Sand Wash Basin. We based the equation

for area | on work from Lickus and others (1989), whereas

~we performed regression analyses on vitrinite-reflectance

profiles for areas Il though V- (fig. 48). These equations,
presented in table 1, work on the assumption that vitrinite-

. reflectance increases logarithmically with depth, although

vitrinite-reflectance profiles in some low-permeability
rock sequences. are segmented.and have one or more
kinks or bends (Law and Nuccio, 1986; Law and others,
1989).

A comparison of vutrlmte-reflectance profiles in the
eastern and western Greater Green River Basin (fig. 49)

“indicates that whereas vitrinite- reflectance values
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Figure 47. Map of Greater Green River Basin showing th'ef'ﬁve areas in which vitrinite-reflectance profiles were used to estimate
coal-rank trends. ’ ; L » .
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Flgure 49. Vitrinite- reﬂectance profile of the eastern and western Greater Green River Basin (Scott and Ambrose, 1992). The
threshold of thermogenic gas generation occurs at coal depths greater than approximately 8,000 ft (~2,625 m), suggesting that
deeper drilling may be required to penetrate hlgher rank coals.
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' Table 1. Equations determined from vitrinite-reflectance profiles are from Lickus and others (1989),
Tyler and others (1991), and Scott (1993a) R, = vitrinite-reflectance value.

Area | Pinedale Basin
Area ll Green River Basfn
Arealll  Great Divide Basin
Area IV Was‘hakie Basin
Area V Sand Wash Basin

LOG(Rp) =
LOG(Rp) =

Depth—11 247 1)/19,740 ft
Depth—3,690 m)/6 476 m

(
(
LOG(Rm) = (Depth—11,829 ft)/20,495 ft
LOG(Rm) = (Depth—3,881 m)/6,724 m
LOG(Rm) = (Depth—11,095 ft)/14,101 ft
LOG(Rm) = (Depth—3,640 m)/4,626m
(o)
(o)
(D
(

LOG(Rm) =
LOG(Rm) =

LOG(Rm) =
LOG(Rm) =

epth—9,938 ft)/17,590 ft
epth—3,260 m)/5,771 m

epth—9,210 ft)/27,985 ft
Depth—3,022 m)/9,181 m

generally parallel one another at shallow depth, they
increase more with depth in the east part of the basin
than in the west. Temperature-depth plots constructed
by Heasler and Surdam (1993) show that temperatures
are higher inthe eastern Greater Green River Basin than
at equivalent depths in the western Greater Green River
Basin. This bottom-hole temperature trend is evident in
both the Mesaverde Group and the Fort Union Formation.

Vitrinite-Reflectance and
Coal-Rank Trends

Thermal Maturity of
Mesaverde Group

More than 106 Mesaverde Group vitrinite-reflectance
data from 41 wells in the Greater Green River Basin were
available for determining vitrinite-reflectance and coal-
rank trends. Most of the vitrinite-reflectance data were

“from the Mesaverde Group (undifferentiated; 53); 35
vitrinite-reflectance values were from the Almond; the
Ericson and Rock Springs Formations had 5 and 13 values,
respectively.

Coal rank in the Greater Green River Basin ranges
from subbituminous (R _ of 0.42 percent) to semianthracite
(R,, of 2.41 percent) (Law, 1984), although coal rank over
most of the basin is high-volatile C to high-volatile A
bituminous (R_of 0.5to 1.1 percent). Vitrinite-reflectance
isorank lines (fig. 50) show that coal rank along the basin
margins ranges from subbituminous to high-volatile C
bituminous. Subbituminous coals are found along the
eastern Rock: Springs Uplift and western Green River

Basin, whereas high-volatile C bituminous coals occur
along the east margin of the basin, including the Sand
Wash Basin, and the west part of the Rock Springs Uplift
(fig. 50). The slightly higher coal ranks along the east
and southeast margins suggest that these parts of the
Greater Green River Basin may have undergone more
uplift and erosion. The presence of subbituminous and
high-volatile C bituminous coals surrounding the Rock
Springs Uplift indicates ‘that this structural feature
probably formed syntectonically with coalification.

Significant vertical movement on the Rock Springs Uplift
probably occurred at the end of the Cretaceous at the
same time. Although the uplift is not evident from the
distribution of Upper Cretaceous Rock Springs coals, it
probably developed before or during the deposition of
Fort Union coals during the early Paleocene (Tyler and

‘Hamilton, this volume, figs. 25 and 46). Nondeposition,

_erosion, or both, of Cretaceous and Tertiary sediments

along basin margins and the Rock Springs Uplift resulted
in shallower maximum burial depths and lower .coal
ranks.:

The increase in vitrinite-reflectance values and coal

~ rank away from the Rock Springs Uplift and basin margins

toward the deeper parts of the Greater Green River Basin

_reflects continued subsidence and greater maximum
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burial depths in the subbasins. The greatest burial depths
and highest coal ranks are in the Washakie Basin, where

‘coals have reached semianthracite rank. Coal ranks in

the Sand Wash Basin range from high-volatile C
bituminous along the south and east basin margins to
medium-volatile bituminous in the west part of the
subbasin. Low-volatile bituminous to semianthracite coal
ranks may be present in the north part of the Great Divide
Basin, although no vitrinite-reflectance data are available
to confirm this supposition.
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Figure 50. Coal-rank map, top of the Mesaverde Group. Vitrinite-reflectance and coal-rank trends were estimated by combining
several types of data. Most of the vitrinite-reflectance data are from Law (1984) and Scott (1993a, b). Coal rank increases
away from basin margins and the Rock Springs Uplift toward high-volatile A bituminous and higher rank coals in deeper sub-
basins. AA = Axial Arch, CA = Cherokee Arch, MA = Moxa Arch, PA = Pinedale Anticline, RSU = Rock Springs Uplift, and

WA = Wamsutter Arch.
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, Paleofluid flow has contributed to unusually high
- vitrinite-reflectance values in Patrick Draw field, located
off the east flank of the Rock Springs Uplift (Law and
others, 1986; Pawlewicz and others, 1986; Law, 1992).
Hot fluids migrating along fault planes or fracture systems,
- or both, have increased vitrinite-reflectance values from
approximately 0.48 percent to 0.68 percent in this area
(Law, 1992). This increased thermal-maturity level may
be localized; however, vertical movement of hot fluids
at depth could also have contributed to higher vitrinite-
reflectance values in the Washakie Basin. According to
McPeek (1981), the CIC Haystack well (Sec. 28, T14N,
R96W) has a temperature gradient of 1.6°F per 100 ft
(23.6°C/km) to a depth of 14,910 ft (4,545 m) and a
gradient of 3.9°F per 100 ft (70.9°C/km) between the
depths of 14,910 and 16,250 ft (4,545 and 4,953 m).
The geothermal gradients in the Pinedale Basin, northeast
of the Rock Springs Uplift, and the west part of the
Wamsutter Arch are 2.4°,2.1°, and 2.0°F per 100 ft (28°,
25°, and 25°C/km) (Heasler and others, 1983). The
relatively high temperature gradient below 14,910 ft
(4,545 m) in the Haystack well may indicate vertical
movement of fluids from deeper sediments, although we
need more evidence to confirm this hypothesis.

Coal rank in the Greater Green River Basin ranges
from subbituminous to medium-volatile bituminous
(measured R  values of 0.47 to 1.22 percent, respectively).
Lower coal ranks in the Green River Basin reflect a
complex burial history. Sedimentation and burial in the
east half of the basin, away from the basin margins and
the Rock Springs Uplift, were relatively simple, whereas
burial history in the west half of the basin along the Moxa
Arch was more complex. Dutton and Hamlin (1992) and
Dutton (1993) described the burial history of the Moxa
Arch in detail. During the Late Cretaceous, uplift of the
south end of the Moxa Arch resulted in erosion of Rock
Springs and lower Mesaverde sediments (Dutton, 1993).
After the Eocene, subsequent uplift of the north end of
the arch produced the present southward plunge. The

thickest Tertiary deposits lie at the south end of the arch

because of 'subsidence of the southern arch during the
Early Cretaceous and uplift of the north end after Eocene
time (Curry, 1973; Sullivan, 1980). This oscillatory
movement of the arch, northward plunge followed by
uplift and southward plunge, resulted in relatively
shallower burial depths and lower coal ranks along the
Moxa Arch because the maximum burial depths were
less than if continuous subsidence had.occurred.

Furthermore, influx of meteoric waters along the Moxa
Arch during the unconformity would lower temperatures
and inhibit thermal maturation. According to Law (1992),
vitrinite-reflectance values from the Dakota sandstone at
15,000 ft (4,572 m) in Lucky Ditch field (T12N, R114W)
are only 0.6 percent, vitrinite-reflectance profiles being
almost vertical. This area of low geothermal gradients

and coal rank may have resulted from temperatures being
lowered by the descent of cool meteoric waters (Law, 1992).

Law and others (1980), Dickinson; (1989), Law and
Johnson (1989), Lickus and others (1989), and Spencer
(1989) discussed burial history, geothermal gradients,
regional overpressure, and thermal maturity patterns in
the northern Green River Basin (which includes the
Pinedale Basin and Pacific Creek area; area | in fig. 47)
in detail. The structural growth of the Wind River
Mountains to-the north controlled the burial history of
the northern Green River Basin. The Wind River
Mountains probably began to form during the Late
Cretaceous or early Paleocene, and the Precambrian core
of the mountains was probably exposed during the middle

‘Paleocene (Law and Johnson, 1989, and references

therein). Depression of the lithosphere by the Darby and
Prospect thrust plates associated with the Wind River
Uplift resulted in subsidence in the northern Green River
basin (Schuster and Steidtmann, 1983). Structural growth
of the Pinedale Anticline, which is probably associated
with thrusting, began during the Late Cretaceous and
continued through Eocene time (Law and Johnson, 1989).
Although not shown in figure 50, isoreflectance lines
parallel anticlinal structure and suggest that thermal
maturation occurred before structural development, or
hotter-than-present-day temperatures around the anticline
resulted in higher vitrinite-reflectance values; these
structures may have acted as the focus of vertical
movement of hot fluids that locally affected maturation
trends (Dickinson, 1989; Lickus and others, 1989). The
higher vitrinite-reflectance values may result from greater
maximum burial depths and/or higher paleogeothermal
gradients in the northern Green River Basin relative to
the Moxa Arch and southern Green River Basin.

Thermal Maturity of the Fort
Union Formation

More than 55 Fort Union vitrinite-reflectance data -
from 26 wells in the Greater Green River Basin were
available for determining vitrinite-reflectance and coal-
rank trends (fig.-51). We supplemented these data using
proximate: and ultimate analyses from outcrops, and

-vitrinite-reflectance data from the Lance Formation

constrained contouring in-areas where Fort Union data
were scarce. Vitrinite-reflectance and coal-rank data are
from Glass (1975), Law (1984), Lickus and others (1989),
and Scott (19933, b).

