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ABSTRACT

We chose the ooid sand shoals of the Joulters Cays area of Great Bahama Bank for detailed
sedimentological study to in\;estlgate the pattems of lintemal heterogeneity within a modern
carbonate sand belt and to develop criteria for predicting the lateral extent of carbonate sand
facies. Ma]or facies identified from cores were (1) crossbedded, well-sorted ooids, (2) burrowed,
poorly sorted ooids, and (3) poorly sorted ooids and mud containing Thalassia. Clast-rich zones
and mud layers were‘also encountered. We propose that upon burial and compaction, the
poorly sorted ooids and mud containing Thalassia will likely retain negligible porosity and
permeability, whereas both the crossbedded, well-sorted oolds and burrowed poorly sorted
ooids will likely maintain their high initial porosity and permeability. However, study of many
ancient»subsurface reservoirs indicates that the crossbedded, well-sorted ooids can undergo
considerable cementation and have low resultant porosity and permeability. Thus, in many
settings, the burrowed, poorly sorted ooids could retain the hlghest porosity and permeability.
Additional cementation within the clast-rich zones, which occur in both the crossbedded, well-
sorted ooids and burrowed, poorly sorted ooids, will result in thin, low-porosity barriers within a
reservoir.

Locally the surface configuration of the modern shoal complex at Joulters Cays was altered
significantly by the passing of Hurricane Andrew in August 1992. Prominent washover bars were
planed off, and well-sorted ooids were deposited in low areas of the shoal where poorly sorted
and mud-rich deposits of ooids had previously accumulated. Tlle post-hurricane configuration of
the shoal demonstrates how a single short-term depositional event contributed significantly to

the internal heterogeneity of the shoal complex.



INTRODUCTION

Stud’ying modern analogs of ancient grainstone facies tan be critical to hydrocarbon
reservoir development because (1) the style of internal geometry of a reserv;)ir should be
understood to deploy production technolbgy gfﬁclently, (2) -the levels‘of description and
quantification required to redesign recovery strategies in low-efficiency reservoirs could be
r.ealized\, and (3) pot_ential fof extending trends from known i’eservoirs could be determined.

Recently the need for more detailed information on hydrocarbon reservoirs has been
escalating as operators seek to increasé iecovery‘ from existing reservoirs. A detailed geologic
framework must serve as a template during the geologlc and engineering evaluation of
hydrocarbon reservoirs in platform carbonates so that porosity and permeability distribution
and delineation of fluid-flow units can be reasonably understood. An appreciatlon of the natu-ie
of such facies variability is needed in reservoir studiés to guide correlations of cycles and flow
units between wells and to constrain the input into reservoir models or forward-looking
geologic models. '

In concert with establi;hing bétter constrained geologic frameworks in hydrocarbon
reservoir studies, The Univetsity of Texas at Austin, Bureau of Economic Geology, began
carbonate-reservoir studies in 1984, which were funded by The University‘ of Texas System to
define oil-producing subplays on University Lands, déscriba reservoirs from each subplay, and
propose strategies for additional recovéry (Tyler and others, 1991). During this project,
problems encountered in predicting permeability continuity within reservoirs led to the
Bureau'’s establishing of the industry-funded Reservoir Characterization Research Laboratory
through which the Bureau investigates heterogeneity within carbonate reservoirs and their
analdgs exposed on continuous outcrop (Kerans and others,’ 1994; Lucia and others, 1992).

Both resérvoir and outcrop studies demanded a better understanding of the fhree-
dimensional internal variations in textures and structures of grainstone bodies. Interpreting

depositional environments in subsurface anclent carbonates depends largely on comparing



because similar facies relationships have commonly been identified in ancient carbonate sand

_ bodies (see papers in Peryt, 1983; Harris, 1984a; Bebout and Harris, 1990; Keith and Zuppann,
1§93). The Joulters shoal is a 400-km2 (155-mi2) sand flat, partly cut by humerous tidal channels
. and fringed on the ocean-facing borders by mobile sands (Harris, 1979, 1983). This active border
of ooid sands, 0.5 to 2 km (0.3 to 1.2 mi) in a dip direction, extends the length of the shoal for
25 km (15.5 mi) along its windward side and terminates abruptly to the east onto the platform-
margin shelf (figs. 4 and S). To the west, the active sands grade into the sea-grass- and algae-
stabilized sand-flat part of the shoal and eventually the deeper water platform interior The
Joulters Cays are three islands that lie within the active area of the shoal. The area of detailed
study d‘escribed herein iS approximately 2.6 km2 (1 mi2) of mobile ooid sands lying just north ot

the northernmost of the Joulters Cays (figs. 1 and 2).

