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EXECUTIVE SUMMARY

Hydrologic studies were conducted to characterize unsaturated zone processes at the
proposed low-level radioactive waste disposal site and surrounding area in southern Hudspeth
County, Texas. The study area is in northwest Eagle Flat basin, which is within the Basin and
Range Physiographic Province. Fractured Cretaceous bedrock crops out to the southeast of the
site. The thickness of the basin-fill sediments at the proposed site ranges from 164 ft (50 m) to
2 656 ft (200 m). Northwest Eagle Flat basin is an internally drained basin that drains through the
ephemeral Blanca Draw into Grayton Lake playa. The climate in the study area is subtropical arid
and the long-term average annual rainfall is 12.6 in (320 mm). Unsaturated zone studies were
conducted in ephemeral stream and interstream geomorphic settings. In addition to studies of areas
typical of these settings, the impact of pseudofissures, an earth fissure, and borrow pits on shallow
zone unsaturated processes was also investigated.

To evaluate unsaturated zone processes, 57 boreholes were drilled in the various geomorphic
settings for collection of soil samples and installation of monitoring equipement. Soil samples were
analyzed in the laboratory for particle size, water content, water potential, and chloride
concentration. Water potential data are used to evaluate the direction of the driving force for water
movement. Chloride concentration data provide information on water fluxes because chloride
concentrations are inversely proportional to water flux; low chloride concentrations indicate high
water fluxes because chloride is flushed through the soil, whereas high chloride concentrations
indicate low water fluxes because chloride is concentrated by evapotranspiration. In addition to
laboratory analyses, a monitoring program was initiated by installing neutron probe access tubes in
the different geomorphic settings to monitor water content. Field psychrometers were installed to a

depth of 60.7 ft (18.5 m) in the interstream setting to monitor water potential and temperature.



Hydraulic conductivity was also measured in the field using permeameter tests, constant-head
borehole infiltration tests, and multistep constant-head borehole infiltration tests.

Sediments beneath Blanca Draw were fine grained and ranged from clay to clay loam. In the
interstream setting, some profiles were predominantly clay whereas others were primarily clay
loam and sandy loam. Sediments beneath the borrow pit and adjacent profile were coarse grained
and ranged from clay to muddy gravel. The fissured sediments were primarily loam whereas those
adjacent to the fissure were predominantly clay. |

Spatial variability in water content is controlled primarily by variations in sediment grain size.
Discontinuities in water content across different soil types indicate that watef—content variations
with depth cannot be used to determine the direction of water movement. Temporal variations in
water content were restricted to the fissured sediments and some areas in Blanca Draw. The
maximum depth of water penetration in these areas was 5 ft (1.5 m). The absence of temporal
variations in water content monitored in the remainder of the neutron probe access tubes indicates
that water pulses did not move through these areas. Because a constant flux could result in
temporally invariant water content, the absence of such variations does not preclude downward
water move;nent. '

‘Typical water potential profiles at the site, which is located in an interstream setting, were
low m the upper 7 ft (2 m) (~-12 to -2 MPa) except after rainfall and increase with depth below the
minﬁnum to maximum values of -6 to -0.4 MPa in different profiles. The monitoring record for the
in situ psychrometers was insufficient to evaluate long-term fluctuations in water potential. A
vertical profile based on data collected on August 13, 1993, showed low water potentials at 1 ft
(0.3 m) depth (-6 MPa) that increased to a maximum value of -2 MPa at 60.7 ft (18.5 m) depth.
The low water potentials indicate that the sediments are dry, and the upward water potential
gradients indicate an upward driving force for liquid flow. Boreholes drilled after rainfall had high
water potentials in the surficial sediments that decreased sharply at the base of the wetting front.
~ Exceptions to this typical profile were found in the profile in the fissured sediments and beneath the

borrow pit. The fissured sediments had much higher water potentials in the upper 43 ft (13 m) than



the sediments 33 ft (10 m) distant from the fissure. Water potentials in soil samples from the
borrow pit were much higher than those in soil samples from the profile 33 ft (10 m) distant from
the borrow pit.

In addition to water potential data, information on hydraulic conductivity is also required to
calculate water fluxes. New solutions were developed to analyze the field-saturated flow
component of the hydraulic conductivity using permeameter data, constant-head borehole data, and
multistep constant-head borehole data. These new solutions provide a more accurate distribution of
pressure along the test hole or boreholes and thus result in more accurate estimates of hydraulic
conductivity. A total of 26 permeameter tests were conducted in different soil textures to evaluate
spatial variability in hydraulic conductivity of sediments in the upper 1.6 ft (0.5 m). K¢ based on
the Guelph permeameter data ranged from < 10-7 to 104 m s-1. Hydraulic conductivities were
highest in the coarse-grained sediments beneath the borrow pit and were lowest in fine-grained
sediments in Blanca Draw. A total of 11 constant-head borehole infiltration tests were conducted in
the study area. Results based on Xiang’s (1994a) newly developed solution for the constant-head
borehole test were similar to those of Reynolds and others and were up to 60% higher than those
based on Glover’s (1953) solution. The range in K¢; values for the constant-head borehole tests
was 10-8 to 10-6 m s-1. Hydraulic conductivities estimated from the constant-head borehole tests
did not vary systematically with geomorphic setting, and the lowest and highest hydraulic
conductivities were measured in the interstream setting. Multistep constant-head borehole tests
were conducted in 7 of the 11 boreholes used for the constant-head borehole test to evaluate the
effect of soil heterogeneity. There were no existing solutions for the multistep constant-head
borehole tests. Results indicated that the hydraulic conductivity of individual layers within a
borehole varied up to three orders of magnitude. Geometric average conductivities based on the
multistep constant-head borehole tests differed from conductivities based on the regular constant-
head tests by up to two orders of magnitude. Hydraulic conductivities based on the regular
constant-head borehole tests depend on the location of the high-conductivity zone. When the high-

conductivity zone is located in the upper portion of the borehole, the calculated hydraulic



conductivity based on the constant-head borehole test is lower than the average hydraulic
conductivity, whereas when the high-conductivity zone is located in the lower portion of the
borehole, the calculated hydraulic conductivity based on the constant-head borehole test is higher
than the average hydraulic conductivity.

Typical chloride profiles in the study area are bulge shaped and have low chloride
concentrations near the surface, generally less than 100 g m-3, which increase to maximum
concentrations of 3,000 to 18,000 g m-3 at depths of generally between 1.6 and 16 ft (0.5 and 5 m)
and gradually decrease with depth below the peak to concentrations of 1,000 to 6,000 g m-3. Water
fluxes estimated from the chloride data were highest at the surface and decreased to less than .04 in
(1 mm) yr-1 within the top meter. Flux estimates for profiles in the ephemeral stream were a
minimum because chloride in runon and runoff was neglected. Deviations from the typical profiles
were found in parts of Blanca Draw where maximum chloride concentrations in some profiles were
less than 400 to 900 g m-3, whereas chloride in other profiles in Blanca Draw reached maximum
concentrations of 17,821 g m-3. Chloride was leached in the upper 20 to 30 ft (6 to 9 m) depth in
the fissure, whereas chloride concentrations in profiles 33 ft (10 m) distant from the fissure were
much higher in this zone. Below 20 to 30 ft (6 to 9 m), chloride concentrations in the fissure
increased to concentrations similar to those found in samples at the same depth in the profiles 33 ft
(10 m) from the fissure. Chloride concentrations in the profile in the borrow pit were less than
50 g m-3 to a depth of 60.04 ft (18.3 m), whereas the profile 33 ft (10 m) distant from the borrow
pit had maximum chloride concentrations of 2,622 g m-3.

Because of the limited monitoring data at the Eagle Flat site, numerical simulations of
unsaturated flow were based on long-term monitoring data at the Hueco Bolson site. These
simulations were conducted to evaluate unsaturated zone processes. The results from these
simulations are considered applicable to the Eagle Flat study area because the range in water
potentials is similar at both sites. The sediments in the upper 5 ft (1.5 m) of the model domain
(silty clay to clay) are finer grained than sediments found in this depth interval in the area of the

proposed Eagle Flat repository (sandy loam). The gravel lens at depths of 5 to 23 ft (1.5 to 7 m) is



similar to that found in some of the profiles at the Eagle Flat site. Precipitation for the one year
simulated (October 1, 1989, to September 30, 1990; 8 in [207 mm)]) is lower than the long-term
average annual precipitation at Eagle Flat (13 in [320 mm]) but is within the range of variability of
annual precipitation at Eagle Flat. Results of the simulations showed that seasonal water potential
variations below the subsurface active zone (1.6 ft [0.5 m]) are controlled by seasonal temperature
fluctuations and do not reflect water movement. Analysis of water fluxes in the upper 0.98 ft
(0.3 m) revealed that the dominant process for downward water movement was liquid flow. Below
0.98 ft (0.3 m) depth, water fluxes varied relatively little. The dominant term was thermal vapor
flux.

The hydrologic data were integrated to develop a conceptual flow model of the vadose zone
of the Eagle Flat study area. Profiles in the ephemeral stream setting are characterized by variable
water content, low water potentials, upward water potential gradients below the shallow
subsurface after rainfall, and variable chloride profiles. The generally low water potentials and
upward water potential gradients suggest dry soils and an upward driving force for water
movement under present conditions. The low chloride concentrations in some of the profiles in
Blanca Draw indicate that at some time in the past the chloride was leached, probably when these
sites were ponded. The typical profiles in the interstream setting have variable water contents, low
water potentials, upward water potential gradients, and high maximum chloride concentrations. In
this setting the water potential data indicate upward driving forces for liquid flow, and the chloride
data indicate very low fluxes for thousands of years. In the borrow pit, the sediments are disturbed
and ponded water occurs for long periods, which results in downward water movement as
indicated by high water potentials and low chloride concentrations. The fissured sediments also
have ponded water after rainfall. High water potentials and low chloride concentrations in the
upper 20 to 30 ft (6 to 9 m) of the fissured sediments indicate downward fluxes to this depth.
Water content monitoring data showed downward movement of water to 5 ft (1.5 m) depth after

rainfall. The sharp decrease in water potentials and increase in chloride at 20 to 30 ft (6 to 9 m)



may occur because the fissure has not been present long enough for water to move deeper or may
mark the location of a clay zone.

Long-term water potential monitoring data from the Hueco Bolson provide valuable
information on unsaturated zone processes in response to climatic variations. These data indicate
that the penetration depth of the wetting front after rainfall is greater in coarse textured soils (2.6 ft
[0.8 m] in sand) than in fine-textured soils (1 ft [0.3 m] in clay loam). The progressive increase in
water potentials with depth during infiltration and redistribution suggests piston flow.

The soil physics and chemical data for the area of the proposed Eagle Flat repository are
consistent and suggest negligible fluxes. Long-term net water fluxes estimated from the soil water
chloride concentrations were less than 1 mm yr! below the top meter of soil. The upward decrease

in water potentials indicates an upward driving force for water movement.

INTRODUCTION

Purpose of Study

The objective of this study was to characterize the unsaturated zone in northwest Eagle Flat
basin for low-level radioactive waste disposal. Hydraulic and chemical approaches were used to
evaluate subsurface water movement at the site. Hydraulic approaches included laboratory
measurement of water content and water potential of soil samples collected from 33 boreholes
(table 1). These data provide information on spatial variability in water content and water potential
throughout the study area. Profiles of water potential can be used to determine the direction of the
driving force for water flow. In addition to laboratory data, neutron probe access tubes were
installed in the field to monitor water content, and thermocouple psychrometers were installed to
monitor water potential and temperature. Field-saturated hydraulic conductivity was also measured
in situ. The hydraulic data provide information on water movement at the time of sampling or for
the duration of the monitoring period. In contrast, chemical data such as the chloride concentrations

in soil water provide information on water movement for up to several thousands of years in the
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Table 1. Summary of boreholes drilled, samples collected, monitoring equipment, and tests conducted.
Wc = water content, wp = water potential, Cl = chloride, BI = regular constant-head borehole infiltration
test, BI* = regular and multistep constant-head borehole infiltration test, np = neutron probe, and
p = thermocouple psychrometer.

Monitoring
Borehole no. Location Total depth (m)| Type of analysis | equipment

YM9 ephemeral stream (slope 14.63 wce, wp, Cl

YM10 ephemeral stream (slope) 10.33 wce, wp, Cl

YM11 ephemeral stream (floor) 9.30 wce, wp, Cl

YM12 ephemeral stream (floor) 5.64 we, wp, Cl

YM13 interstream 11.34 wc, wp, Cl

YM14 interstream 9.57 wc, wp, Cl

YM15 borrow pit 16.55 wc, wp, Cl

YM16 adjacent to borrow pit 14.51 we, wp, Cl

YM21 interstream 8.69 BI*
YM24NP interstream 4.97 NP
YM25NP interstream 5.18 NP
YM26NP in borrow pit 7.92 NP

YM28 interstream 27.43 wce, wp, Cl
YM30ONP adjacent to borrow pit 12.50 NP

YM32 interstream 2.62 wc, wp, Cl

YM34 interstream 2.71 wce, wp, Cl Bl

YM35 in Hoover fissure 21.18 wc, wp, Cl

YM36 adjacent to Hoover fissurg 30.63 we, wp, Cl

YM41 ephemeral stream 24.02 wc, wp, Cl

YM43 ephemeral stream 24.69 wce, wp, Cl

YM45 interstream 11.95 BI*

YM46 interstream 9.47 BI*

YM47 interstream 7.32 Bl

YM48 interstream 4.15 Bl

YM49 interstream 15.24 P

YM50 interstream 14.33 P

YM51 interstream 10.39 BI*

YM54 interstream 23.65 wce, wp, Cl
YM55NP in earth fissure 8.58 NP
YM56NP adjacent to earth fissure 8.46 NP
YM57NP ephemeral stream 5.12 NP
YM58NP ephemeral stream 5.09 NP

YM59 interstream 27.49 wc, wp, Cl

YM60 interstream 17.59 wce, wp, Cl

YM61 interstream 21.28 wc, wp, Cl

YM64 interstream 14.69 we, wp, Cl

YM66 interstream 13.41 wc, wp, Cl

YM67 interstream 18.50 [
YM68NP in pseudo-fissure 8.66 NP
YM69NP adjacent to pseudo-fissurg 8.60 NP

YM70 interstream 10.39 wc, wp, Cl




Table 1. cont.

Monitoring
Borehole no. Location Total depth (m)| Type of analysis | equipment
YM71 interstream 10.39 we, wp, Cl
YM72 interstream 10.42 we, wp, Cl
YM73 interstream 10.45 we, wp, CI
YM74 interstream 10.45 we, wp, Cl
YM75 interstream 10.36 we, wp, Cl
YM76 interstream 10.42 we, wp, Cl
YM77 interstream 10.42 wce, wp, Cl
YM78 interstream 10.42 wce, wp, Cl BI*
YM79 interstream 18.17 we, wp, CI
YM80 interstream 10.39 wc, wp, Ci BI*
YM81 interstream 10.42 we, wp, Cli
YM82NP ephemeral stream (floor) 8.49 NP
YM83NP ephemeral stream (floor) 8.55 NP
YM84 ephemeral stream (floor) 13.53 wc, wp, Cli BI*
YM85 ephemeral stream (floor) 17.86 wc, wp, CI
YM86 in pseudo-fissure 20.63 wc, wp, Cl
YM87 adjacent to pseudo-fissurg 21.95 wc, wp, Cl
YM88 in earth fissure 13.32 we, wp, ClI
YM89 adjacent to earth fissure 12.01 wce, wp, ClI




past. Chloride concentrations were measured in soil water collected from 36 boreholes. The
hjdraulic and chemical approaches were integrated in this study to evaluate present-day and long-

term water fluxes in different geomorphic settings.
Site Description

The study area (~ 60 km? in area; 31°7°N, 105°16’W), ~75 mi (120 km) southeast of El
Paso, lies within the Chihuahuan Desert of Texas (fig. 1)_ in the northwest Eagle Flat basin.
Northwest Eagle Flat basin is a sediment-filled basin within the Basin and Range Physiographic
Province (Gile and others, 1981). The sediment fill lies on fractured Cretaceous bedrock that is
exposed on Faskin Ranch southeast of the proposed site. On Faskin Ranch, the thickness of the
sedimentary fill increases to 715 ft (218 m) in the northwest (Jackson and others, 1993). The
sediment fill was laid down by alluvial fan, fluvial, and eolian processes (Jackson and others,
1993). Three calcic soil horizons are found at depths of 0 to 3 ft (0 to 1 m), 10 ft (3 m), and 20 ft
(6 m) (Jackson and others, 1993). The upper two calcic soil horizons are better developed than the
horizon at 20-ft (6-m) depth (Langford, 1993). Ground water flows to the south—southeast toward
the Rio Grande (Darling and Hibbs, 1993). The unsaturated zone ranges from 673 to 754 ft (205
to 230 m) thick at the proposed site.

The topography of most of northern Faskin Ranch is relatively flat—slopes are less than
1 percent—and the elevation is approximately 4,364 ft (1,330 m) (fig. 1). Northwest Eagle Flat
basin drains internally through the ephemeral Blanca Draw into Grayton Lake. The topographic
relief in Blanca Draw is approximately 7 to 10 ft (2:to'3 m). Blanca Draw is generally dry except
after high rainfall. The surface geomorphology of the area can be subdivided into ephemeral stream
(Blanca Draw) and interstream settings. The ephemeral stream setting has no active channel with
mobile sediment and is vegetated with tobosa grass (Hilaria mutica) and mesquite (Prosopis
glandulosa). Pseudo-fissures are also restricted to the ephemeral stream setting and consist of an

alignment of shallow holes, pipes, and depressions. A detailed description of these features can be
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Figure 1. Location of sampled boreholes, unsaturated zone monitoring equipment, and borehole
infiltration tests.
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found in Jackson and others (1993). The term pseudo-fissure is used because these features are
similar in scale and probable origin to pseudo-fissures described in California by Schlemon and La
Chapelle (1992). The average size of individual depressions is 2 ft (0.6 m) long by 1 ft (0.3 m)
deep by 1.3 ft (0.4 m) wide. Trenches dug at right angles to these fissures showed that these
surface depressions are not underiain by open or filled cracks. Possible origins of these fcaturés
include desiccation or sediment compaction. The interstream setting has areas characterized by
sandy and silty surficial sediments. Vegetation in the interstream setting consists of black grama
grass (Bouteloua eriopoda) and widely scattered mesquite and soaptree yucca (Yucca elata). An
earth fissure called Hoover fissure because it is located mostly on the adjacent Hoover property
was found in the northwest part of the study area and is described in Jackson and others (1993).
Hoover fissure is much longer (4,000 ft [1.2 km]) and wider (7 ft [2 m]) than the pseudo-fissures
but is similar in depth. It is approximately 1,000 ft (0.3 km) west of Blanca Draw in an interstream
setting. It can be distinguished by a vegetation linear on aerial photos as far back as 1957.
Depressions along Hoover fissure have average dimensions of 67 ft (20 m) long, 7 ft (2 m) wide,
and 1 ft (0.3 m) deep. Trenches showed funnel-shaped areas of sand 0.3 ft (0.1 m) wide by
several meters long that were offset from the surface depressions. Two continuous calcic soil
horizons were disrupted beneath the fissure. The uppermost calcic soil horizon appears to be
dissolved and reprecipitated at greater depth. No large continuous open or filled cracks were found |
beneath the fissure. A possible reason for the lack of subsurface cracks may be because the fissure
is old and such cracks may be masked by soil processes. Possible origins of the fissure include
differential subsidence related to a bedrock high or natural groundwater withdrawal related to a
lowering of base level associated with incision of the Rio Grande (Gile and others, 1981). Other
features in the interstream setting that affect the subsurface hydrology include borrow pits. These
are anthropogenic in origin and the excavated material was used in road construction. The borrow
pits have been open since at least 1964 and pond frequently after rainfall.

The regional climate is subtropical arid (Larkin and Bomar, 1983). Long-term meteorologic

data were obtained at Sierra Blanca (1964—-1992), situated on the western edge of the study area.
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Mean annual precipitation is 12.6 in (320 mm). Precipitation in the region is characterized by large
interannual variations (5.2 in [133 mm] in 1964 to 20.3 in [516 mm] in 1974). Most of the
precipitation falls as local, intense, short-duration convective storms during the summer, when
temperature and potential evaporation are highest. Minor winter frontal storms are of longer

duration.

Previous Work

Site characterization studies for low-level radioactive waste disposal were previously
conducted in the Hueco Bolson, which is northwest of the Eagle Flat basin. Studies were
conducted at this site from 1988 to 1990, and long-term monitoring of certain hydraulic parameters
has continued to the present. Work at the Hueco Bolson site was discontinued in 1990 except for
long-term monitoring of some hydraulic parameters and characterization of the Eagle Flat study
area begun in 1991. The work conducted in the Hueco Bolson has been described in papers

(Scanlon, 1992a, 1992b, Appendices A and B).

Hydrodynamic Approach

Although much of the previous work on unsaturated flow in arid regions has concentrated on
flow in the shallow zone in response to agricultural irrigation (Gaudet and others, 1977; van de Pol
and others, 1977), recent interest in unsaturated‘ systems of arid regions has developed because of
their potential suitability as repositories of radioactive materials. The suitability of arid regions for
waste disposal is related to high evapotranspiration rates relative to precipitation, which results in
low net downward fluxes. In addition, thick unsaturated zones provide a natural barrier to
radionuclide transport to ground water (Winograd, 1981). Studies of unsaturated flow related to
radioactive-waste disposal are being conducted at Hanford, Washington; Beatty and Yucca

Mountain, Nevada; and Las Cruces, New Mexico (Enfield, 1973; Gee, 1985; Montazer and
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Wilson, 1985; Nichols, 1987). This study is part of a program to characterize a site in the
Chihuahuan Desert of Texas for low-level radioactive waste disposal.