Coal rank ranges from- subbituminous along basin
margins and around the Rock Spring Uplift to low-volatile
bituminous in the deeper Washakie Basin, although
coal rank throughout most of the basin is subbituminous
to high-volatile C bituminous. Vitrinite-reflectance
values range from 0.40 to 1.53 percent (Law, 1984).
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* Figure 51. Coal-rank map, base of the Fort Union Formation. Subbituminous coals around basin margins and the Rock Springs
Uplift indicate that these structures developed before, or syntectonically with, coalification. Net-coal and coalification trends
suggest that although the Wamsutter and Cherokee Arches also formed syntectonically with coalification, they did not become
as pronounced as the major uplifts. AA = Axial Arch, CA = Cherokee Arch, MA = Moxa Arch, PA = Pinedale Anticline, RSU =

Rock Springs Uplift, and WA = Wamsutter Arch. e
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~ Subbituminous coals surrounding the Rock Springs Uplift
and along the Moxa Arch indicate that these structural

features were present before coalification or that they

formed syntectonically with coalification. Because these
" structures have numerous unconformities associated with
them (Tyler and Hamilton, this volume and references
therein), a combination of nondeposition and erosion of
Cretaceous and Tertiary sediments along basin margins
and the Rock Springs Uplift must have resulted in
maximum burial depths and coal ranks being shallower
and lower,. respectively. Coal distribution in the Fort
* Union (Tylerand Hamilton, this volume, fig. 46) supports
this conclusion. The thinning of net-coal trends, absence
of coal over these structures, or both, indicate that these

structures had probably formed by Late Cretaceous to

early Paleocene time before coal deposition.
Coalification patterns (figs. 50 and 51) suggest that
the Cherokee and Wamsutter Arches were present before;

or formed syntectonically with, coalification. Fort Union

net-coal trends in the Sand Wash Basin are, however,
orthogonal to the Cherokee Arch (Tyler and Hamilton,
this volume, fig. 46), suggesting that the Cherokee Arch
may have affected depositional trends only insignificantly.
Although this structural feature may have been present,

development and/or exposure was not as great as that of -

the Rock Springs Uplift and Moxa Arch. Thermal maturity
decreases (figs. 50 and 51) and net-coal trends thin slightly
over the Wamsutter Arch (Tyler and ‘Hamilton, this
' volume) suggesting that development of this feature was
syntectonic with coalification. However, relatively greater
structural development, exposure of the Wamsutter Arch,
or both, probably occurred during Fort Union deposition.
Coal rank in the western Greater Green River Basin
is high-volatile A bituminous and lower ranks (fig. 51).
Lower coal ranks along the Moxa Arch (subbituminous
and high-volatile C bituminous) result from relatively
shallow maximum burial depths, low geothermal
gradients, or both. Vitrinite-reflectance trends in the
northwestern Green River Basin (area I; fig. 47) generally
follow Tertiary structures (Lickus and others, 1989),
suggesting that structural deformation occurred after the
main stage of coalification. Possible vertical migration
of hot fluids, however, could make the relation between
coalification and structural events difficult to interpret in
this area (Lickus and others, 1989).

Gas Content of
Cretaceous and
Tertiary Coals

Gas-content measurements from 560 whole core,
sidewall core, and cutting samples in 33 wells were
available in the Greater Green River Basin (Boreck and

others, 1981; Tremain and Toomey, 1983; Diamond and
others, 1986; Kelso and others, 1991; Scott, 19934, b).
Most data are from the Sand Wash Basin, from which
387 gas-content analyses from 25 wells were available. -
Gas-content measurements from 166 coal samples from
9 wells around the north part of the Rock Springs Uplift
and 7 coal samples from 1 well along the La Barge
Platform were also compiled. We measured all gas
contents-using the U.S. Bureau of Mines method and
corrected them to an ash-free basis when proximate data -
were available. In the absence of proximate data, all ash-
content values from the same well were averaged to
correct the gas contents to a calculated ash-free basis.
These factors affect gas-content measurements: coal
rank, basin hydrodynamics, localized pressure variations,

~sample type, sampling procedures, coal properties,

analytical methods, and sample quality. Gas content
changes vertically between coal beds and laterally within
individual coal beds between wells (Scott, 1993b, ¢)."
Variability in-gas-content values could result when
pressure between seams, sample type, coal
characteristics, analytical methods and quality, migration

of gases in coal beds, or all of these, vary:.

Gas Content in
Mesaverde Group

- Gas-content values from the upper Mesaverde Group,
whlch contain coals from the Almond, Williams Fork and
the Ericson Formations, range from less than 1 to more
than 540 scf/ton (<0.0312 to >16.8 m*/t) but are generally
less than 200 scf/ton (<6.24 m3/t) (fig. 52a). Most gas-
content'data are from Almond and Williams Fork coals
in the - Sand Wash Basin, although we also used gas

.content data from Almond and Ericson Formation coals

north of the Rock Springs Uplift. Gas content versus depth
profiles of upper Mesaverde Group coals in the Sand-
Wash Basin show a gradual increase in gas content and
wide scatter of gas-content data with increasing burial
depth (fig. 53), much the way gas-content profiles do in
other western basins (Scott and Ambrose, 1992). Coal
rank does not increase significantly with depth in this
area (Scott, 1993a), indicating that local pressure
variations, variability of coal characteristics, and/or
migration of thermogenic and/or biogenic coalbed gases
and conventional trapping affect gas contents. Gas
contents of samples shallower than 1,000 ft (<305 m)
are less than 20 scf/ton (<0.6 m*/t), indicating that coalbed
gases may have migrated out of the system because
confining pressures are low, seals are absent, or both.
Anomalously high Mesaverde gas contents adjacent
to the major northwest-trending fault system and along
the east part of the Cherokee Arch in the Sand Wash Basin
may result from migration and conventional trapping of
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Figure 52. Histograms of gas content values: (a) upper
Mesaverde Group, (b) lower Mesaverde Group, and (c) Fort
Union Formation. Gas contents in the upper Mesaverde are
- generally less than 200 scf/ton (<6.24 m*/t), whereas gas
contents in the Fort Union are generally less than 100 scf/ton
(<3.12 m3/t). Lower Mesaverde gas content data are
predominantly from the Rock Springs Formation north of the
Rock Springs Uplift. Data from Boreck and others (1981);
Tremain and Toomey (1983); Diamond and others (1986);
Kelso and others (1991); and Scott (1993a, b).
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Figure 53. Gas-content profile of the upper Mesaverde Group,
Sand Wash Basin. Gas content increases with depth as in other
western U.S. basins. Gas content values vary widely at any
particular depth. Sidewall cores and cuttings generally have
lower gas contents than do whole cores. Ash-free values were
calculated from average ash contents of adjacent coal beds.
From Scott (1993a). ’ ’

biogenic or thermogenic coalbed gases, or both, as well
as overpressured conditions. Non-ash-free gas content of
coals at'5,900 ft (1,798 m) in the Morgan Federal 12-12
well (Sec. 12, T8N, R93W) averages 414 scf/ton (13.0 m*/)
(fig. 54), where coal beds pinch out behind a northeast-
trending shoreline sandstone (Hamilton, 1993)..
Furthermore, this well is on the downthrown (northeast)
side of a northwest-trending fault system (Tyler and
Tremain, 1993), suggesting that the high gas contents may
result from a combination of structural and stratigraphic

“-trapping of migrating gases (Scott, 1993b). Conventional
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trapping of migrating gases during the main stage of

‘coalification may have occurred, depending on the timing

of fault development during migration of early
thermogenic gases or during basinward migration of
biogenic gases by ground water, or both.
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Gas contents in the lower Mesaverde, which includes

Rock Springs and lles Formation coals, range from O to
more than 650 scf/ton (0 to >20.3 m*t) (fig. 52b). Most
of the gas-content data come from 7 wells near the north
end of the Rock Springs Uplift although 11 Hes Formation
coals from 1 well in the Sand Wash Basin are included
in the gas-content ranges. On the basis of gas-content

data from two coalbed methane wells in the northern’

Rock Springs Uplift area, Young and others (1991) and

Uplift. The interval in which gas contents increase with
depth also corresponds to changes in water chemistry,
where higher gas contents are generally associated with
more saline waters. The presence of higher gas contents
at the interface between fresh and saline formation waters

‘therefore suggests that gas content ‘is related to basin

Kelso and others (1991) noted that gas-content profiles

are unusual because gas content decreases with depth;
gas-content data from five additional coalbed methane
wells in the same area support these conclusions. Gas
content in coals from the Fort Union, Almond, Ericson,
and Rock Springs Formations at depths less than

approximately 3,000 ft (<984 m) generally have gas.

contents less than 100 scf/ton (<3.12 m%t). Maximum
gas content in Rock Springs coals, however, increases
between depths of 3,000 ft and 3,700 ft (984 and 1,214 m)
and then decreases at greater depths (fig. 55). Young and

others (1991) and Kelso and others (1991) noted that

sorption capacity (reflected by Langmuir volumes)

generally decreases with depth, indicating that the gas- -

storage capacity, and therefore maximum gas-content
values, should also decrease. Reasons for the changes in
Langmuir volumes remain uncertain, although the
distribution of 12A micropores in the coal may control
sorption capacity (Schwarzer, 1983). Coal beds within
the same well can vary significantly in sorption capacity
(Scott, 1993b), and more desorption data from Rock
Springs coals in this area may be required to confirm
‘that the decrease in Langmuir volume with increasing
depth is a valid trend rather than coincidental. Because
we had no gas-content data from Fort Union, Almond,
or Ericson coals greater than 3,000 ft (>984 m), gas-
content profiles in these formations may or may not be
similar to Rock Springs Formation profiles.

Gas-storage capacity is generally assumed to increase
with increasing coal rank (Kim, 1977). Research by Moffat
and Weale (1955), Patching (1970), Thomas and
Damberger (1976), and Schwarzer (1983), however,
demonstrates that plugging of pores by bitumen reduces
the methane sorption capacity with increasing rank until
R values of approximately 0.9 percent are attained. The
storage capacity subsequently increases with increasing
thermal maturity-as the bitumen is thermally cracked to
" produce additional micropores for sorption. The increase
. and subsequent decrease in gas content data in the
northern Rock Springs area is independent of coal rank
(fig. 56), however, suggesting that other factors may be
influencing gas-content profiles. Basin hydrodynamics
plays an important part in coalbed methane producibility
(Kaiser and others, in press) and may contribute to‘the
unusual gas-content profile in the northern Rock Springs

-

hydrogeology. The change in water chemistry may also
reflect a decrease in permeability within coal beds that
inhibits both the basinward movement of fresh water and
the updip migration of methane from higher rank coals
and shale deeper in the basin (fig. 56). Young and others
(1991) noted that gas content in coal beds enclosed by
shales is significantly higher than gas content in coals
adjacent to sandstones, suggesting that conventional
trapping of gases may explain the higher than expected
gas contents in this area. Gas contents probably increase
with increasing coal rank and burial depth, as suggested
by Kelso and others (1991).