Regional Facies Relations

Harris (1979, 1984b) used an extensive coring progt_am to document facies relations in the
- Joulters Cays area. Sixty cores were taken at an average spacing of 1.5 km (0.9 mi). This regional
study, summarized here, provides valuable infermation on facies variability across distances of
tens of kilometers. |

The relief of the Joulters Cays shoal above the surrounding sea floor primarily results frbm
ooid sands accumulating in one of three facies: mobile fringe, sand flat, or platform interior
(Harris, 1979, 1983). The ooid fringe is a narrow belt along the active ocean-facing borders of
the shoal, where ooid accumulation coincides with ooid formation (fig. S). Ooid and fine-grained
peloid tnuddy ;mds; the more widespread sediment types exposed on the sand flat and
platform interior west of the mobile fringe, respectively, result from ooids mixing with other
grain types and carbonate mud. Collectively these modern sands, more than 3 m (>10 ft) thick,

extend 22 km (13.7 mi) in a dip direction in a 260-km2 (100-mi2), irregularly shaped part of the
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Figure 4. Map of depositional environments of Joulters shoal (from Harris, 1979); compare with
figure 1. Also shown are line of section of figure 5 and area of investigation.
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shoal. The ooids exceed 7 m (23 ft) in thickness in an area coinciding with the Joulters Cays
islands. ’ | A

The basic facies pattern as re\}ealed by tegional coring within the shoal (Harris, 1979, 1983)
is a fringe of ooid sand bordering opposing wedges of muddy ooid sand underlain by muddy
fiﬁe-grained peloid sand (fig. S). Ooid sand directly overlies Pléistocene limestone along the
seaward margin of the shoal and interfinge;s with muddier sediments bankward. Throughout
most of the sandflat, the vertical succession is of lithoclast sand and/or pellet mud at the base,
muddy fine-peloid sand in the middle, and muddy ooid sand at the top. This succession shows
distinct upward trends of indeasing grain size, sorting, ooid content, stratifl‘cation, and grain-
supported fabric. Regionally the succession thins to the south as the underlying Pleistocene
limestone surface rises.

Facies distribution within the Joulters Cays shoal is a product both of changes in
depositional patterns during development of the shoal and today’s depositional environments.
The changes occurred primarily beAcause‘of rising sea level, a corresponding increase of platform
accommodation, and rapid sedimentation (Harris, 1979; Hafris and others, 1994). HolOCéne
~ deposition in the Joulters Cays aréa occurred in three stages: bank flooding, shoal formation,
and shoal (tidal-sand-bar and barrier) development (Harris, 1979, 1983). During shoal
development, the productiori and bankward dispersal of ooid saﬁds through tidal-sand-bar and
barrier ~environments established the pre‘sent size and physiography of the shoal and changed

the nature of'sediments throughout the area from muddy peloidal to ooid sands.

Large-Scale Heterogeneity Patterns

Heterogeneity of the Joulters shoal is inferred on the basis of the distribution of
depositional facies shown in figure 5. Clean ooid sands (grainstones) along the active margin of
the shoal occur as subtidal bar, channel fill, beach and island facies. In cross section they occur

in an irregularly shaped area 2 km (1.2 mi) wide and 2 to 3 m (6.6 to 9.8 ft) thick. High initial
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porosity was measured" in such clean sands by Hailey and Harris (1979) and Enos and Sawatsky

| (1981), and it is confirmed here in thin-section estimations.‘lmmediately bankward of the clean
ooid sands are widesﬁread, somewhat 1iregularly shaped layers containing mixtures of carbonate
mud and sand that will likely result in vastly different reservoir prbperties. An upper layer of
muddy ooid sands, some 20 km (12.4 mi) wide and from 4 to less than 1 m (13 to <3.2 ft) thick,
thins bankward and overlies 5 more widespr‘ead; lower layer of muddy; fine-grained peloid sand
more than 30 km (>18.6 mi) wide and varying from S to 2 m (16 to 6.6 ft) in thickness. These
layers will likely have initial porosities lower than the more seaward clean ooid sands, judging
from measured values of similar sands by Enos and Sawatsky (1981) and thin-section estimations.
In add‘ition, the upper layer will _likely» have better reservoir quality than the lower layer
bebcause_of coarser grain size and less mud content. '