Various methods have been used to evaluate the direction and rate of water movement in the
unsaturated zone, which is critical in predicting contaminant migration. The water balance approach
estimates the downward rate of water percolation or recharge (Ababou and others, 1987) according

to the following equation:

where I is net infiltration, P is the precipitation, ET is the actual evapotranspiration, Ry is the
surface runoff, and AS is the change in storage. Although the water balance approach may be
suitable in irrigated agricultural regions, it is generally unsuitable in natural arid regions because
precipitation and evapotranspiration measurements are not precise enough to allow confidence in
the differencing of two numbers of nearly equal value (Gee and Hillel, 1988). Micrometeorological
techniques for estimating actual evapotranspiration in partially vegetated desert regions are highly
inaccurate. Weighing lysimeters were used at the Hanford site (Gee and Heller, 1985) to measure
directly evapotranspiration and drainage. The disadvantages of lysimeters are that the natural soil
structure is disturbed, and boundary conditions may affect flow.

Temporal variations in water content monitored with a neutron probe are often used to
evaluate the movement of water pulses through the unsaturated zone. Comparison of water profiles
monitored with time at the Beatty site showed deep percolation and redistribution of water down to
a depth of 7 ft (2 m) after an intense rainfall event (Nichols, 1987). In general, however,
monitoring water content may not be sufficiently accurate to detect the small fluxes that move
through the unsaturated zone of arid regions. In addition, even under equilibrium conditions with
- no flow, water content is discontinuous across different lithologies, and variations in water content
with depth do not indicate the direction of water movement.

In contrast to water content data, energy potential is continuous across different materials and
is typically used to infer flow direction. In the unsaturated zone, many potential gradients may be

important, as indicated by the generalized flow law (modified from de Marsily [1986]):
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q=-LV®-LVT-LVC (2
where q is flux, Lj, L,, and L3 are proportionality constants, L; is hydraulic conductivity, V is
gradient operator, @is hydraulic head, T is the temperature, and C is the chemical concentration.
The hydraulic head is the sum of matric (y;) and gravitational (yg) potentials. Matric potential
results from capillary and adsorptive forces. Gravitational potential is the elevation above the water
table, which is used as a reference datum. Water flow in response to temperature gradients occurs
primarily in the vapor phase at low water contents. Chemical-concentration gradients are equivalent

to osmotic-potential (yz) gradients, which are calculated from chloride concentrations of the soil

water according to the Vant Hoff equation (Campbell, 1985):

¥, =—(VCxRT)/1000 3)
where v is number of osmotically active particles (2 for NaCl), C is chemical concentration
(moles/kg), x is the osmotic coefficient (Robinson and Stokes, 1959), R is the gas constant
(8.3142 T mole-1 °K-1), and T is the temperature (°K). In some flow systems, temperature and
~ osmotic potential gradients are negligible and the flow law can be simplified to the Buckingham-
Darcy Law (the first term on the right of the equals Sign in equation 2).

| Various methods are used to measure the potential gradients in the generalized flow equation.
Tensiometer measurements are restricted to matric potentials between 0 and —0.08 mega pascals
(MPa; 1 MPa is equivalent to 10 bars or 102 m). In areas of shallow water tables (< 26 ft [< 8 m]),
such as near Socorro, New Mexico, matric potentials were high (=-0.08 MPa) and calculated
Darcy fluxes ranged from 8 to 37 mm yr-! (Stephens and Knowlton, 1986). To measure lower
water potentials recorded in most other arid regions, which reflect, in part, deeper (>328 ft
[2100 m]) water tables, thermocouple (psychrometers are generally required. Thermocouplé
psychrometers measure water (matric and osmbtic) potentials of less than —0.1 MPa. Because
thermocouple psychrometry forms an integral part of soil-physics monitoring in arid systems,
principles of operation and potential sources of errors of psychrometers are described in Rawlins

and Campbell (1986). Psychrometers have been employed at very few sites because these
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instruments are difficult to calibrate and install and their life span is generally fairly short. Much of
the psychrometric data in the literature is questionable because of poor installation procedures and
lack of sophisticated data loggers for recording water potentials accurately.

Water potential data can be used to assess the direction of water movement; however,
information on the relationship between water potential and water content and between hydraulic
conductivity and water content is required for quantifying water flux and for numerical modeling.
These relationships vary according to soil type and are highly nonlinear in arid systems. Water
retention data measured in the field according to the instantaneous profile technique are only
applicable in moist systems (Rose and others, 1965; Stephens and Knowlton, 1986) and are
generally unsuitable in most arid regions. Water retention data for arid systems are generally
measured in the laboratory. Although saturated hydraulic conductivity can be readily measured in
the field or in the laboratory, unsaturated hydraulic conductivity measurements are extremely
difficult and time consuming. Estimates of unsaturated hydraulic conductivity are generally
obtained from measurements of water retention and saturated hydraulic conductivity according to
Van Genuchten (1980). Because most studies do not measure data for water retention curves
(Tyler and others, 1986; Montazer and Wilson, 1985; Isaacson and others, 1974), soil water

fluxes cannot be quantified for these sites.

Chemical Approach

Meteoric Chloride

Chloride concentrations in soil water have been used to evaluate water fluxes in semi-arid
systems (Bresler, 1973; Johnston, 1987; Peck and others, 1981; Sharma and Hughes, 1985).
Chloride is an ideal tracer because it is chemically conservative. The source of soil water chloride is
in precipitation and dry fallout. Because chloride is nonvolatile, its concentration increases in the

root zone as a result of evapotranspiration. If the hydrodynamic dispersion coefficient is assumed
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to be negligible (Allison and others, 1985), the soil water flux (gy) can be approximated by:

4w =Dc; / C¢y )
where D¢y is the chloride deposition rate (g m-2 yr-1) and Cc;is the measured soil-water chloride
concentration (g m-3). In the ephemeral streams, fissures, and borrow pits examined in the present
study, sources of chloride other than precipitation exist such as runon. Because runon, runoff, and
the chloride concentrations in these waters were not quantified, chloride profiles in these settings
were only used qualitatively to evaluate the amount of downward water movement relative to other
geomorphic settings. The chloride deposition rate (0.076 g m~2 yr-1) for the study area was
estimated from the pfebomb 36C1/Cl ratio in soil water samples from below a depth of 5 ft (1.5 m)
in borehole YM66 (4.9 x 10-13) as discussed later and the natural 36Cl fallout at the site estimated
as 20 atoms 36C1 m—2 s-1 (Bentley and others, 1986). This corresponds to a chloride concentration
in precipitation and dry fallout of 0.24 g m-3 based on a long-term mean annual precipitation of
12.60 in (320 mm). The residence time (7) represented by chloride at depth z can be evaluated by
dividing the cumulative total mass of chloride from the surface to that depth by the annual chloride
deposition

j 6C. dz
0

t= o)

DCI
where 6 is the volumetric water content. Chloride profiles provide a qualitative estimate of water
flux because there are many assumptions associated with the chloride mass balance approach.
These assumptions are: (1) one-dimensional, vertical, downward, piston-type flow;
(2) precipitation as the only source of chloride; (3) annual chloride deposition constant with time;
and (4) steady-state chloride flux equal to the chloride deposition rate. The accuracy of the flux
estimates from chloride data depends on the reliability of the physical flow model used to interpret
the data. Although this model of chloride movement predicts that chloride concentrations should
increase through the root zone and remain constant below the root zone, many previously
published chloride profiles show that chloride concentration decreases below the peak; therefore,

some of the assumptions associated with the model may not be valid for different systems. The
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reduction in chloride concentration below the peak has been attributed to ground-water dilution
(Phillips and others, 1988), nonpiston-type flow (Sharma and Hughes, 1985), or failure of the
steady-state flow assumption as a result of paleoclimatic variations (Allison and others, 1985;

Phillips and Stone, 1985; Scanlon, 1991).

Cosmogenic Chlorine-36

Variations in the geomagnetic field intensity during the past 50 kyr may have caused
variations in the rate of production of cosmogenic radionuclides such as 14C (Mazaud and others,
1991) and 36Cl (Zreda and others, 1991). Variations in geomagnetic dipole intensity have been
used to construct variations of cosmogenic 14C production. High 14C production between 18 and
45 kyr is attributed to a period of weaker geomagnetic dipole field intensity at that time (Mazaud
and others, 1991). Good agreement was found between constructed 14C production and calibration
14C ages of corals by U-Th dating. A similar curve of variations in cosmogenic production of 36Cl
based on variations in geomagnetic dipole field intensity was constructed (Phillips, pers. comm.,
1993). To test the hypothesis that cosmogenic production of 36Cl varied with time, 36Cl/Cl ratios
of fossil packrat urine were measured (Phillips and others, 1988). The 36Cl/Cl ratio of the urine
preserves a record of meteoric 36Cl fallout variations. Results suggest that 36Cl/Cl ratios in urine
radiocarbon dated at 12 kyr and 21 kyr B.P. are 28% and 41% higher than in urine dated 3 kyr,
which is consistent with the reconstruction of cosmogenic production of 36Cl based on
paleomagnetic field intensity. This secular variation in 36Cl production should provide a signal of
transport times back to 50 kyr. Radioactive decay of 36Cl should have a negligible effect because
the residence time of soil water considered here is small relative to the half life of 36Cl (301 kyr).
Comparison of 36Cl/Cl ratios in soil water with the reconstructed 36Cl production should allow

dating of soil water to 50 kyr.
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METHODS
Field Methods
Water Content

Soil samples were collected from 36 boreholes for laboratory determination of gravimetric
water content (fig. 1). Undisturbed samples were collected for dry bulk dénsity analysis. Soil
samples for bulk density analysis were collected in the upper 0.4 ft (0.12 m) adjacent to boreholes
and down to 7 ft (2 m) in pits that were dug for psychrometer installation. Samples were also
collected from 10 boreholes at depths = 7 ft (2 m) where the sediment was sufficiently cohesive.
Most of the boreholes sampled for bulk density are in the area of the proposed repository.

Water content was monitored by means of a Campbell Pacific Nuclear neutron moisture
probe (Model 503 DR; CPN Corporation, Martinez, CA) in 12 neutron probe access tubes (fig. 1). .
The shallowest depth monitored was 1 ft (0.3 m). The maximum depth monitored ranged from
7.3 ft (2.2 m) in YM24NP and YM25NP to about 25 to 28 ft (7.5 to 8.5 m) in the remainder of the
access tubes. The depth interval ranged from 0.33 ft (0.1 m) near the surface to 1.33 ft (0.4 m) at
depth. The monitoring period ranged from June to October 1993. The access tubes were installed
in boreholes drilled with a solid stem auger (76 mm diameter). This method of access tube
installation minimized disturbance of the surrounding material. Because of drilling difficulties, steel
drill pipe (70-mm O.D., 60-mm 1.D.) was used instead of conventional aluminum access tubes.
Steel is also preferred because it is much more resistant to corrosion than aluminum.

The neutron probe was calibrated in the laboratory within both aluminum and steel access
tubing by the manufacturer. These data shoW that approximately 50 percent more fast neutrons are
attenuated through the steel than through the aluminum. The calibration of the neutron probe in the
Hueco Bolson site is described in Scanlon and others (1991). Because neutron-count ratios
(neutron counts/standard counts) may introduce more uncertainty into water-content measurements

than the natural drift of the count rate (Hudson and Wierenga, 1988), neutron counts were used in
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the calibration equation. The calibration curve was calculated by least-squares linear regression of

the volumetric water content and neutron counts:

0 = (-6.4674 + 0.003921 Cn)/100 (6)
where 0 is the volumetric water content and Cr is the neutron count/min. The calibration equation
had a coefficient of determination (r2) of 0.98 and a standard error of estimate of 0.01 m3 m-3.

Electronic problems with the neutron probe resulted in loss of data for many access tubes for June

and July 1993.

Water Potential

Soil samples were collected from 33 boreholes down to 98 ft (30 m) depth for water-potential
(sum of matric and osmotic potential) measurements in the laboratory (fig. 1). Many of the samples
were collected from the same boreholes as those sampled for water content. The boreholes were
drilled using a hollow-stem auger, and samples were collected in split tube core barrels (5 ft [1.5
m] long). The samples were transferred in the field to mason jars and their lids sealed with paraffin
to minimize water loss.

Field psychrometers consisted of screen-caged, thermocouple psychrometers (Model 74,
PST 66; J.R.D. Merrill Specialty Equip., Logan, UT). To install psychrometers at shallow depths,
a pit was dug to 7 ft (2 m) and psychrometers were placed into pilot holes (13-mm diameter, 0.5-m
length) drilled horizontally into the pit wall with a Bosch rotary hammer drill (Model 11209) that
uses a solid stem auger. The psychrometers were staggered with depth over a horizontal distance
of 8 ft (2.4 m). This installation procedure ensured that the material overlying the psychrometers
was undisturbed and that a good contact existed between the psychrometers and the surrounding
sediments. Because the psychrometers were not retrievable, they were installed in duplicate for
data verification. Psychrometers were installed at a depth of 1 ft (0.3 m) and at 1-ft (0.3-m)
intervals between depths of 1.7 ft (0.5 m) and 7 ft (2 m). The psychrometers were placed so that

their symmetry axis was perpendicular to temperature gradients to minimize the effect of such
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gradients on psychrometer output (Rawlins and Campbell, 1986). After these holes were sealed
with sediment from the pit, the pit was backfilled with the original sediments.

At depths greater than 7 ft (2 m), duplicate psychrometers were installed in three adjacent
boreholes (YM49, 50 ft [15.24 m], YMS50, 47 ft [14.33 m], and YM67, 60.7 ft [18.50 m]) that
were drilled using a solid-stem auger (76.2-mm diameter) (fig. 1). Wetting or drying of native
material was expected to be minimal because no drilling fluid was used. For protection during
installation, the psychrometers were emplaced in a PVC screen (25.4 mm diameter, 0.010 slot
size, 152 mm long) that was filled with commercial (Ottawa) sand (0.1- to 0.4-mm grain size) to
prevent bridging during backfilling. Commercial Ottawa sand was used to backfill each of the
boreholes. Epoxy (DER324/DEH24, Dow Chemical Company) was used to prevent preferential
water or air flow between psychrometer stations within the borehole and to form a seal at the
surface that would preclude surface drainage into the borehole. Epoxy also was chosen because it
does not introduce water into the system. Epoxy properties (curing time, viscosity, and exothermic
curing temperature) were tested in the laboratory before field use to ensure that the epoxy would
neither become viscous while being poured down the tremie pipe nor emit too much heat to the
surroundings. Sand was poured down a separate tremie pipe immediately after the epoxy to form a
sand/epoxy column that reduced the reaction temperature to 80°C. The small diameter of the
borehole and use of natural materials as a backfill were designed to minimize psychrometer
equilibration time. The psychrometers were connected to a data logger (Model CR7; Campbell
Scientific, Incorporated, Logan, UT) that was powered by a solar panel and a rechargeable internal
battery, backed up by an external (7 V) marine-type battery. Water potentials and temperatures

were logged daily at 0900 hr local time.

Hydraulic Conductivity

Field-saturated hydraulic conductivity (Kf) in the surficial sediments (0.17 to 1 ft [0.05 to
0.3 m] deep) was measured with a Guelph permeameter (fig. 2) (Reynolds and Elrick, 1985,

1986). The permeameter test operates in the range of H/a from 1 to 10, where H is the water height
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Figure 2. Location of Guelph permeameter tests.
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in the test hole and a is the test hole radius. To evaluate hydraulic conductivity in the deeper
unsaturated zone, constant-head borehole infiltration tests were conducted in 11 boreholes (8.8 to
77.8 ft [2.7 to 23.7 m] deep; fig. 1). The constant-head borehole test assumes that the soil is
homogeneous; however, the soil is generally heterogeneous. Multistep constant-head borehole
infiltration tests were conducted in 7 of the 11 borehole tests to evaluate soil heterogeneity (Xiang,

1994b) (fig. 1).

Permeameter Tests

A total of 26 permeameter tests were conducted in different soil textures to evaluate spatial
variability in hydraulic conductivity of sediments in the upper 1.7 ft (0.5 m). Field-saturated
hydraulic conductivity (Kf) is calculated from the Guelph permeameter data by using an equation

for steady-state flow from a cylindrical test hole:

27H?K f, + Cra’K f, + 271H$,, = CQ )
where H (m) is the steady-state depth of water in the test hole, C is a dimensionless proportionality
constant primarily dependent on H, and a (m) (the radius of the test hole), ¢, (m s~1) is the matric
flux potential, and Q (m3 s-1) is the steady-state flow rate out of the test hole (Reynolds and
Elrick, 1985). The matric flux potential, ¢, is
0
On = [K(y)dy ®)
Vi
where yj; is the initial matric potential in the soil and K(y) is the hydraulic conductivity/matric
potential relationship for infiltration (Reynolds and Elrick, 1985). The matric flux potential
represents the matric effects of the unsaturated envelope and can be used to calculate the
unsaturated hydraulic conductivity. The three terms on the left-hand side of equation 7 represent
water flow resulting from pressure potential, gravitational potential, and matric pbtential,
respectively. The first two terms combined yield the field-saturated flow component, and the third

term represents the unsaturated-flow component. The field-saturated and unsaturated-flow
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components are considered separable. Early work on analysis of the permeameter data was

restricted to evaluation of the field saturated flow component (Glover, 1953)

cQ

K= 9
fs 27IH2 ()

Because the ratio H/a generally ranges from 1 to 10 in the permeameter tests, flow through the
bottom of the borehole may be important; therefore, Reynolds and others (1983) suggested the

following equation, which includes bottom flow:

K= o
B mH[1+C(a/ H)? 2]

(10)

Equations 9 and 10 neglect the effects of unsaturated flow. As shown in equations 9 and 10, only
one measurement of both Q and H is necessary to evaluate the field-saturated flow component of
hydrauiic conductivity.

The C coefficient can be obtained using different methods. Glover (1953) developed the

following equation to evaluate the C coefficient:

H aY a
C=sinh™ —— (—) +14+— (11)
a H H
Because the pressure solution in Glover’s development is too large, the coefficient C and K5
-are underestimated. Reynolds and others (1983) developed another equation to improve the
evaluation of the C coefficient:

2
c=a Lsinn 1 (ij il.e (12)
2 2¢ WH) "4 H <

Because existing solutions (Glover, 1953; Reynolds and others, 1983) do not accurately
evaluate water pressure or hydraulic conductivity in the test hole (they overestimate pressure and
underestimate hydraulic conductivity), Xiang (1994a) developed a new solution to evaluate the
saturated flow component of the field-saturated hydraulic conductivity. According to this new

solution, the following boundary conditions are considered:

y,=0 ar r=a, z=H : | (13)
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y,=H ar r=a, z=0 (14)
where Yy is the pressure head in the test hole. Another necessary condition is the flow rate out of
the borehole:

0=dq (15)
0

Using equations 13, 14, and 15, the coefficient C can be expressed as:

C=sinh 12 (16)
a

In dry soils, the unsaturated effect should be considered in the evaluation of the hydraulic
conductivity. Reynolds and Elrick (1985) were the first to consider the unsaturated effect as
represented by equation 7. In order to determine the parameters Kfs and ¢y, permeameter tests
should be conducted at two different ponded depths H; and H,. The simultaneous equations

approach can be used to solve for Kf;:

27H K , + C,ma’K ;, +27H, 9, = C,0,, an
27HK ,, + C,ma’K  +27H, 9, = C,0,,
where Q;7 and Q7 are the total flow rates from the test hole with ponded depths H; and H
respectively, C; and C; can be obtained from H;/a and Hj/a respectively based on equation bl 1,
12, or 16. In equation 17, we assume that the soil at both depths (H; and H,) is homogeneous.

We can solve equation 17 for the hydraulic conductivity and the matric flux potential as follows

(Xiang, 1994b):

K. = l CHQ,-CHQ,
»  m[2H,H,(H,- H,)+a*(C,H, - C,H,)]

¢ = _1_ 2[C2H12Qr2 - C1H22Qr1] + a2C1C2 (QZ — Ql)
™ 2r [2H,H,(H,-H,)+a*(C,H,—C,H,)]

(18)
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When coefficients C; and C; are evaluated by equations 11, 12, or 16, the calculated hydraulic
conductivities and matric flux potentials differ, as shown in equation 18. If the soil in the test hole
is heterogeneous, equation 18 should not be used.

Permeameter data were analyzed to evaluate the field-saturated flow component of the
hydraulic conductivity according to equation 10. Three different equations (11, 12, and 16) were
used to evaluate the C coefficient in equation 10, which resulted in three estimates of hydraulic
conductivity for each test hole. Estimates of the field-saturated flow component of hydraulic
conductivity ignore the unsaturated effect and require only one head measurement; therefore, the
two ponded depths for each test hole resulted in two estimates of hydraulic conductivity for each
method (equations 11, 12, and 16) and a total of six estimates for each test hole. For each method
of estimating the C coefficient, Ky estimates based on the two head measurements (equation 10) in
each test hole should be similar if the soil in the test hole is homogeneous. The unsaturated effect
was also considered in the permeameter data analysis using equation 18 to estimate the hydraulic
conductivity and the matric flux potentials. The three methods for evaluating the C coefficient
discussed above were also used in this analysis. When the unsaturated effect is considered, two

head measurements are required; therefore, this analysis resulted in three Kfs estimates for each test

hole (table 2).

Constant-Head Borehole Infiltration Test

The constant-head borehole test is a single borehole test technique, designed to measure the
field-saturated hydraulic conductivity of deep soil. The unsaturated effect is generally not
considered in the constant-head borehole test because only one ponded depth is used. Traditionally
equation 11 (Glover, 1953) has been used to analyze the data; however, equations 12 (Reynolds
and others, 1983) and 16 (Xiang, 1994a, b) can also be used. Assuming steady-state flow, the
measured constant flow rate and the water level in the borehole are used to determine the hydraulic

conductivity.
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Table 2. Grain size, and gravimetric water content of soil samples.

