EAGLE FLAT PROJECT, HUDSPETH COUNTY, TEXAS

Jay ‘A. Raney, Principal Investigator, E. W. Collins, Bruce Darling,
Ed Garner, M. L. W, Jackson, R. P. Langford, J. G. Paine,
Bernd Richter, B. R. Scanlon, S. J. Seni, Allan Standen,

E. G. Wermund, and Jiannan Xiang -

Progress Report

Prepared for

Texas Low-Level Radioactive Waste Disposal Authority
under Interagency Contract Number IAC(92-93)-0910

by

Bureau of Economic Geology
W. L. Fisher, Director
The University of Texas at Austin
Austin, Texas 78713-7508

August 1992

QAe7664



Hudspeth
County

. Fort
Hancock

Sierro |
Blanca [

Approx. scaie 1:1,160,000 — l
i ]
0] 10 20 30 mi !
L H i J
o
. QA giI39

Figure 1. Map showing area designated by the Texas Legislature, the Eagle Flat study area, in
Hudspeth County, Texas, and the six U.S. Geological Survey topographic quadrangle maps

(1:24,000) that comprise the area.
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Figure 2. Map of the Eagle Flat study area showing major physiographic and cultural features,

approximate boundary of the Faskin Ranch, and the currently proposed repository site.
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GEOLOGIC INVESTIGATIONS
The geomorphic, stratigraphic, and structural geologic studies are designed to characterize
the geologic setting of the site and region. The results of these §tudies are required for the

license application, to support design and geotechnical studies, |and to construct the

hydrogeologic framework.

Various elements of the regional stratigraphy and structural setting have been described by
many authors. Our studies will synthesize relevant portions of t‘he previous work but focus on
those issues that require more detailed characterization and analysis to evaluate the proposed
site. Exposed bedrock geology, for example, was generally well jmapped in the vicinity of the
Faskin Ranch-Eagle Flat region by Underwood (1963), Albritton’and Smith (1965), and King
(1965). We have compiled the previous mapping on the six to?ographic maps (1:24,000) that
cover the area designated by the Texas Legislature (fig. 1). Drilli‘ng, mapping, and geophysical
studies associated with this project will add new information on the bedrock units beneath the
basin-fill sediments and on the character of the basin-fill sediments themselves, particularly in

the siting area.

Surficial Deposits and Basin-Fill Sedi}nents
|

The proposed site at the northern Faskin Ranch (fig. 2) liés within the approximately

200-mi2 (520-km2) basin that is drained by Blanca Draw and its itributaries into Grayton Lake.
This closed basin is contiguous with the sediment-filled valley tc§> the east, which is drained by
Eagle Flat Draw and related drainages into Lobo Valley, south of! Van Horn, Texas.

~ Understanding the surficial deposits and the underlying basin-fill sediments is important for
characterizing the site, for evaluating active processes that may|occur at the site, and for
establishing the geologic framework for the hydrogeologic inveftigations., These studies also

complement related studies of the soils and geotechnical properties of the near-surface

deposits.




Methods of study include interpreting aerial photographs, mapping units on aerial
photographs and topographic base maps, extensive field observations, and describing and
sampling excavations and boreholes. The samples are being visually described and analyzed for
grain-size distribution (textural analysis), carbonate content, and mineralogy. Geophysical
methods, seismic reflection and refraction surveys, and paleomagnetic analyses are being
conducted in concert with studies by scientists at The University of Texas at El Paso. The results
of the geophysical surveys, described later in this report, are important to the stratigraphic

studies of the basin-fill sediments.

Surficial Deposits and Surface Morphology

Mapping the surface morphology and surficial deposits of northern Faskin Ranch, in and
around the proposed site, was one of the initial objectives of the characterization program.
Geomorphic elements were mapped using aerial photographs and checked by field
observation. Shape features and slopes for each geomorphic element were quantified using
topographic maps. In the principal siting area, surficial deposits were mapped along traverses
spaced 2,000 ft (610 m) apart to create a grid. Samples of surficial deposits were collected from
shallow, hand-dug pits at depths as much as 1.6 ft (0.5 m) below the surface. The samples were
collected from different depths at 13 locations to quantify textural and compositional changes
with depth.

Outside the immediate area of the proposed repository, surficial deposits were mapped
using both interpretations of aerial photographs and field observations made along traverses
designed to cross all of the map elements visible on aerial photographs. Samples were collected
from 23 locations, in addition to those collected on the proposed site, along the traverses.

The northern Faskin Ranch area can be generally divided into three geomorphic regimes,
washes,.wash-flank slopes, and interfluvial flats. The wide flat washes of Blanca Draw and its

tributaries form a dendritic network trending east, southeast, and south through the area (figs. 3



(o) tos 21080 B
sweeng feseweydy .. 13 NN
S00UB4 e (23) adojs pue aanjpaiu|
0} -epewiuew Jeyjo N
S opeuiueyy N sealy adojg _l[

sejoyserem pue syuey  FEE] (M) ysem E

peoy uia

peoljieyy —e—e—s

peoy peaed

1} 02 01 0} [eAssiu| JNOJUOD

sjisodaq jeons

Figure 3. Map of the geomorphic elements and surficial deposits of the northern Faskin Ranch

area. Hachured lines indicate slope areas. Shaded patterns show distribution of surficial deposits.
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and 4). The washes are separated from intervening interfluvial flats by well-defined, wash-flank
slopes (figs. 3 and 4). Washes are 200 to 1,650 ft (60 to SO0 m) wide, with an average width of
950 ft (290 m; fig. 3). Washes are 7 to 35 ft (2.1 to 10 m) below adjacent interfluves and have
gradients that vary from 0.0053 (28 ft per mi) in the northwest part of the north Faskin area to
0.0019 (10 ft per mi) near Coffee Tank. Wash floors are vegetated and only locally exhibit
channels or other erosional or depositional features resulting from active fluvial or alluvial
processes.

Washes can be subdivided into three areas according to distinct vegetation types:

(1) mesquite thickets having scattered to dense stands of mesquite interspersed with grasses
and other shrubs, (2) grass flats having dense patches of grass, and (3) grass flats covered with}
scattered grasses. Mesquite thickets are wider and more common in the lower reaches of Blanca
Draw, in the southeast part of the area. The thickly vegetated grass flats form isolated patches
along the margins of the washes.