Gas Content in

‘Fort Union Formation

Ash-free gas contents in the Fort Union Formation
are generally less than 100 scf/ton (<3.12 m?/t) (fig. 52¢)
but range from 9 to 561 scf/ton (0.3 to 17.5 m3/t). Fort

Union coals having the highest gas content values are

from the Belco Petroleum Unit S-29-27 well (Sec. 28,
T30N, R113W) (Diamond and others, 1986). These coals
were reported to be from the Mesaverde Group but are
operationally placed in the Fort Union Formation (Roger
Tyler, personal communication, 1993). Although coal
rank may be high-volatile A bituminous (Diamond and
others, 1986), vitrinite-reflectance measurements ranging
from 0.47 to 0.53 percent (Schwarzer, 1983) indicate that
the coals may actually be subbituminous to high-volatile
C bituminous. Suppression of vitrinite-reflectance values
by bitumen (generated during the coalification) in Fort
Union coals has been reported previously (Scott, 1993a),
suggesting that the coals may be of higher rank than
indicated by vitrinite reflectance. Vitrinite-reflectance
values from other wells and formations along the northern
Moxa Arch (figs. 50 and 51), however, are also low (R
<0.50 percent; subbituminous), suggesting that the
vitrinite-reflectance values may be valid. Regardless of
whether the coals are subbituminous or high-volatile A
bituminous in'this area, artificial maturation experiments
suggest that gas contents of 500 scf/ton (15.6 m?/t) are
not achieved until the medium-volatile bituminous rank
(R ~1.1 percent) is attained (Tang and others, 1991).
The unusually high gas-content values in this area
therefore probably result from conventional trapping of

“gases that migrated from deeper, thermally mature parts
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Figure 55. Gas-content profile, northern Rock Springs Uplift. Gas content increases abruptly at 3,000 ft
(984 m), peaks at 3,700 ft (1,214 m), and atypically decreases with increasing depth. The same trend is
evident irrespective of rank and clearly shows that gas content is not rank related. High gas content
appears to be strata bound and may reflect a Pleistocene recharge event and consequent generation of
secondary biogenic gas. From Scott and Ambrose (1992). ~
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Figure 56. Schematic west-east cross-sectional ground-water flow, Rock Springs Formation, Rock Springs Uplift. Basinward flow
of ground water, combined with better confinement, higher pressure, and lower permeability downdip (flow barriers), may
serve to trap gas. Resistance to lateral flow, due to increasing coalbed permeability, causes flow to turn upward. Gas content is
highest at this point and defines a narrow exploration target. From Kaiser (1992). '

of the basin. Alternatively, incorrect sampling procedures
can allow bacteria to generate methane and carbon
dioxide from the coal after sample collection, resulting
in erroneously high gas-content values.

Most of the Fort Union gas-content data are from the
Sand Wash Basin. Gas-content profiles from other western
basins generally show an-increase in gas content with
increasing coal rank, burial depth, and pressure (Scott
and Ambrose, 1992). Gas-content profiles of Fort Union
coal beds in the Sand Wash Basin are, however, unusual
because gas content remains relatively constant with

Composition of
Cretaceous and
Tertiary Coalbed Gases

Coal rank; basin hydrodynamics, and maceral
composition affect coalbed gas composition (Scott and

~ Kaiser, 1991). The gas dryness index (the ratio of methane

increasing burial depth (fig. 57). Gas content changes

only insignificantly among sample types (whole core,

sidewall core, cuttings), suggesting that factors other than

sample quality are affecting this profile. Vitrinite-
reflectance values also remain constant with increasing
depth (Scott, 1993a), suggesting a relationship between
low gas content and coal rank.
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to methane through pentane; C,/C, ) reflects the amount ..
of chemically wet gases generated during the thermal-
maturation of hydrogen-rich coals. Such coals in the oil-
window or oil-generating stage (vitrinite reflectance of
0.5 to 1.2 percent) often produce large amounts of wet -
gases (ethane and propane, among others), whereas coals
having vitrinite-reflectance values of less than 0.5 percent
or greater than 1.2 percent will generate relatively few
wet-gas components and have C,/C, ; values near unity
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Figure 57. Gas-content profile, Fort Union coals, Sand

Wash Basin. The slightly higher gas content values at 1,800 ft -

(549 m) are from wells in T12N, R91W, an area of artesian

overpressure. Ash-free values were calculated from average

ash contents of adjacent coal beds. From Scott (1993b).

(Scott ‘and others, 1991b). Alteration of coalbed gases
also affects coalbed gas composition. Bacterial alteration
of chemically wet gases can remove nearly all of the wet-
gas components, producing chemically dry gases
. resembling thermogenic methane (James and Burns,
1984). Furthermore, mixtures. of biogenic and
thermogenic coalbed gases are difficult to identify using
only gas dryness indices and methane isotopic data. The
isotopic composition of carbon dioxide from coal beds
may prove to be more useful in determining the biogenic
or thermogenic nature of coalbed gases than would
 methane isotopic data alone, particularly when mixtures
of thermogenic and bnogemc methane may be present.

Limited coalbed gas compositional data are available
from the Greater Green River Basin (Tremain and Toomey,
1983; Scott, 1993a, b, ). Although no produced coalbed
gases were available for analysis in the basin, the
compositional ranges of desorbed coalbed gases were
available for evaluation. These gases will generally
contain more carbon dioxide, nitrogen, and wet-gas

“components. than. will produced gases (Scott, 1993c).

‘Higher desorption temperatures produce more carbon

dioxide and wet gases (Mavor and others 1991a).

Mesaverde Group Coalbed
Gas Composition |

The chemical compositions of desorbed gas samples
from 36 coal samples in 6 Mesaverde wells were used to
evaluate the chemical composition and origin of Williams
Fork coalbed gases. Although no produced coalbed gases
in the basin were available for analysis, we knew that
the compositional ranges of a large number of desorbed
coalbed gases could. approximate the compositional
ranges of produced gases (Scott, 1993c). Desorbed
coalbed gases generally contain more carbon dioxide,
nitrogen, and wet-gas components (Mavor and others,
19913; Scott, 1993c¢), particularly if higher temperatures
are used during desorption. The gas dryness index ranges
from 0.79 to 1.00 and averages 0.95 (fig. 58), values
similar to Fruitland coalbed gases in the San Juan Basin-
(C,/C,  rangeof 0.77 to 1.00; average of 0.96; Scott and
others, 19914, b). Carbon dioxide content in Mesaverde
coal beds ranges from less than 1 to more than 25 percent
(fig. 59), a range similar to that in Fruitland coalbed gases,
which range from less than 1 to more than 25 percent
(Scott and others, 19913, b; Scott, 1993b, c). The average
carbon dioxide content of Mesaverde coals in the Sand
Wash Basin (6.7 percent) is similar to the average carbon
dioxide content of coals from the north part of the San
Juan Basin (6.4 percent; Scott and others, 1991a, b) and
slightly more than the overall average of Fruitland carbon
dioxide content (4.5 percent). Nitrogen content in
Mesaverde coalbed gases ranges from less than 1 to
20 percent and averages approximately 4-percent, an
average significantly higher than the average Fruitland
coalbed nitrogen values (<0.1 percent; Scott and others,
1991a, b). The higher average nitrogen values of
Williams Fork coalbed gases may result from gas

- sampling; these gases were desorbed from coal samples,

thus increasing the possibility of air contamination.
Fruitland data-are from produced coalbed gases.
Although gas composition changes vertically
between coal beds within individual wells and laterally
between wells (fig. 54), at least one coal bed, which can
be traced laterally over several tens of miles using density
log profiles, has consistently high carbon dioxide values
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Figure 58. Composition of Mesaverde coalbed gases. Desorbed gases have a wide range of chemical compositions. Coal beds.
have entered the early gas-generation stage as indicated by the minor amounts of wet gases in the samples. High carbon dioxide
content in some coal beds may reflect bacterial activity, gas migration, and/or variations in maceral composition. From Scott

(1993a).

w
o

N N
o [$)]
[N W TN T SN WY N TN N I YN W TN W N W S T N Y N 0 T O T T I

-
[}

Carbon dioxide (percent)
=

3
O 0o
O

) o
n[trvl|l'l'l'l"lo -

0.75 0.80 0.85 0.90 0.95 1.00
Gas dryness index (C4/Cy_g) " g 671(a)c

[,]

0
0.70

Figure 59. Variation of carbon dioxide content with the gas-
dryness index (C,/C,
dioxide contents generally have dry gases, although coals in

values). Coals having high carbon

near or. above 10 percent (fig;?54). This situation suggests

. that factors controlling.gas composition, such as basin

the Morgan Federal 12-12 and Colorado State 1-31 wells have

wet gases. From Scott (1993a).

hydrodynamics, gas migration, maceral composition,
biogenic activity, or a combination of these factors, can
operate consistently over laterally extensive areas in
continuous seams. Coals having high carbon dioxide
contents are generally characterized by high C,/C, , values
(fig. 59). Furthermore, coal beds in the lower part of the
Williams Fork: Formation (units 1-and 2) contain more
carbon dioxide and fewer wet-gas components than do
coals in units 3 and 4 of the upper Williams Fork
Formation. Coal beds from the Morgan Federal 12-12
well (Sec. 12, T8N, R93W), however, tend to have
chemically wet gases and relatively high carbon dioxide
content (fig. 54), characteristics similar to those of coalbed
gases in the northern Piceance Basin (Scott, 1993¢).

Fort Union Formation Coalbed
Gas Composition

Desorbed coalbed gas composmonal data were
available from 20 coal samples from 3 coalbed methane
wells in the Sand Wash Basin; however, most of the data
are from partial analyses that did not report the amount
of carbon dioxide and nitrogen. Gas dryness indices of
Fort Union coalbed gases range from 0.86 to 1.00 and
average 0.95. These gas dryness indices resemble those

‘of desorbed coalbed gases in the Piceance Basin, which

range from 0.79 to 1.00 and average 0.95 (Scott, 1993c).
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Figure 60. Types of coalbed gases produced during gas-generating stages. Early thermogenic gases: composed of nearly.
100 percent methane at low ranks become progressively wetter (higher ethane, propane, butane content) during the wet-gas-
generating stage. The wet gases and condensate generated during this stage are thermally cracked to produce additional methane
with increasing burial depth and maturation;.eventually the gases are composed nearly entirely of methane at higher coal ranks.

From Scott (1993¢).

Whereas carbon dioxide content in Fort Union coal beds
ranges from 4.2 to 6.9 percent and averages 5.4 percent,
more gas compositional data are required to evaluate

carbon dioxide content of Fort Union coals fully. Nitrogen

content data were available for only three samples, and
two of these samples contained more than 20 percent
nitrogen, indicating air contamination. Nitrogen content
of gases produced from subbituminous coals probably
varies, whereas nitrogen: content in coalbed gases is
generally highest in high-volatile C and B bituminous
(R_of 0.5 to 0.8 percent), subsequently decreasing with
increasing coal rank (Scott, 1993c¢). Produced Fort Union
coalbed gases could thus have nitrogen contents ranging
from O to more than 10 percent, depending on rank and
maceral composition.

Origin of Coalbed Gases

Determining the source of methane and carbon
dioxide in coalbed gases is important for evaluating the
origin and regional extent of unusually high gas contents

in coal beds; anomalously high gas contents may reflect
secondary biogenic gas generation or migration of
thermogenic and/or biogenic gases. Coalbed gas
composition is directly related to coal rank, basin
hydrodynamics, and maceral composition (Scott and
Kaiser, 1991; Scott 1993c). Therefore, combining coal
distribution ‘and basin hydrogeology with gas
compositional and gas content data can help in evaluating
gas migration pathways, the nature of the trapping
mechanism, and the geographic area in which high gas
contents occur. v '
Various types of coalbed gases are produced during
several gas-generating stages (fig. 60). Early thermogenic,
thermogenic, and secondary biogenic gases are found in
coal beds (Scott, 1993c). Primary biogenic gases,
generated during the early stages of coalification, are
probably not preserved in coal beds (Scott, 1993c)
because there is no mechanism for methane sorption.
Early thermogenic gases are formed between vitrinite-

~reflectance values. of 0.5 and 0.8 percent and initially
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have C,/C, , near unity. If the coals are hydrogen-rich,
then significant quantities of wet gases and condensate



can be generated from the coal during the wet-gas
generating stage between vitrinite-reflectance values of
0.6 and 0.8 percent (fig. 60) and C,/C, ; values may be
less than 0.90; hydrogen-poor coals may not have a well-
developed wet gas generating stage. Once a certain
- threshold of thermal maturity is reached during the high-
volatile A bituminous rank, significant quantities of
thermogenic gases are generated. With continued

maturation, wet gases and condensate produced during:

the wet gas generating stage are thermally cracked. The
thermal cracking of higher n-alkanes to methane
combined with increased methane generation results in
a progressive increase in C,/C, . value toward unity.
The chemistry of coalbed gases can be significantly
altered through biogenic activity. Bacterial alteration of
chemically wet gases can remove nearly all of the wet
gas components (James and Burns, 1984), producing
chemically dry gases (C,/C, , near 1.0) that resemble gases
generated from higher-rank- coals. Therefore,
understanding basin hydrodynamics is important in
evaluating coalbed gas origin. Mixtures of biogenic and
thermogenic coalbed gases are difficult to recognize using
only gas dryness indices and methane isotopic data. The
isotopic composition of carbon dioxide from coal beds
.may prove to be more useful in determining the biogenic
or thermogenic nature of coalbed gases than methane
isotopic data alone, particularly in cases where mixtures
of thermogenic and biogenic methane may be present.
Although coalbed gases produced in the Greater
Green River Basin were unavailable for detailed isotopic
analyses, coal rank, hydrogeology, and coalbed geometry
can be used to evaluate gas origin. Vitrinite-reflectance
profiles of Mesaverde coals indicate that coal beds along
basin margins and the Rock Springs Uplift are thermally
immature (subbituminous to high-volatile C bituminous)
and have not reached the threshold of thermogenic
methane generation, which indicate that coalbed gases
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in these areas are predominantly secondary biogenic. The
distribution of C /C, ; values around 0.96 (fig. 58) and
the low coal rank suggest that early thermogenic gases
are probably also present. Gases of high-volatile A
bituminous and higher ranks. are, however, probably
thermogenic, although secondary biogenic gases in
higher rank coals may also be present.