Borehole Depth Gravel Sand ~ Silt  Clay c‘zifr{t
number (m) %) %) () (%) Soil Texture &g)
0.08 0 4777 2426 2798 SANDY CLAY LOAM 0.09
0.39 0 4003 2414 3583 CLAY LOAM 0.11
1.10 0 3452 2444 41.03 CLAY 0.09
1.711 0 3512 2616 3872 CLAY LOAM 0.09
1.76 0 3423 2532 4045 CLAY 0.09
2.07 0 4098 2577 3325 CLAY LOAM 0.09
231 0 6824 1849 13.28 SANDY LOAM 0.05
2.37 0 5572 2600 1828 SANDY LOAM 0.05
2.67 0 3025 2495 44.80 CLAY 0.10
3.26 0 1822 26.13 55.65 CLAY 0.12
3.62 0 3451 2074 4475 CLAY 0.09
4,11 0 2338 1857 57.87 CLAY 0.07
4,24 0 2144 2189 56.66 CLAY 0.10
475 0 19.64 2506 5529 CLAY 0.12
- 4,99 1 1909 2166 58.08 CLAY 0.14
YM9 5.37 0 1646 25.65 57.65 CLAY 0.14
5.74 0 2994 2525 4481 CLAY 0.11
5.95 0 3672 2080 4217 CLAY 0.11
6.20 0 3585 2392 39386 CLAY LOAM 0.09
6.62 0 4523 21.06 3356 SANDYCLAYLOAM 0.09
6.65 0 3880 2552 3568 CLAY LOAM 0.09
6.99 0 3879 2275 3836 CLAY LOAM 0.09
7.32 0 3702 2510 37.85 CLAY LOAM 0.08
7.93 0 2787 2574 4634 CLAY - 0.12
8.54 0 2179 2406 54.09 CLAY 0.13
8.83 0 2981 2934 4081 CLAY 0.13
9.17 0 3399 32.14 33.64 CLAY LOAM 0.11
9.70 0 2797 3370 38.08 CLAY LOAM 0.11
10.05 0 2694 3770 35.14 CLAY LOAM 0.09
10.69 1 3953 2698 3223 CLAY LOAM 0.10
11.25 1. 2944 3150 38.08 CLAY LOAM 0.10
1264 - 6 5091 2453 19.02 GMS 0.06
13.17 1 7145 1427 1299 SANDY LOAM . 0.05
13.82 0 4920 3028 2052 LOAM 0.07
1.81 0 2238 29.02 48.55 CLAY 0.10
2.11 0 4045 . 2234 36.88 CLAY LOAM 0.09
2.39 0 3562 23.09 4125 CLAY 0.08
2.78 0 3555 25.08 3937 CLAY LOAM 0.09
3.09 0 4355 2638 3001 CLAY LOAM 0.12
3.42 0 1718 7992 290 SILT LOAM 0.11
3.73 0 3955 21.14 - 39.19 CLAY LOAM 0.11
YM11 4.00 2 3623 2692 3527 - CLAY LOAM 0.09
434 1 3655 2040 4157 CLAY 0.09
4.67 0 2784 2127 4451 CLAY 0.10
5.40 10 2043 31.72  38.01 . GMS 0.13
5.71 0 28.19 2342 4831 CLAY 0.14
6.41 0 2572 3094 4329 CLAY 0.15
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Table 2. coni.

Borchole  Depth Gravel Sand  Silt  Clay cﬁt:;t
number  (m) (%) B (B (%) Soil Toxture e
7360 2753 3134 4107 CLAY 015
821 0 3884 2989 3093 CLAY LOAM 0.11
00 0 1789 3171 3040 CLAY 0.13
046 0 1875 3234 4892 CLAY 0.11
083 0 2501 3108 4392 CLAY 0.09
115 0 2060 2920 5020 CLAY 0.10
142 0 963 3895 5142 CLAY 0.12
181 0 1183 3554 5258 CLAY 0.1
210 0 4074 2306 3620 CLAY LOAM 0.09
YMI2 240 0 3879 2372 3749 CLAY LOAM 0.08
260 0 3955 2632 3412  CLAYLOAM 0.09
200 0 1966 2868 51.66 CLAY 0.12
330 0 4329 2038 3633 CLAY LOAM 0.09
391 0 3713 2147 4140 CLAY 0.13
440 0 4426 1888 3685 CLAY LOAM 0.12
008 0 7683 1139 1158  SANDYLOAM 0.l
027 0 7919 930 1151  SANDYLOAM 010
051 1 5331 1677 2927 SANDYCLAYLOAM (.08
100 0 4445 2770 2774 CLAY LOAM 0.10
114 0 5733 1736 2520 SANDYCLAYLOAM 0.7
153 0 820 681 899 LOAMY SAND 0,03
208 5 8178 531 826 GMS 0.02
251 20 7464 119 380 GMS 0.02
275 7 8916 043 297 GMS 0.01
YMI3 309 17 7702 106 484 GMS 0.02
339 23 218 146 367 GMS 0.03
379 16 7968 083 393 GMS 0.01
409 0 8146 654 1200  SANDYLOAM 004
440 0 8001 761 1238  SANDYLOAM 004
484 0 5693 1448 2859 SANDYCLAYLOAM  0.09
528 0 5194 1753 3029 SANDYCLAYLOAM 007
586 0 6648 908 2422 SANDYCLAYLOAM 0.07
635 3 6519 1434 1766 GMS 0.07
723 0 2756 3152 4091 CLAY 0.13
1720 2742 4122 3134 CLAY LOAM 0.00
8§39 0 3856 3603 2539 LOAM 0.08
9040 8 4545 1814 2888 GMS 0.08
1071 2 6667 1170 1963  SANDYLOAM  0.06
1129 5 7106 1065 13.64 GMS 0.05
00l 0 7222 1523 1250  SANDYLOAM 007
010 1 6019 1987 1935  SANDYLOAM (.14
019 1 5329 2164 2430 SANDYCLAYLOAM 0.13
037 0 3417 2178 4379 CLAY 0.11
086 0 2878 2788 4334 CLAY 0.10
117 0 4344 1930 37.05 CLAY LOAM 0.08
147 0 1304 3549 5147 CLAY 0.13
199 0 5550 1930 2512 SANDYCLAYLOAM 007
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Table 2. cont.

Borehole Depth Gravel Sand  Silt  Clay c%ﬁfrﬁt
number (m) (%) (%) (%) (%) Soil Texture (g/g)
YM14 245 0 7094 1003 18.74 SANDY LOAM 0.06
2.81 0 2173 3093 4734 CLAY 0.08
3.15 0 1885 2679 5432 CLAY 0.12
342 0 2169 2746 5085 CLAY 0.14
3.76 0 1455 3240 5291 CLAY 0.14
4.15 0 2773 2276 4946 CLAY 0.13
4,61 0 3218 2048 4734 CLAY 0.09
5.31 1 4224 2267 3448 CLAY LOAM 0.09
580 . 0. 18.67. 4534 3599 SILTY CLAYLOAM 0.10
6.44 2 4179 3099 2492 LOAM 0.07
7.23 0 298 4979 4722 SILTY CLAY 0.13
7.75 0 2254 4275 3471 CLAY LOAM 0.10
8.51 0 3449 2531 4021 CLAY 0.11
9.52 0 6342 1386 2260 SANDY CLAYLOAM 0.07
2.52 11 8210 156 5.08 GMS 0.03
2.61 11  84.69 037 346 GMS 0.02
2.71 33 5539 428 748 GMS 0.04
2.80 1 9178 179 554 SAND 0.10
2.89 10 8554 013 434 GMS 0.03
3.04 22 - 7297 098 4.06 GMS 0.03
347 1 9615 051 278 SAND 0.06
3.65 64 2221 639 7.80 GMS 0.05
4.20 0 7243 . 1242 15.06 SANDY LOAM 0.09
429 0 2834 4203 2922 CLAY LOAM 0.24
447 0 1450 5634 29.17 SILTY CLAYLOAM 0.29
YM15 479 0 9.55 5072 3973  SILTY CLAY LOAM
5.43 0 1610 39.14 4474 CLAY
5.39 0 6473 1179 2300 SANDYCLAYLOAM (.11
5.55 0 6566 1252 2145 SANDYCLAYLOAM  0.11
5.74 0 6411 1568 2021 SANDY CLAYLOAM ' 0.12
6.07 0 2278 43.63 33.59 CLAY LOAM 0.21
6.29 0 4015 17.82 42.00 CLAY 0.16
6.62 0 3759 1745 4467 CLAY 0.16
6.96 0 4002 1741 4226 CLAY 0.13
7.48 0 2254 2462 5279 CLAY 0.16
8.34 0 46.12 ..21.64: 3217 SANDY CLAYLOAM 0.15
9.24 11 8456 135 343 'GMS 0.02
9.76 0 4448 3283 2269 LOAM 0.15
10.25 2 5941 1357 2490 SANDY CLAYLOAM 0.14
11.24 2 6558 1203 19.99 SANDY LOAM 0.11
11,53 0 8625 617 758 LOAMY SAND 0.05
12.82 0 2657 39.13 3430 CLAY LOAM 0.17
13.62 0 3390 2123 4487 CLAY 0.17 -
14.65 0 1787 2335 5877 CLAY 0.22
15.52 0 1495 3755 47.50 CLAY 0.20
17.26 0 2057 4068 38.75 CLAY LOAM 0.18
18.33 2 9246 178 @ 354 SAND 0.13
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Table 2. cont.

Borehole Depth Gravel Sand  Silt  Clay c‘(’)\;ftteelft

number (m) (%) B (B (%) Soil Texture /o)
0.01 1 7982 984 937 LOAMY SAND 0.03
0.10 0 7506 11.09 13.56 SANDY LOAM 0.06
0.19 0 7823 974 11.89 SANDY LOAM 0.05
0.28 0 7566 1046 13.82 SANDY LOAM 0.07
0.37 1 7271 1137 1513 SANDY LOAM 0.08
0.86 1 5987 1322 2621 SANDYCLAYLOAM 0.09
1.14 1 5490 18.62 25.68 SANDY CLAYLOAM 0.09
1.38 2 6011 18.12 2027 SANDYCLAYLOAM (.07
1.71 8§  77183. 535 891 GMS 0.03
2.02 4 8276 445 840 GMS 0.03
YM16 2.35 16 8098 074 249 GMS 0.01
2.66 47 4377 3.08 6.18 GMS 0.03
299 1 9407 082 428 SAND 0.02
3.88 22 7321 123 404 GMS 0.02
418 19 7701 048 373 GMS 0.03
4.52 19 7636 - 121 3.80 GMS 0.02
5.04 1 7642 992 1222 SANDY LOAM 0.04
5.88 4 8851 129 6.06 GMS 0.02
6.13 0 1625 3226 51.39 CLAY 0.14
6.74 1 5386 1244 3262 SANDYCLAYLOAM 0.7
7.96 1 5147 1845 2950 SANDYCLAYLOAM 0.07
8.66 1 5219 1826 29.04 SANDYCLAYLOAM 0.06
10.01 0 6795 10,66 2095 SANDYCLAYLOAM 0.05
11.50 3 8426 493 824 GMS 0.01
1247 0 2567 4598 28.35 CLAY LOAM 0.07
1339 0 4161 1426 44.14 CLAY 0.10
1442 0 5300 12.08 34.67 SANDYCLAYLOAM (.11
0.29 2 4075 3033 2723 CLAY LOAM 0.10
0.59 0 3955 3570 2443 LOAM 0.11
0.90 0 4854 2970 21.75 LOAM 0.11
1.26 1 5473 2515 19.03 SANDY LOAM 0.12
1.57 1 4352 3081 2443 LOAM 0.15
1.87 0 3062 45.69 23.63 LOAM 0.19
2.18 0 2205 5289 25.06 SILT LOAM 0.16
2.58 1 3031 4478 2431 LOAM 0.17
282 0 3590 4191 22.11 LOAM 0.16
3127 1 4829 3283 1827 LOAM 0.15
343 0 3080 4735 21.63 LOAM 0.20
3.73 1 3674 3715 2478 LOAM 0.15
YM35 4.10 2 4324 3366 2148 LOAM 0.14
437 4 4554 2865 2214 GMS 0.13
4,68 2 5010 2612 2131 SANDY CLAY LOAM (.13
4.95 33 4909 1085 6.85 GMS 0.07
541 0 8997 598 4.05 SAND 0.04
5.93 4 5056 2495 2025 GMS 0.11
6.23 0 5266 17.65 29.69 SANDY CLAYLOAM (.12
6.54 0 2091 4521 33.88 CLAY LOAM 0.19
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Table 2. cont.

Borchole  Depth Gravel Sand  Silt  Clay ater

mmber  m) %) %) %) (%) Soil Texture oo
700 0 827 4681 2482 LOAM 0.16
776 0 2946 4019 3035  CLAYLOAM 0.15
821 0 1361 4240 4399  SILTY CLAY 0.16
873 0 4246 3587 2158 LOAM 0.13
916 0 4228 3138 2634 LOAM 0.13
968 0 1316 5240 3444 SILTY CLAYLOAM  0.19
1032 0 6544 1797 1659  SANDYLOAM  0.08
1071 0 328 6624 3037 SILTY CLAYLOAM 021
1132 0 3131 4870 199 LOAM 0.15
1184 0 2374 5746 18.56 SILT LOAM 0.16
1288 0 5004 3165 1787 LOAM 0.08
1340 2 2602 3833 3331  CLAYLOAM 0.09
1431 0 1471 5795 2732 SILTY CLAYLOAM  0.15
1495 0 1819 6028 2146 SILT LOAM 0.15
1586 1 1755 6004 2183 SILT LOAM 0.17
1654 3 1907 5559 2268 GMS 0.14
1742 0 3221 4171 2007 LOAM 0.13
1809 8 1562 4750 2890 GMS 0.13
1891 0 1518 5630 2851 SILTY CLAYLOAM 0.7
1946 0 1260 6008 2720 SILTY CLAYLOAM 0.7
2047 0 1897 5792 23.09 SILT LOAM 0.16
029 0 3543 2477 3973 CLAYLOAM
059 0 3550 1947 44.92 CLAY 0.5
105 0 5418 2270 2311 SANDYCLAYLOAM  0.06
136 0 3236 2383 43.59 CLAY 0.10
197 0 3025 2119 4844 CLAY 0.12
227 0 2615 2344 5034 CLAY 0.10
258 0 2838 2129 5023 CLAY 0.08
291 0 3487 2378 4106 CLAY 0.09
322 0 5043 1979 2963 SANDY CLAYLOAM  0.09
352 0 2722 2031 5242 CLAY 0.11
383 1 3875 2390 3674  CLAYLOAM 0.09
413 1 4665 1991 3287 SANDYCLAYLOAM 0.9
447 2 4514 2046 3248 SANDYCLAYLOAM (.09
477 1 6605 1245 2050 SANDYCLAYLOAM (.05
507 1 6176 1981 1741  SANDYLOAM 0.0
547 0 7177 1431 1389  SANDYLOAM  0.04
602 0 5353 2451 2196 SANDYCLAYLOAM (.07
632 0 6282 1896 1823  SANDYLOAM 006
663 0 2627 2837 4536 CLAY 0.1
730 0 2338 2435 5208 CLAY 0.1
770 0 2610 2681 47.08 CLAY 0.12
821 0 4110 2333 3557  CLAYLOAM 0.09
867 0 480 3865 5654 CLAY 0.14
925 0 3125 4374 2501 LOAM 0.06
986 0 1626 3924 4451 CLAY 0.11
1035 0 2376 3360 42.56 CLAY 0.1
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Table 2. cont.

Borehole Depth Gravel Sand  Silt  Clay cmfrft

number (m) B (%) (%) (%) Soil Texture (2/2)
10.81 0 372 2737 6891 CLAY 0.17
YM36 11.29 0 3432 1649 49.17 CLAY 0.19
11.96 0 2342 1665 59.92 CLAY 0.14
12.36 0 2584 1890 55.10 CLAY 0.14
12.85 0 4491 2440 3046 CLAY LOAM 0.07
13.27 1 3375 2667 3880 CLAY LOAM 0.10
14.10 0 2443 2701 4844 CLAY 0.12
14.52 0 1736 29.08 53.57 CLAY 0.13
1547: - 0 18.69 - 23.67 . 57.51 CLAY 0.15
16.08 0 1781 2422 5790 CLAY 0.16
17.02 0 1657 2385 59.57 CLAY 0.16
17.63 0 2658 2342 49.99 CLAY 0.14
18.58 1 1872 2540 55.10 CLAY 0.15
19.19 0 2905 2475 4620 CLAY 0.12
1995 0 1978 2277 5127 CLAY 0.16
20.86 0 1345 2617 6034 CLAY 0.16
2217 1 1149 2032 67.58 CLAY 0.18
23.76 0 1320 2894 57171 CLAY 0.17
25.31 0 1344 3129 5526 CLAY 0.16
26.87 0 980 3181 5832 CLAY 0.15
28.42 0 969 3625 54.06 CLAY 0.17
29.98 0 1325 3167 55.08 CLAY 0.17
0.22 0 3229 2574 4193 CLAY 0.11
0.53 0 4109 1988 39.00 CLAY LOAM 0.09
0.92 0 4500 2134 33.58 CLAY LOAM 0.07
1.29 0 4491 2232 32.67 CLAY LOAM 0.07
1.56 10 6094 1085 17.80 GMS 0.04
1.90 0 2737 2577 4639 CLAY 0.10
2.20 0 2448 2624 49.10 CLAY 0.09
2.60 0 2679 2406 4880 CLAY 0.09
2.84 1 3112 2412 44.18 CLAY 0.09
3.15 0 3648 2539 38.10 CLAY LOAM 0.09
3.45 1 3593 2691 36.39 CLAY LOAM 0.09
3.76 0 2859 3522 3581 CLAY LOAM 0.09
4,06 2 4520 2153 3136 GMS 0.08
458 0 2414 3301 4285 CLAY 0.08
4.88 1 5332 2237 2361 SANDYCLAYLOAM 0.06
5.19 5 7262 920 1361 GMS 0.04
5.95 63 2236 583 840 LOAMY SAND 0.03
6.26 0 640 3782 5578 CLAY 0.14
6.56 1 2841 2945 4143 CLAY 0.11
YM59 6.87 0 1914 2626 54.58 CLAY 0.13
696 0 3238 23.09 4447 CLAY 0.10
7.51 1 1983 3713 4237 CLAY 0.10
7.90 0 3481 2698 38.14 CLAY LOAM 0.09
8.21 0 48.65 2257 28.76 SANDY CLAYLOAM - 0.07
9.76 0 17.05 3183 51.12 CLAY 0.12
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Table 2. cont.

Borchole  Depth Gravel Sand  Silt  Clay C‘(’)‘;“g{
number (m) %) B (%) (%) Soil Texture (e/g)
T3 0 7238 222 649 CLAY 0.16
1183 0 1304 2063 6615 CLAY 0.12
1260 2 3006 2370 44.60 CLAY 0.12
1424 0 1679 2843 5471 CLAY 0.14
1580 0 1615 2620 5765 CLAY 0.15
1735 0 2366 4216 3417  CLAYLOAM 0.09
1891 0 1192 3200 56.08 CLAY 0.15
2046 0 1608 2610 5776 CLAY 0.17
201 0 1226 2805 59.69 CLAY 017
2521 0 1856 3434 4701 CLAY 0.13
2668 0 1892 3659 4423 CLAY 0.13

32




In principle, the theory of conductivity measurements for the constant-heéd borehole test is
the same as that for the permeameter test. The only difference is that the ratio H/a for the constant-
head borehole test is much larger (20 to 400) than that for the permeameter test. Existing solutions
(Glover, 1953; Reynolds and others, 1983) cannot provide accurate results. Xiang’s solution for
permeameter tests (equation 16) only performs well for ratios H/a < 10. To improve the existing
solution for the case with a ratio of H/a = 10, on the basis of Glover’s (1953) solution, we use the

following boundary condition:

=BH at z* = z,*, and r* = g* (19)

~ where z, is the coordinate of maximum pressure from Glover’s pressure solution, the * denotes

dimensionless parameters (divided by H), and [ is a weighting factor to reduce the water pressure
on the basis of Glover’s (1953) solution. Using the boundary condition described in equation 19

results in the following expression for hydraulic conductivity (Xiang and Chen, 1994):

9
K. =
B 2nH?B

[a- zo)(smh‘lla 1oz | o1 2 z) —a?+1-2) +\/a +2.2] (20)

For the borehole test, the ratio a/H is very small; therefore, equation 20 reduces to equation 9.

Comparing equation 9 and equation 20 results in the following:

41— 1z
C——-[(l z,)(sinh ™! ”+smh z) a2 +(1-2)? +a?+2,2]
B a \/ \/ (21)

The solution for pressure potential is:

1 %*
(1-z )(smhl ‘ +smh1 *) \/r +(1- z) +\/r2+z
v, =P - 22)
(1- z-)(sinh™ *0+sinh'1—2)—\/a +(1- )2 +ya 422
a

After the maximum point z,* is found, equation 22 can be used to evaluate the pressure
distribution. Xiang and Chen (1994) have shown that the pressure calculated by equation 22 is

closer to the actual pressure than the pressure calculated by the other solutions and have shown that
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equations 12 and 21 provide a better match of the C coefficient with those obtained from numerical
simulations. The roots z, and the C coefficients for different ratios of H/a are available from Tables
1 and 2 in Appendix A of Xiang and Chen (1994). Once the C coefficient is calculated, the

conductivity can be calculated according to equation 9.

Multistep Constant-Head Borehole Infiltration Test

In the previous analysis of the -constant-head-borehole test, the soil is assumed to be
homogeneous; however, most subsurface soils consist of different layers, particularly on the scale
of the borehole. (Xiang, 1994b) proposed a technique, the multistep constant-head borehole
infiltration test, to estimate the field-saturated hydraulic conductivity of layered soils. In this
technique, the constant-head borehole tests are repeated at different depths depending on the

location of the layers. Considering n tests at n different depths results in the following n equations:

‘Zizlt)&11)11== o,
2nK,.,D, +2nK,,D,,
fs1 fs2 =0, (23)

27erD +27szD ,t. 27K fm 2 =0,

where Djj is the coefficients for the j th test and the i th layer. It is equal to the flow rate from layer

i of the borehole at the test j for Kfsj = 1. It can be expressed as

=—a'H? J' avlp

hu—l

D;;

'=a‘ de # 1 (24)
Assuming that the soil below the borehole is the same as the layer one (j = 1) results in: -

Dy =H?* -a _d" +2 25)

1 a* aW; *2
- f —L |«

o
where k= h / H, 26)
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and Hj is the water column height in the borehole for the j th test, and 4j is defined as the distance

from the bottom of the borehole to the top of the layer i. The integration in equations 24 and 25 cah

be obtained from Xiang (1994b). Equation 23 can be rewritten in matrix form as:

Dll 0 . 0 Kfsl Qtl

D, D, .. 0|k,
271: 21 22 f52 — QIZ (27)

Dnl Dn2 . Drm Kfsn Qm

All coefficients in this matrix can be determined according to equations 24, 25, and 26. Solving the

system of equations in 27 yields the conductivity of each layer.