Wash-flank slopes are defined by their relatively steeper slopes between the interfluvial
flats and the wash bottoms (fig. 4). The slopes are locally well defined on contour maps and in
many places are visible on aerial photographs. Wash-flank slopes average 790 ft (240 m) in
width and have slopes averaging 0.019 (99 ft per mile). Vegetation is generally similar to that of
the interfluvial flats (see next paragraph) but is less dense. The wash-flank slopes are actively
eroding in some areas. The characteristic erosional features are crescentic erosional scarps, 0.3
to 1.0 ft (0.1 to 0.3 m) high, that open downslope and enclose poorly vegetated or
nonvegetated fan-shaped areas in which shallow rills may be present. Sediment is evidently
sapped from the scarp face, washed across the barren fan-shaped area, and deposited in grassy
areas at the toes of the scarps; Sediment derived from the scarps is deposited within the
adjacent parts of the washes. Erosion has also occurred along cow paths, roads, trails, and other
areas subject to the activities of people or cattle.

Interfluvial flats are present over most of the northern Faskin Ranch area (fig. 3). The

interfluves are low-relief, mesquite and yucca savannas that slope gently southerly, with a
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Figure 4. Schematic cross section through Blanca Draw, adjacent slope, and interfluvial flats
indicating topographic expression and stratigraphy of surficial deposits. No horizontal scale.



gradient of 0.0043 (23 ft per mi), across the north part of the ranch. The interfluves are
vegetated and do not exhibit channelization or erosional or depositional features resulting from
fluvial or alluvial activity. Topographic maps having a 2-ft contour interval reveal a gently
rolling topography that has 3- to 6-ft-high (1- to 2-m), north-elongate swells and intervening
swales (figs. 4 and S).

The floors of washes are underlain by a substrate that has a texture different from the
other geomorphic elements. The wash deposits (W) are cohesive and appear to have a high silt
and clay content. Grain-size analyses are pending. Pebbles are only evident along the margins
of washes, where they are being eroded from flanking slopes of the washes. Internal
laminations or other bedding surfaces are not commonly evident, and primary depositional
features may have been destroyed by soil-forming proceﬁses. This facies appears to be the
youngest surficial deposit in the northern Faskin Ranch area and is probably currently
aggrading. The facies thins to a zero-edge at the margins of the washes and thickens to at least
1.6 ft (0.5 m) within the rest of the washes (figs. 3 and 4).

Two different substrates appear to underlie the interfluvial flats (figs. 3 and 4). The
younger interfluvial deposits (E2) are fine-grained loamy sands with no pebbles or caliche
fragments included and little evidence of soil development. The older interfluvial deposits (E1)
are also fine-grained sands, but they contain pebbles and caliche fragments that are scattered
across the surface of areas underlain by E1. The E2 deposits may be significantly younger than
the E1 deposits because in some locations E2 overlies E1 with a sharp contact and because E1
exhibits horizons associated with clay and carbonate accumulations formed during soil
development. The E1 deposits are internally somewhat variable and may be subdivided as work
continues. Samples of both the E2 and the E1 deposits will be processed to measure the clay
and carbonate content. The E1 and E2 units have an irregular contact, and both exhibit the
rolling topography typical of the interfluvial flats (figs. 4 and 5).

Unit C underlies the E2 and E1 deposits and is exposed along wash flanks and in

excavations (figs. 3 and 4). The C deposits typically contain a readily apparent calcic soil
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Figure 5. Detailed topographic profile across the interfluvial flats illustrating the high frequency
relief on the topographic surface of the E2 deposit and the rolling topography typical of the
interfluvial flats. Vertical exaggeration is about 600:1. Location of profile is along seismic
reflection line LLFR1 (see fig. 16).

10



horizon, which is variably developed, and in some places no calcic horizon is evident. Most
commonly the soil is a horizon of massive CaCOj3 indicative of stage III development, and
locally stage IV calcretes are evident (following usage of Machette, 1985). Soils with similar stage
III carbonate development in southern New Mexico and West Texas require 100,000 to
150,000 yr to accumulate (Machette, 1985), and the actual age of unit C may be much older.
The calcic soil is developed in a heterogeneous suite of materials, including sands, muddy
sands, and gravels. The deposits appear to be predominantly fluvial in origin. Locally, gravel
lenses and coarse sands are present below the calcic horizon. In most exposures, only the calcic
horizon is exposed, and the parent material is not evident. In one borrow pit in Blanca Draw,
the calcic soil is overlain by a 6.9-ft-thick (2.1-m) lens of muds, sands, and gravels having
sedimentary structures indicating a fluvial origin (fig. 4). This deposit appears to underlie E1

although the stratigraphic relationship between E1 and the fluvial strata is not well exposed.

Basin-Fill Sediments

Surficial deposits at Faskin Ranch, just described, are unconsolidated to poorly consolidated
Quaternary deposits of eolian, colluvial, and alluvial origin. These sediments, and an underlying
sequence of similar lithologies, were deposited within a basin developed on an irregular
bedrock surface. The depth of the basin-fill deposits above the bedrock in the vicinity of the
proposed site at the northern Faskin Ranch, on the basis of drilling (fig. 6), ranges from
approximately 160 ft (50 m) (borehole YM-5) to 680 ft (210 m) (borehole YM-17). Basin-fill
deposits are being studied in surface exposures, excavations, and in samples acquired from core
and auger holes at Faskin Ranch and Gfayton Lake (fig. 6). In total, more than 3,000 ft (900 m)
of basin-fill sediments have now been cored. The bedrock exposed in the vicinity of Faskin
Ranch and sampled in boreholes is composed of Cretaceous limestones and sandstones. Tertiary

igneous rocks, Paleozoic sedimentary rocks, and Precambrian sedimentary and metamorphic
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Figure 6. Map of northern Faskin Ranch area showing locations of boreholes. Boreholes drilled
by the BEG are prefixed YM.
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rocks are exposed elsewhere in the Sierra Blanca-Eagle Flat region and locally occur beneath
the basin-fill sediments.