Carbon dioxide from Williams Fork coal beds in the
Sand Wash Basin is thermogenic, biogenic, or a mixture
of both gas types (Scott, 1993b). Large quantities of carbon
dioxide are released from coals during coalification,
suggesting that much of the carbon dioxide present in
these coals could be thermogenic. Because the timing of
carbon dioxide generation and retention in relation to
the changes in coal adsorptive capacity during
coalification remains uncertain or unknown, a biogenic
source of some of the carbon dioxide cannot be ruled
out. Furthermore, the increase in carbon dioxide with
decreasing C,/C,  values (fig. 58) suggests that some of
the gases may be bacterially derived. Although the carbon
dioxide content of individual seams ranges from less
than 2 to more than 20 percent within the same well
(fig. 54), carbon dioxide content remains consistently high
(~10 percent) in some coal beds, which are correlated
over tens of miles (Hamilton, 1993). The changes in
carbon dioxide content vertically and laterally could
result from variations in maceral composition, which
could affect the types and quantities of gases generated
from the coal, bacterial activity, migration of coalbed
gases, or all of these. The presence of wet gases having
high carbon dioxide values (fig. 54) in the Morgan Federal
12-12 and Colorado State 1-31 wells may indicate
migration of coalbed gases. The carbon dioxide is
probably indigenous to the coal beds, whereas the wet-
gas components may have originated from shales and
carbonaceous shale adjacent to the coal beds or from
the coal beds themselves.



Hydrology of the Mesaverde Aquer
‘and Tertiary Aquifer System,
Greater Green Rlver Basin

» W////am R. Kalser

In the Greater Green River Basin, the major coal-

bearing hydrostratigraphic units are the Mesaverde aquifer
and the Tertiary aquifer system, in which the lower Tertiary

_Fort Union and Wasatch Formations are major aquifers. -

The Mesaverde aquifer is regionally confined below by
the marine Mancos Shale and its equivalents to the west
and above by the marine Lewis Shale (fig. 3). Coal beds
are probably the most important Mesaverde aquifers
because of their relatively high permeability (50 to
1,462 md) and lateral continuity (Scott and Kaiser, 1993).
The Tertiary aquifer system comprises the Late Cretaceous
Fox Hills Sandstone and Lance Formation and is
regionally confined below by the Lewis Shale and above
by the mud- and shale-rich Green River and Bridger
Formations. The Tertiary aquifer system contains the most
water-productive sandstones in the greater basin and is
as much as 12,000 ft (3,660 m) thick. Permeabilities of
Tertiary sandstones range from tens to thousands of
millidarcys (Ahern and others, 1981; CoIIentme and
‘others, 1981).

Mesaverde and Tertiary hydrology was evaluated in
reconnaissance analysis of hydraulic head, pressure
regime, and hydrochemistry. The Mesaverde is
emphasized here because its coals are of highest rank
and gas content and, thus, it constitutes the basin’s major
coalbed methane target. To map hydraulic head,
equivalent fresh-water heads were calculated from shut-
in pressures (SIP’s) recorded in drill-stem tests (DST’s)

using a fresh-water hydrostatic gradient of 0.433 psi/ft -

(9.8 kPa/m). DST’s having simple pressure gradients
(pressure-depth quotients) of less than 0.30 psi/ft
(<6.8 kPa/m) were eliminated from the data base because
of their uncertain validity, which reflected insufficient
shut-in time, bad test data, high gas saturation, pressure
depletion, or a combination of these factors (Scott and
Kaiser, 1993). The screened data set contained more than
200 Mesaverde DST's from approximately 100 wells and
consisted mainly of DST’s from the upper Mesaverde
Almond Formation. An upper Mesaverde head map was
prepared for the east part of the greater basin; Mesaverde
coals are largely absent in the west (Tyler and Hamilton,
‘this volume). The single highest head value in each

township was contoured to better represent actual fluid-

flow potential. Abnormal pressure is defined as that higher
or lower than fresh-water hydrostatic pressure. Published
total-dissolved-solids (TDS) maps were used to define
patterns of ground-water circulation further. Because
available water analyses are of questionable validity, TDS
maps delineate only regional concentration gradients.

Hydrodynamics

The Mesaverde aquifer crops out along the southeast
margin of the Sand Wash Basin and eastern’Washakie
Basin (Tweto, 1979; Love and Christiansen, 1985) and
receives recharge primarily along these margins. in the
foothills of the Sierra Madre—Park Range and White River
Uplifts. Average annual precipitation exceeds 16 inches
(40 cm) over most of the outcrop and in places exceeds

20 inches (50 cm) (fig. 61). Although the Mesaverde

crops out on.the Rock Springs Uplift, recharge is limited
by mean annual precipitation of less than 10 inches

(<25 cm) and high evaporation rates of 10 times

precipitation (Welder and McGreevy, 1966). Annual
precipitation at Rock Springs, Wyoming, is about 7 inches
(~18 cm). In'the Green River Basin, Mesaverde recharge

- is severely limited by large stratigraphic displacement
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along major thrust faults, which hydraulically separate
the wet basin margins from the basin interior (fig. 6). In
other words, the Mesaverde is a fault-severed aquifer
(Huntoon, 1985).

In the eastern Greater Green River Basin, the upper
Mesaverde potentiometric surface slopes from the
eastern recharge area basinward toward major fault
systems and potentiometric depressions. A series of large
potentiometric mounds occuralong the deep.central part
of the basin (fig. 62), reflecting hydrocarbon overpressure.
Equivalent fresh-water heads are greater than 10,000 ft
(>3,050 m) and in excess of Mesaverde:outcrop

‘elevations. The potentiometric surface, except for one

mound, is conspicuously flat off the east flank of the Rock

Springs Uplift and slopes off the north and south ends of

the uplift, reflecting higher precipitation there (fig. 61).
In the Mesaverde aquifer, hydropressured strata flank
areas of regional hydrocarbon overpressure at the basin
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Figure 61. Mean annual precipitation, Greater Green River Basin. Precipitation is highest over highlands on the southeast,
northwest, and southwest margins of the basin. Outcrop-related recharge occurs along the foothills of those highlands. In the
Tertiary aquifer system, water flows from the wet, elevated basin margins to discharge into major river valleys and basin
centers, and flow is dynamic throughout the basin, ke ,
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Figure 63. Mesaverde pressure-depth plot, Washakie and Great Divide Basins. Modified from Heasler and Surdam (1993).

Hydropressured section is mostly slightly underpressured to normally pressured. Overpressure begins at about 8,000 ft (~2,440 m).

center (fig. 62). In the hydropressured section, no pressure
regime regionally dominates. Most simple pressure
gradients indicate slight .underpressure to normal
pressure (fig. 63). Artesian overpressure has been
“identified on the eastern Cherokee Arch (Scott and .
Kaiser, 1993), where simple gradients range from 0.44 to
0.54 psi/ft (9.95 to 12.22 kPa/m). Overpressure reflects
proximity to the recharge area, basinward confinement,
aquifer offset by faults along the Cherokee Arch, and high
permeability; flowing artesian wells at Dixon field and
southwest of Baggs, Wyoming, attest to artesian
conditions in this area (Dana, 1962; Scott and Kaiser,
1993). Overpressure extends approximately 15 mi
(~24 km) westward along the arch. Artesian wells
southwest of Rawlins, Wyoming (Dana, 1962), indicate
the presence of artesian conditions northward along
- the east margin of the Washakie Basin.

Regional overpressure is encountered at depths of
8,000 ft (2,440 m) or more in the central parts of the
basin (figs. 62 and 63). Simple pressure gradients in the

90

Washakie Basin range from 0.50 psi/ft to more: than
0.85 psi/ft (11.3 to >19.2 kPa/m) (McPeek, 1981) and
typically exceed 0.70 psi/ft (15.8 kPa/m). Hydrocarbon
overpressuring is postulated from head data and bottom-
hole temperatures (BHT’s). Fresh-water equivalent

heads are considerably higher than those of the

Mesaverde outcrop on the east, indicating that these high
heads are not due to artesian conditions. BHT’s exceed
200° F (93° C) below depths of 9,000 ft (2,745 m) (Heasler
and Surdam, 1993). Overpressuring in the deep basin is
predicated on low permeability (<0.1-md) and active-

‘generation of ‘gas (Law and Dickinson, 1985; Law and
‘others, 1986) at temperatures above 200° F (>93° C)
(Spencer, 1987). Gas rather than water is thus the
pressuring fluid, and the potentiometric surface is not a

true potentiometric surface because it is not the height to
which ‘the fluid column would freely rise. This
pseudosurface consists of plateaus and valleys, in which
the elevation difference between adjacent plateaus and
valleys is as much as 5,000 ft (1,525 m) (Heasler and
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Figure 64. Schematic cross-sectional ground- water flow, Washakie Basin. From Scott and Kaiser (1993). Ground water flows

basinward, turning upward upon convergence from the basin margins, aquifer pinch-out, encountering the top of regional
overpressure, or a combination of these. Gravity and compactional flow converge at the top of overpressure.

Surdam, 1993). Heasler and Surdam (1992, 1993)
postulated that anomalously high and low pressures
reflect pressure compartmentalization.

Hydrocarbon overpressure is separated from

hydropressure by major fault systems, zones of extensive

diagenesis, and facies changes (Scott and Kaiser, 1993).
The Savery fault system, which extends northward from

Savery, Wyoming, and has as much as 5,000 ft (1,525 m)

of throw, and the east-west-trending Cherokee Arch fault
system separate shallow hydropressure on the east from
hydrocarbon overpressure in the deep Washakie Basin
on the west. On the upthrown side of the Savery system,
artesian overpressure and normal pressure are present
where ground water flows basinward from the east margin
of the basin. Where not fault bounded, the boundary is
thought to reflect diagenesis and facies changes and is
placed at the basinward saddle in the potentiometric
surface (fig. 62). On the east flank of the Rock Springs
Uplift, the saddle corresponds to depth contours of 8,000
t0 9,000 ft (2,440 to 2,745 m) on the top of the Mesaverde.
Zones of diagenesis reflect the mixing of meteoric water
moving basinward and compactional water moving.-up
and out of the basin (fig. 64). Facies changes and
associated loss of permeable elements may also serve to
separate the two pressure regions.