Comparing figures S and 6 provides insighf into the large-scale heterogeneity pattern to be
expected in a graihstone body such -as the Jdulters shoal. The cross sections are somewhat
simplified, however, because of the spacing of the regional coring grid. Harris (1979) presentéd
isopach maps of these three Holocene facies that had been based on sediment éore data as well
as extensivevsediment probe data. These isopach maps, modified and reproduced here as
figure 6, approximate the three-dimensional geometry of the heterogeneity ihferred in the
Joulters shoal. Because small-scale facies patterns related to subenvironménts of the shoal (such
as tidal channels and associated facies and islands) are not portrayed on the isopach maps,

significant local variability in the facies distribution is absent.

The sections following investigate the inferred heterogéneity of one part of the regional
facies patterns presented for the shoal, that is, the clean ooid sand coinciding with the active
margin of the shoal. Heterogeneity produced by subtle textural and diagenetic variation within '
this “uniform” lithology occurs at a scale that is critical_ for correlating properties between wells

in analogous reservoirs.
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Figure 6. Isopach maps of (a) the ooid grainstone, (b) ooid packstone, and (c) fine peloid
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RESERVOIR-SCALE FACIES VARIABILITY AND SMALL-SCALE HETEROGENEITY PATTERNS

Depositional f;des variability and early diagenetic alteration both contribute to fine-scale
heterogeneities in the grain-rich upper parts of the succession of the Joulters Cays afea, which
appear to i)e ét a scale equivalent to that of reservoir heterogeneities. For example, interwell-
scale heterogeneities in hydrocarbon reservoirs of the San Andres/Grayburg Formation of the
Permian Basin have been documented on a scale of hundreds of meters or less (Bebout and
others, 1987; Ruppel and Cander, 1988; Bebout and Harris, 1990; Harris and Walker, 1990a and
b; Longac;e, 1990; Major and others, 1990; Grant and others, 1994; Harris and otherS, 1994). To
collect more information from the modern analog at the reservoir scale, we built upon the
regional framework in the Joulters Cays area discussed in the preceding section by coring a
subarea of the active part of the shoal (fig. 2). These results, presented in preliminary form in
Bebout and others (1991), are herein described in detail.

Three depositional subfacies predominéte within the ooid sand facies of Harris (1979,
1983, 1984b) discussed earlier. Crossbedded, well-sorted ooid sand occurs on the active, high-
energy bar crests in the subarea of the shoal investigated in detail. Burrowed, poorly sorted ooid
sand accumulated along the landward and seaward edges of the subarea. Poorly sorted ooid sand .
and mud, which became stabilized by sea grass and algae, occur just bankward of the bar crest
and represent a transition into the 'ad]acent sand-flat environment. The distribution of these
facies within the detailed study area of figure 2 is shown on cross sections A-A’ (fig. 7),

D-D’ (fig. 8), and E—E; (fig. 9). Differences in grain size, grain sorting, and sedimentary structures

among the three facies will potentially lead to heterogeneity. As will be discussed in more detail

in a following section, these subtle changes in depositional facies (as well as early diagenetic

_ overprint) would, upon burial, respond to compaction and cementation differently and likely
result in significant permeability variability within a single grainstone depositional cycle or flow

unit.
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seaward side of the EE’ and F-F cross sections (fig. 9), where they océur in 'an offlapping
pattern that reflects _the‘ northward migration_'of the shoal complex. The zones were correlated
laterally as far as 600 m (~2,000 ft) dur‘ing sediment probing and were traced even farther by
Harris (1978, 1979) in his regional study. Pordsity and permeability have not been greatly
reduced in the clasts as estimated by thin section observations, but these zones could
potentially foﬁn barriers to fluid flow should they subseduently serve as preferential nucleation
sites for additional cementation.