The upper basin-fill deposits in the vicinity of the proposed repository site are composed
of poorly consolidated sand and silt, with lesser amounts of clay and gravel. Pedogenic structures
are present throughout. Typical characteristics of the basin-fill sediments encountered in
boreholes near the proposed site are shown in figure 7. Mineralogic composition of the fine-
grained basin-fill deposits, as determined by X-ray and thin-section analysis, is quartz, feldspar,
kaolinite, illite-smectite, calcite, and a trace of amphibole. Textural analyses currently available
indicate 20 to 40 percent clay, 40 to 60 percent silt, and about 20 percent fine sand. Basal
sediments deposited on or near the bedrock within the basin, or near the margins of the basin,
are composed primarily of gravel.

Basin-fill sediments beneath Grayton Lake (fig. 6) were sampled in borehole YM-7. The
uppermost 2 ft (0.6 m) in borehole YM-7 are silts. From 2 to 22 ft (0.6 to 6.7 m), the sediments
are composed of clay and silt that are locally gleyed and are interpreted to represent deposition
in a playa environment. Below the presumed Grayton Lake sediments are silts and fine sands
similar to sediments in cores from boreholes at Faskin Ranch. Only a little gravel lies at the base
of the basin-fill sediments in borehole YM-7. The underlying bedrock, the Cretaceous Cox

Sandstone,k was encountered at about 109 ft (33.2 m) below surface.

Fissurelike Features

Most of the basins in the Trans-Pecos region locally contain features characterized by
generally linear patterns of holes, pipes, cracks, and/or collapse structures developed at the
surface of the basin-fill sediments. Some of these features can be tentatively identified on aerial
photographs by linear vegetation anomalies that are not apparently induced by human
activities. Some of these surface features are demonstrably or presumably underlain by

tensional fractures that extend to significant depths (several meters to a few tens of meters or
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Figure 7. Lithologic log of borehole YM-4. Dominant grain size is very fine sand and silt,
coarsening toward the base of the core. The upper 20 ft (6 m) of this borehole had poor
recovery because the weakly consolidated nature of the sediments; lithology based on bagged
samples. See figure 6 for the location of borehole YM-4.
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more); such features, as for example those near Fort Hancock, Texas (Baumgardner and Scanlon,
in p1_'ess) and near Picacho, Arizona (for example, Jachens and Holzer, 1979), have been called
“fissures.” The possible modes of origin of fissurelike features include piping, desiccation,
seismic activity, lowering of the water table, animal burrows, sediment compaction, or a
combination of processes. The multiple potential modes of origin and the absence of a precise
definition of a fissure have led us to use the term “fissurelike” to describe features found locally
at the Faskin Ranch and in the surrounding area that share some characteristics with the “true”
fissures described from other areas.

Fissurelike features are typically expressed at the Faskin Ranch as shallow, elongate
trough—shapéd features or as alignments of subcircular holes or depressions in the wash and
interfluvial deposits. They have been identified in Blanca Draw and related tributaries (fig. 8)
and outside the washes west of Blanca Draw. The highest concentration of fissurelike features
found to date ié in a tributary to Blanca Draw south of the Southern Pacific railroad tracks and
north of Cross Tracks Tank (figs. 8 and 9). Other local concentrations of similar features occur
upstream from Cross Tracks Tank and Coffee Tank and along Blanca Draw as it enters the
Edwards Ranch to the east. Isolated fissurelike features are present in Blanca Draw upstream
from Cross Tracks Tank and in a swale east of Blanca Draw.

Fissurelike features also occur elsewhere in the Sierra Blanca-Eagle Flat area outside of the
Faskin Ranch. For example, on the Hoover property west of the northern Faskin Ranch, near
Partition Tank éast of Faskin Ranch, and in Eagle Flat Draw east-southeast of Grayton Lake.
These fissurelike features are longer and generally better defined that those at Faskin Ranch. A
0.75-mi-long (1.2-km) linear feature marked by an increase in vegetation has also been
identified on a sloping area adjacent to Blanca Draw northwest of Grayton Lake. Surface
examination has revealed only a few shallow open voids or collapse features along the clearly
discernible vegetation line. No fissurelike features have been identified on the proposed site
for the repository (east of the road leading south from the Faskin ranch house and north of the

Southern Pacific Railroad).
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Figure 8. Preliminary map of occurrences of fissurelike features identified on Faskin Ranch.

Detailed map of area A is shown in figure 9.
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Fissurelike features on Faskin Ranch range in ‘size from single holes, 4 inches (10 cm) or
smaller in diameter and as much as 14 inches (35 cm) deep, to elongated depressions, tens of
yards (meters) long and as much as 2 ft (70 cm) deep. These larger features are present
immediately south of the Southern Pacific tracks at the eastern railroad bridge, north of Cross
Tracks tank, and may have been modified by the activities of humans or of cattle. Most
 fissurelike features occur as linear arrays of open holes and shallow depressions. Typical single
depressions range from 8 to 16 inches (20 to*40 cm) deep and are 1 to 6.6 ft (0.4 to 2 m) long.

The fissurelike features in the wash deposits are commonly associated with animal burrows
or holes that may have originated as burrows. Animal burrows may be present because the wash
deposits are relatively easy for the animals to excavate or because of the proximity to tanks or
the presence of vegetation. Some burrowlike features exit from the bottom of the fissure walls,
parallel with the floor, or they may enter from the middle of a fissure wall. Burrows may, in
some cases, contribute significantly to the shape and orientation of the fissurelike features
because they may focus water flow and initiate piping.

Three excavations were dug to evaluate the subsurface character of the fissurelike features
and to compare the Faskin Ranch features to others described from elsewhere in the Trans
Pecos (Baumgardner and Scanlon, in press). Trench 1 (fig. 8) was excavated across a line of
relatively dense vegetation, which shows clearly on aerial photographs but is indistinct on the
ground. The trench was dug to evaluate the subsurface expression of the linear vegetation
anomaly. The excavation lies on a gentle slope several hundreds of meters from Blanca Draw in
d‘eposits tentatively identified as unit C because of the presence of a well-developed calcic soil.
No subsurface cracks are obvious in the excavation below the organic-rich soil that is present on
the projection of the vegetation linear. The near-surface calcic soil appears to be less well
developed or is perhaps degraded where the vegetation linear projects across the excavation.