Laboratory Methods

Soil Texture, Water Content, Bulk Density, and Porosity

Particle-size analyses were conducted by sieviﬁg the >2-mm fraction and the percent silt and
clay was determined by pipette analysis (Gee and Bauder, 1982). Sediment samples that contained
> 2% gravel were classified following (Folk, 1974) and those that contained < 2% gravel were
classified according to the U.S. Department of Agriculture (1975). Gravimetric- and volumetric-
water content was determined by weighing and oven drying the samples at 105°C at 24-hr intervals
until the weight change‘ was less than 5%. Bulk density was calculated by dividing the weight of
the oven-dried sample by the sample volume. Porosity (n) was calculated from the bulk density

(pyp) data thus:
n=1-py/pg (28)

Particle density (ps) was measured in 10 samples and ranged from 2.64 to 2.78 kg m-3. Because
these values are sufficiently close to 2.65 kg m=3, the particle density of quartz, this value was

used to calculate porosities.
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Water Potemial

Water potential was measured in the laboratory with two different instruments, a water
activity meter (model CX-1) and a thermocouple psychrometer with sample changer (model SC-
10), both manufactured by Decagon Devices, Inc., Pullman, WA. The water activity meter
measures the water activity (Aw) of soil samples from 0.100 to 1.000 that corresponds to water
potentials of —316 to 0 MPa with a resolution of £0.003 water activity units across the range (Gee
and others, 1992). The water activity (4,,) is converted to water potential using the Kelvin
equation:

¥ =RT/MIn(A,) (29)
where R is the ideal gas constant, T is temperature (K), and M is the molecular mass of water. The
accuracy of the water activity meter was checked using saturated salt solutions before and after
each set of samples. Soil samples were compressed in small plastic cups (4 mm diameter by 10
mm high) to a height of 5 mm using a no. 7 stopper and were analyzed immediately aft‘lcr taking
them from the soil containers.

The Decagon SC-10 was calibrated using NaCl solutions that ranged in concentration from
0.05 M to saturated and corresponded to water potentials of —0.2 to —38 MPa at 20°C (Lang,
1967). Typical psychrometric output during evaporatibn shows that the plateau is stable. The 120 s
microvolt output reading was used to calculate water potential. A set of 20 calibration solutions
were prepared and measured initially to test the instrument, and the resulting regression line gave r2
of 1.0 and a standard error of estimate of 0.06 MPa. Because water potentials from —0.01 to
—10 MPa correspond to.relative humidities from.93 to 100 percent, all measurements were
conducted in a glove box lined with wet paper towels to minimize water loss from the samples.
Temperature variations in the laboratory were minimal. During routine analyses, a set of six
samples were placed in the sample changer; after 30 min of temperature- and vapor-pressure
equilibration, the output was scanned to determine what bracketing standards should be run with
the samples. The standards were then placed in the chamber and after another 30-min equilibrationv

period, the samples and standards were measured. Least-squares linear regression was used to
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calculate the sample water potential. Water potential measurements with the SC 10 thermocouple
psychrometer were much more time consuming than those with the water activity meter because of
the time required for calibration and temperature equilibration.

Field psychrometers were calibrated in the laboratory at three different temperatures (15°, 20°,
and 25° C) and with 4 NaCl solutions (0.0 M, 0.5 M, 1.0 M, 1.5 M) and corresponded to water
potentials of 0.0, -2.2, —4.6, and —7.0 MPa at 20°C (Lang, 1967). Calibration procedures similar
to those outlined in Brown and Bartos (1982) were followed. The calibration data for all
psychrometers were combined to develop the following general calibration equation using stepwise

regression procedures (Meyn and White, 1972):
v =0.0823-0.5000V +0.0095VT (30)

where y is water potential (MPa), V is voltage (LV), and T is temperature (°C). The general
regression equation had an r2 of 0.99 and a standard error of estimate of 0.025 MPa.

Voltage output from psychrometers increases with decreasing water potential down to a water
potential of approximately —8, as represented by equation 30. Below this, the voltage output
decreases with decreasing water potential (Brown and Bartos, 1982). Therefore, low voltage
output from thermocouple psychrometers may correspond to very dry soil (beyond the calibration
range of the psychrometers) or wet soil (Wiebe and others, 1971). To distinguish between dry and
wet soil, 100 0.1-s readings were recorded to determine the evaporation curve for each
psychrometer because the shape of the evaporation curve is narrow and spiked in the dry range and
is flat and stable in the wet range. Psychrometer readings depend on the magnitude and duration of
the cooling current. A Peltier cooling current of 5 milliamps (ma) and a 30-s cooling time are
considered optimal (Brown and Bartos, 1982) and were used in this study. A water bath (Model
7011, Hart Scientific, Pleasant Grove, UT) equipped with a temperature control of 1 x 104°C
standard deviation was used to provide a constant temperature environment. Approximately 0.5 m
of lead wire was submerged in the water bath during calibration to minimize heat conduction along
the wires. Psychrometers were calibrated with the 100-ft- (30-m-) long cable lengths for field

installation.
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Meteoric Chloride

To determine chloride content, double-deionized water was added to the dried soil sample in
a 3:1 ratio. Samples were agitated on a reciprocal shaker table for 4 hr. The supernatant was
filtered through 0.45 pum filters. Chloride was then analyzed by ion chromatography or by
potentiometric titration. Water fluxes were calculated for each depth interval from the chloride
concentration data according to equation 4.

Cl/Br ratios were-measured :in- 14. samples from the surface to 70 ft (21 m) depth from

borehole. Both ions were analyzed using ion chromatography by HydroGeochem (Tucson, AZ).

Cosmogenic Chlorine-36

The 36CI/Cl ratios were measured by Tandem Accelerator Mass Spectrometry (TAMS) at
Lawrence Livermore National Laboratory according to procedures outlined in Elmore and others
(1984). Prcparation of 36Cl samples for analysis followed procedures outlined in Mattick and
others (1987). Double-deionized water was added, and the mixture was stirred with an electric
stirrer for approximately 12 hr. AgCl was precipitated from the chloride solution by addition of
AgNOj3. Because 368 interferes with 36Cl analysis, Ba(NO3); was added to the solution to
precipitate BaSO4. In order to evaluate chemical contamination during sample preparation, a blank
(Weeks Island halite from Louisiana, which contains no 36Cl) was subjected to the same
purification procedure as the soil samples. The AgCl samples were wrapped in aluminum foil to
prevent reduction of Ag* to Ag prior to analysis. Uncertainties were calculated following Elmore

and others (1984) and are reported as one standard deviation.
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RESULTS

Soil Texture and Water Content

The predominant soil textures varied with geomorphic setting (table 2). Soil textures in
Blanca Draw were predominantly clay and clay loam. Textures in the interstream setting were
variable. Some of the profiles were primarily clay (YM14), whereas others were predominantly
sandy clay loam to sandy loam (YM13). The fissured sediments were primarily loam, whereas the
profiles 10 m distant from the fissure were primarily clay. Sediments beneath the borrow pit and in
the adjacent profile ranged from clay to muddy gravel.

Spatial variability in water content was controlled primarily by variations in sediment grain
size (table 2). Water contents in different geomorphic settings were variable (figs. 3, 4, 5, and 6).
Water content in closely spaced boreholes in Blanca Draw was similar (fig. 3a, d, j, m, and p).
Water contents were up to 2 times higher in the upper 27 to 33 ft (8 to 10 m) of fissured sediments
than in the profile 33 ft (10 m) distant from the fissure (fig. 5, table 3). The highest water contents
were measured in the profile in the borrow pit (fig. 6). Laboratory-measured water content in the
profile in the borrow pit was up to 12 times higher than water content measured at the same
elevation in a profile 33 ft (10 m) distant from the borrow pit. Both boreholes in and near the
borrow pit were drilled after rainfall. Small changes in water content (0.02 to 0.04 m3
m-3) were monitored by the neutron probe down to a depth of 5 ft (1.5 m) in YM25 (sandy
interstream site, fig. 7h) and in YM69 (Blanca Draw adjacent to the pseudo-fissure, fig. 7f). Much
larger changes in water content (0.14 to 0.18 m3 m-3) were measured down to 5 ft (1.5 m) in
neutron probe access tubes in Blanca Draw (YMS8NP, fig. 7b) and in the fissure (YM55NP, fig.
7i). Water content monitored in a neutron probe access tube 33 ft (10 m) distant from the fissure
was temporally invariant (YMS6NP, fig. 7j). The calibration equation for the neutron probe was
developed in silty loam soil and does not seem to apply to the coarse-textured soils in the borrow
pit because the calculated volumetric water contents are extremely low. Water content monitored in

the remainder of the neutron probe access tubes did not vary with time (fig. 7).
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Figure 3. Profiles of gravimetric water content, chloride concentrations, and water potential for boreholes
- in Blanca Draw. For location of boreholes, see figure 1.

40



—
Y
~

(b)

Borehole YM 13 (c)

20

Depth (m)

0

30

—
o
~

(e)

Borehole YM 14

10

Depth (m}

20

30

7

—~
«Q
-

(h)

Borehole YM 28

10

Depth (m)

20

30

?

Py
=
=

(k)

Borehole YM 60

104

Depth (m)

20

=

30

—
~

Depth (m)

20

04
10 g}_

(m) .

T

Borehole YM 66

==

—
o
~

RE—

(P)

Borehole YM 70

10

Depth (m)

20

=
%
f%'
=

30
0.0

0.1

0.2
Water content (g g“)

o 2 4 6 8
Chloride (g m‘a) x 1000

(©

(f)

@i

(n)

(@)

-

14 12 10 -8 6 -4 2 0

Water potential (MPa)

QAa4207¢c
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Figure 5. Profiles of gravimetric water content, chloride concentrations, and water
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Porosities of sediments estimated from bulk densities of samples collected in and adjacent to
the area of the proposed repository ranged from 29 to 54% and averaged 43% in the upper 7 ft
(2 m), whereas porosities ranged from 15 to 32% and averaged 26% in the 7 to 82 ft (2 to 25 m)
depth interval. On the basis of porosity and water cbntent data, saturation of the sediments in the
top 2 m ranged from 20 to 40%, whereas saturation of the sediments from 7 to 82 ft (2 to

25 m) depth was = 70%.

Water Potential

Water potentials measured with the Decagon SC10 thermocouple psychrometer and the water
activity meter were similar (fig. 8). In the remainder of the results section we will present the water
potentials measured with the Decagon SC10. Water potential measured by thermocouple
psychrometers is the sum of matric and osmotic potential. The osmotic potentials were generally
less than —1 MPa (table 4). The minimum osmotic potential was —2.2 MPa and corresponded to the
highest chloride concentration (17,821 g m-3) in YM43. Osmotic potentials generally constituted
 <15% of the water potential. The profile for YM28 is an exception in that osmotic potentials
constituted 1 to 74% of the water potential. The gravitational potential is estimated from the
elevation above the water table and was relatively uniform in the shallow unsaturated zone
(maximum range 0.3 MPa in YM36; table 4).

Typical water potential profiles measured in the laboratory had low potentials in the upper
7 ft (2 m) (12 to —2 MPa) that increased with depth below the minimum to maximum values that
ranged from —6 to —0.4 MPa in different profiles (table 4). The low water potentials indicate that
the sediments are dry; the upward decrease in water potentials indicates an upward driving force
for water flow. Boreholes drilled after rainfall had high water potentials near the surface that
decreased sharply at the base of the wetting front (table 4).

Profiles in Blanca Draw sampled after long dry periods had low water potentials near surface

(=10 to —12 MPa in YM43; fig. 30, table 4). Many of the profiles in the ephemeral stream setting,

79



Water activity meter

Depth (m)

Decagon SC10

T T ng T T T T

T
14 12 10 -8 -6 -4 -2 0

Water potential (MPa) QAa24905¢

Figure 8. Comparison of water potential mea-
sured with a Decagon SC10 sample changer and

water activity meter in soil samples from bore-
hole YM28.
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Table 4. cont.

Gravitational Water Total Osmotic

Borsehole Depth potential potential potential Depth Potential
"number ~ (m) - '(MPa) ' (MPa) (MPa) {m) (MPa)
¥M10 1.79 2.09 -6.72 -463 1.74 -1.73
2:10 2.09 -7.16 -5.07 2.05 -1.00
2.40 2.08 -6.96 -4.88 2.35 -0.81
2.74 2.08 -6.77 -4.69 2.69 -0.67
3.03 2.08 -6.51 -4.43 3.03 -0.70
3.32 2.08 -6.60 -452 3.27 -0.77
3.71 2.07 -6.55 -4.48 3.67 -0.65
3.92 2.07 -6.25 -4.18 3.88 -0.72
4.26 2.07 -6.71 -4.64 4.21 -0.72
453 2.06 -6.75 -4.69 4.49 -0.72
4.81 2.06 -6.77 - =471 4.76 -0.71
5.48 2.05 -5.91 -3.86 5.75 -0.73
5.80 2.05 -6.05 -4.00 6.13 -0.71
6.18 2.05 -6.05 -4.00 6.41 -0.68
6.45 2.04 -5.57 -3.52 7.08 -0.58
7.10 2.04 -5.68 -3.65 7.69 -0.60
7.73 2.03 -5.77 -3.74 8.33 -067
8.37 2.03 -5.71 -3.68 8.85 -0.62
8.89 2.02 -5.84 -3.82 9.76 -0.58
9.81 2.01 -6.14 -4.12 10.71 -0.58
10.80 200 -6.09 -4.09 11.65 -0.65

11.70 1.99 -5.98 - =398

0.27 2.1 . -1.69 0.42 0.22 0.00
0.57 2.10 -8.72 -6.62 0.53 0.00
0.91 2.10 -3.24 -1.14 0.86 0.00
1.18 2.10 -5.28 -3.18 1.14 0.00
1.49 2.09 ‘ -5.25 -3.16 1.44 0.00
1.85 2.09 -4.29 -2.20 1.81 0.00
2.16 2.09 -3.17 -1.08 2.11 0.00
2.43 2.08 -2.43 -0.34 2.39 0.00
2.83 2.08 -261 -0.53 2.78 0.00
313 2.08 -254 -0.46 3.09 -0.01
YM11 3.47 2.07 -1.86 0.22 3.42 -0.02
3.77 2.07 -1.92 0.16 3.73 0.00
4.05 2.07 -1.77 0.30 4.00 -0.01
4.38 2.06 -1.79 0.28 4.34 -0.01
4.72 2.06 -1.33 0.74 4.67 -0.01
5.45 2.05 ) -1.67 0.39 5.40 -0.01
5.75 2.05 -1.54 . 0.51 5.71 -0.01
6.45 2.04 -1.66 0.39 6.41 -0.02
7.31 2.04 -1.51 0.53 7.26 -0.03
8.25 2.03 -1.68 0.34 8.21 -0.05
0.26 2.11 -2.85 -0.75 0.22 -0.07
0.53 2.10 -6.15 -4.04 0.46 -0.23

059 2.10 -6.52 -4.41 0.83 -0.57
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Table 4. cont.

Total

Gravitational Water Osmotic
Borehole Depth potential potential potential Depth Potential
numbar {m) - (MPa) {MPa) {MPa) {m) (MPa)
1.19 2.10 -6.55 -4.45 1.15 -0.74
1.46 2.09 -5.51 -3.42 1.42 -0.74
1.83 2.09 -4.66 -257 1.81 -0.66
2.12 2.09 -4.26 -2.17 2.10 -0.73
2.42 2.08 -3.56 -1.48 2.40 -0.57
2.71 2.08 -3.06 -0.97 2.69 -0.42
3.02 2.08 -3.03 -0.95 2.99 -0.40
YM12 3.32 2.08 -2.60 -0.52 3.30 -0.33
3.61 2.07 =222 -0.15 3.57 -0.23
3.93 2.07 -1.68 0.39 3.91 -0.22
4.22 2.07 -1.53 0.53 4.18 -0.17
4.43 2.06 -1.32 0.74 4.40 -0.15
5.27 ~ 2.06 -1.16 0.90 5.19 -0.10
0.04 2.11 -0.07 2.03 0.08 0.00
0.23 2.1 -0.10 2.00 0.27 0.00
0.47 2.10 -1.55 0.56 0.51 0.00
1.00 2.10 -0.91 1.19 1.00 -0.14
1.18 2.10 -2.84 -0.74 1.14 -0.19
1.58 2.09 -4.87 -2.77 1.53 -0.39
2.07 2.09 -3.80 -1.71 2.02 -0.82
2.16 2.09 -3.38 -1.30 2.08 -0.71
2.40 2.08 -2.94 -0.86 2.51 -0.44
YM13 2.80 2.08 -2.68 -0.60 2.75 -0.45
3.13 2.08 -255 -0.48 3.09 -0.48
3.40 2.07 -2.24 -0.17 3.39 -0.26
3.83 2.07 -2.88 -0.81 3.79 -0.34
4.20 2.07 -2.89 -0.83 4.09 -0.27
4.44 2.06 -2.66 -0.60 '4.40 -0.22
4.88 2.07 -3.54 -1.47 4.84 -0.27
5.33 2.06 -3.43 -1.37 5.28 -0.25
5.90 2.05 -3.20 -1.15 5.86 -0.21
6.40 2.05 -3.02 -0.98 6.35 -0.24
7.28 2.04 -2.99 -0.96 7.23 -0.26
7.76 2.03 -3.06 -1.03 7.72 -0.22
8.43 2.03 -295 -0.92 8.39 -0.21
8.98 2.02 -3.03 -1.01 8.94 -0.22
9.44 2.02 -3.41 -1.39 9.40 -0.20
10.80 2.00 -3.14 -1.14 10.71 -0.20
11.30 2.00 -3.13 -1.13 11.29 -0.17
0.05 2.1 -0.23 1.88 0.01 0.00
0.15 2.1 -0.17 1.94 0.10 0.00
0.24 2.1 -0.41 1.69 0.19 0.00
0.42 2.10 -1.74 0.36 0.37 -0.21
0.91 2.10 -4.31 -2.21 0.86 -0.42
1.25 2.10 -4.43 -2.33 1.17 -0.40
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Table 4. cont.

Gravitational Water Total Osmotic
Borehole Depth potential potential potential Depth Potential
number {m) {MPa) {MPa) (MPa) {m) {MPa)
1.52 2.09 -3.96 -1.87 1.47 -0.38
2.04 2.09 -3.32 -1.23 1.99 -0.43
2.49 2.08 -3.18 -1.10 2.45 -0.37
2.86 2.08 -3.22 -1.14 2.81 -0.41
¥YM14 3.19 2.08 -3.52 -1.44 3.15 -0.45
3.47 2.07 -3.67 -1.60 3.42 -0.39
3.80 2.07 -394 -1.87 3.76 -0.34
4.20 2.07 -367 -1.60 4.15 -0.37
4.66 2.06 -3.58 -1.52 461 -0.38
5.36 2.06 -4.33 -2.27 5.31 -0.38
5.85 2.05 -431 -2.26 5.80 -0.34
6.48 2.04 -3.96 -192 6.44 -0.31
7.28 2.04 -3.63 -1.59 7.23 -0.32
7.80 2.03 -3.63 -1.60 7.75 -0.30
8.56 2.02 -3.99 -1.97 8.51 -0.29
9.56 2.01 -3.52 -1.51 952 -0.29
0.04 2.11 -0.19 1.91 2.52 0.00
0.13 2.1 -0.06 2.04 2.61 0.00
0.41 2.10 -0.12 1.99 2.71 0.00
0.50 2.10 -0.11 1.99 2.80 0.00
0.56 2.10 -0.21 1.90 2.89 0.00
0.59 2.10 -0.08 2.02 3.04 0.00
0.99 2.10 -0.12 1.98 3.47 0.00
1.17 2.10 -0.06 2.04 3.65 0.00
1.72 2.09 -0.05 2.04 4.20 0.00
1.81 2.09 -0.09 2.00 4.29 0.00
1.98 2.09 -0.15 1.94 4.47 0.00
YM1S 2.40 2.08 -0.20 1.89 5.39 0.00
2.74 2.08 -0.61 1.47 5.55 0.00
2.98 2.08 -0.29 1.79 5.74. 0.00
3.12 2.08 -0.36 1.72 6.07 0.00
3.35 2.08 -0.23 1.85 6.29 0.00
3.68 2.07 -0.24 1.83 6.62 0.00
3.90 2.07 -0.30 1.77 6.96 0.00
4.23 2.07 -0.37 1.70 7.48 0.00
4.39 2.06 -0.44 1.62 8.34 0.00
5.08 2.06 -1.02 1.04 9.24 0.00
5.95 2.05 -0.35 1.70 9.76 0.00
6.85 2.04 -0.39 1.65 10.25 0.00
7.37 2.04 -0.26 1.77 11.24 0.00
7.86 2.03 -0.29 1.74 11.53 0.00
7.81 2.03 -0.30 1.74 12.82 0.00
9.14 2.02 -0.26 1.76 13.62 0.00
10.40 2.01 -0.31 1.70 14.65 0.00
11.20 2.00 -0.47 1.52 15.52 0.00
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Table 4. cont.