Oil énd gas frbm a Lower Cretaceous reservoir in Alabama Ferry field, along the Texas Gulf
Coast in Leon County, alsb produce from a grainstone (Lomando and others, 1937; Pollard,
1989; Bruno and others, 1991). Correlations across this Lower Cretaceous resérvoit indicate the
presence of several north-offlapping grainstone units separated by thin shales (fig. 14). This
offlapping pattern resembles that observed at Joulters Cays, where bar migration occurs from
southeast to northwest, parallel to the edge of the shelf. Porosify at Alabama Ferry is highest (as

: much as 20 percent) in the upper part and low at the base of each grainstone. At Joulters, we

. concluded that the rate of deposition was probably less in the lower part of the Joulters
prograding shoal complex than in the upper, as evidenced by the presence of well-developed
“clast-rich zones, that is, hardgrbunds and gravel zones (figs. 9 and 13). At Alabama Ferry, a
similar low rate of deposition is also probable in the lower parts of the grainstone units, as
indicated by isopachous fibrous cement, thought to be of mariﬁé origin, being more common.
The offlapping pattern of ooid bars at Joulters, demonstrated by the shift in position of bar
crests and the offlapping pattern of clast-rich zones as seen in cross ’section, is also expressed at

Alabama Ferry by the northward shift in position of the grainstone units.

Mud Layers

Two discrete mud layers,v the upper one 2 cm (3/4 inch) thick and the lower one 4 cm

(1.5 inches) thick, separated by 4 cm (1.5 inches) of poorly sorted ooids (fig. 15) occur at the

25
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Figure 14. (a) Upper Glen Rose “D” (Lower Cretaceous) thickness and (b) north-south
stratigraphic electric log cross section of Alabama Ferry field, Leon County, Texas. Offlap of
three ooid and skeletal grainstone units from southeast to northwest indicated by arrows.
Thickness map of Glen Rose includes all three grainstone units.
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top of the burrowed, poorly sorted ooid facies in one core (core D3 of figure 8). Because these
mud layers were not recovered in any other core, we think the layers are only local in
distribution and of only minor importance from a reservoir heterogeneity perspective. Other
occurrences of mud layers associated with ooid sands in the Bahamas were reported in tidal
éhannéls by Boardman and Carney (1991) and Shinn and others (1993). Because df some
variability in the localized seftings where mud can be deposited and preserved in direct
association with ooid sands, some mud layers probabl){ will have greater lateralyextent and
greater importance as Apotential low-permeability streaks and fluid-flow barriers.

After the bassihg of Hurricane Andrew, Shinn and others (1993) also observed the
occurrence of thin beds (as much as 5 cm [1.7 inches] thick) of _laminated carbonate mud in
troughs of ooid dunes and ripples in high-energy subtidal channels of Joulters Cays. They
proposed that a slurrylike mixture of carbonate: mud, which resulted ﬁom the passing of a ma]br
storm (Hurricane Andrew), moved through the channels. As the storm winds and currents
waned, mud settled to the channel floor and was preserved in ripple troughs. Boardman and
Caméy (1991) attributed this accumulation of mud in the channels as resulting from ooid-sand
barriers restricting channels.

Shinn and others (1993) presented an ekample of an approximately 1-cm-thick mudstone
bed deposited within a crossbedded ooid grainstone in the Pleistocene Miami Limestone of
south Florida, clearly demonstrating thét these storm-related depositional features can be
preserved in ancient rocks. Other ancient exampl'es, from Upper Cambrian limestone and
dolomite of western Newfoundland, Canada, were reported by Cowan and James (1992). The
Upper Cambrian mudstone beds that occur interbedded with ooid grainstones of subﬁdal

marine origin are somewhat thicker, including some as much as 4 cm (1.6 inches) thick. -
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Small-Scale Heterogeneity Patterns

Small-scale patterns of heterogeneity within the active part of the Joulters shoal (fig. 6a)
are inferred from the facies distribution (figs. 8 and 9). The crossbedded, well-sorted ooids facies
occurs in the center of tﬁe shdalvcomplex and the entire area exposed at low tide, an area 305
to 607 m (1,000 to 2,000 ft) in width and 1.8 to 2.4 m (6to8 ft_) in thickness. The burrowed,
poorly sorted ooids facies occurs both bankward and seaward of the crossbedded, wéll-sorted
ooids facies. Although the limits of the burrowed, poorly sorted ooids facies were not
encountered in this study, the regional study of Harris (1979) indicates that it forms a very
narrow band seaward of the shoal and occurs over a.veryv broad area several kilometers wide on

the bankward side; the burrowed, poorly sorted ooids and associated poorly sorted ooids with
Thalassia and Goniolithon facies are 0.6 to 1.5 m (2 to S ft) thick at the shoal and thin bankward.