Trenches 2 and 3 were dug in wash deposits at the south end of an area with a relatively
high concentration of fissurelike features (fig. 9). Neither of the trenches have subsurface

fractures that are clay lined or sediment filled. A fracture is not evident beneath the voids and
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collapse features (as was seen in the fissure excavations at Fort Hancock) that acts as a principle
control on the location or the development of the fissurelike features. Minor unfilled cracks in
the soils may be related either to pedogenic processes or to the physical disturbance caused by
the excavation, but no evidence suggests that these have either influenced the formation of

the fissurelike features or that they are present below the upper two meters of the excavation.

Lineaments

A lineament study of the Faskin Ranch and the surrounding Eagle Flat study area (figs. 1
and 2), as designated by the Texas Legislature, was completed this year. The results of that study
are described in a contract report (Wermund, 1992), and the reader is referred to that report
for a complete discussion of this topic.

The lineament study is based on an analysis of linear features that can be identified on
stereographic pairs of aerial photographs of the study area. An effort was made to eliminate
those linears due to human activities, such as fence lines and roads, so that only lineaments
resulting from alignments of natural features are included in the analysis. The analysis includes
an evaluation of the orientations, lengths, and densities of lineaments, and correlation, where
possible, of lineament characteristics with the distribution of lithologies and terrain types in

the study area.

Neotectonics

Investigations of the neotectonics of the site and surrounding region have included
identifying and mapping faults that have had Quaternary (present to ~2 million years ago
[mya]) movement and collecting geologic data to evaluate the seismic character of previous
earthquakes. Our studies are based on aerial photograph interpretations and field work. Because
the investigations are ongoing, the data presented in this report are preliminary. Additional

details of the work in progress are reported in table 1 and in appendix I. Results of this study
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will be used by other contractors to evaluate seismic risk to the repository and for repository
design.

The study area includes the Eagle Flat area, as designated by the Texas legislature, and the
adjacent region out to 31 mi (50 km) from the boundary of the Eagle Flat area (fig. 10). The
study region contains intermontane basins and associated normal faults that formed in response
to Basin and Range extensional tectonism that began about 24 Ma ago. This extensional
tectonism continues to the present and is responsible for ongoing seismic activity and historic
earthquakes such as the 1931 Valentine event.

Table 1, read in conjunction with figure 10, provides a good summary of our progress.
Identified faults are related to their associated basin, and the inferred maximum cumulative
length of the fault strands and the regional strike and dip of the faults are recorded. The closest
distance of each fault to an arbitrary reference point at Faskin Ranch (latitude 105°15',
longitude 31°07'30") and comments on the characteristics of each fault are also noted.

This study has not identified any Quaternary fault scarps in the Blanca Draw portion of the
Eagle Flat area. The closest Quaternary fault scarp to the proposed site at Faskin Ranch is about
4.3 mi (7 km) long and occurs in Red Light Draw 8.4 mi (13.5) km south-southwest of the Faskin
Ranch reference point. Buried or inferred extensions of the fault strands may occur as close as
6 mi (10 km) to the reference point. Middle Pleistocene age deposits, probably 250,000 to

500,000 yr old in this area, are offset between 3.3 and 8.2 ft (1 and 2.5 m).

Natural Resources

The location of mineral and geothermal resources within the 400-mi? (1,036-km2) Eagle
Flat study area (Allamoore, Grayton Lake, Devil Ridge, Sierra Blanca, Bean Hill, and Dome Peak
7.5-minute topographic quadrangles; figs. 1 and 11) were described as part of the geologic
characterization program. To more fully describe the regional trends and mineralogic

associations, mineral localities were also characterized within a larger 900-mi2 (2,304-km?2)

27



290v0

AUJ

VWIHOYIY1 3d vuu3ls
wy 02 0

|

lwr Gy 0

N
paJaA0d pup patiajul
913ym pajjop ‘uib}iaoun Juswaop|dsip KJousaiony .
Jo judawaop|dsip Kipusajpny) ou ‘juawaopidsip AIpijia) .
94p| *'sy1s0dap (1) - ulspq Ul 9904} }Npy 40 dIDIS }jND4 Af

.u?_o>ou_u:cUm.:o,::Eo.._zg:o_umn‘_oom /
joutysip pup juawaop|dsip AIpulalpnd) yiim §inoy [DWION

$31134 yb1y Jo pasy

oz U shivINno Av N

Wailoo o sNIVINNOW SNOTYIV 7L ’

e, L nvalvidotavia

uin|4 wnsdAg

AVCETLON

L NGO N
L e e L T 003N

SIVLNAOW L
3dNYavND - Sl sexay

T00IXIW MIN S

igure 10. Map of faults that are known to have had or may have had offset during the late
Tertiary or Quaternary. Map includes faults with definite surface manifestations (scarps) and
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Figure 11. Map of Eagle Flat study area and surrounding reconnaissance area showing locations
of mineral prospects and districts.
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reconnaissance area that includes 16 adjacent 7.5-minute quadrangles (fig. 11). A complete
description of this work is being prepared as a topical contract report (Seni, 1992).

This compilation (see appendix II) includes active mines, abandoned mines, prospects,
and quarries whose locations were determined by literature survey. Price and others (1983)
compiled mineral localities and organized‘them into districts that are characterized by a
common mineralogic association, host rock, or mode of origin. Their compilation includes
locality name, location by latitude/longitude, status of mining operation, commodity, and
mineral district and is the primary basis for locality information. Additional localities were
obtained from the BEG Mineral Producers Index, the Railroad Commission of Texas (Mined
Lands Inventory), and U.S. Geological Survey 7.5-minute quadrangle maps. Detailed geologic
data from historic mines and mineral occurrences are also available in a wide variety of
referenced material.

A unique identification number is assigned to each locality on the basis of its location on a
7.5-minute topographic map (Texas numbering system) (fig. 12). No information was gathered
on hydrocarbon or water resources as part of this study. Geothermal resources are indicated by
hot springs and water wells that produce anomalously hot water. Although uranium prospects
and radioactivé anomalies are reported in the region, no commercial deposits have been
identified and no significant anomalies (<100 ppm) occur within the study area or larger
reconnaissance area. Anomalous (50 to 80 ppm) uranium concentrations are associated with
beryllium-fluorspar in the Sierra Blanca peaks.