Gravitational Water Total Osmatic
Borehole Depth potential potential potential Depth Potential
number {m) {MPa) (MPa) (MPa) {m) (MPa)
5.96 2.05 -8.41 -6.36 6.32 -0.65
6.26 2.05 -7.82 -5.77 6.63 -0.64
6.57 2.04 -6.56 =452 8.21 -0.61
6.87 2.04 -6.73 -468 9.86 -0.60
7.24 2.04 -6.66 -462 11.30 -0.43
7.64 2.03 -6.61 -4.58 12.80 -0.63
8.15 2.03 -6.35 -4.33 14.50 =0.71
8.61 2.02 -6.18 -4.16 16.10 -0.63
9.19 2.02 -6.95 -493 17.60 -0.67
9.80 2.01 -7.74 -5.73 20.90 -0.67
10.30 2.01 -6.69 -4.68 23.80 -0.69
10.70 2.00 -6.35 -4.35 26.90 =0.66
11.20 2.00 -6.26 -4.26 30.00 -0.75
11.90 1.99 -5.81 -3.81
12.30 1.99 -6.06 -4.07
12.80 1.98 -6.08 -4.10
YM36 13.20 1.98 -5.83 -3.85
13.70 1.97 -5.81 -3.83
14.50 1.97 =5.76 -3.79
15.40 1.86 -5.74 -3.79
16.00 1.95 -5.70 -3.75
17.00 1.94 -5.59 -3.64
17.60 1.94 =574 -3.81
18.50 1.93 -5.18 -3.25
19.10 1.92 -5.40 -3.48
19.90 1.91 -5.41 -3.49
20.80 1.90 -4.90 -299
22.10 1.89 -5.52 -3.63
23.50 1.88 -5.12 -3.24
25.30 1.86 -490 -3.04
26.80 1.85 -4.88 -3.03
29.90 1.81 -5.27 -3.46
0.04 2.11 -6.30 -4.20 0.08 0.00
0.19 2.11 -6.46 -4.35 0.24 -0.02
0.34 2.1 -452 -2.41 0.39 -0.01
0.50 2.1 -452 -2.41 0.54 -0.01
0.92 212 -5.23 -3.12 0.97 0.00
1.07 2.12 -6.51 -4.39 1.33 0.00
1.38 212 -5.34 -3.21 1.94 0.00
1.68 2.12 -5.05 -293 2.25 0.00
1.99 2.13 -5.53 -3.40 2.55 0.00
2.84 2.14 -4.96 -2.82 2.89 0.00
3.15 2.14 -3.44 -1.30 3.19 0.00
3.45 2.14 -4.01 -1.87 3.50 0.00
3.76 2.14 -3.79 -1.65 3.80 0.00
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Table 4. cont.

Gravitational Water Total Osmotic
Borshole Depth potential potential potential Depth Potential
number (m) {MPa) (MPa) (MPa) {m) (MPa)
4.03 2.15 -3.87 -1.72 4.08 0.00
4.40 2.15 -3.24 -1.09 4.44 0.00
4.70 2.15 -3.32 -1.17 4.75 0.00
5.01 2.16 -3.16 -1.00 5.05 0.00
5.31 2.16 -3.62 -1.46 5.36 0.00
5.59 2.16 -3.67 -1.51 5.63 0.00
5.95 217 -2.61 -0.45 6.00 0.00
6.26 217 -2.61 -0.44 6.30 0.00
6.96 2.18 -2.44 -0.26 7.00 0.00
7.51 2.18 -2.39 -0.20 7.55 0.00
8.12 2.19 -2.29 -0.10 8.16 0.00
YM41 8.73 2.19 -2.10 0.09 9.62 0.00
9.58 2.20 -2.37 -0.17 11.18 0.00
10.31 2.21 -2.50 -0.30 12.73 -0.04
11.13 2.22 -2.09 0.13 14.29 -0.09
11.86 2.22 -2.56 -0.34 15.84 -0.08
12.69 2.23 -2.41 -0.18 17.40 -0.03
13.39 - 2.24 -2.30 -0.06 20.60 -0.02
14.24 2.25 -2.32 -0.07
1494 2.25 -1.86 0.40
15.77 2.26 -2.27 -0.01
16.47 2.27 -1.28 0.99
17.35 2.28 -1.41 0.87
18.59 2.29 -1.75 0.54
19.21 2.30 =1.12 1.17
20.46 2.31 -1.23 1.08
22.01 2.32 -1.65 0.68
24.88 2.35 -1.21 1.14
0.04 2.11 =11.10 -8.98 0.08 -0.01
0.19 2.11 -9.76 -7.65 0.24 -0.02
0.34 2.10 -11.90 -9.78 0.39 -0.58
0.50 2.10 -12.20 -10.10 0.54 -222
0.65 2.10 -11.10 -8.97 0.69 -2.09
0.80 2.10 -10.40 -8.26 0.85 -1.80
1.23 2.10 -9.94 -13.20 1.27 -1.18
1.53 2.09 -9.72 -7.63 1.58 -0.96
1.84 2.09 -7.23 -5.14 1.88 -0.92
2.14 2.09 -6.12 -4.04 2.19 -0.86
2.39 2.08 -6.81 -4.73 2.43 -0.97
2.78 2.08 ¢ -5.71 -3.63 2.83 -0.85
3.09 2.08 -5.53 -3.46 3.13 -0.84
3.39 2.07 -5.58 -3.50 3.44 -0.80
3.70 2.07 -5.36 -3.29 3.74 -0.80
4.00 2.07 -5.77 -3.70 4.05 -0.81
4.34 2.07 -5.21 -3.14 4.38 -0.77
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Table 4. cont.

Gravitational Water Total Osmotic
Borahole Depth potential potential potential Depth Potential
number {m) (MPa) (MPa) (MPa) (m) {MPa)
464 2.06 -5.12 -3.06 4.69 -0.75
4.95 2.06 -4.98 -2.92 4.99 -0.76
5.25 2.06 -4.96 -2.90 5.30 -0.74
5.56 2.05 -481 -2.75 5.60 -0.38
5.89 2.05 -461 -2.56 5.94 -0.83
6.20 2.05 -5.61 -3.56 6.24 -1.30
6.81 2.04 -5.09 -3.05 6.85 -0.58
7.45 2.03 -4.28 -2.25 8.10 -0.60
¥YM43 8.05 2.03 -3.70 -1.67 9.04 -0.57
8.66 2.02 -3.21 -1.19 10.60 -0.54
9.52 2.01 -2.43 -0.41 12.20 -0.54
10.20 2.01 -3.31 -1.30 13.70 -0.48
11.10 2.00 -3.94 -1.94 14.00 -0.45
11.80 1.99 -4.27 -2.28 17.20 -0.42
12.60 1.98 -3.11 -1.13 20.30 -0.40
13.60 1.97 -452 -2.55
14.20 1.97 -3.87 -1.90
14.90 1.96 -457 -261
15.70 1.95 -3.21 -1.26
17.30 1.94 -4.02 -2.09
18.80 1.92 -3.44 -152
20.40 1.91 -3.34 -1.43
22.00 1.89 -3.00 -1.10
23.50 1.88 -4.30 -2.43
0.27 2.1 -5.32 -3.22 0.22 -0.01
0.57 2.10 -7.15 -5.05 0.53 0.00
0.97 2.10 -8.35 -6.25 0.92 0.00
1.36 2.09 -7.07 -4.97 1.32 0.00
1.67 2.09 -6.32 -422 1.62 0.00
1.97 2.09 -5.19 -3.10 1.93 0.00
2.28 2.09 -5.15 -3.06 2.23 0.00
2.92 2.08 -3.84 -1.76 2.87 0.00
3.22 2.08 -3.41 -1.34 3.18 0.00
3.53 2.07 -3.54 -1.46 3.48 0.00
3.83 2.07 -3.595 -1.48 3.79 -0.01
4.14 2.07 -4.22 -2.15 4.09 -0.01
4.47 2.06 -3.45 -1.38 4.43 0.00
4.84 2.06 -2.77 -0.71 4.79 0.00
5.14 2.06 -2.98 -0.93 5.10 0.00
5.45 2.05 -2.88 -0.83 5.71 0.00
6.03 2.05 -2.07 -0.02 5.98 0.00
6.68 2.04 -2.65 -061 6.62 -0.01
YMa4 8.04 2.03 -2.65 -0.62 7.99 0.00
8.79 2.02 -2.77 -0.75 8.74 -0.01
9.65 2.01 -2.01 0.00 9.61 0.00
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Table 4. cont.

Gravitational Water Total Osmotic
Borshole Depth potential potential potential Depth Potential

number {m) {MPa) {MPa) {MPa) {m) {MPa)
10.40 2.01 -259 -0.59 10.40 0.00
11.20 2.00 -2.24 -0.24 11.20 0.00
12.00 1.99 -2.49 -0.50 11.90 0.00
12.80 1.98 -2.35 -0.36 12.70 -0.06
14.20 1.97 -1.42 0.55 . 14.20 -0.04
15.90 1.95 -1.03 0.93 15.80 -0.03
17.30 1.94 -1.01 0.93 17.30 -0.05
22.80 1.88 -0.46 1.42 22.00 -0.02
0.27 2.11 -4.87 -2.77 0.22 -0.33
0.57 2.10 -7.15 -5.05 0.53 -0.89
1.33 2.09 -6.89 -4.79 1.29 -1.01
1.61 2.09 -7.76 -5.67 1.56 -0.93
1.94 2.09 -6.68 -4.60 1.90 -0.93
2.25 2.09 -7.88 -5.79 2.20 -0.42
2.89 2.08 -6.13 -4.05 2.84 -0.93
3.19 2.08 -6.15 -4.08 3.15 -0.86
3.50 2.07 -6.90 -4.82 3.45 -0.90
3.80 2.07 -6.51 -4.44 3.76 -0.86
4.12 2.07 -9.41 -734 4.06 -093
4.63 2.06 -7.01 -4.95 4.58 -0.86
493 2.06 -6.86 -4.80 4.88 -0.97
5.24 2.06 -5.82 -3.76 5.19 -1.15
6.00 2.05 -5.58 -353 5.95 -1.38
6.30 2.05 -6.11 -4.07 6.26 -0.22
6.61 2.04 -6.16 -4.11 6.56 -0.21
6.91 2.04 -5.74 -3.70 6.87 -0.68
717 2.04 -7.65 -5.61 6.96 -0.66
7.55 2.03 -5.70 -3.66 7.51 -0.81
YMS9 7.95 2.03 -5.72 -3.69 7.90 -0.73
8.25 2.03 -6.11 -4.08 8.21 -0.88
9.81 2.01 -5.67 -3.65 9.76 -0.49
11.20 2.00 -557 -357 11.10 -0.31
11.90 1.99 -5.93 -394 11.80 -0.66
12.70 1.98 -5.47 -3.49 12.70 -0.88
14.30 1.97 -5.35 -3.38 14.20 -0.66
15.80 1.95 -5.47 -352 15.80 -0.56
17.40 1.94 -491 -297 17.40 -1.04
19.00 1.92 -5.18 -3.26 18.90 -0.44
20.50 1.91 -4.86 -295 20.50 -0.61
22.10 1.89 -5.08 -3.19 22.00 -0.60
23.60 1.88 -4.93 -3.06 23.60 -0.83
25.30 1.86 -493 -3.07 25.20 -0.88
0.00 26.70 -0.81
0.05 2.1 -43.61 -41.50 0.10 0.00
0.21 2.11 -8.04 -5.93 0.28 -0.54
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Table 4. cont.

Gravitational Water Total Osmotic
Borehole Depth potential potential potential Depth Potential
number {m) (MPa) {MPa) (MPa) {m) (MPa)
0.36 2.1 -7.47 -5.35 0.43 -0.79
0.51 2.1 -7.62 -5.51 0.59 -0.90
0.66 2.11 -7.23 -5.12 0.74 -0.84
0.82 2.12 -6.07 -3.95 0.89 -0.80
0.97 2.12 -5.61 -3.49 1.04 -0.76
1.12 2.12 -5.39 -3.27 1.20 -0.69
1.43 2.12 -477 -2.65 1.50 -0.69
2.04 2.13 -464 -2.51 1.81 -062
YM66 2.68 2.13 =5.17 -3.03 2.1 -0.61
2.98 2.14 -4.64 -2.50 2.75 -0.54
1.73 2.12 -453 -2.41 3.03 -0.58
4.54 2.15 -3.69 -1.54 4.61 -0.49
5.45 2.16 -3.62 -1.46 5.52 -0.46
6.44 2.17 -4.13 -196 6.47 -0.43
7.14 2.18 -4.15 -1.97 7.20 -0.47
7.99 2.19 -3.91 -1.72 7.93 -0.435
8.76 2.19 -5.24 -3.05 8.71 -0.43
9.24 2.20 -3.78 -1.58 9.18 -0.45
9.76 2.20 -3.64 -1.43 9.72 -0.51
11.08 222 -3.75 -153 11.04 -0.40
12.63 2.23 -3.47 -1.24 12.60 -0.40
0.10 2.1 -5.04 -293 0.02 0.00
0.25 2.11 -7.67 -5.56 0.18 0.00
0.40 2.1 -7.48 -5.37 0.33 0.00
0.56 2.11 -8.34 -6.23 0.48 0.00
0.71 2.1 -7.59 -5.48 0.63 0.00
0.86 2.12 -7.94 -5.82 0.78 0.00
1.17 2.12 -5.45 -3.33 0.94 -0.10
1.47 2.12 -3.97 -1.85 1.12 -0.06
1.78 2.13 -395 -1.82 1.42 -0.36
2.08 213 -392 -1.79 1.73 -0.44
2.72 2.13 -2.79 -062 2.34 -0.53
YM70 3.03 2.14 -2.71 -0.57 2.67 -0.55
3.33 2.14 -2.82 -0.68 2.98 -0.50
3.64 2.14 -3.26 -1.12 3.28 =0.41
3.94 2.15 -3.12 -0.97 3.59 -0.42
4.28 2.15 -293 -0.78 3.89 -0.42
4.58 2.15 -3.17 -1.01 4.84 -0.44
5.19 2.16 -3.59 -1.43 5.14 -0.60
5.83 2.16 -4.10 -1.94 5.60 -0.43
6.74 2.17 -3.52 -1.34 6.85 -0.42
7.69 2.18 -3.52 -1.34 7.83 -0.43
8.60 2.19 -4.43 -2.23 8.53 -0.46
9.55 2.20 -3.55 -1.34 9.47 -0.42
0.10 2.1 -5.19 -3.08 0.02 0.00
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Table 4. cont.

Gravitational Water Total Osmotic

Borshole Depth potential potential potential Depth Potential
number {m) {MPa) (MPa) (MPa) {m) (MPa)
0.25 2.1 -8.29 -6.18 0.18 0.00
0.40 2.11 -9.35 -7.24 0.33 0.00
0.56 2.11 -8.99 -6.87 0.48 0.00
0.71 2.1 -9.24 -7.12 0.63 0.00
YM71 0.86 2.12 -9.50 -7.39 0.78 -0.02
1.17 2.12 -6.02 -3.90 1.12 -0.02
1.47 2.12 -5.65 -352 1.42 -0.09
1.78 2.13 -6.85 -4.72 1.73 -0.16
2.08 2.13 -5.69 -3.56 2.03 -0.28
2.39 213 -5.12 -299 2.34 -0.28
2.64 -0.30
2.95 -0.40
3.25 -0.45
3.56 -0.55
3.86 -0.57
4.20 -0.55
450 -0.43
4.96 -0.29
5.75 -0.26
6.67 -0.29
8.07 -0.16
8.71 -0.21
9.32 -0.22
0.10 2.1 -5.20 =3.09 0.02 0.00
0.25 2.11 -6.81 =470 0.18 0.00
0.40 2.10 -7.02 -492 0.33 0.00
0.56 2.10 -6.19 -4.08 0.48 0.00
0.71 2.10 -6.14 -4.04 0.63 0.00
0.86 2.10 -5.20 -3.10 0.79 -0.04
1.01 2.10 -497 -2.87 0.94 -0.16
1.20 2.10 -267 -0.58 1.12 -0.26
1.50 2.09 -3.16 -1.07 1.42 -0.39

1.81 2.09 -3.66 -1.57 1.73 -053
2.1 2.09 -3.76 -1.67 2.03 -0.56
2.42 2.08 -3.88 -1.80 2.34 -0.54
2.75 2.08 -2.89 -0.81 2.67 -0.37
3.06 2.08 -3.04 -0.96 2.98 -0.32
YM72 3.36 2.07 -3.09 -1.02 3.28 -0.30
3.67 2.07 -3.37 -1.30 3.59 -0.28
3.97 2.07 -299 -0.92 3.89 -0.30
4.27 2.07 -2.91 -0.85 4.84 -0.27
4.61 2.06 -352 -1.46 5.14 -0.27
5.07 2.06 -3.97 -1.91 5.60 -0.27
6.01 2.05 -3.96 -1.92 6.85 -0.25
6.93 2.04 -4.22 -2.18 7.83 -0.21
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Table 4. cont.

Gravitational Water Total Osmotic

Borehole Depth . potential potential potential Depth Potential
number {m) {MPa) {MPa) {MPa) {m) (MPa)
7.90 2.03 -451 -2.48 8.91 -0.17
0.10 2.11 -497 -2.86 0.02 0.00
0.25 2.1 -5.74 -3.63 0.18 -0.01
0.41 2.10 -6.21 -4.10 0.33 0.00
0.56 2.10 -6.31 -4.21 0.48 0.00
0.71 2.10 -6.10 -4.00 0.63 -0.07
0.86 2.10 -5.89 -3.79 0.79 -0.44
1.02 2.10 -6.15 -4.06 0.94 -0.91
1.20 2.10 -452 -2.43 1.12 -0.98
1.50 2.09 -4.14 -2.04 1.42 -0.93
1.78 2.09 -4.59 -2.50 1.73 -0.90
2.11 2.09 =-3.82 -1.73 2.03 -0.72
2.75 2.08 -3.11 -1.03 2.67 -0.40
YM73 3.06 2.08 -3.36 -1.29 2.98 -0.37
3.36 2.07 -4.07 -2.00 3.28 -0.38
3.67 2.07 -3.70 -1.62 3.59 -0.37

3.97 2.07 -3.59 -152 3.89 -0.39 -
4.31 2.07 -3.00 -0.93 4.23 -0.40
461 2.06 -3.60 -1.54 453 -0.40
5.22 2.06 -353 -1.47 5.14 -0.43
6.17 2.05 -3.54 -1.50 6.09 -0.39
6.93 2.04 -3.68 -1.64 6.85 -0.36
7.84 2.03 -4.11 -2.08 7.80 -0.32
8.76 2.02 -3.93 -1.91 8.70 -0.32
9.58 2.01 -4.05 -2.03 9.50 -0.33
0.10 2.11 -10.43 -8.33 0.02 0.00
0.25 2.1 -9.47 -7.36 0.18 0.00
0.40 2.1 -9.29 -7.17 0.33 0.00
0.56 2.1 -8.69 -6.58 0.48 0.00
0.71 2.11 -8.95 -6.84 0.63 0.00
0.86 2.12 -9.29 -7.17 0.78 0.00
1.23 212 -7.15 -5.03 1.15 -0.40
1.53 212 -6.31 -4.19 1.46 -0.55
1.84 2.13 -6.12 -3.99 1.76 -0.66
214 2.13 -5.57 -3.44 2.07 -0.65
2.45 213 -6.17 -4.04 2.37 -0.50
YM74 2.78 2.14 -3.44 -1.31 2.71 -0.35
3.09 2,14 -3.45 -1.31 3.01 -0.31
3.39 2.14 -3.56 -1.42 3.62 -0.40
3.70 2.14 -2.96 -0.81 3.92 -0.37
4.00 2.15 -4.88 =2.74 517 -0.25
4.18 2.15 -3.20 -1.05 6.12 -0.25
5.10 2.16 -3.63 -1.47 7.03 -0.21
6.20 2.17 -2.87 -0.70 7.67 -0.21
2.18 -3.69 -152 8.59 -0.21
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Table 4. cont.

Gravitational Water Total Osmotic

Borshole Depth potential potential potential Depth Potential

number {m) {MPa) (MPa) (MPa) {m) (MPa)
7.75 2.18 -3.52 -1.34 9.69 -0.20
8.66 2.19 -4.35 -2.16
9.76 2.20 -3.68 -1.48
0.10 2.11 -9.47 -7.36 0.02 0.00
0.25 2.1 -8.73 -6.62 0.18 0.00
0.40 2.11 -9.35 -7.24 0.33 0.00
0.56 2.11 -8.41 -6.29 0.48 0.00
0.71 2.11 -8.41 -6.29 0.63 0.00
0.86 2.12 -8.85 -6.73 0.78 0.00
1.14 2.12 -5.10 -2.98 1.36 -0.51
1.44 2.12 -6.97 -485 1.67 -0.62
1.74 212 -4.18 -2.06 1.97 -0.42
2.05 213 -3.86 -1.73 261 -0.44
2.69 2.13 -2.02 0.12 2.92 -0.31

YM75 2.99 2.14 -2.15 -0.01 3.22 -0.45
3.30 2.14 -2.53 -0.39 3.53 -0.48
3.60 2.14 -2.37 -0.22 417 -061
4.24 2.15 -2.48 -0.33 4.47 -0.60
4.95 2.15 -2.94 -0.79 5.39 -0.51
5.46 2.16 -3.06 -0.69 6.33 -0.53
6.41 217 -3.58 -1.41 7.08 -0.52
7.19 2.18 -5.94 -3.76 7.58 -0.53
7.66 2.18 -5.01 -2.83 8.68 -0.39
8.76 2.19 -4.79 . -2.59 9.29 -0.36
9.36 2.20 -6.14 -394 962 -0.37
10.01 2.21 -5.69 -3.48
0.10 211 -5.21 -3.10 0.02 0.00
0.25 2.11 -497 -2.86 0.18 0.00
0.40 2.1 -5.72 -3.61 0.33 0.00
0.56 2.11 -6.97 -4.86 0.48 0.00
0.71 2.11 -5.72 -3.60 0.63 0.00
0.86 2.12 -6.39 -4.27 0.78 0.00
1.01 2.12 -8.22 -6.10 0.94 0.00
1.20 2.12 -5.92 -3.80 1.12 0.00
1.50 2.12 -6.50 -4.38 1.42 0.00
1.81 213 -6.04 -3.92 1.73 -0.05
2.11 2.13 -3.44 -1.31 2.03 -0.40
2.40 2.13 -3.24 -1.11 2.34 -0.38

YM76 2.75 213 -2.10 0.04 2.71 -0.36
3.06 2.14 -2.13 0.01 3.01 -0.36
3.15 2.14 -1.95 0.19 3.31 -0.46
3.36 2.14 -2.03 0.1 4.23 -0.48
4.31 2.15 -1.97 0.18 4.99 =-0.37
5.68 2.16 -4.55 -2.39 6.55 -0.43
6.62 217 -390 -1.73 7.98 -0.35
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Table 4. cont.