Regional Flow

In the Mesaverde aquifer, ground water flows -
westward from an eastern recharge area, down hydraulic
gradient, eventually to discharge basinward along fault
systems and facies changes that separate hydropressure
from regional hydrocarbon overpressure in the central
basin (fig. 62). Fracture flow to the west and northwest
along the Cherokee Arch and Cedar Mountain fault
systems, respectively, is indicated by potentiometric
ridges along the fault zones and hydrochemistry in which
chlorinity increases downflow (Scott and Kaiser, 1993).
Gravity-driven flow turns upward upon convergence from
the basin margins, aquifer pinch-out, or both, and upon

- encountering the top of geopressure (fig. 64), which
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because of low permeability and high pressure is a no-
flow boundary. Gravity-driven and compactional flow
converge along this boundary.

Minor flow occurs off the north and south ends of
the Rock Springs Uplift and is even more limited to the
east and west off the uplift by low annual precipitation,
high evaporation rates, and faults. Sluggish or restricted
flow is indicated by the conspicuously flat potentiometric
surface on the east and high chlorinity formation waters
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Figure 65. Map of total dissolved solids (TDS), Mesaverde Group, eastern Greater Green River Basin. Modified from Collentine
and others (1981). High-TDS waters are close to outcrop on the east flank of the Rock Springs Uplift. Low-TDS waters project
basinward, northwest of Craig, Colorado, along the Cedar Mountain fault system, and northwest off the Sierra Madre Uplift.
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 close to outcrop. TDS contents of less than 1,000 mg/L-

are limited to outcrop and shallow subsurface on the ends
..of the Rock Springs Uplift and east margins of the Sand

~ ‘Wash and Washakie Basins (fig. 65). The Mesaverde’s

most saline waters are found on the east flank of the uplift

low areas eventually to discharge. Flow patterns conform
to those delineated from head maps, which show high>,b,
values near recharge areas and diminishing values -
basinward (Ahern and others, 1981; Collentine and

, others 1981).

© at a relatively short distance from outcrop (Collentine

“and others, 1981). Their presence may reflect reservoir

~ heterogeneity, upward discharge along faults (numerous

‘northeast-trending faults cross the uplift), waters of

compaction-discharging from the deep basin, or a

~ combination of these influences. In the Green River Basin,

. the Mesaverde aqUifer‘is,faU‘It severed.and receives limited -
recharge from the wet margins of the basin. Consequently,.

we postulate that ground-water flow is sluggish in the

basin interior. Available head data show sluggish flow

* southeast, from the La Barge Platform toward the south

' In the Sand Wash Basin and southeastern Washakie
Basnn _water flows basinward for ultimate discharge into
the Little Snake River valley and its tributary valleys. The
Great Divide Basin is a basin of internal drainage, and
water flows toward the basin center to discharge into
valleys and playas inthe central basin. Recharge in most

‘of the basin is small because annual precipitation is low
and evaporation rates.are high. The Washakie and Great

Divide Basins, essentially independent hydrologic
systems, are hydrologically separated by the Wamsutter

~Arch, which is a Tertiary ground-water divide (Collentine

part of the basiri. Restricted circulation is indicated by a -

flattened potentiometric surface and highly saline-

- formation waters (Ahern‘and others, 1981).

In-the Tertiary aquifer system, ground-water flow
~ primarily results from outcrop-related recharge along the

foothills of the Sierra Madre Uplift-Park, Wind River, and
Uinta Uplifts and the Wyoming Mountains (fig. 61). Flow

direction can be predicted because ground water flows -

down regional topographic gradient and structural dip,
in response to the hydraulic gradient, from the wet,
elevated margins of the basins toward topographically

and others, 1981). In the Green River Basin, water flows

toward the basin center and southward to discharge into

the Green River valley south-of the area where the Wilkins
Peak Member of the Green River Formation is less
extensive (Ahern and others, 1981). Head contours-
converge toward the Green River valley, and TDS content
increases from outcrop; basinward and to the south. The
best quality water is in the north third of the basin. In the -

. southwest, water flows south to north from recharge areas
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along the north flank of the Uinta Mountains.



“Coalbed Methane Resources, :
Production, and Exploration in the

Greater Green River Basin
William R. Ka/ser and Andrew R. Scott

Estimates of coal and gas resources rely on'structure,
“topography, net coal thickness, gas and ash content (as
“reported earlier in this volume), and published coal-

density data. These data were integrated to calculate coal
and gas resources by geologic unit and drilling depth
following the methodology of Kaiser and others (1993b),
in which volume corrections-and bulk-and pure coal
density were considered for the first time. Discussion of
resources is followed by a review of production, which

has been mainly water and little or no gas. In the Greater
Green River Basin, structural configuration, coal

distribution, gas content, and hydrodynamics are major

“controls on the occurrence and producibility of coalbed:

methane. A synergistic interplay among these geologic
and hydrologic controls determines producibility.
Exploration fairways were identified using an integrated
geologic-hydrologic-centered approach or basin-scale

than 6,000 ft (<1,830 m), and (3) at less than 7,500 ft
(«<2,287 m)). These basic equations were used to calculate
coal tonnage and gas in place: ’ '

TON = (h X A) x pp X C, m
and e :
GIP = (hxA)xpcxGCxC, (2)
where '
GIP = gas inplace (scf),
~TON = coal tonnage (short tons),
~ GC' = ash-free gas content (scf/ton),
h = coal thickness (ft),
A area (ft?),
pc - = density pure coal (g/cc),
pp = bulk density coal + ash (g/cc), and
C . = unit = correction factor to convert to

producibility model, as outlined by Kaiser and others -

' (1993b, 1994a, b). The model’s ‘essential’ elements are

(1) ground-water flow basinward through ‘coals of high
rank and high gas content orthogonally toward no-flow

boundaries (regional hingelines, fault systems, facies
changes, and/or discharge areas) and (2) conventional
trapping of gas along them. When flow direction and
flow boundaries are orthogonal, the gas- gathenng area
is large and efficiently swept of gas, maximizing the
opportunity for subsequent resorption and conventional

trapping of gas. Free gas and solution gas provide: ‘

additional sources of gas beyond that sorbed on the coal

surface.

-Resources

Coal and gas resources in the Greater Green River
Basin were calculated using structure-contour,
topographic, and net-coal-thickness maps, as well as
gas content, coal density, and ash content and density.

Net coal thickness and area were combined to estimate -

net coal volume, which was then used to calculate

coal tonnage and gas in place, using bulk and ash-free

coal density and gas content. Three resource estimates
were made (1) using no depth restrictions, (2) at less

“English units.

. On the basis of considerations of pure coal density. -
and weight and volume percentages of coal and ash
content, modified these equations for resource calcu-
lations. (Kaiser and others, 1993b). Using generalized
bulk coal-density data and-failure to correct net coal
volume for ash content can cause serious error in
calculating in-place gas resources. Coal resources were-
calculated using the bulk coal density (which includes
both coal and ash), whereas in-place gas calculations
were made using pure coal density because gas is

-assumed to be sorbed by coal and not ash.

Pure coal density was related to a depth plot of pure
coal density versus percent carbon in Levine (1993),
which was first converted to equivalent vitrinite-
reflectance values and then correlated with depth using
a vitrinite-reflectance profile equation to attain:a pure
coal density versus depth equation-(Kaiser and others,.
1993b).-Upon establishing that relation, we could.

. calculate regional changes of bulk coal density with -

depth. Because the density of pure coal is less than that

of ash, the volume fraction of ash in coal is commonly
less than the weight percent of ash. Thus, coal volume
cannot be multiplied simply by weight percent coal to

determine net coal volume .Coal volume must be
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Figure 66. Gas—content proflles and equations used in coal and in-place gas resource calculations. A moving average of 1,000 ft
(305 m) intervals with 500-ft (153-m) overlap was used to determme a general relation between gas content and depth in the

(a) Fort Union and (b) Williams Fork Formations.

multiplied by a volume-correction factor, which is based
on the weight percentages of ash provided by proximate
analyses (Kaiser and others, 1993b). Therefore, equation 2
" was modified to incorporate the volume-correction factor
and to handle coal densny appropriately in gas-in- place
calculations:

‘ GIP =
where

(h x Ax Vcf) X pe X GC x C, , (3)

Vcf = volume correctlon factor.

- Coal thickness in GIP calculations were derived from

- net-coal maps, where net coal within each unit is assumed
to occur as an aggregate thickness at the midpoint of the
unit. Volume-correction factors of Mesaverde and Fort
Union coals were made, assuming average ash contents

of 9.2 and 10.2 weight percent, respectively. Equations.

~ relating gas content to depth in the Mesaverde Group
and Fort Union Formation were determined by using a
movmg average over 1,000-ft (305-m) intervals with
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500-ft (164-m) overlap (fig. 66). Resources were
calculated using a grid size of 3.5 mi? (9.1 km?).

In the Greater Green River Basin, coal and gas
resources are huge, totaling 1,277 billion short tons
(1,158 billion t) and 314 Tcf (8.89 Tm?) (table 2). The

‘Mesaverde Group contains 627 billion tons
(569 billion t) and 264 Tcf (7.47 Tm?), accounting for 49°

and 84 percent of the total resources, respectively. The
Rock Springs accounts for 16 and 31 percent of the
Mesaverde coal and gas resources, respectively. The Fort
Union Formation contains 649 billion tons
(589 billiont) and 50 Tcf (1.42 Tm?), accounting for 51

‘and 16. percent of the total resources, respectively. At

depths of less than 7,500 ft (<2,286 m), coal and gas
resources are 688 billion tons (624 billion t) and 84 Tcf
(2.38 Tm?). At those depths, Mesaverde resources are
243 billion tons (220 billion t) and 56 Tcf (1.58 Tm?),
accounting for 35 and 67 percent, respectively, of the
resources ‘at less than 7,500 ft (<2,286 m). Fort-Union -
resources are 445 billion tons (404 billion t) and 28 Tcf
(0.79 Tm?), accounting for 65 and 33 percent of the
resources, respectively.



Table 2. Coal and gas: resources in the Greater Green River Basin. From Scott and others, (1994).

Resources Percent of total Average
resource gas content
Coal Gas Coal Gas (scf/ton)
~ (billion short tons) (Tcf)

Greater Green River Basin 1,277 314 100 - 100

< 6,000 ft : 482 47 38 5 96

6,000 to 7,500 ft 206 37 : 16 12 185

> 7,500 ft ’ 588 230 46 73 390
upper Mesaverde Group 420 166 33 53

< 6,000 ft . 131 25 10 8 189

6,000 to 7,500 ft- 65 2 . 5 7 348

> 7,500 ft 224 119 18 38 530
Rock Springs Formation 208 98 16 . 31

< 6,000 ft 35 ' 3 . 2 128

6,000 to 7,500 ft ‘ 12 348

> 7,500 ft 161 89 . 12 28 552
Fort Union Formation 649 50 51 16

< 6,000 ft ‘ ; 316 17 25 ‘ 5 54

6,000 to 7,500 ft 129 11 10 4 88

> 7,500 ft _ 204 22 16 7 110

Production

Coalbed methane drilling, having targeted coals of
the Upper Cretaceous Mesaverde Group and Paleocene
Fort Union Formation, is centered in the Sand Wash Basin,
which has established production, and the northern Rock
Springs Uplift, where commercial prospects have been
evaluated. :

Sand Wash Basin

We analyzed Williams Fork and Fort Union
production on the basis of Petroleum Information reports
(Petroleum Information, 1993a-h), Dwight's Oil and Gas

drilling histories, Colorado Oil and Gas Conservation

Commission well-completion updates, and operator
records. Gas production from three Williams Fork fields
has been minimal, whereas water production has been
excessive (table 3). Cumulative gas and water production
through June 1993 was 134 MMcf (3.8 MMm?) and
6.8 MMbbl (1.1 MMm?), for a cumulative gas-water ratio

of approximately 20 scf/bbl (~3.6 m*m?). This ratio has
been increasing slowly with time. Only. Dixon field has
produced gas for a-cumulative gas—water ratio of
approximately 22 scf/bbl (~3.9 m3/m3). Eleven wells have
been drilled in Dixon field (fig. 67) by Fuel Resources
Development Company (Fuelco) (fig. 68); three
structurally high wells currently produce gas at rates of
less than 40 Mcf/d (<1.1 Mm?/d). Initially, eight wells
were flowing artesian and served as dewatering wells;
they flowed at rates ranging from 600 to 1,000 bbl/d (95
to 159 m%/d) for a per-well average of approximately -
700 bbl/d (~111 m?/d) in 1991. Rates have subsequently
declined to approximately 400 bbl/d (~64 m*/d).