Mining districts and prospects are outlined in figure 11. Current mineral production in
both the study area and the larger reconnaissance area is limited to talc from the Allamoore talc
district and aggregate (sand and gravel or crushed stone). Most of the mineral localities are
prospects that never had mineral production or were mines active before the early 1900’s
through the 1940’s. Although many prospects for base and precious metals exist, no precious
‘metals mining is currently active, and only a very small volume of precious metal ore is known

to have been shipped from the study area. During the 1970’s and early 1980’s, a dramatic rise
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Figure 12. Map of Eagle Flat study area and surrounding reconnaissance area showing unique -
numbers assigned to mineral prospects and mines. Refer to appendix II for compilation of
mineral inventory data.
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in prices of precious metals supported a brief flurry of exploration, but no new production
resulted from this activity.

In the surrounding reconnaissance area, precious and base metal mining has occurred in
the past, but mining efforts are currently inactive. Historic production was dominated by
(1) the Van Horn-Allamoore silver and copper district (Hazel, Blackshaft, and Sancho Panza
mines) and (2) the Eagle Mountains fluorspar district (Spar Valley area and Eagle Spring mines).
Subordinate precious and base metals production came from (1) the Northern Quitman
Mountains (Bonanza mine) and (2) the Van Horn Mountains (Plata Verde mine). Beryllium-
bearing fluorspar deposits were identified in the early 1970’s in association with intrusions in
the Sierra Blanca and Round Top Mountains area. The Sierra Blanca fluorspar- beryllium district
probably hosts large mineable reserves, but these are not being produced.

The age, rock type, and tectonic history of the outcropping strata largely control the
distribution of mineral resources. Talc and other industrial minerals are associated with the
metamorphosed phyllites of the Allamoore Formation. Hydrothermal activity associated with
Tertiary intrusions introduced metal-rich (Ag, Cu, Pb, Zn) and fluorine-rich (fluorspar) fluids,

“which reacted with nearby country rock and yielded veins and replacement bodies. Such veins
and replacements occur in topographic highlands associated with the Eagle Mountains, Carrizo
Mountains, Van Horn Mountains, and Quitman Mountains. Price and others (1985) related
silver-copper ores that occur in veins and strata-bound deposits in Precambrian, Permian, and
Cretaceous sandstones (Van Horn-Allamoore silver and copper and Van Horn Mountains silver,
copper, lead districts) to low-temperature, strata-bound red-bed copper deposits. Sand and

gravel deposits are typical Cenozoic bolson-fill sediments associated with late Cenozoic basins.

HYDROGEOLOGIC INVESTIGATIONS

Hydrogeologic investigations are an essential component of the characterization of the

proposed site.- Understanding the occurrence and movement of water, both in the vadose
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- (“unsaturated”) zone and in the saturated zone, forms the basis for performance assessment
analyses and for the design and licensing of the proposed facility. Through these investigations
we will characterize hydrogeologic processes at the site and in the surrounding region, and we
will attempt to describe how the hydrogeologic systems have changed over time.

kMany of the previously described geologic studies, a‘s well as the geophysical investigations
to be described in a following section, will provide information needed to construct the
geologic framework for hydrogeologic models. Hydraulic and chemical attributes of the system
are being measured at the Eagle Flat site and from the adjacent region. Hydraulic attributes
include soil moisture content, soil water potential, hydraulic conductivity, and hydraulic head.
Chemical attributes include measurement of stable and radioactive isotopes in the vadose and
saturated zones and composition of major ions in the saturated zone. Analysis of hydraulic and
chemical parameters will provide data to evaluate the direction and rate of water movement.
Where appropriate, data from previous studies at the Fort Hancock site will be used to
supplement the data base developed for the Eagle Flat site. Numerical models will be used to

evaluate controls of various hydrologic and hydrochemical processes.

Vadose Zone Studies

The Vadbse zone is that part of the hydrogeologic environment that lies between the
surface and the top of the saturated zone (the top of the “water table”) at depth, the soils,
sediments, and rocks of the vadose zone being generally unsaturated. Our vadose zone studies
are restricted to the Eagle Flat study area. Near the site at Faskin Ranch, the vadose zone is
about 650 to 800 ft (200.to 245 m) thick, and the proposed repository would be constructed in
the shallow part of the zone. Data on the direction and rate of water movement in the vadose
zone are important for performance assessment and facility design because such information

can affect the fate of potential contaminants from the proposed repository.
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Vadose zone hydrologic studies are being done only at the Faskin Ranch. The objective is
to evaluate moisture flux in the shallow unsaturated zone at the proposed site (table 2) using
hydraulic and chemical approaches. Hydraulic data include moisture content and water
potential. Water-potential data can be used to assess the direction of water movement because
water flows from regions of high to low water potential. The chemical approach involves using
chloride mass balance methods to estimate moisture fluxes in the vadose zone. High chloride
concentrations indicate low moisture flux because chloride is concentrated by
evapotranspiration whereas low chloride concentrations indicate higher moisture flux because
chloride is leached from the soil.

The first phase of the study at Faskin Ranch focused on éollecting soil samples for

blaboratory analysis of grain-size distribution, moisture content, water potential, and chloride
concentration. Soil samples were collected from eight boreholes (YM-9 to YM-16) that ranged
in depth from 18 to 54 ft (5.6 to 16.6 m) (table 1; fig. 6). The number of samples from each
borehole ranged from 16 to 36, with smaller sampling intervals (0.3 to 1.0 ft [0.1 to 0.3 m])
occurring close to land surface—approximately the upper 16 ft (5 m), Where hydraulic and
chemical parameters are most variable and larger sampling intervals (generally 2.6 ft [0.8 m] or
more) occurring at depth. The boreholes (fig. 6) sampled different geomorphic settings:
(1) ephemeral stream (Blanca Draw; boreholes YM-11 and YM-12) setting, (2) the interstream
(boreholes YM-9, YM-10, YM-13, YM-14) setting, and (3) in and adjacent to a borrow pit
(YM-15, YM-16). The interstream boreholes are located in sandy (borehole YM-13) and silty
(borehole YM-14) surface soils (E1 and E2 depoéits). Water potentials are measured using the
Decagon psychrometer SC-10 sample changer and a newly acquired water activity meter (Model
CX-1), both manufactured by Decagon Devices, Pullman, WA. Procedures for field sample
collection and laboratory analyses can be found in Scanlon and others (1991) and in Scanlon
(1992).