Gravitational Water Total Osmotic
Borehola Depth potential potential potential Depth Potential
number {m) (MPa) (MPa) (MPa) {m) {MPa)
‘ 4.91 2.16 -3.19 -1.03 5.45 -0.28
5.22 2.16 -2.19 -0.03 6.39 -0.32
5.52 2.16 -2.23 -0.06 6.70 -0.27
6.47 217 -2.51 -0.34 7.95 -0.27
6.77 2.17 -2.62 -0.45
0.10 2.1 -7.98 -5.87 0.02 0.00
0.25 2.1 -6.99 -4.88 0.18 0.00
0.40 2.1 -6.88 -4.77 0.33 0.00
0.56 2.11 -6.92 -4.81 0.48 0.00
0.71 2.1 -7.35 -5.23 0.63 0.00
0.86 2.12 -5.98 -3.86 0.78 0.00
1.01 2.12 -7.16 -5.04 0.94 0.00
1.36 2.12 -7.67 -5.55 1.24 0.00
1.62 2.12 -3.67 -1.54 1.55 0.00
3.03 2.14 -2.08 0.05 2.64 -0.40
3.33 2.14 -2.82 -0.67 295 -0.29
3.64 2.14 -3.66 -1.52 3.25 -0.21
2.72 213 -2.51 -0.37 3.56 -0.42
¥YM80 3.94 2.15 -3.05 -0.90 3.86 -0.40
4.28 2.15 -261 -0.46 4.20 -0.46
4.58 2.15 -2.64 -0.49 4.50 -0.39
5.49 2.16 -3.21 - -1.04 5.42 -0.34
6.44 2.17 -2.96 -0.79 6.36 -0.38
7.38 2.18 -3.91 -1.73 7.31 -0.32
8.30 2.19 -3.81 -1.62 8.22 -0.28
9.24 2.20 -3.03 -0.83 9.17 -0.30
10.16 2.21 -4.43 -2.22 10.08 -0.28
0.10 2.1 -10.20 -8.05 0.02 0.00
0.25 2.1 -9.27 -7.16 0.18 0.00
0.40 2.10 -9.66 -7.56 0.33 0.00
0.56 2.10 -9.74 -7.64 0.48 0.00
0.71 2:.10 -8.63 -6.53 0.63 0.00
0.86 2.10 -8.31 -6.21 0.79 -0.03
1.20 2.10 -8.28 -6.18 1.12 -0.09
¥YM81 1.50 2.09 -7.45 -5.35 1.42 -0.19
2.75 2.08 -3.16 -1.08 2.67 -0.66
3.06 2.08 -2.99 -0.91 2.98 -0.63
4.31 2.07 -254 -0.47 4.23 -0.82
461 2.06 -2.24 -0.18 4.53 -0.57
6.45 2.04 -3.40 -1.36 6.38 -0.31
8.27 2.03 -3.04 -1.01 8.19 -0.25
9.43 2.02 -4.69 -2.68 9.35 -0.23
8.70 2.01 -3.50 -1.49
0.27 2.1 -8.83 -6.73 0.22 -0.02
0.57 2.10 -9.21 -7.11 0.53 -0.98
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Table 4. cont.

Gravitational Water Total Osmotic
Borehole Depth potential potential potential Depth Potential

number {m) (MPa) (MPa) (MPa) (m) {MPa)
0.69 2.10 -10.60 -8.53 0.66 -161
1.35 2.09 -6.81 -4.72 1.32 -1.14
1.67 2.09 -6.21 -4.11 1.62 -1.04
1.98 2.09 -5.32 -3.23 1.93 -0.95
2.28 2.09 -5.01 -2.92 2.23 -0.97
261 2.08 -6.52 -4.43 2.54 -0.88
2.92 2.08 -4.83 -2.75 2.87 -0.87
3.22 2.08 -5.01 -293 3.18 -0.81
3.53 2.07 -4.78 -2.71 3.48 -0.82
3.83 2.07 -481 -2.74 3.79 -0.81
YM84 4.16 2.07 -5.74 -3.67 410 -0.83
4.47 2.06 -4.12 -2.06 4.43 -1.00
4.78 2.06 -4.23 -2.17 4.73 -0.80
5.08 2.06 =434 -2.29 5.04 -0.77
5.39 2.06 -5.09 -3.03 5.34 -0.78
5.72 2.05 =472 -2.66 5.65 -0.77
6.03 2.05 -5.76 =371 5.95 -0.78
7.22 2.04 -4.05 -2.01 7.14 -0.71
8.19 2.03 -3.52 -1.49 8.15 -0.68
9.14 2.02 -4.01 -1.99 9.09 -0.66
10.10 2.01 -4.16 -2.15 10.00 -061
11.20 2.00 -4.05 -2.05 11.20 -0.58
12.70 -0.57

0.27 2.1 -7.86 -5.75 0.22 0.00
0.57 2.11 -9.04 -6.92 0.53 0.00
0.98 2.12 -9.68 -7.56 0.83 -0.02
1.36 212 -6.93 -481 1.32 0.00
1.67 2.12 -6.80 -4.67 1.62 0.00
1.97 2.13 -6.08 -3.95 1.93 0.00
2.28 2.13 -5.09 -2.96 2.23 0.00
2.61 213 -7.55 -5.42 2.55 0.00
2.92 2.14 -4.20 -2.07 2.87 0.00
3.22 2.14 -4.20 -2.06 3.18 0.00
3.53 2.14 -4.65 -2.50 3.48 0.00
3.83 2.15 -3.15 -1.00 3.79 0.00
4.47 2.15 -3.10 -0.94 4.49 0.00
4.78 2.15 -3.19 -1.04 4.79 0.00
YM85 5.08 2.16 -3.31 -1.15 5.10 0.00
5.39 2.16 -3.55 -1.38 5.40 0.00
6.03 217 -3.42 -1.25 5.98 0.00
6.94 2.18 -3.22 -1.04 6.90 -0.02
8.10 2.19 -3.17 -0.98 8.05 -0.03
8.83 2.19 -3.62 -1.43 8.79 -0.04
9.65 2.20 -3.44 -1.24 9.61 -0.11
10.39 2.21 -2.82 -061 10.34 -0.11

98




Table 4. cont.

Gravitational Watar Total Osmotic
Borehole Depth potential potential potential Dapth Potential
number {m) (MPa) {MPa) (MPa) (m) (MPa)
11.21 2.22 -2.66 -0.44 11.16 -0.09
11.94 2.22 -2.85 -0.63 11.89 -0.08
12.79 2.23 -4.29 -2.05 14.27 -0.06
1432 2.25 -195 0.30 15.83 -0.04
15.87 2.26 -1.08 1.18
0.27 2.11 -8.10 -5.99 0.22 0.00
0.57 2.10 -8.85 -6.75 0.53 -0.03
1.03 2.10 -9.51 -7.41 0.98 0.00
1.39 2.09 -6.71 -461 1.35 0.00
1.70 2.09 -6.16 -4.07 1.65 0.00
2.00 2.09 -5.88 -3.79 1.96 0.00
2.31 2.09 -6.21 -4.13 2.26 0.00
2.95 2.08 -5.64 -3.56 2.90 0.00
3.25 2.08 -5.42 -3.35 3.21 0.00
3.56 2.07 -5.29 -3.22 3.51 0.00
3.86 2.07 -5.36 -3.29 3.82 0.00
4.11 2.07 -5.94 -3.87 4.06 0.00
450 2.06 -4.39 -2.33 4.46 0.00
4.81 2.06 -4.00 -1.93 4.76 0.00
5.1 2.06 -3.75 -1.69 5.07 0.00
5.42 2.05 -390 -1.84 5.37 0.00
5.75 2.05 -6.24 -4.29 5.68 0.00
6.67 2.04 -3.91 -1.87 6.53 0.00
7.30 2.04 -5.00 -2.96 6.63 0.00
8.13 2.03 -3.27 -1.25 8.08 0.00
YMEB6 8.86 2.02 -4.06 -2.04 §.62 0.00
9.69 2.01 -354 -1.53 9.64 -0.01
10.40 2.01 -4.46 -2.435 10.37 -0.02
11.20 2.00 -3.44 -1.44 11.19 -0.03
11.93 -0.04
12.75 -0.03
1433 -0.02
15.86 -0.03
17.41 -0.05
18.98 -0.02
20.22 -0.02
0.75 2.10 -4.89 -2.79 14.20 -0.02
1.03 2.10 -6.47 -438 15.80 -0.03
1.33 2.09 -6.03 -394 17.40 -0.03
1.64 2.09 -5.46 -3.37 18.90 -0.02
1.94 2.09 =5.26 -3.17 20.50 -0.01
2.25 2.09 -4.95 -2.86 21.30 -0.02
2.55 2.08 -8.66 -6.58
2.89 2.08 -3.96 -1.88
3.19 2.08 -4.51 -2.43
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Table 4. cont.

Gravitational

Water Total Osmotic
Borehole Depth potential potential potential Depth Potential
- number {m) {MPa) {(MPa) {MPa) {m) {MPa)
3.50 2.07 -3.95 -1.88
3.80 2.07 -3.60 -1.53
4.08 2.07 -4.82 -2.76
4.44 2.06 -2.35 -0.28
4.75 2.06 -2.07 -0.01
5.05 2.06 -1.74 0.32
5.36 2.06 =-3.30 -1.25
5.63 2.05 -1.70 0.35
6.00 2.05 -292 -0.88
6.55 2.04 -2.30 -0.25
7.25 2.04 -3.76 -1.73
8.07 2.03 -2.55 -0.52
YM87 8.80 2.02 -3.39 -1.37
9.62 2.01 -2.31 -0.30
10.40 2.01 -2.66 -0.65
11.20 2.00 -2.02 -0.02
11.90 1.99 -2.83 -0.84
12.70 1.98 -1.95 0.03
14.30 1.97 -1.28 0.69
15.80 1.95 -0.97 0.98
17.40 1.94 -0.76 1.18
19.00 1.92 -1.39 0.53
20.50 1.91 -1.37 0.53
21.30 1.90 -1.68 0.22
0.27 2.1 =3.03 -0.92 0.22 -0.02
0.57 2.10 -2.90 -0.80 0.53 0.00
1.15 2.10 -2.00 0.10 1.10 0.00
1.46 2.09 -1.30 0.80 1.41 0.00
1.76 2.09 -0.80 1.29 1.71 0.00
2.07 2.09 -0.73 1.35 2.02 0.00
2.39 2.08 -0.75 1.33 2.34 -0.04
2.71 2.08 -0.64 1.45 2.66 -0.09
3.01 2.08 -0.63 1.45 2.96 -0.06
3.32 2.08 -0.63 1.44 3.57 -0.10
3.62 2.07 -0.75 1.32 3.89 -0.09
3.92 2.07 -1.11 0.96 4.21 -0.10
4.26 2.07 -0.85 1.21 4.52 -0.07
4.56 2.06 -0.62 1.45 4.82 -0.03
4.87 2.06 -0.40 1.66 5.13 0.00
5.17 2.06 -0.54 1.52 5.77 -0.08
YM88 5.81 2.05 -0.59 1.47 6.29 -0.28
6.33 2.05 -1.23 0.82 7.06 -0.32
7.05 2.04 -184 0.20 7.84 -0.53
7.89 2.03 -1.61 0.43 8.59 -0.54
8.63 2.02 -2.79 -0.77 9.15 -0.49
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Table 4. cont.

Gravitational Water Total Osmotic
Borehole Depth potential potential potential Depth Potential
number (m) {MPa) (MPa) (MPa) {m) (MPa)
9.20 2.02 -3.32 -1.30 9.73 -0.49
9.78 2.01 -3.06 -1.05 10.90 -0.53
10.70 2.00 -2.86 -0.85 11.70 -0.60
11.70 1.99 -3.74 -1.75 12.50 -0.54
12.60 1.98 -3.79 -1.81
0.27 2.1 -461 -2.50 0.22 -0.01
0.57 2.10 -4.83 -2.73 0.53 -0.15
0.88 2.10 -4.30 -2.20 0.83 -0.38
1.39 2.09 -1.68 0.22 1.35 -0.28
1.70 2.09 -2.10 0.00 1.65 -0.27
2.00 2.09 -2.34 -0.25 1.96 -0.44
2.31 2.09 -1.96 0.13 2.26 -0.46
2.64 2.08 -2.52 -0.44 2.66 -0.30
2.95 2.08 -2.39 -0.31 2.90 -0.34
3.25 2.08 -2.37 -0.29 3.21 -0.37
3.56 2.07 -1.96 0.12 3.51 -0.40
3.86 2.07 -1.90 0.17 3.82 -0.33
- 4.50 2.06 -1.64 0.42 4.46 -0.26
4.81 2.06 -1.44 0.62 476 -0.30
5.11 2.06 -152 0.54 5.07 -0.23
5.42 2.05 -1.53 0.53 5.37 -0.20
5.75 2.05 -2.38 =-0.33 5.40 -0.28
YM89 6.06 2.05 -1.54 0.51 6.01 -0.17
6.58 2.04 -1.82 0.23 6.53 -0.16
7.28 2.04 -2.58 -0.54 7.23 -0.16
8.16 2.03 -1.81 0.22 8.08 -0.16
8.80 2.02 -2.21 -0.18 8.76 -0.14
9.69 2.01 -1.92 0.09 9.64 -0.13
10.40 2.01 -2.06 -0.05 10.40 -0.12
11.20 2.00 -1.61 0.39 11.20 -0.12
12.00 1.99 -2.06 -0.06 11.90 -0.11
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however, were sampled after rainfall and had high water potentials near the surface (up to —0.6
MPa, YM9) that decreased sharply at the base of the wetting front (fig: 3¢). Maximum water
potentials measured at the base of the profiles in Blanca Draw ranged from —6.0 MPa (fig. 3c,
YM10) to 0.5 MPa (fig. 3f, YMS54). Water potentials in closely spaced profiles were similar.

In the interstream setting, water potentials wére also generally low in the shallow subsurface
and increased with depth (fig. 4, table 3). The lowest water potential was measured in a soil
sample from YM66 (—44 MPa) at 0.16 ft (0.05 m) depth (table 3). Maximum water potentials
measured at depths = 26 ft (8 m) ranged from —3 to -5 MPa with the exception of YM28, which
had maximum water potentials 2 -1 MPa (fig. 4i). The monitoring record for the in situ
psychrometers was insufficient to evaluate long-term fluctuations in water potential. A vertical
profile based on data collected on August 13, 1993, showed water potentials as low as —6 MPa at
1 ft (0.3 m) depth, which increased to a maximum value of -2 MPa at 60.7 ft (18.5 m) depth
(fig. 9). Deviations from the typical profiles were found in the fissured sediments and beneath the
borrow pit (figs. 5 and 6). The fissured sediments had much higher water potentials in the upper
43 ft (13 m) than fhc sediments adjacent to the fissure (fig. 5). Within the fissure, water potentials
were uniformly high (= —1 MPa) from 3 to 30 ft (1 to 9 m) depth in profile YM35 and decreased to
-5 MPa from 30 to 43 ft (9 to 13 m) depth (fig. S5c). The general trend in the water potential profile
10 m distant (YM36) was an increase in water potential from —11.5 MPa near the surface to
-5 MPa at 98-ft (30-m) depth. The relationship between water potentials in the other pair of
profiles (YM88 and YMS59; fig. 5f) in and adjacent to the fissure was similar to that described for
profiles YM35 and YM36. Water potentials were generally greater than —0.5 MPa in the borrow
pit, whereas water potentials in the profile drilled 10 m distant from the borrow pit (YM16) ranged
from -5 to —2 MPa below the wetting front (YM16) (fig. 6¢).
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Figure 9. Profile of water potentials monitored
by in situ psychrometers on August 13, 1993.
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Hydraulic Conductivity
Permeameter Tests

Results of the K; estimates that neglected the unsaturated effect (equation 10) were analyzed
to determine if soil heterogeneity in the test hole had a greater effect on the calculated hydraulic
conductivities than the three different methods (equations 11, 12, and 16) of evaluating the C
coefficient (table 5). The effect of soil heterogeneity was evaluated by comparing the Ky estimates
for the two ponding depths within each test hole. If the soil is hdmogenous, these Kfs estimates
should be similar. For each test hole, Kf; values based on H; were compared with those based on
H3 to evaluate the effect of heterogeneity (F heterog) and Ks valdes based on each equation were
compared to evaluate the effect of the different equations (F method). Analysis of variance showed
that in 73 % of the tests the different methods of calculating the C coefficient had a greater effect on
the estimated Ky, values than soil heterogeneity. K}Ifes values based on equation 12 (Reynolds and
others, 1983) were 9 to 38% higher than Kst based on equation 11 (Glover, 1953) and K}(s values
based on equation 16 (Xiang, 1994a) were 45 to 64% higher than Kg based on equation 11. The
results based on the new solution (K}‘;, equation 16) are thought to be the most accurate because
this pressure solution most closely approximates the actual pressuré distribution.

The unsaturated effect was also included in the analysis of thé permeameter data according to
equation 18 (table 6). Inclusion of the unsaturated effect, which;considers some of the water as
capillary flow, generally results in lower K¢; values than when thé unsaturated effect is neglected.
Calculated matric flux potentials estimated from equation 18 were negative for all three methods of
evaluating the C coefficient (equations 11, 12, and 16; GP2, :GP4, GP12, GP15, GP21, and
GP26; table 6) when K, values based on equation 10 (which ignores the unsaturated efféct) were
greater for the larger ponding depth (H3) than for the smaller; ponding depth (H;) (table 5).
Conversely, calculated Kfs values based on equation 18 were negative when Kf; values estimated

from H, were much less than those from H; (GP22, tables 5 and 6). Therefore, equation (18)

|
i
|
|
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Table 6. Calculated field saturated hydraulic conductivity (Kfs) values based on permeameter data.

No A H; Qix100 Hy Qax10® QQ1  Kg° KR b BmR BmC B
M) (@@ ¢ (m) (mp) (mfs)  (mfs) (m/s) (I/m) (Um)  (1/m)
GP1 0.003509 0.1 (161.5838 0.15 0.754 1.4 3.84E-06 6.57E-06 4.30E-06 5.30E-07 6.02E-07 1.18E-06§
GP2 0.003509 0.15 0.143 0.25 0394 2.76 2.61E-06 3.85E-06 3.64E-06 -3.07E-07 -1.77E-07 -2.20E-07,
GP3 0.003509 0.05 0.427 0.1  1.181 2.77 2.53E-05 3.29E-05 3.96E-05 -8.00E-07 -4.51E-07 -6.91E-07
GP4 0.000215 0.05 0.071 0.1 0.155 2.18 2.62E-06 3.56E-06 3.91E-06 -2.46E-08 1.35E-08 4.85E-08
GP5 0.003509 0.05 4.386 0.1 7.018 1.6 6.36E-05 1.01E-04 7.45E-05 5.32E-06 6.43E-06 1.33E-05
GP6 0.003509 0.05 5.556 - = - - - - -
GP7 0.003509 0.05 = 0.643 0.15 1.135 1.77 3.34E-06 7.22E-06 1.62E-06 1.21E-06 1.28E-06 2.53E-06
GP8 0.003509 0.05 1.439 0.1 2468 1.72 2.72E-05 4.07E-05 3.52E-05 1.31E-06 1.75E-06 3.71E-06
GP9 0.003509 0.05 4.187 0.1 5954 1.42 3.21E-05 6.15E-05 2.27E-05 7.06E-06 7.75E-06 1.57E-05
GP10 0.003509 0.05 - 0.819 0.1 2.193 2.68 3.23E-05 4.83E-05 4.17E-05 1.57E-06 2.09E-06 4.43E-06
GP11 0.003509 0.05 0.55 0.1 0.819 1.49 5.64E-06 9.79E-06 5.40E-06 8.28E-07 9.37E-07 1.91E-06
GP12 0.003509 0.05 0.521 0.1 0.55 1.06 4.57E-05 5.97E-05 7.12E-05 -1.34E-06 -7.09E-07 -1.04E-06
GP13 0.000215 0.05  0.039 0.1 0.072 1.85 9.01E-07 1.30E-06 1.23E-06 2.51E-08 3.92E-08 8.55E-08
GP14 0.003509 0.05 0.585 0.1 0994 1.7 1.07E-05 1.61E-05 1.37E-05 5.55E-07 7.31E-07 1.54E-06
GP15 0.000215 0.05 0.018 0.1 0.057 3.17 1.36E-06 1.74E-06 2.16E-06 -5.41E-08 -3.57E-08 -6.00E-08
GP16 0.003509 0.05 0.643 0.1 1462 227 2.59E-05 3.48E-05 3.90E-05 -3.64E-07 7.47E-09 2.28E-07
GP17 0.000215 0.05 <0.001 0.1 <0.002 < 1.0E-7 <1.0E-7 <1.0E-7 - - -
GP18 0.003509 0.05 0.234 0.1 0.526 2.25 9.21E-06 1.24E-05 1.38E-05 -1.18E-07 1.42E-08 1.04E-07|
GP19 0.003509 0.05 0.339 0.1 0.702 2.07 1.10E-05 1.51E-05 1.61E-05 -9.23E-09 1.53E-07 3.96E-07|
GP20 0.000215 0.05 0.022 0.1 0.05 2.27 8.82E-07 1.19E-06 1.33E-06 -1.17E-08 9.62E-10 9.18E-09
GP21 0.003509 0.05 0.147 0.1 0.374 2.54 7.44E-06 9.79E-06 1.15E-05 -1.88E-07 -8.34E-08 -1.05E-07
GP22 0.003509 0.05 1.714 0.1 2936 1.71 -3.30E-06 -1.17E-06 -9.52E-06 1.38E-06 1.38E-06 2.71E-06
GP23 0.003509 0.05 0.14 0.1 0316 2.26 5.53E-06 7.44E-06 8.30E-06 -7.11E-08 8.53E-09 '6.25E-08
GP24 0.003509 0.05 1.205 0.1 2.164 1.8 2.65E-05 3.86E-05 3.58E-05 8.37E-07 1.26E-06 2.72E-06
GP25 0.003509 0.05 0.468 0.1  1.082 2.31 1.95E-05 2.62E-05 2.96E-05 -3.14E-07 -3.48E-08 9.15E-08
GP26 0.003509 0.05 0.573 1491 2.6 3.03E-05

0.1

3.97E-05 4.70E-05 -8.24E-07 -4.01E-07 -5.50E-07,
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should not be used for evaluation of Kfs and/or matric flux potential when the soil is obviously
heterogeneous.