- Sixteen plugged and abandoned wells in Craig Dome
field (fig. 67) were abandoned by Cockrell Oil because
the Williams Fork coals had low gas contents and could
not be economically depressured (dewatered). They
produced for 12 to 18 mo with minor pressure drawdown
and never produced gas (Stevens, 1993). In 1991, water
production per well ranged from 200 to 1,000 bbl/d (32
to 159 m%d) and averaged about 500 bbl/d (~80 m*/d); -
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Figure 68. Coalbed methane tests by operator, Greater Green Rlver Basm Cockrell Fuel Resources Development Company‘-

(Fuelco), and Mendnan were active in the Sand Wash Basin:

two were flowing artesian wells. The one Williams Fork

well in Lay Creek field tested -initially at 74 Mcf/d.

(2.1 Mm¥/d) and 800 bwpd (127 m?/d). During pro-
duction testing it produced 80 to 100 Mcf/d (2.3 to
2.8 Mm?¥/d) and hundreds of barrels of water per day
(tens of m3/d). The Van Dorn well (Sec: 29, T7N, R90W)

produced 100 Mcf/d (2:8 Mm?/d) upon swabbing after -
an-unsuccessful attempt at fracturmg, and then ceased ‘e

production.
_In 1989 and 1990, nine Fort Union coalbed wells
were completed, production tested, plugged, and

~ abandoned. During test periods. ranging from 9 d to -

7 mo, the wells produced zero to negligible volumes of
“gas and tens of thousands of barrels of water (thousands
of cubic meters); one well averaged 2 Mcf/d (57 m*/d).
Most of the activity was in West Side Canal field (fig. 67).

Initial water production (IP) increases with
permeability (Oldaker,-1991) and high water IP’s
(hundreds of barrels per day [tens of cubic meters per:
dayl) indicate high permeability. Williams Fork coal IP’s

“were highest in the Yampa River valley (1,800 bbl/d
[286 m?/d]) and at the northeast margin of the basin.in

Dixon field, east of Baggs, Wyoming, where 1,200 bbl/d

(191:m*/d) is representative (fig. 67). The field’s first well
~initially produced 2,200 bbl/d (350 m*d). In Craig

Dome field, IP’s ranged from 500 to 1,000 bbl/d (80 to
159'm?/d). At West Side Canal field, IP’s from Fort'Union
coals ranged from 100 to 3,200 bbl/d (16 to 509 m?/d),

~which is a range much wider than that exhibited by

Williams Fork: coals at nearby Dixon field (800 to

©12,200 bbl/d [127 to 350 m¥/d]). The wide Fort Union
“range probably reflects reservoir heterogeneity possibly-
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caused by variability in vertical flow (interconnectedness),
coalbed orientation perpendicular to the lateral flow
direction, offset by faults and diagenesis along the
~ Cherokee Arch fault system, or all three. High water
potentials reflect proximity to the outcrop recharge area,
basinward flow in an interconnected aquifer system,
artesian conditions, and laterally extensive coal beds of
high permeability. Coalbed permeability at Dixon field
averages about 170 md. Because of proximity to the
recharge area and high permeability, dewatering
(depressuring) coal beds near the basin margin may be
uneconomical. By water-well standards, coalbed methane
" wells'are low-yield water wells; that is, they produce less
than 100 gal/min (<3,430 bbl/d [<545 m3/d]).
Nevertheless, disposal costs of these volumes of water
can adversely affect project economics to the extent that
development may be deemed uneconomical.

Rock Springs Uplift

Commercial prospects have been evaluated on the
north flank of the Rock Springs Uplift, where coals of the
Fort Union, Almond, and Rock Springs Formations were
tested. Only Rock Springs coals showed commercial

-promise. Production forecasts predicted.recoveries of
1 to 3 Bcf/160 ac (28 to 84 MMm?/65 ha) and peak rates
of 240 to 1,200 Mcf/d (6.79 to 34.00 Mm3/d) (Kelso and
others, 1991; Kaiser, 1992). Despite these promising
forecasts, test results were disappointing. During a 530-d
production test, the most successful well, Union Pacific
Resources Company Well No. 2-1 (2 UPRC-1, fig. 69),
averaged 78 Mcf/d and 200 bwpd from a 50-ft interval
(Stevens, 1993). Development was stopped in-1992
primarily by low gas prices and disappointing test results
and secondarily by environmental concern over disposal
of produced water.

A pair of northern wells (fig. 69) completed in Fort
Union and Almond coals were tested for 4 mo and pro-
duced less than 100 Mcf/d (<2.8 Mm?/d); low permeability
and low gas content (~200 scf/ton [~6.24 m*/t]) doomed

(~10.92 m3/t), exceed 500 scf/ton (15.60.m3/t) below
7,500 ft (<2,286 m) (table 2). Fort Union gas contents
are approximately 100 scf/ton (~3.12 m’/t) or less
regardless of depth. High overall basin permeability may
lower the permeability floor for coalbed methane

. exploration below that expected in other western coal

these wells. Three wells at Table Rock field tested Almond

coals of low permeability and were subsequently
completed in Almond sandstones by Texaco (table 3)
(Roger Dickenson, Texaco Inc., personal commumcatlon
1993)

Exploration Fairways

The Greater Green River Basin, a largely untested,
frontier coalbed methane basin, will require deeper
drilling to penetrate higher rank, higher gas content coals.
Mesaverde gas contents between 6,000 and 7,500 ft
(1,830 and 2,286 m) and.approximately 350 scf/ton

basins. Deeper drilling'-may thus be economical in the

greater basin, Mesaverde and Fort Union coals being
primary and secondary targets, respectively. Because
exploration strategy is to. maximize gas content and
minimize water production, additional emphasis must
be placed on the identification of conventional traps (no-
flow boundaries). Conventionally trapped gas and
solution gas can be produced with less associated water,
and yet they are overlooked sources of coalbed methane.
Recharge areas should be avoided because of possible
high water production.

Mesaverde Group

Coal distribution and steep structural dip limit deeper
Mesaverde drilling to the eastern Sand Wash and
Washakie Basins. and flanks -of the Rock Springs Uplift
(fig. 24), where Mesaverde coals are prospective in
(1) the Cedar Mountain fault system northwest of Craig,
Colorado, (2) the east margin of the Washakie Basin south
of Rawlins, Wyoming, and (3) the north flank of the Rock
Springs Uplift (fig. 70).

Northwest of Craig, the Cedar Mountain fault system
terminates in a zone of convergence along the boundary
between hydropressure and regional overpressure (fig. 70).
Higher rank, high gas content coals are present in the
area, suggesting high production potential (Kaiser and
others, 1993b)—the updip limit of hvAb rank overlaps
the area of interest. Moreover, at the basin margin in the
Craig Dome area, because wells have yielded little or no
gas and large volumes of water, moving basinward should
facilitate dewatering. In cross section, gravity-driven
meteoric water moving basinward and compactional
fluids moving up and out of the basin converge and turn
upward along the boundary between hydropressure and
hydrocarbon overpressure, which is a no-flow boundary
(fig. 64). Presumably hydrocarbons and other organic
compounds are delivered from updip and downdip to
become concentrated and trapped-along the boundary.
Prolific Mesaverde oil-and-gas-producing fields, such as
Patrick Draw, Desert Springs, Echo Springs, and Standard
Draw, lie along the boundary between hydropressure and
overpressure, indicating that the boundary between
pressure regimes is hydrocarbon productive (fig. 71).
Sandstones at Patrick Draw and Desert Springs on the-
hydropressured side of the boundary have conventional
permeabilities, whereas those at Echo Springs and
Standard Draw on the overpressured side qualify as FERC
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Figure 70. Geologic and hydrologic characterlzatlon of the Mesaverde Group, Greater Green River Basin. Because of high
.- overall permeability, the permeability floor for coalbed methane exploratlon may. be lower than normally expected in western

coal basins. Deeper drilling to test higher rank, higher gas content coals may be in order at the (1) termination of the Cedar
Mountain fault system northwest of Craig, (2) east margin of Washakie Basin, and (3) northeast flank of the Rock Springs Uplift.
Prime targets are the northeast Rock Springs Uplift, eastern Washakie Basin, and southeastern Sand Wash Basin.

103



N

. BASIN

WYOMING

COLORADO

DIVIDE BASIN

Rawlins

Wamsutter (¢
Wa.’hsu”
Arcp - or

SWEETWATER

& Oil and gas field

O  Coalbed methane field

Mesaverde outcrop QAa5071
a [o]

Figure 71. Major Mesaverde oil and gas fields, eastern Greater Green River Basin. Fields lie on either side of the hydropressure-
hydrocarbon overpressure boundary. Fields from Gregory and DeBruin (1991).

tight gas sandstones (Iverson, 1993). Hydropressured
coals are the prime coalbed methane target, whereas
hydrocarbon overpressured coals are of low permeability
and too deep to be primary targets. ’
Along the east margin of the Washakie Basin,
. upthrown to a major fault system, normally pressured
and artesian overpressured coals have good gas contents
(250 to 350 scf/ton [7.80to 10.92 m?/t]). To date, however,
excessive water production has limited producibility.
At Dixon field, the coals could not be dewatered
(depressured) for consequent high gas production rates,
but because precipitation (recharge) decreases northward
(fig. 61), chances of dewatering should improve to the
north toward Rawlins, Wyoming.
~ On the northern Rock Springs Uplift, coals of the
Rock Springs Formation have been targeted for

development because thickness, resources, and gas
content are favorable. Net coal thickness in 5-ft (1.5-m)
seams exceeds 40 ft (12 m) (Kaiser, 1992), gas resources
at less than 7,500 ft (<2,286 m) are approximately 9 Tcf
(~0.25 Tm?) (table 2), rank ranges from hvCb to hvAb,
and gas content averages 350 scf/ton (10.92 m/t) over a
1,000-ft (305-m) interval. Although the gas-content profile
of Rock Springs coals is atypical, it cannot be ignored in
this evaluation. Whereas normally gas content steadily
increases with depth, here gas content increases abruptly,
peaks, and then decreases with depth (fig. 55). If the
profile is not an analytical artifact, then quite possibly
the exploration fairway is narrow, which would constrain
future development. Because of limited recharge, limited
flow off the uplift should favor ultimate dewatering of
Rock Springs coals, and coals hosted by muddy sediments
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3 should be targeted to minimize water production. Coals
~-on the southwest, downthrown- side of a 5,000-ft
'~ (1,525-m) fault (throw decreases to 2,000 ft [610 m] north

“and south), west of Rock Springs, are probably too deep -

for drlllmg economically, thus eliminating them as
" potential coalbed methane targets (fig. 70).