Laboratory analyses of moisture content, water potential, and chloride concentration are

in progress. Figure 13 is an example of the variations in gravimetric moisture content, water
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Table 2. Tabulation of boreholes drilled for vadose zone sampling showing status of analytical
work and geomorphic setting of borehole. Samples to be analyzed for water potential (WP),
chloride (Cl), and moisture content (MC). Location of boreholes shown on figure 6.

-

- No. of Completed

Hole ID Depth (m) samples (*) analyses (*) Geomorphic setting
YM-9 14.6 36 WP, CI, MC Interstream, just outside flood plain
YM-10 10.3 33 Cl,MC do
YM-11 9.3 20 MC Blanca Draw, upper flood plain
YM-12 5.6 16 WP, MC do
YM-13 11.3 26 WP, MC Interstream, sandy surface material
YM-14 9.6 22 MC Interstream, silty surface material
YM-15 16.6 33 MC Borrow pit
YM-16 14.5 29 ' Adjacent to borrow pit
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potential, and chloride in soil samples from a borehole, YM-9, at Faskin ranch. These data are

being used in numerical modeling studies to evaluate controls on subsurface flow.

Saturated Zone Studies

Saturated zone studies are being conducted on two scales: at a local scale on the Faskin
Ranch in the Eagle Flat study area (fig. 1) and on a regional scale (fig. 14). The regional studies
extend from the upper reaches of Blanca Draw in the north, to the Rio Grande to the south.
The east edge is delimited by the western Carrizo and Van Horn Mountains (Eagle Flat Draw-
Green River Valley), and by the east flanks of the Quitman Mountains (Red Light Draw).

Hydlfochemical sampling has been condubted jointly at five wells by scientists from The
University of Texas at El Paso (UTEP) and BEG. Because processes (such as mixing in the well
bore or reactions between the ground water and the well casing) may alter water chemistry,
special care has been taken to collect samples only after sufficient water has been produced
such that the eH of the water has stabilized. Stable Eh values are probably good indicators of
stable concentrations of chemical constituents. The UTEP scientists are attempting to test the
validity of this assumption by quantifying the relationship between changes in Eh and water

chemistry. Seventy-one samples were collected but results are not yet available.

Monitor Wells

Three monitor wells, YM-7, YM-8, and YM-18 (fig. 6), have been drilled as part of this
project. One well, YM-7, was constructed off-site at Grayton Lake; two wells, an up-gradient and
a down-gradient well (YM-18 and YM-8, respectively), are site-specific monitor wells; drilling of
a third down-gradient, site-specific monitor well (YM-19), began in August 1992. Those parts of
wells YM-8 and YM-18 that encountered basin-fill sediments have been geophysically logged.

Pumping tests will be run, and quarterly sampling will be started once well YM-19 is complete.
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Pumping tests were performed at the Grayton Lake monitor well (YM-7). This well is
completed in Cretaceous limestone at a total depth of 882 ft (269 m), with a 160-ft (49-m)
screened section from 715 to 875 ft (218 to 267 m). Water level determined before the
pumping tests was at 654.5 ft (199.5 m) below surface; the water column in the borehole was
228 ft (69.5 m) thick. Pumping tests were performed over pumping periods of 7, 19, and
64.5 hours at rates of 6 to SO gal/min (22.7 to 189.3 L/min). Plots of the recovery and drawdown
data from the long-term pumping test are most comparable to idealized curves for leaky
confined aquifers. Averaged over the entire water column, transmissivity values are 40.3 ft%/day
(3.74 m2/day) (recovery phase) to 79.8 ft2/day (7.4 m2/day) (drawdown phase); permeability
values are 0.18 ft/day (0.055 m/day) (recovery phase) to 0.35 ft/day (0.11 m/day) (drawdown

| phase). Transmissivity and permeability values determined using the Theis recovery method

were 81.0 ft2/day (7.5 m2/day) and 0.35 ft/day (0.11 m/day), respectively.

Potentiometric Surface

Data on the elevation of the top of the static water level from approximately 100 wells
(fig. 14) have been compiled to define a preliminary version of the regional potentiometric
surface. This map will integrate data from existing wells on a regional scale, data from three
wells completed by the BEG (one additional well is in progress) at the Faskin Ranch, and data
reported by the Texas Water Development Board (TWDB). The TWDB data will be used for
those wells where static water levels can no longer be measured. The recent measurements
made by the BEG help to verify the older TWDB data and add additional data points to refine
the potentiometric surface.

Preliminary data on the potentiometric surface suggest that ground water is shallowest and
is being recharged in topographically high areas (Eagle Mountains, Streeruwitz Hills, Carrizo

Mountains, Quitman Mountains), and flows toward the basinal areas.
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Regional Hydrochemistry

The regional hydrochemistry study includes collection of water samples for analysis of
major ions, trace elements, stable isotopes (8180, §2H, and 813C), and radioactive isotopes (3H
and 14C). The resulting data base will to be used to identify recharge and discharge areas, tb
estimate ground-water ages and regional flow rates, and to construct a quantitative model of the
hydrochemical evolution of the ground water.

Fifty-two samples have been collected from wells in the region (fig. 14). The BEG Mineral
Studies Laboratory (MSL) has completed analyses of major ions and stable isotopes in 29
samples. The remaining 23 samples should be analyzed within the next few weeks. Analysis of
radioactive isotopes are being conducted by laboratories at the University of Arizona (14C) and
the University of Miami (3H). Samples will be collected from additional wells drilled in
conjunction with this project, but almost all of the regional sampling has been completed.
Analyses published by the Texas Water Development Board will be used to supplement the
data base. Table 3 lists the disposition of the samples collected for this study, and table 4 lists
the results of the completed analyses.

The preliminary results of the available analyses suggest that there are marked differences
exist in the hydrochemical and isotopic characteristics of ground water across the area. Ground
water in Blanca Draw (fig. 14) is dominated by sodium-sulfate-chloride ions, and total dissolved
solids are as much as 3,000 mg/L Uncorrected carbon-14 values are 8 to 12 percent modern
carbon, suggesting relatively old radiometric ages. Tritium activities indicate that no direct
evidence exists of post-1951 recharge.