Heterogeneity is inferred because of mud content, burrowing, and grain type variations.
These subtle variations occur on a scale of hundreds of meters, which is consistent with well

spacing in mature hydrocarbon reservoirs like those of the Permian Basin. The scale of variation
illustrated here should thus be considered in correlating at the‘ common development ihterwell

* scale. In addition, the heterogeneity portrayed here occurs within a single facies (oqld sands) as
identified within the more regional core study. By analogy, similar subtie textural variations can
be expected to produce ldcal heterogeneity within ooid-grainstone reservoirs. Small-scale
heterogeneity was well documented in ancient settings by Harris (1984a), Bebout and Harris
(1990), and Keith and Zuppann (1993).

As discussed earlier, the proposed internal heterogeheitles within ooid sands of the
Joulters shoal are cohtrolled by depositional and diage‘netic processei. Thin sections show that
both the crossbedded, well-sorted ooid and burrowed, poorly sorted ooid facies were mud free
and had high initial porosity at the time of deposition (Halley and Harris, 1979). In some
ancient subsurface settings, howeirer, well-sorted ooid grainstones are cemented by calcite or

anhydrite cement and have low resultant porosity (Bebout and others, 1987; Harris and Walker,
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Figure 17. Surface sediment-distribution maps of the Joulters ooid shoal in (a) 1947, (b) 1967,
and (c) 1989. Maps derived from aerial photographs (fig. 16) and cross sections (figs. 7, 8, and
9). Perspectives of 1947 and 1967 maps have been adjusted to oblique view of 1989.
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By 1967 (figs. 16b and 17b) the washover bars of crossbedded, well-sorted ooids had
migrated to the north end of the study area. In the south part of the study area washover bars
had aggraded to a height sufficient that receding tidal currents were beginning to erode bar
crests. The areas between washover bar highs contain burrowed, poorly sorted ooids partly
stabilized by a surface coating of filamentous algae. Note that the washover bar in
approximately the middle of the study area was partly dissected and that the crest of the bar
was then approximately midway between the seaward and bankward margins of the study area.

In 1989 (figs. 16c and 17¢), ’the date the cores used in this study were collected, the
washover bars in the south part of the study area were severely dissected by tidal currents, and
large areas contained burrowed, poorly sorted ooids stabilized by filamentous algae. The
washover bar in approximately the center of the study area had migrated bankward and nearly
reached the margin of the pooriy sorted ooids ahd mud facies, which has remained remarkably
stable for at least 40 yr. | |

The pattern illustrated_/by these changes that were recorded by aerial photographs suggests
a general pattern of aggradation of washover bafs and progradation northward by longshore
drift. As the washover bars both aggrade and prograde, they form a barrier to seaward drainage
of tide waters. In the south part of the study area, washover bars have thus been dissected by -
tidal currents. We anticipaté that, were this' pattern to continue without interruptioh, further
progradation northward and aggradation in the center of the study area would result in the
central tvidal' channel deepening and widening and the central washover bars becoming

dissected.

SHORT-TERM MODIFICATION OF SURFACE MORPHOLOGY, FACIES PATTERNS, AND

HETEROGENEITY

Before the passing of Hurricane Andrew on August 23, 1992, the study area (fig. 2)

displayed distinctive surface features dominated bi' large wave- and tide-modified storm-
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This pioneering study bf a modern shoal complei_ at tlié hydrocafbonéresewoir scale met
with both successes and failures. Coring and recovering undisturbed sediinent from ooid sands
has historically been difficult. Some of the cores taken from the Joulters shoal preserve original
textures and structﬁres, but many highly disturbed samples yielded few original features. In
spite of this problem, we were able to reconstruct the depositional history of the ooid-shoal
complex and derive information applicable to ancient hydrocarbon reservoirs. Future studies

should be preceded by improving methods of coring unconsolidated grain bars.
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