Although upper Mesaverde Almond coals are

~ generally thin and not primary coalbed methane targets,
they are possible secondary targets in the course of
- .conventional Almond gas development in the deeper,
overpressured parts of the ‘Washakie Basin. Reservoir
~ volumetrics clearly demonstrate that Almond gas
production does not originate solely from the targeted
~upper Almond sandstone (Iverson, 1993). Examples
abound where cumulative gas production has exceeded,
or will soon exceed, total gas in place in the perforated
~ upper sandstone. Iverson (1993) attributed the extra gas
" to laminated sandstones below the upper sandstone that
interconnected after hydraulic fracturing. Whereas they

- undoubtedly- contribute gas, the numerous. thin coals..
- present in the upper Almond may instead be the ‘major -

contributors and should thus be considered for
completion. Perhaps completion practices- should be

‘reevaluated, as is done in the Piceance Basin, to consider

joint completion of tight sandstones and coals for hlgher
- yield, Ionger lived gas wells.

Fort Unlon Formatlon

Fort Union coals are present throughout much of the
~ basin (fig. 46) but gas contents are low (~100 scf/ton
[~3.12 m3/t] or less) (table 2), and thus are secondary
coalbed methane targets. The possibility of structurally
~ orstratigraphically trapped gas always remains, however.
Fort Union coals at 3,500 ft (1,067 m)in a well in the Big
Piney area (fig. 72) are reported to have gas contents of
approximately 500 scf/ton (~15.60 m*/t) (table 3) that may
reflect conventional trapping of gas. Fort Union
sandstones produce oil and gas from. structural,

stratigraphic, and combination traps on the La Barge

Platform (Dunnewald, 1969). Hydrocarbons apparently
migrated from the nearby deep Pinedale Basin, where
coals and shales were thermally mature for hydrocarbon
generation (Curry, 1973). Ranks of hvAb or higher occur

-in the basin ah:d flank the Big Piney area (fig. 72).
Secondary biogenic gas can also be added as a source of

gas, wherever its generation is favored by active meteoric -
circulation (Scott, 1993c) in the dynamic Tertiary aquifer

system (Kaiser, this. volume). Ground water flows

southeastward across the La Barge Platform.
In the northern Green River Basin, more than 100 net ft

- (>30 m) of coalis present in individual coals as much as.
:50 ft (15 m) thick. These coals have never been tested

and may be prospective on the Sandy Bend Arch, which -

lies between the La Barge Platform and the northern Rock
'~ Springs Uplift (fig. 72). Again, the Pinedale Basin is a

potential source of migrated thermogenic ‘gas, and
secondary biogenic:gas may also be present to increase

.gas contents. Ground water flows southward, orthogonal

to the arch-and down the coal-rank gradient, to maximize
possible contribution from thermogenic and/or secondary
biogenic gas dissolved, entrained, or both, in south-

“flowing meteoric water. Potential conventional traps may

also occur on the downthrown side of the Rock Sprlngs

thrust fault.

From an engineering standpornt even with good gas

. “content, the hydrologic occurrence of Fort Union coals
- will probably constrain theirexploitation. The Fort Union

is-a major aquifer within the Tertiary aquifer system.
Hydraulic stimulation or cavitation of coals could

interconnect them with water-bearing sandstones and
" thus.induce high water production and limit coalbed

methane producibility. However, if permeability is

inherently high, stimulation may be unnecessary.

Finally, along the Cherokee Arch, considerable Fort

“Union conventional gas and oil production has been
established that probably reflects convergent, upward

flow as well as structural and stratigraphic trapping.

“Upward leakage and/or migration updip ‘of water and

hydrocarbons. from deeper parts of the basin along the

- Cherokee Arch fault system and flanks of the arch has
been postulated (Kaiser and others, 1993b). Although Fort

Union coals are'thinner or less numerous-and still of low
rank ‘westward ‘along the Cherokee Arch, they may be

‘highly.charged with gas and thus be possible candidates
for completion in the course of conventional gas

development, as suggested of Almond coals. Such

~ completions have been proposed for the Powder Wash
area (fig..72). »
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‘Figure 72. Geologic and'hydrologic characterization of the Fort Union Formation, Greater Green River Basin. Prime targets are
+ in the Big Piney area and on the Sandy Bend Arch.
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' ]._Conclusmns

" Roger Tyler, Doug/as S. Ham//ton
William R. Kaiser, and Andrew R 5cott

1. The Gas Research Institute (GRI), on behalf of th‘e‘h

natural gas industry, is actively fostering coalbed methane
- exploration and development in United States coal basins.

“As part of these efforts, the GRI has commissioned"
_investigations of the San Juan, Greater Green River, .

Piceance, Powder River, and Raton Basins.
2. This report has focused on the Greater Green River

potential through integrated hydrologic and- geologic
studies. The report embodies the current ideas of BEG's
continuing assessment of the geologic and hydrologic

- conditions necessary for prodUC|b|I|ty of coalbed‘_'

methane.

3. The comprehensive San Juan (88 ch) and Sand
Wash Basins (101 Tcf) studies indicate that coalbed
" methane producibility is profoundly influenced by several
key geologic and hydrologic controls (structural,
depositional, and hydrologic setting; coal rank; and gas
content), which are discussed in terms of the Upper
Cretaceous Mesaverde Group and lower Tertiary Fort
‘Union Formation in the Greater Green River Basin.

Tectonicand

4. ® Sge . ° =

Stratigraphic Setting
1. Within the Roéky Mountain Foreland, the Greater
Green River Basin is structurally complex, being bounded
by the Overthrust Belt on the west and by thrust-faulted
uplifts on the remaining three sides. The basin is broken
into a number of subbasins (Green River, Great Divide,

Washakie, and Sand Wash Basins) separated by the Rock
Springs Uplift and Wamsutter and Cherokee Arches.

- Maximum horizontal compressive stress orientations have

rotatedabout a vertical axis with time, a configuration
that is reflected in cleat patterns, which are currently
oriented northeast in the north and center of the basin,
and.north-northwest and east-northeast inthe Sand Wash
*_Basin (table 4).

2. Upper Cretaceous Mesaverde Group and/or lower

~Tert|ary Fort Union Formation coal-bearing ‘strata are
" the major coalbed methane targets. In the Mesaverde,
the Rock Springs and Williams Fork Formations contain
coals having the best coalbed methane potential. In the
Rock Springs Formation, net coal thickness averages 100 ft

(33 m) along an 8.5-mi-wide (13.4-km) zone .trending‘ :

-northeasterly across the Rock:Springs Uplift. Williams -
* Fork coals also trend northeasterly and are preserved in
~ the southeast part of the Sand Wash and Washakie Basins,

where net coal thickness typically ranges from 100 to""

200 ft (30 to 60 m) (table 4). Thickest individual coal
" ‘beds in the Rock Springs Formation can be as much as =
Basin and has aimed at assessing its coalbed methane . -

22 ft (6.7 m), whereas in the Williams Fork, beds are as
much as 35 ft (11 m) thick.

3. The Rock Springs and Williams. Fork coals,
predominantly strike aligned (northeast), lie immediately
behind sandstone-rich trends that are interpreted as linear
clastic shorelines. The relationship between coal

distribution and sandstone geometry suggests that the site .-

optimal for peat accumulation and preservation was on -
the coastal plain, landward of the shoreline systems. -
Subsidence rate, water-table level, and shelter from clastic
influx in this setting provided ideal condmons for thick .

“coalto accumulate.

4. The intermontane fluvial Paleocene Fort Union
coal-bearing. units consist. of some- of the thickest

" individual coal beds; as much as 40 ft (15.2 m), and most

continuous (>40 mi [>64.km]) coal beds. Net coal

- thicknesses range from 10 to 140 ft (3.1 to 42.7 m) in as

many as 12 seams, above and on the flanks of thick fluvial -
trunk-stream systems. Lower Fort Union coal beds are
thin (net coal <40 ft'[<12.4 m]) or absent east of the

" Pinedale Anticline thrust fault, on the Moxa Arch, on the

Rock Springs Uplift, and on the south basin margins,

- adjacent to the Uinta Uplift.

 5.Depositionally the Fort Union Formation contains:
some of the thickest intermontane fluvial sandstone and
coalbed sequences in the Greater Green River Basin. The
thick coal beds occur in association with bed- and
mixed-load channel-fill sandstone sequences. The
channel-fill sandstone sequences, showing strong

_evidence of syntectonic control, are thought to be part of

a much.larger intermontane fluvial trunk-stream system
that flowed north and east through the basin. Syntectonic
control is indicated by thinning of coals over major
structural features, the Rock Springs Uplift, Moxa Arch,

and Pinedale Anticline, and subtle thinning across
Cherokee and Wamsutter Arches. Syntectonic control is
further suggested by the relationship between trends in

~ coal thickness and sandstone distribution of the Fort

Union fluvial systems. Net coal is thickest along the
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Table 4. Coalbed methane characteristics of the Greater Green .River Basin.
: ' RESOURCES -

, " Total drillable area (mi?) 18,000
Drillable area (mi2) to depths < 6000 ft '3,400
Coal resource (billion tons) 1,277
Published max: gas-in-place (Tcf) 314
Average gas content (Scf/ton) 246 -
-  STRUCTURE
- Structural relations ’ Complex
Thrusted/elevated margins-(sides) Steep (4)
' Intrabasin uplifts - Numerous
- Face-cleat orientation NE; ENE; WNW.
Overlapping face-cleat domains “Yes -
Structural dip changes Numerous .
DEPOSITIONAL SETTING WILLIAMS FORK FORMATION v
Typlcal thickness of Williams Fork Formation (ft) 1,500 - 2,000 .
Maximum-coal thickness (ft) .26=35 .
Typical net-coal thickness (ft) ~100 - 200
Coal-seam continuity - - - Good
Coal seam orientation NE-

- DEPOSITIONAL SETTING FORT UNION FORMATION

Typrcal thickness of lower coal-bearing unit (ft) <1,000-2,500
: Maximum-coal thickness (ft) -30-40 -
- Typical net-coal thickness (ft) 80 =140
Coal seam continuity Good
Coal seam orientation ; N-NE
" THERMAL MATURITY
CoaI rank, avg Ro (%) at 6000 ft : 0.55-0.60
Typical gas'content.(Scf/ton) ‘50 — 350
Gas composition (C1/C1-5) 0.78 - 1.00
©-CO, content (mole %) <0:1:-26

.. Dominant gas origin

Secondary biogenic; migrated: thermogemc
« 2.2

Geothermal gradient (OF/100 ft)

HYDROLOGY -
Artesian. overpressure (0. 45-0.55 psi/ft) . Present
Hydrocarbon overpressure (0,70 psi/ft) Extensive .
Normal to slight underpressure (0.42 psi/ft) Extensive .
: Chilorinity (mg/L) : 100’s — 1,000’s
‘ Permeability (md) “10's =1 00’s
Pressure transition boundary Extensive
Area of.convergent flow Extensive
: DATA BASE
Geophysical logs - ' 19,294
DST’s (coal intervals) 1,803
DST’s (coalbed) 11
' _ PRODUCTION (June 1993)
Cumulative gas (MMcf). - 134
Cumulative water (MMbbl) 6.8
Cumulative gas/water ratio (ft3/bbl) 20
IP gas (Mcf/d) ~. 50 =>200
IP-water (bbl/d) ‘ <200 - >1 OOO
Avg depth of CBM completlon (ft) 2,671
- INDUSTRY ACTIVITY ;
_ Companies active . - ~5:
- Coalbed completions ~28

SN

Producing wells (6/93)

3 (<40 Mcf/d, 400 bwpd)

- EXPLORATION FAIRWAYS

WiIliams Fork Formation

S Sand Wash; E Washakre NE RockSprings

__Big Piney; Sandy Bend

Fort Union Formation .
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deposntlonal axes of the greater basin and overlaps with
the trend of high net sandstone. The coals thus occupy
the same axial position as do the fluvial systems,
suggesting that tectonism provided subsidence rates
~optimal for peat accumulation, periodically: shutting
~down the sediment supply to the intermontane fluvial
~systems. Channel-fill sandstones focused ground-water
flow inorder to initiate peat swamps, maintain water table
‘levels, and preserve peat. The thickness and lateral

 continuity of the coal beds within the lower coal-bearing
unit throughout the basin make it a potential coalbed

‘methane target.