Ground water in Eagle Flat and Green River Valley ranges from calcium-bicarbonate and
sodium-bicarbonate to sodium-magnesium-calcium-bicarbonate-chloride. Total dissolved solids are
typically less than 1,000 mg/L. Carbon-14 and tritium values suggest that active recharge may be
occurring in the northeast parts of the Eagle Flat study area. Other isotopic data suggest that

ground water in eastern Eagle Flat, south of the Carrizo Mountains, may be quite old. These
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Table 3. Disposition of samples submitted for analysis.

Ions* 5180~ 82H* SI13C-14C# 3HYT 834s#

Analyzed 29 21 0 17 24 0
At Lab 23 23 44 19 17 1
Total 52 44 44 36 41 11

*Analysis by Mineral Studies Lab, Bureau of Economic Geology,
The University of Texas at Austin

#Analysis by Laboratory of Isotope Geochemistry, University of Arizona
tAnalysis by Tritium Laboratory, University of Miami
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data, coupled with the elevation of the potentiometric surface and the absence of springs or
other evidence of discharge, suggest that eastern Eagle Flat may be connected hydrologically
with Lobo Valley to the east.

The hydrochemical signature of ground water from Red Light Draw is similar to that of the
mixed bicarbonate ground water from Eagle Flat and Green River Valley. This is based on
analyses published by the Texas Water Development Board. Thirteen wells from this area were

sampled during June and July, but analytical results are not yet available.

GEOPHYSICAL INVESTIGATIONS

Seismic Reflection and Refraction Studies

BEG conducted field geophysical studies to determine the geometry of the sedimentary
basin in which the site is located and to examine the internal stratigraphy of the sediments
that fill the basin. Results from these studies will be used to decipher the geologic history of the
basin and to constrain hydrogeological models.

Three types of seismic data, refraction, reflection, and surface wave data, were collected at
Faskin Ranch in 13 field days between May 21 and June 7, 1992. Refraction data, which are
used to determine seismic velocities and thicknesses of subsurface layers, were collected at 6
sites at the ranch (fig. 15). Reflection data, which are used to construct continuous cross
sections of the basin, were collected along four lines (LLFR1, 2, 3, and 4) that together extend
for more than 3.7 mi (>6 km) (fig. 16). Surface wave data, which are used to determine physical
properties of near-surface sediments, were collected from one site near the intersection of
reflection lines LLFR1 and LLFR3. BEG is processing the refraction data, UTEP is processing the
surface wave data, and BEG and UTEP are processing the reflection data using two different
processing packages.

Layer velocities and thicknesses were obtained from all six refraction spreads (fig. 17).

Layer 1, which is the surface layer, is characterized by seismic velocities of 1,230 to 1,395 ft/s
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(375 to 425 m/s) and thicknesses of 16.4 to 32.8 ft (5 to 10 m). Layer 1 is underlain by layer 2,
which has seismic velocities near 3,280 ft/s (1,000 m/s) and thicknesses (uncorrected for dip)
ranging from 180 to 375 ft (55 to 114 m) across the site. Seismic velocities in layer 3 are
significantly higher than those in the overlying basin fill layers; this layer represents bedrock.
Depths to bedrock, also uncorrected for dip, range from 210 to 400 ft (64 to 121 m).

Reflection data augment refraction data by providing a continuous profile of subsurface
interfaces rather than thickness and depth measurements at a single point. Reflection data
collected by BEG have been corrected for elevation differences across the site, converted to
industry-standard format, and are currently being processed at both UTEP and BEG. Preliminary
processing of line LLFR2 indicates that the bedrock-basin fill boundary is visible, as is a
reflecting horizon within the basin fill (fig. 18). Depth-to-bedrock estimates of 245 to 260 ft (75
to 80 m) made from LLFR2 reflection data are similar to an estimate of 295 ft (90 m) made from
LLFR2 refraction data; both of these values are consistent with depths to bedrock determined
at nearby boreholes. Similar concordance is expected at other sites where reflection and
refraction data coincide.

At UTEP, preliminary processing has been completed for lines LLFR1 and LLFR3. The
UTEP processing flow consists of several steps, including elevation correction, recovery of true
trace amplitudes, noise reduction, predictive deconvolution, application of bandpass filters,
moveout correction, and production of a common-depth-point (CDP) stacked section.
Presently, parameters for CDP stacks and residual and refraction statics corrections are being
investigated. In-addition, strong surface wave energy recorded from test shots is being evaluated
for input into a surface wave inversion algorithm. If the data are suitable, results from this

procedure should produce a velocity-depth function on the basis of surface wave energy.
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figs. 16 and 17 for location). Bedrock reflector can be seen at about 0.2 s; another reflector can
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Paleomagnetic Studies

Over geologic time, the Earth’s magnetic field has changed its polarity many times. Such
changes in the magnetic field are recorded in the rocks and sediments, and the timing of these
changes has been carefully studied at many locations. By comparing the magnetic character, the
paleomagnetism, of a sequence of sediments (such as those present at the proposed site) to the
known timing of polarity changes, it is possible to interpret the ages of the sediments. These
ages are important because they allow us to infer rates of sedimentation and other processes
important to our understanding of the proposed site.

UTEP has collected samples from cores drilled as part of this project (boreholes YM-1 to
YM-7), and analyzed their paleomagnetic character. The following is a discussion of the initial
results from the analysis of these samples.

Magnetic susceptibility measurements on all samples have been completed, and
demagnetization of most of the samples is also complete. Remaining work will involve a few
stronger demagnetization steps for individual samples of unexpected polarity (for example,
single samples of one polarity that occur within a well-defined zone of the opposite polarity),
and samples that appear to occur at reversal boundaries.

Magnetic susceptibility measurements give generally strong values of 10-3 to 10-4 SI
(susceptibility is dimensionless, so it has no units). The strength of the measurements indicates
the presence of moderate amounts of magnetite in the samples.