The conductivities evaluated using equations 12 (K}I%); Reynolds and others, 1983) and 16
(K}g, the new solution, Xiang, 1994a) were similar in many of the tests (table 6). This similarity
can be explained by examining the C coefficients and the ponding depths H; and H; for each test.
The difference in estimated Kf; values calculated by the two methods (equations 12 and 16)
depends on the ratio of the coefficient difference (ACy) from the two solutions for the first ponding
depth (H;) and the coefficient difference from the two solutions (AC?2) for the second ponding

depth (H>). If the following relationship exists,

AG _H On
AC, H, Oy

€29
where AC; = C;—C;* (Cis calculated by equation 12 and C'; is calculated by equation 16), then
equations 12 (Reynolds and others, 1983) and 16 (Xiang, 1994a) provide similar results. When
the ratio of the flow rates (Q2/Q;) changes greatly, however, equation (31) does not hold and the
conductivities estimated by equations 12 (K’}es) and 16 (Kjr‘;) differ, as shown by results from GP2,

GP5, GP7, GP9, and GP11 (table 6).

In cases where Kf; or ¢, were negative (table 6), the estimated results using equation 10 that
neglected the unsaturated effect (¢,, = 0) should be used (table 5). K¢; based on the Guelph
permeameter data ranged from <10-7 to 10-4 m s-1 (tables 5 and 6). Hydraulic conductivities were
highest in the borrow pit (GPS, GP6; table 6, fig. 2). Sediments at this site are sandy and loosely
consolidated. Hydraulic conductivities were lowest in Blanca Draw (GP7, GP13, GP15, GP17,
and GP20, fig. 2). The hydraulic conductivity in GP17, which was in Blanca Draw, was

extremely low and was estimated to be < 10-7 m s-1.
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Constant-Head Borehole Infiltration Tests

Analysis of the constant-head borehole infiltration tests was limited to evaluation of the field
saturated flow component of the hydraulic conductivity (table 7). Only one head measurement was
used because of potential problems related to soii heterogeneity. Preliminary analysis showed that
ﬁeglecting flow out of the bottomk of the borehole resulted in errors of less than 1%; therefore,
equation 9 was used in the final analysis, which neglects flow out of the bottom of the borehole.

| Results from the constant-head borehole infiltration tests showed that when the ratio H/a was
large, conductivities based on equations 12 (Reynolds and others, 1983) and 21 (the new solution)
were almost identical and were up to 60% higher than those based on equation 11 (Glover, 1953).
Glover’s solution overestimates the pressure on the top of the borehole, which results in the low
hydraulic conductivities. The range in Kfs estimated by the new solution was approximately two
orders of magnitude (10-8 to 106 m s-1). Hydraulic conductivities did not seem to vary
systematically with geomorphic setting. The lowest (YM78: 10-8 m s-1) and highest (YMS80: 10-6

m s-1) hydraulic conductivities were measured in the interstream setting.

Multistep Constant-Head Borehole Infiltration Tests

The unsaturated effect was neglected in estimating the hydraulic conductivity of layered soils.
In order to consider the unsaturated effect, two boreholes of different radii are required; however,
all boreholes drilled in the study area had the same radius. Equation 27 was used to calculate K.
The conductivities of layered soils, evaluated by the computer code LAYERK, are shown in
table 8. Because the backfilled sediments were generally loose and had a high conductivity, their
effect on the flow from the borehole was not included.

Results indicate that the hydraulic conductivity of individual layers varied up to three orders
of magnitude (YM80 and YM84, table 8). Information on vertical variability in hydraulic
conductivity is important for evaluation of flow and contaminant transport. In general, the

geometric average conductivity obtained from the multistep constant-head borehole infiltration test
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Table 7. Calculated field saturated hydraulic conductivity (Kfs) values for deep soil using the

constant head borehole infiltration tests.

BN H(@m) Ha Q(ms) cS  KiSmps) CR KeRanfs)  CX K X(mys)
YM21 8.69 855 1.325E-04 4.153 1.16E-06 6.944 1.94E-06 7.016 1.96E-06
YM34 271  26.7 8.330E-06 3.015 5.43E-07 4.716 8.49E-07 4.792 8.63E-07
YM45 10.08 99.21  9.042E-05 4.300 6.09E-07 7.235 1.02E-06  7.303 1.03E-06
YM46 947 9321 4.542E-05 4.239 3.41E-07 7.112 5.73E-07 7.183 5.79E-07
YM47 732 72 1.051E-05 3.984 1.24E-07 6.609 2.07E-07 6.683 2.09E-07
YM48  4.15 408 6.151E-05 3.426 1.95E-06 5.514 3.14E-06 5.600 3.19E-06
YM51 1039 1023  6.308E-06 4.331 4.02E-08 7.295 6.78E-08  7.365 6.84E-08
YM54 2365 2328 4.100E-05 5.148 6.00E-08 8.918 1.04E-07 8.993 1.04E-07
YM78 1042 1026 1.577E-06 4.334 1.00E-08 7.300 1.69E-08  7.367 1.70E-08
YM8O 836 8229 7.570E-05 4.116 7.09E-07 6.869 1.18E-06 6.958 1.19E-06
YM84 1323 1302 3.375E-04 4.570 1.40E-06 7.769 2.38E-06 7.837 2.40E-06
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Table 8. Calculated field saturated hydraulic conductivity (Kfs) values for deep soil
using the multistep constant head borehole infiltration test and code LAYERK.

BN. Layer Q H (m) H* (m) Layer Layer K
(Cub.m/s) bottom (m) Top (m) (m/s)
YM21 1 8.2008E-05 6.49 6.49 8.69 2.20 1.98E-6
2 1.3248E-04 8.70 8.69 2.20 0.00 1.36E-6
Backfilled 0.00 Average 1.82E-6
YM45 1 4.2051E-06 2.11 2.72 11.95 9.23 4.30E-7
2 2.3656E-05 4.27 4.88 9.23 7.08 2.95E-6
3 6.5186E-05 7.40 8.02 7.08 3.93 1.14E-7
4 9.0419E-05 9.47 10.08 3.93 1.87 2.36E-7
Backfilled 0.61 Average 8.31E-07
YM46 1 9.4625E-06 3.26 5.43 9.48 4.05 3.09E-7
2 4.5420E-05 7.32 9.48 4.05 0.00 1.74E-6
Backfilled 2.16 Average 9.22E-7
YMS1 1 - 2.75 6.04 10.40 4.36 < 1.00E-8
2 - 4.84 8.13 4.36 2.27 < 1.00E-8
3 - 6.25 9.54 2.27 0.86 < 1.00E-8
4 6.3083E-06 7.10 10.40 0.86 0.00 3.80E-6
Backfilled 3.29 -
YM54 1 3.6798E-06 6.56 14.00 23.65 9.65 2.35E-8
2 8.6214E-06 12.03 19.47 9.65 4.18 1.15E-7
3 4.1004E-05 16.22 23.65 4.18 0.00 2.19E-6
Backfilled 7.44 Average 4.27E-7
YM78 1 - 1.80 4.70 10.42 5.72 < 1.00E-8
2 - 3.63 6.53 5.72 3.90 < 1.00E-8
3 - 5.52 8.42 3.90 2.00 < 1.00E-8
4 1.5771E-06 7.52 10.42 2.00 0.00 2.64E-7
Backfilled 2.90 -
YMS80 1 2.6285E-06 1.69 6.05 10.39 4.34 7.14E-8
2 9.4625E-06 2.84 7.19 4.26 3.19 4.77E-6
3 7.5700E-05 4.00 8.36 3.19 2.03 4.29E-5
Backfilled 4.43 Average 6.69E-6
84 1 1.5771E-06 347 9.83 13.53 3.70 1.87E-8
2 3.3750E-04 6.86 13.23 3.70 0.30 3.53E-5
Backfilled 6.36 Average 9.10E-6
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differed from the conductivity estimated from the constant-head borehole infiltration test that was

conducted in the same borehole.

Chloride/Bromide Ratios, Meteoric Chloride, and Cosmogenic Chlorine-36

Chloride/bromide ratios in séil water samples from YM61 ranged from 86 to 150. These
values are typical of meteoric water and suggest that the chloride is of meteoric origin and that there
is no rock component, which is as expected in these terrigenous deposits. Typical chloride profiles
in the study area are bulge shaped and have low chloride concentrations near the surface, generally
less than 100 g m-3, which increase to maximum concentrations of approximately 3,000 to
18,000 g m3 at depths of 1.7 to 17 ft (0.5 to 5 m) and decrease gradually below the peak to
concentrations of 1,000 to 6,000 g m-3 (table 3). Soil water ﬂuxeé are inversely proportional to
chloride concentrations because a uniform chloride deposition rate was assumed throughout the
study area; therefore, water fluxes were highest near the surface, decreased to a minimum at the
chloride peak, and increased with depth below the chloride peak. Water fluxes decreased to less
than 1 mm yr-1 within the top meter of soil (table 3). Water flux estimates for profiles in Blanca
Draw were a minimum because chloride in runon and runoff was neglected. Water fluxes were not
calculated in areas where chloride was leached, such as in areas of Blanca Draw, the borrow pit,
and the fissure.

Deviations from the typical profile were found in some areas of Blanca Draw where chloride
was leached (fig. 3e, k, and q). YM86 was located in a pseudo-fissure and YM87 was located
33 ft (10 m) distant from the pseudo-fissure (fig. 1). The highest peak chloride concentration was
found in YM43, which is in Blanca Draw (figs. 1 and 3n). High maximum chloride concentrations
were found in both profiles in the flank of Blanca Draw and were up to 9,720 to 13,850 g m-3 in
YM9 and YM10, respectively (fig. 3b).

Chloride profiles in the interstream setting were also quite variable. The chloride profiles in

the area of the proposed repository were low in the upper meter and increased to a maximum with
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depth. The leached zone in these profiles probably results from high infiltration in sandy surface
soils. Chloride profiles in the fissure were leached (fig. 5b and e, table 3)>. The profile YM35 had
low chloride concentrations in the upper 30 ft (9 m). Below 30 ft (9 m), chloride concentrations
increased sharply to 5,200 g m-3 within a 7 ft (2 m) depth interval. Chloride concentrations
remained high below this depth. The chloride profile 33 ft (10 m) from the fissure had highest
concentrations near the surface (8,000 g m-3) and concentrations decreased to 5,000 to
6,000 g m-3 at depths from 39 to 98 ft (12 to 30 m). A low chloride spike (reduction of
approximately 1,500 g m-3) was found at the same depth interval that the sharp increase in chloride
was found in the fissure. The other pair of profiles in and adjacent to the fissure (YM59 and
YMB88) had similar characteristics. In YM 88 low chloride concentrations were found in the upper
20 ft (6 m) in the fissure, and chloride concentrations increased to 4272 g m-3 from 20 to 28 ft
(6 to 8.6 m) depth. The chloride profile adjacent to the fissure had variable concentrations that were
much higher than those in the fissure in the upper 20 ft (6 m) but were similar to those in the
fissure below this depth. Chloride was also leached in the profile in the borrow pit (< 50 g m-3)
whereas chloride concentrations in the profile 33 ft (10 m) distant reached a maximum value of
2,621 g m-3 and decreased to 860 g m-3 at 47 ft (14.4 m) depth (fig. 6b, table 3).

Ratios of 36CI/Cl ranged from 4.57 x 10-13 to 5.09 x 10-13 in the 6 to 37.1 ft (1.8 to 11.3 m)
depth interval. The average 36CI/CI ratio was 4.90 X 10-13 and was similar to the background
36C1/Cl ratio found in the Hueco Bolson (4.7 x 10-13 below 4.1 ft [1.25 m]). These 36CI/Cl ratios
agree with the predicted natural fallout of 5 x 10-14 for this latitude. There was no systematic
variation in 36C1/Cl ratios with depth, which suggests that the secular variation in 36Cl production
is not preserved in the subsurface. The most likely explanation is that the variation is reduced by

diffusion.
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DISCUSSION

Water Content and Water Potential

Spatial variability in water content is controlled primarily by variations in sediment grain size.
Discontinuities in water content across different soil types indicate that water-content variations
with depth cannot be used to determine the direction of water movement. Temporal variations in
water content were restricted to sandy interstream sites, fissured sediments, and some areas in
Blanca Draw. The maximum depth of water penetration in these areas was 5 ft (1.5 m). The
absence of temporal variations in water content monitored in the remainder of the neutron probe
access tubes indicates that water pulses did not move through these areas. Because a constant flux
could result in temporally invariant water content, the absence of such variations does not preclude
water movement.

The low measured water potentials indicate that the unsaturated system is very dry and water
fluxes are expected to be minimal. Except in the upper meter after rainfall, the water-potential
gradients indicate an upward driving force for water movement, probably controlled by
evapotranspiration. The length of the monitoring period (June to October 1993) was insufficient to
evaluate long-term fluctuations in water potential. Long-term monitoring of water potentials at the
Hueco Bolson can be used to evaluate temporal variations in water potential in a similar setting
(Appendix B). These data showed that water infiltrated to greater depth in sandy soils (< 2.7 ft
[0.8 m]) than in clay loam soils (< 1 ft [0.3 m]). Infiltration and redistribution of water occurred in
response to abnormally high winter precipitation in 1992 and 1993. The progressive increase in
water potentials with depth during infiltration and redistribution suggests piston flow. Comparison
of field- and laboratory-measured water potentials in nearby profiles showed that the general shape
of the two profiles was similar; however, water potentials measured at the same depth differed by
up to 6 MPa in coarse-grained sediments and by up to 2 MPa in fine-grained sediments. The lower
water potentials measured by the laboratory psychrometers are attributed to drying during sample

collection and analysis.
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Meteoric Chloride

Many assumptions are used to estimate water fluxes from chloride data, and the validity of
these assumptions in this study area needs to be examined. The assumption of one-dimensional
vertical flow is considered valid because all chloride profiles are from topographically flat areas
having slopes of less than 1%. The direction of water flux is assumed to be downward. If the
water flux were in fact upward, the highest chloride concentrations would occur at the land
surface, as seen in chloride profiles from the Sahara (Fontes, 1986). Maximum chloride
concentrations typically found at depths of 1.7 to 17 ft (0.5 to 5 m) indicate that the net water flux
is downward in this interval of the unsaturated zone. Precipitation is assumed to be the only source
of chloride; there are no chloride sources or sinks below the root zone. The sediments in this study
area are terrigenous and do not contain any chloride of marine origin. The low Cl/Br ratios are also
consistent with the chloride being of meteoric origin.

The piston-flow assumption is more difficult to assess. The applicability of piston flow
depends on the temporal and spatial scales being considered. Near the soil surface where
desiccation cracks develop, nonpiston flow may be dominant. Higher water fluxes based on
ground-water chloride relative to those based on chloride concentration in the unsaturated zone in
many areas have been attributed to nonpiston flow or bypass of the matrix with low-chloride water
(Peck and others, 1981; Sharma and Hughes, 1985; Johnston, 1987). Chloride profiles in these
areas are generally smooth, which indicates that the smoothness of the profiles does not help
discriminate between piston and nonpiston flow. Flow along preferential pathways that bypasses
the matrix is used to explain the reduction in chloride concentrations below the peak in some
profiles (Sharma and Hughes, 1985). Many profiles characterized by a large amount of preferential
flow are from wetter regions (precipitation 800 to 1,200 mm yr-! [Sharma and Hughes, 1985;
Johnston, 1987]) than the Eagle Flat area (precipitation 320 mm yr-1). The water potentials (matric
and osmotic potentials) in the Eagle Flat area are very low except in the fissured sediments and

beneath the borrow pits; therefore, in most areas water is adsorbed onto grain surfaces and is
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unlikely to move along larger openings or root channels. Long-term water potential monitoring in
the Hueco Bolson also suggests piston flow (Appendix B).

The long time period represented by chloride profiles in this study spans paleoclimatic
variations and may invalidate the steady-state subsurface flow assumption (table 3). The decrease
in soil water chloride concentrations below the peak may represent temporally varying
environmental conditions (Allison and others, 1985). Previous work in the Hueco Bolson
suggested higher water fluxes prior to 6,000 to 9,000 yr, which is consistent with paleoclimatic
data that suggest that the climate during the late Wisconsinan and early Holocene (22,000 to 8,000
yr) was much wetter than middle to late Holocene (8,000 yr to present) (van Devender and
Spaulding, 1979). In addition to higher precipitation rates in the past, the seasonality of the
precipitation is also thought to differ, winter frontal storms being dominant before 8,000 yr,
whereas summer convective storms are more typical of the climate since 8,000 yr (van Devender
and Spaulding, 1979), which would further reduce the water flux from 8,000 yr to the present.
This is the most plausible cause of the reduction in chloride below the peak in profiles from the

Eagle Flat site.

Numerical Modeling

Because of the limited duration of monitoring at the Eagle Flat site, numerical simulations of
unsaturated flow were based on long-term monitoring data at the Hueco Bolson test area. These
simulations are described in Appendix A. The main aspects of the modeling study are described in
this section. The objective of th§: modeling study was to evaluate and explain liquid and vapor
fluxes in the shallow unsaturated zone in response to an annual climate cycle. We made no attempt
to calibrate the model. The initial conditions for the simulation were based on water potential and
temperature monitored by in situ psychrometers that were installed in an ephemeral stream setting
in the Hueco Bolson. The range in water potentials at the Hueco Bolson site is similar to that

measured at the Eagle Flat site. The upper boundary condition was based on hourly climatic data
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from October 1, 1989, to September 30, 1990, monitored at the meteorologic station. The total
precipitation for that year was 8.15 in (207 mm), which is lower than the long-term average annual
precipitation at Eagle Flat (12.60 in [320 mm]) but within the range of variability of annual
precipitation at Eagle Flat. Soil textures for the model domain were based on grain size analyses
that ranged from clay to muddy sandy gravel. Material propérties were assigned to these soil
textures on the basis of laboratory retention data for soils of similar texture. Sediments in the upper
5 ft (1.5 m) of the profile modeled are finer grained (silty clay to clay) than sediments found in this
depth interval in the area near the proposed Eagle Flat repository (sandy loam, YM13 and YM14).
The gravel lens at depths of 5 to 23 ft (1.5 to 7 m) is similar to that found in YM13 and YM16 at
the Eagle Flat site.

There was remarkable consistency between the simulated water potentials and the available
field measured water potentials (Appendix A). The simulated seasonal changes of temperature were
also in good agreement with the field measurements. Measured and simulated values both showed
the well-known extinction and phase shift of the annual surface temperature wave with depth.
Below 1 ft (0.3 m) depth, the attenuation and phase shift of water potentials with depth were
similar to those of temperature. This similarity suggests that the water potential changes were
driven primarily by the temperature changes, with water content remaining relatively constant. This
was confirmed by the similarity between modeled water potentials and those computed using
temperature changes alone. Temperature is likely to be the main control on seasonal water potential
fluctuations below the shallow subsurface active zone in many arid sites.

The changes in water storage associated with individual rainfall events were confined mainly
to the top 1 ft (0.3 m) of the soil. This was consistent with the field measured water potential
variations. The maximum depth of penetration of water would probably be greater at the proposed
Eagle Flat repository because the surface sediments have more sand. The deeper penetration of
water in coarser textured sites is shown by water potential monitoring data from the field

psychrometers at 77P at the Hueco Bolson site (Appendix B).
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A detailed analysis of water fluxes in this near-surface layer revealed that the dominant
process for downward water movement was liquid flow. Very close to the surface, upward
isothermal vapor fluxes were significant. Below 1 ft (0.3 m) depth, water fluxes varied relatively
little and were dominated by thermal vapor flux, which varied with season and depth following the
temperature gradient. In the annual mean, its downward values in summer outweighed the upward
values in winter, giving cumulative annual downward thermal vapor fluxes. Thermal vapor flux
was essentially unbalanced by the other water fluxes in the simulation. Comparison of numerical
modeling results with chemical tracer data showed that downward vapor flux below the
evaporation front (0.27 ft [0.08 m]) based on the numerical simulations agreed with the deeper
penetration of bomb 3H (volatile) relative to that of bomb 36Cl (nonvolatile). The simulated average
downward vapor flux from 0.27 to 4.7 ft (0.08 to 1.4 m) depth (1.1 mm yr-1) is within the same

order of magnitude as that based on the relative distribution of 3H and 36Cl/Cl (5.6 mm yr-1).