Coal Rank, Gas Content
‘and Composition, and
Origin of Coalbed Gases

1. Mesaverde coal rank ranges from subbituminous
and high-volatile C bituminous along basin margins and

the Rock Springs Uplift to semianthracite in the deep
- Washakie Basin. Coal ranks at depths of less than 7,500

ft (<2,286 m) are generally high-volatile C to high-volatile
~ Abituminous, indicating that deeper coals, at exploitable
~ drilling depths, have barely reached the threshold of

thermogenic gas generation. Only deeper, higher-rank
~ coals will therefore have economic gas content levels
unless migration and conventional trapplng of gases have
‘occurred at shallower depths.

2. Fort Union coal rank. is low, ranging from

““subbituminous along basin margins and the Rock Springs -

- Uplift to low-volatile bituminous in'the Washakie Basin.
Low. coal rank in the Fort Union Formation indicates that
gas contents will be generally low and conventional
trapping of migrating thermogenic and/or secondary
biogenic gases may be required to reach gas content
" levels high-enough to explore and develop the Fort Unlon
" (table-4).
' 3. Dry, ash-free gas contents from Mesaverde coals

“generally less than 200 scf/ton (<6.24 m?/t), range from -

less than 1 to.more than 650 scf/ton (>20.28 m/t). Areas

of high gas content lie in the Sand Wash Basin and north E

~of the Rock Springs Uplift.
4. Dry, ash-free gas contents in‘Fort Union coals,
generally less than 100 scf/ton (<3.12 m3/t), range from 9

to 561 scf/ton (0.28 to 17.5 m*/t). These generally low -
" gas contents reflect shallow burial depth and low coal

“rank. Anomalously high gas contents in-subbituminous

Fort Union coals in the Big Piney area probably result.
from conventional trapping of thermogenic gases
‘migrating updip from the deep Pinedale Basin, as well as

~ possible secondary biogenic gases.
5. Mesaverde and Fort Union coalbed gases are early
thermogenic, thermogenic, and secondary biogenic.

Coalbed gases in the Mesaverde Group are early

thermogenic and/or secondary biogenic in the
hydropressured parts of the basin and predominantly

thermogenic in deeper parts of the basin near
the hydropressure—hydrocarbon overpressure boundary.
Because Fort Union coals are lower rank, the coalbed
gases are predomlnantly early thermogenic and/or

" secondary biogenic. However, thermogenic gases are

probably more important in deeper parts of the basin as
the coals approach or exceed h|gh -volatile A bituminous
rank.

* Hydrology

1. In‘'the Greater Green.River Basin, the major coal- :

- bearing hydrostratigraphic units are the Mesaverde aquifer

and Tertiary aquifer system. The Mesaverde aquifer is
regionally confined below by the marine Mancos Shale
and its equivalents to the west and above by the marine
Lewis Shale. The Tertiary aquifer system is confined by
the Lewis Shale below and Green River Formation above.

2. The Mesaverde aquifer crops out along the east
margin of the greater basin, recharges primarily along
that margin in the foothills of the Sierra Madre Uplift, -
Park-Range, and Williams  Fork ‘Mountains, .and flows
dynamically to favor generation . of secondary biogenic -

- gases. Although the Mesaverde crops out on the Rock

Springs- Uplift, recharge is limited by low annual

_precipitation, high evaporation rates, and faults; flow is

consequently restricted. In the Green River Basin,
Mesaverde recharge is severely limited by large.
stratigraphic displacement along major thrust faults,
which hydraulically separates the wet basin'margins from-
the basin interior and results in'sluggish flow in the basin
interior.

3. Intheeastern GreaterGreen River Basin, the upper
Mesaverde potentiometric surface slopes from the east

. recharge areabasinward toward major fault systems and

potentiometric -depressions. A series of large
potentiometric mounds along the deep central part of -
the basin reflect hydrocarbon overpressure. Equivalent
fresh-water heads are greater than 10,000 ft (>3,050 m),
exceeding Mesaverde outcrop elevations. The"
potentiometric surface is conspicuously flat off the east

“flank of the Rock Springs Uplift.

4. Mesaverde hydropressured strata flank regional
hydrocarbon overpressure at the basin center. In the

-hydropressured section, no’pressure regime regionally

dominates. Most simple pressure gradients.
(pressure-depth quotients) indicate slight underpressure
to normal pressure. Artesian overpressure has been
identified on the eastern Cherokee Arch and northward
along the east margin of the Washakie Basin, where
simple gradients range from 0.44 to 0.54 psi/ft (9.95 to
12.22 kPa/m) (table 4). Regional hydrocarbon
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» overpressure is encountered at depths of 8,000 ft (2,440 m)

or more in the central parts of the basin, where simple pres-
sure gradients typically exceed 0.70 psi/ft (15.8 kPa/m).

.-5. In the Mesaverde aquifer, ground water flows
mainly westward from- an eastern recharge area, down
hydraulic gradient, to discharge eventually basinward
along regional fault systems, zones of extensive
diagenesis, and facies changes that separate
- hydropressure from regional hydrocarbon overpressure
~in the central basin. Flow is sluggish or restricted off the
Rock Springs Uplift and in the Green River Basin. Gravity-
driven flow turns upward upon converging from the basin
margins, aquifer pinch-out, or both, and upon
encountering the top. of geopressure, which because of
low permeability and high pressure, is a no-flow
:boundary.

6. In the Tertiary aquifer system ground water flow
primarily results from outcrop-related recharge along the

foothills of the Sierra Madre Uplift and Park Range, Wind
River Uplift, Wyoming Mountains, and Uinta Uplift. It

flows basinward down regional topographic gradientand - -

structural dip, in response to the hydraulic gradient from
the wet, elevated margins of the basins, toward
topographically low areas, to eventually discharge along
major river valleys and central parts of the basin. Flow is
dynamic throughout the greater basin.

Coal and Gas Resources

1. In the Greater Green River Basm coal and gas
resources total 1,276 billion short tons (1, 158 billion t)
and 314 Tcf (8.89 Tm?), respectively. At depths of less than

7,:500.ft (<2,286 m), resources are 688 bllllon short tons

- (624 billion t) and 84 Tcf (2.38 Tm?).

2. The Mesaverde Group coal and gas resources are

627 billion tons (569 billion t) and 264 Tcf (7.47 Tm?),

.respectively, accounting for 49 and 84 percent of the
total resources, respectively. At depths of less than
7,500t (<2,286 'm), resources are 243-billion short tons
(220 billion t) and 56 Tcf (1.58. Tm?).

3. The Fort Union Formation contains 649 billion
tons (589 billion t) and 50 Tcf (1.42 Tm?), accounting for
51 and 16 percent of the total resources, respectively. At
depths of less than 7,500 ft (<2,286 m), resources are

445 billion short tons (404 b||||on t) and 28 Tcf (0.79 Tm?).

ProductiOn ~

1. In the Sand Wash Basin, gas production from three
Williams Fork fields has been minimal, whereas water
production has been excessive. Cumulative gas pro-

“duction and water production through June 1993 were
134 MM scf (3.8 MM m?) and 6.8 million barrels
(1.1 million m?), respectively, for a basinwide cumulative

gas-water ratio of approximately 20 scf/bbl (~3.6 m¥/m?)
(table 4). Among the 11 wells in Dixon field, 3 currently
produce gas at rates of less than 40 Mcf/d (<1.1 Mm¥/d).
The 16 plugged and abandoned wells .in Craig. Dome
field were abandoned because the Williams Fork coals
had low gas contents and could not be econom|cally'
depressured (dewatered).

2. Nine Fort Union coalbed wells were completed
production tested, plugged, and abandoned in the
Sand Wash Basin. During test periods ranging from 9 d
to 7 mo, the wells made zero to negligible volumes of .
gas and tens of thousands of barrels of water (thousands

“of cubic meters).

3. On the northern Rock Springs Uplift, Rock Springs -
coals showed commercial promise.” Production fore-
casts predicted recoveries of 1 to 3 Bcf/160 ac (28 to
84 MMm?/65 ha) and peak rates of 240 to 1,200 Mcf/d

~(6.79 to 34.00 Mm?/d). Despite these promising forecasts,

test results were disappointing. During a 530-d production-
test, the most successful well (2 UPRC-1) averaged
78 Mcf/d.(2.21 Mm>/d) and 200 bwpd (32 m*/d) from-a..
50-ft (15-m) interval. . |

Exploration Fairways

‘1. The Greater Green River Basin is a largely untested,
frontier coalbed methane basin, where deeper drilling
will be. required to penetrate higher rank, higher gas

_content coals. Mesaverde gas contents between 6,000

and 7,500 ft (1,830 and 2,286 m) are- approximately
350 scf/ton (~10.92 m?/t).and exceed 500 scf/ton

(~15.60 m*/t) at depths below 7,500 ft (2,286 m).

2. Coal distribution and steep structural dip limit .
deeper drilling to the eastern-Sand Wash and Washakie
Basins and flanks of the Rock Springs Uplift, where
Mesaverde coals are prospective along the Cedar
Mountain fault system, the east margin of Washakie Basin,
and the north flank of the Rock Springs Uplift (flg 70
and table 4).

(a) The Cedar Mountain fault system in the Sand
Wash Basin terminates in a zone of convergence and
upward flow along the boundary between hydropressure
and regional overpressure. Higher rank, high gas content

‘coals are present in the area, suggesting high production

potential. Moving basinward away from the recharge area
should facilitate dewatering. -
(b) Along the east margin of the Washakie Basin, .

upthrown to a major fault system, normally pressured
~and artesian overpressured coals have gas contents

ranging from 250 to 350 scf/ton (7.80 to 10.92 m*t). To
date, excessive water production has limited produci-
bility, however. At Dixon field the coals could not be

~ dewatered (depressured) to promote high gas production -

rates. Because precipitation (recharge) decreases northward,
chances for dewatering should improve to the north.
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(c) On the northern Rock Springs Uplift, coals of
the Rock Springs Formation have been targeted for
development because thickness, resources, and gas

. content are favorable. Net coal thickness in 5-ft (1.5-m)

seams exceeds 40 ft (12 m), gas resources at less than
7,500 ft (<2,286 m) measure approximately 9 Tcf
(~0.25 Tm?), rank ranges from hvCb to hvAb, and gas
content averages 350 scf/ton (10.92 m*/t) over a 1000-ft
(305-m) interval. Development was stopped primarily by
low gas prices and disappointing test results and
secondarily by env1ronmenta| concern over disposal of
produced water.

3. Because Fort Union gas contents are low

(~100 scf/ton [~3.12 m*/t] or less), Fort Union coals are

secondary coalbed methane targets. However, two
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miles (mi) . - X 1609 N = kilometers (km)
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