Conceptual Flow Model

The hydrologic data were integrated to develop a conceptual flow model of the vadose zone
in the Eagle Flat study area. Profiles in the ephemeral stream setting are characterized by variable
water content, low water potentials, upward water potential gradients below the shallow
subsurface after rainfall, and variable chloride profiles. The generally low water potentials and
upward water potential gradients suggest dry soils and an upward driving force for water
movement under present conditions. Low chloride concentrations in some of the profiles in Blanca
Draw indicate that at some time in the past the chloride was leached, probably when these sites
were ponded. The typical profiles in the interstream setting have variable water contents, low water
potentials, upward water potential gradients, and high maximum chloride concentrations. In this
setting the water potential data suggest upward driving forces for liquid flow, and the chloride data
suggest very low fluxes for thousands of years. In the borrow pit, the sediments are disturbed and

ponded water occurs for long periods, which results in downward water movement as indicated by

117



high water potentials and low chloride concentrations. The fissured sediments also have ponded
water after rainfall. High water potentials and low chloride concentrations in the upper 20 to 30 ft
(6 to 9 m) of the fissured scdiments indicate downward fluxes to this depth. Water content
monitoring data showed downward movement of water to 5 ft (1.5 m) depth after rainfall. The ‘
sharp decrease in water potentials and increase in chloride at 20 to 30 ft (6 to 9 m) may occur
because the fissure has not been present long enough for water to move deeper or may mark the
location of a clay zone.

Long-term water poiential monitoring data from the Hueco Bolson provide valuable
information on unsaturated zone processes in résponse to climatic variations. These data indicate
that the penetration depth of the wetting front after rainfall is greater in coarse textured soils (2.7 ft
[0.8 m] in sand) than in fine textured soils (1 ft [0.3 m] in clay loam). The progressive increase in
water potentials with depth during infiltration and redistribution sﬁggests piston flow.

The soil physics and chemical data for the area of the proposed Eagle Flat repository both
suggest negligible fluxes. Long-term net water fluxes estimated from the soil water chloride
concentrations were downward and were less than 1 mm yr-1 below the top meter of soil. The
upward decrease in water potentials indicates an upward driving force for water movement under

present climatic conditions.
CONCLUSIONS

Soil textures in the study area varied with geomorphic setting. Sediments beneath Blanca
Draw were fine grained and ranged from clay to clay loam. In the interstream setting, some profiles
were predominantly clay whereas others were primarily clay loam and'sandy loam. Sediments
beneath the borrow pit and adjécent profile were coarse grained and ranged from clay to muddy
gravel. The fissured sediments were primarily loam whereas those adjacent to the fissure were

predominantly clay.
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Spatial variability in water content is controlled primarily by variations in sediment grain size.
Discontinuities in water content across different soil types indicate that water-content variations
with depth cannot be used to determine the direction of water movement. Temporal variations in
water content were restricted to the fissured sediments and some areas in Blanca Draw. The
maximum depth of penetration of a water pulse in these areas was 5 ft (1.5 m). The absence of
temporal variations in water content monitored in the remainder of the neutron probe access tpbes
indicates that water pulses did not move through these areas. Because a constant flux could result
in temporally invariant water content, the absence of such variations does not preclude water
movement.

Typical water potential profiles at the site, which is located in an interstream setting, were
low in the upper 7 ft (2 m) (~—12 to -2 MPa) and increase with depth below the minimum to
maximum values of —6 to —0.4 MPa in different profiles. The monitoring record for the in situ
psychrometers was insufficient to evaluate long-term ﬂﬁctuations in water potential. A vertical
profile based on data collected on August 13, 1993, showed low water potentials at 1 ft (0.3 m)
depth (-6 MPa), which increased to a maximum value of -2 MPa at 60.7 ft (18.5 m) depth. The
low water potentials indicate that the sediments are dry and the upward water potential gradients
indicate an upward driving force for liquid flow. Boreholes drilled after rainfall had high water
potentials in the surficial sediments which decreased sharply at the base of the wetting front.
Exceptions to this typical profile were found in the profile in the fissured sediments and beneath the
borrow pit. The fissured sediments had much higher water potentials in the upper 43 ft (13 m) than
the sediments 33 ft (10 m) distant from the fissure. Water potentials in soil samples from the
borrow pit were much higher than those in soil samples from the profile 33 ft (10 m) distant from
the borrow pit.

In addition to water potential data, information on hydraulic conductivity is also required to
calculate water fluxes. Ky based on the Guelph permeameter data ranged from < 107 to 104 m
s-1. Hydraulic conductivities were highest in the coarse grained sediments beneath the borrow pit

and were lowest in fine grained sediments in Blanca Draw. The range in Kfy values for the
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constant-head borehole tests was 10-8 to 10-6 m s-1. Hydraulic conductivities estimated from the
constant-head borehole tests did not vary systematically with geomorphic setting, and the lowest
and highest hydraulic conductivities were measured interstream setting. The results of multistep
constant-head borehole infiltration tests indicated that the hydraulic conductivity of individual
layers within a borehole varied up to three orders of magnitude. Geometric average conductivities
based on the multistep constant-head borehole tests differed from conductivities based on the
regular constant-head tests by up to two orders of magnitude. Hydraulic conductivities based on
the regular constant-head borehole tests depend on the location of the high-conductivity zone.
When the high-conductivity zone is located in the upper portion of the borehole, the calculated
hydraulic conductivity based on the constant-head borehole test is lower than the average hydraulic
conductivity, whereas when the high-conductivity zone is located in the lower portion of the
borehole, the calculated hydraulic conductivity based on the constant-head borehole test is higher
than the average hydraulic conductivity.

Typical chloride profiles in the study area are bulge shaped and have low chloride
concentrations near the surface, generally less than 100 g m=3, which increase to maximum
concentrations of 3,000 to 18,000 g m-3 at depths of generally between 1.6 and 16 ft (0.5 and
5 m) and gradually decrease with depth below the peak to concentrations of 1,000 to 6,000 g m-3,
Calculated water fluxes are inversely proportional to chloride concentrations in the soil water
because a constant chloride deposition rate was assumed throughout the study area. Water fluxes
estimated from the chloride data were highest at the surface and decreased to less than 1 mm yr-!
within the top meter. Flux estimates for profiles in the ephemeral stream were a minimum because
chloride in runon and runoff was neglected. Deviations from the typical profiles were found in
parts of Blanca Draw where maximum chloride concentrations in some profiles were less than 400
to 900 g m-3 whereas chloride in other profiles in Blanca Draw reached maximum concentrations
of 17,821 g m-3. Chloride was leached in the upper 20 to 30 ft (6 to 9 m) depth in the fissure
whereas chloride concentrations in profiles 33 ft (10 m) distant from the fissure were much higher
in this zone. Below 20 to 30 ft (6 to 9 m), chloride concentrations in the fissure increased to

concentrations similar to those found in samples at the same depth in the profiles 33 ft (10 m) from
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the fissure. Chloride concentrations in the profile in the borrow pit were less than 50 g m-3,
whereas the profile 33 ft (10 m) distant from the bofrow pit had maximum chloride concentrations
of 2,621 g m-3.

Because of the limited monitoring data at the Eagle Flat site, numerical simulations of
unsaturated flow were based on long-term monitoring data at the Hueco Bolson site. These
simulations were conducted to evaluate unsaturated zone processes. The results from these
simulations are considered applicable to the Eagle Flat study area because the range in water
potentials is similar at both sites. The sediments in the upper 5 ft (1.5 m) of the model domain
(silty clay to clay) are finer grained than sediments found in this depth interval in the area of the
proposed Eagle Flat repository (sandy loam). The gravel lens at depths of 5 ft to 23 ft (1.5 to 7 m)
is similar to that found in some of the profiles at the Eagle Flat site. Precipitation for the one year
simulated (October 1, 1989, to September 30, 1990; 8.15 in [207 mm]) is lower than the long-term
average annual precipitation at Eagle Flat (12.60 in [320 mm]) but is within the.range of variability
of annual precipitation at Eagle Flat. Analysis of water fluxes in the upper 1 ft (0.3 m) revealed that
the dominant process for downward water movement was liquid flow. Below a 1 ft (0.3 m) depth,
water fluxes varied relatively little and were dominated by net downward thermal vapor flux.

The hydrologic data were integrated to develop a conceptual flow model of the vadose zone
in the Eagle Flat study area. Profiles in the ephemeral stream setting are characterized by variable
water content, low water potentials, and upward water potential gradients except in the shallow
subsurface immediately after rainfall, and variable chloride profiles. The generally low water
potentials and upward water potential gradients suggest dry soils and an upward driving force for
water movement under present conditions. Low chloride concentrations in some of the profiles in
Blanca Draw indicate that at some time in the past the chloride was leached, probably when these
sites were pohded. The typical profiles in the interstream setting have variable water contents, low
water potentials, upward water potential gradients, and high maximum chloride concentrations. In
this setting the water potential data suggest upward driving forces for liquid flow, and the chloride
data suggest very low fluxes for thousands of years. In the borrow pit, the sediments are disturbed

and ponded water occurs for long periods, which results in downward water movement as
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and ponded water occurs for long pcriods, which results in downward water movement as
indicated by high water potentials and low chloride concentrations. The fissured sediments also
have ponded water after rainfall. High water potentials and low chloride concentrations in the
upper 20 to 30 ft (6 to 9 m) of the fissured sediments indicate downward fluxes to this depth.
Water content monitoring data showed downward movement of water to 5 ft (1.5 m) depth after
rainfall. The sharp decrease in water potentials and increase in chloride at 20 to 30 ft (6 to 9 m)
may occur because the fissure has not been present long enough for water to move deeper or may
mark the location of a clay zone. Long-term water potential monitoring data from the Hueco
Bolson provide valuable information on unsaturated zone processes in response to climatic
variations. These data indicate that the penetration depth of the wetting front after rainfall is greater
in coarse textured soils (2.67 ft [0.8 m] in sand) than in fine textured soils (1 ft [0.3 m] in clay
loam). The progressive increase in water potentials with depth during infiltration and redistribution
suggests piston flow. The soil physics and chemical data for the area of the proposed Eagle Flat
repository are consistent and suggest negligible fluxes. Long-term net water fluxes estimated from
the soil water chloride concentrations were less than 1 mm yr-1 below the top meter of soil. The

upward decrease in water potentials indicates an upward driving force for water movement.
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ABSTRACT

Transient one-dimensional fluxes of soil water (liquid and vapor) and heat in response to one
year of atmospheric forcing were simuléted numerically for a site in the Chihuahuan Desert of
Texas. The model was initialized and evaluated using the monitoring data presented in a companion
_ paper. Soil hydraulic and thermal properties were estimated a priori from a combination of
laboratory measurements, models, and other published information. In the first simulation, the
main drying curves were used to describe soil water retention, and hysteresis was ignored.
Remarkable consi_stenéy was found between computed and measured water potenﬁals and
temperatures. Attenuation and phase shift of the seasonal cycle of water potentials below the
shallow subsurface active zone (0.3 m) were similar to those of temperatures, suggesting that
water potential fluctuations may be driven primarily by temperature changes. Water fluxes in the
upper 0.3 m were dominatéd by downWard and upward liquid fluxes that resulted from infiltration
of rain and subsequent evaporation from the surface. Only in the top several millimeters of the soil
during evaporation périods was upward flux vapor-dominated. Below 0.3 m, water fluxes varied
slowly and were dominated by downward thermal vapor flux that decreased with depth, causing a
net accumulation of water. In a second simulation, nonhy§teretic water retention was instead
described by the estimated main wetting curves; the resulting differences in fluxes were attributed
to lower initial water contents (given fixed initial water potentials) and lower unsaturated hydraulic
conductivities in the second simulation. Below 0.3 m, the thermal vapor fluxes dominated and
were similar to those in the first simulation. Two other sifnulations were performed, differing from
the first only in the prescription of different (wetter) initial water potentials. These three simulations
converged in the uppef 0.2 m after infiltration of summer rain; however, the variou§ initial water
potentials were preserved throughout the year at greater depths. Comparison of all four simulations
showed that the predominantly upward liquid fluxes below 0.2 m were very sensitive to the
differences in water retention curves and initial water potentials among simulations, because these
stfongly affected hydraulic conductivities. Compan‘sbn of numerical modeling results with

chemical tracer data showed that values of downward vapor flux below the surface evaporation
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zone were of the same order of magnitude as those previously estimated by analysis of depth

distributions of bomb 3H (volatile) and bomb 36Cl (nonvolatile).
INTRODUCTION

The complexity of flow in the shallow unsaturated zone of desert soils requires the use of
numerical models to evaluate flow procésses and to analyze interactions and feedback mechanisms
between various controlling parameters. Most numerical modeling studies focus on isothermal
‘liquid flow and neglect the effect of vapm" flow. However, vapor flow may be important,
>particularly near the soil surface in arid systems, where the soils are very dry and where
temperature gradients are steep. Numerical models of varying complexity have been used to
simulate nonisothermal liquid and vapor flow. Development of these models has been motivated by
problems such as evaluation of shallow unsaturated zoneS, geothermal reservoirs, and nuclear
- wasie disposal sites. This study is concerned primarily with the “weakly” nonisothermal systems
of Pruess (1987), in which temperatures remain below the boiling point of water. Models of these
weakly nonisothermal systems are generally based on the equations of Philip and de Vries (1957).
Application of these numerical models to evaluate subsurface water flux has been limited by lack of
appropriate field data. Although field studies were conducted to evaluate the numerical model
developed by Sophocleous (1979),‘ test cases representing dry conditions were hypothetical |
because of problems with field psychrometric rneasﬁremcnts. Only water content data were
available to evaluate results of heat and water flux simulations conducted by Baca et al. (1978)
because temperature and water potential were not mpnitorcd |

Previous sirnulations of nonisothermal liquid and vapor flow in the shallow unsaturated zone
of an area within the Chihuahuan Desert of Texas were restricted to S-day bcriods in the summer
and winter and showed that below the evapomﬁon front, downward vapor fluxes in the summer
were much greater than generally upward vapor fluxes in the winter (Scanlon, 1992a). The results
suggested an annual net downward vapor flux that is consistent with the observed deeper

penetration of 3H (volatile) relative to that of 36Cl (nonvolatile).
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The objective of this study was to evaluate and explain liquid and vapor fluxes in the shallow
unsaturated zone of the Chihuahuan site in response to an annual climate cycle. Our approach was
to use numerical simulations to interpret observed field data. In contrast to previous simulations
(Scanlon, 1992a) that considered short-term precipitation-free periods, the full annual cycle |
includes alternating periods df precipitation and 'evaporadon. The long-term monitoring record of
subsurface temperatures and water potentials in this study provided initial codditions for the model
and data to test model results. Because of the cotnplexity of the system and the numerical model, |
there were considerable uncertainties in the soil physical properties. We made no attempt to |
calibrate the inodel, but did use sensitivity runs to understand the physical factors that control water
moverhent. |

One major difference between this and previous studies of nonisothermal flow systems is that
flow in the natural system was evdluated in this study, whereas many previous studies evaluated -
subsurface flow after an initial period of artificial saturation (Hanks et al., 1967, Rose, 1968). In
addition, the one-year period simulated is much longer than the periods (hours to days) simulated
in previous studies (Sophocleous, 1979; van de Griend et al., 1985; de Silans et al., 1989); this
gives a more comprehensive view of flow processes with reduced dependence on initial

conditions.
- GOVERNING EQUATIONS

Water and heat flux were simulated with a one-dimensional numerical model, SPLaSHWaTr
(Milly, 1982). SPLaSHWaTr is based on the formulation of water and heat flux by Philip and
de Vries (1957) and de Vries (1958), as generalized by Milly (1982). Two features of
SPLaSHWaTT are critical for this study and distinguish this code from many other codes that
simulate nonisothermal flow in the unsaturated zone. The first is the use of matric potential rather
~ than water content as one of the dependent variables; this allows simulation of flow in
heterogeneous, variably saturated systems. The second critical feature is the specification of the

“upper boundary condition in terms of atmospheric forcing. Model assumptions include (1) no
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uptake of water by plants, (2) local hydraulic and thermal equilibrium among solid particles, air,
and water, and (3) a static air phase (Milly and Eagleson, 1982). The lack of water uptake by
plants is apprbpriate for the study area because hydraulic parameters were monitored i_n‘bare soil.
The assumption of local hydraulic and thermal equilibrium only breaks down at high infiltration
rates in coarse soil (Milly, 1982); therefore, this assumption is reasonable for the study area, which
is characterized by fine-grained surficial sediments. The effect of the static air phase assumption on
simulation results will be discussed in a later section.

It is well known that the relation between matric potential and water content of soils exhibits
hysteresis. In this study, however, we assume that the water content is a unique function of matric
poteﬁtial and temperature at any time. This neglect of hysteresis is a definite limitation of this
study. The SPLaSHWaTr code permits hysteresis but fails to consider the entire wetting and
drying history in an internally consistent way (Milly and Eagleson, 1980). We judged that it was
better to neglect hysteresis altogether in this study than to use a questionable parameterization of it.
Furthermore, we were not aware of any comparable model with a valid description of hysteresis,
we did not have the resources to develop one, and we felt that meaningful results could be obtained
without considering hysteresis. The Slight hysteresis in the dependence of hydraulic conductivity
on water content is also ignored here. |

The SPLaSHWaTr code is fully documented by Milly and Eagleson (1980) and Milly (1982;
1984); however, the governing equations are provided here for convenience. The governing

equation for water is given by Milly (1982):

[(l_&}a_q &m‘ ]%[[l_p_u)ao L 8.9, }g

P )oVl, P Oy|. | ot p. )oTl, p, IT|, | ot

-9 oy ar|, K

'az[(K+D") 5 +(DT,+D,‘)32]+ o | (1)

where p, is density of water vapor in the air-filled portion of the pore space, p; is density of liquid
water, 8 is volumetric liquid water content, y is matric potential, 6, is volumetric air content, T is

temperature, ¢ is time, K is hydraulic conductivity, z is vertical space coordinate, Dy is isothermal
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vapor diffusivity, D7, is thermal vapor diffusivity, and Dr, is transport coefficient for adsorbed
liquid flow due to thermal gradients, which is ignored in this study because we believe it is
negligible in comparison with D7, at the study site. Dy and Dr, are gfvcn by Milly (1982) and

Milly and Eagleson (1980):
D, = Dy, ab, P, =2’ﬂ-a6,g—p*
P, v P RT
and
D 7]
D, === fr %
b v
g,w)
f¢( -804

in which D, is molecular diffusivity of water vapor in air, « is tortuosity factor, g is acceleration

due to gravity, R is gas constant for water vapor,
n 0<86,

f= 6, + 8

6 6,<6

n—=0,
in which n is porosity, 6 is highest water content at which unsaturated hydraulic conductivity (K,)
is much lower than Dy, { =(VT)_/ VT, (VT), being average temperature gradient in the air
phase, A is relative humidity, py; is saturated vapor density, and T is absolute tcmperaiurc (°K).

The heat equation as given by Milly (1982) is the following:

[C+Ha—p&| +H—' J—+( %, | 299| Ja'”
oyl "oyl
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where
=[Ly+¢,(T-T,)]6.

H,= (Clpl - C,pv)(T— T,)-pW-p,L,
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and C is volumetric heat capacity of the soil, 4 is effective thermal conductivity, L is latent heat of
vaporizatibn of water, c; is specific heat of liquid water, L is the value of L at an arbitrary
reference fcmperaturc Ty, q is total water flux, ¢, is specific heat of water vapor at constant
pressure, and W is differential heat of wetting of the soil. The volumetric heat capacity of the soil is
a weighted mean of the capacities of its components (de Vries, 1963). The effective thermal
conductivity of the soil and { were calculated according to de Vries (1963), and the differential heat
of wetting was calculated according to Groenevelt and Kay (1974).

The effects of temperature enter directly through the temperature gradients in equations 1 and
2 and indirectly through the temperature dependence of the matric potential, hydraulic conductivity,
and vapor diffusivity. The temperature dependence of the matric potential was calculated by
introducing the variable ¥, in essence, a temperature corrected potential, which is assumed to be a

function of water content only (Milly, 1984):

¥(0) = yexp[-C, (T - T,)] (3a)
where
1 dy |
Cc,=—
Y yodrT|, . ,(3b)

T is temperature, and T is an arbitrary reference temperature. The surface tension model generally
underestimates observed values of Cy (Wilkinson and Klute, 1962; Nimmo and Miller, 1986). In

an early application of SPLaSHWaTr, Milly (1984) assigned a value of —0.0068 °K-! to Cy
(Milly, 1984); this value is approximately three times that predicted by the surface tension model
(Philip and de Vries, 1957). Milly’s (1984) value was refained for simulations in this study. The
temperature dependence of the hydraulic conductivity (K) is given by

K =K, (0)1T,)/ »T) @)
where K is saturated hydraulic conductivity at the reference temperature Ty, K is relative hydraulic
conductivity (which is a function of water content [6]), and v is kinematic viscosity (Milly, 1984).
In fact, this approach may underestimate the sensitivity of K to T by a factor of 2 or 3

(Giakoumakis and Tsakiris, 1991).
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If the surface does not become saturated, then the surface boundary condition associated with

the water flux is:

(¢/p),.,=P-E N (5a)
where P is precipitation and E is evaporation (Milly, 1984). The evaporation rate is defined by the
aerodynamic diffusion relation (Milly, 1984). When the surface becomes saturated, the boundary
condition can be shown by:

v, =0 | (5b)
where the depth of ponded water at the surface is negligible. In that situation, the model determines
the surface influx, and any excess precipitation produces runoff. This surface boundary condition |
fails to allow for infiltration of runoff produced upstream of our ephemeral channel site. Such
runoff events are rare and short lived. Furthermore, they would tend to occur when the model
predicts surface saturation and maximum possible infiltration, in which case the additional water
avaﬂablc from upsu'ca.m could not infiltrate. |

The surface boundary condition associated with the heat flux equation is (Milly, 1984):
Wl === AV, =] 1, — (T, .o + 213) ]+ p,[L (T, =To)|E=pei(T. ~To)P+ H (6)

where g is soil heat flux, A is albedo, I is incoming solar radiation, € is emissivity, /4 is
incoming atmospheric radiation, o'is Stefan-Bolizman constant, T is temperature (°C), T+273 is
absolute temperature (°K), and H is turbulent diffusion of sensible heat into the atmosphere.

The one-dimensional forms of the governing partial differential water and heat equations are
solved by the G‘alerlcin finite element method in SPLaSHWaTr. The resulting nonlinear system of
ordinary differential equations is solved by 