Both alternating field (AF) and thermal demagnetization techniques worked well. AF
demagnetization normally reduced the magnetic intensity of individual samples to values of less
than 10 percent natural remnant magnetism (NRM). This suggests that magnetite is the main
carrier of the NRM in the samples. Thermal demagnetization of samples reduced the magnetic
intensity of samples to less than 10 to 15 percent NRM by 590°C, but directions remained
stable, with continuing reduction of intensity, up to 690°C. Continuing stability of the NRM

directions above the Curie point of magnetite (583°C) indicates that a second mineral,
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hematite, is also contributing to the NRM. Since the magnetization directions remain stable
above the magnetite Curie point, the samples probably acquired their original directions of
magnetization from a combination of detrital magnetite and hematite at the time of deposition
and no significant overprinting of directions has occurred. |

The thermal demagnetization of the samples produced a significant amount of noxious
fumes and blackening of the samples up to 450°C, indicating the presence of organic material
in the samples. This, together with the demagnetization results (that suggest that any hematite
present is primary and detrital and not formed as a result of secondary alteration of magnetite)
may suggest that there has been little or no significant flow of oxidizing fluids (that is, ground
water) through the sediments sampled in this study.

The final magnetic polarity stratigraphy will depend on data reduction that is now in
progress. However, on the basis of the raw data, it is possible to identify 11 major and 4 single-
sample polarity intervals in the longest core (YM-6). The second longest core (YM-4) records 8
ﬁlajor and 3-single sample polarity intervals. Both cores can be reasonably correlated to one
another, assuming the borehole YM-4 locality had a slightly higher sedimentation rate than the
borehole YM-6 locality. Together, they indicate a minimum of 4.0 mya of deposition and
possibly more than 4.35 mya of deposition within this basin at these localities. Cores YM-3 and
YM-7 also appear to correlate well with the upper halves of YM-4 and YM-6. Cores YM-1 and
YM-2 are so short that they add little information. The results from borehole YM-5 are
problematic because the core includes sections that are too poorly consolidated to be used for
paleomagnetic analysis.

Although coring started as close as 11 ft (3.4 m) to the surface, samples of normal polarity
(Brunhes) at the top of each core are scarce. The uppermost samples from borehole YM-2 are
reversed, whereas cores YM-3, YM-4, YM-§, and YM-6 produced only two normal polarity
samples above the Matuyama. Results from borehole YM-7 provide the best evidence for the
Brunhes because the first 10 samples, collected at short sampling intervals, are all of normal

polarity. The greatest depth of the Brunhes in any core is only 24.5 ft (7.5 m), and its greatest
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thickness, as represented by these cores, is only 13.3 ft (4.1 m). If cores from boreholes YM-4
and YM-6 have maximum ages of approximately 4.35 mya, then the average sedimentation

rates are 0.6 to 0.7 inches/103 yr (16.3 to 17.5 mm/103 yr).
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Appendix I. Summary of Preliminary Investigations of the Quaternary Faults,

Eagle Flat Study Area and Adjacent Region

E. W. Collins and J. A. Raney

Introduction

Geologic investigations of faults active during the Quaternary (present to ~2 mya) provide
important data for seismic risk studies. Faults that have had Quaternary movement are being
identified and mapped. Other geologic data useful for evaluating the seismic risk of possible
earthquakes are being collected. These studies are based on aerial photograph interpretations and
initial field studies. Because the investigations are ongoing, the data presented in this report are
preliminary. The study area includes a region more than 50 km (>31 mi) from the Eagle Flat area;
designated by the Texas Legislature, and the proposed repository site within Faskin Ranch (fig. 10).
The study region contains intermontane basins and associated normal faults that have formed in
response to Basin and Range extensional tectonism that began about 24 mya (Henry and Price,
198S5; 1986).

Aerial photographs used in this study are: (1) 1991 black-and-white photographs, 1:6,000 scale;
(2) 1980 color photographs, 1:24,000 scale, (3) 1972 black-and-white photographs, scales 1:32,000
and 1:26,000; (4) 1963 black-and-white photographs, scale 1:28,000; (5) 1957 black-and-white
photographs, 1:62,000; and (6) 1948 black-and-white photographs, scale 1:43,000. We are also using
U.S. Geological Survey Van Horn-El Paso and Marfa 2-degree topographic maps (scale 1:250,000),
the Van Horn, Marfa, and El Paso Joint Operations Graphic (ground) maps (scale 1:250,000),
Geological Survey 7.5-minute quadrangle maps (scale 1:24,000), and several Secretaria de
Programiacion y Presupuesto topographic maps of Chihuahua, Mexico, including the Guadalupe

D. B., Esperanza, Las Palmas, Porvenir, El Consuelo, Banderas, and Cajoncitos sheets



(scale 1:50,000). Distances of faults to a reference point on the Faskin Ranch, latitude 105°15' and
longitude 31°07'30", are reported. Scarp heights, measured using an Abney level, usually do not
reflect the exact amount of vertical offset across faulted geomorphic surfaces because the
geomorphic surfaces are sloping, the scarps are eroded, and colluvial deposits often are deposited on
faulted downthrown surfaces.

Precise ages of faulted Quaternary (present to ~2 mya) and Tertiary (~2 to 66.4 mya) deposits
have not been determined because these deposits have few materials suitable for accurate dating. At
some localities we have estimated ages of Quaternary deposits, associated with fault scarps or
occurring near projections of fault traces, to be middle Pleistocene (250,000 to 900,000 B.P.), upper
Pleistocene (10,000 to 250,000 B.P.), and Holocene (present to 10,000 B.P.). These ages are estimated
on the basis of field stratigraphic relationships, the degree of calcic soil development (Gile and
others, 1966, 1981; Machette, 1985), and correlation with similar units in New Mexico and western
Trans-Pecos Texas (Hawley, 1975; Gile and others, 1981; Collins and Raney, 1990, 1991a). In the
study area, middle Pleistocene deposits having a stage IV to stage V pedogenic caliche are probably
no older than 500,000 yr.

The following discussion briefly describes preliminary geologic observations of faults that have
been active during the late Tertiary to Quaternary. Table 1 highlights some of the fault

characteristics.

Northwest Eagle Flat Basin

Fault scarps do not occur in the middle Pleistocene to Holocene surficial sediments of the
northwest Eagle Flat area, the locality of the proposed repository. Preliminary interpretations of data
from drill holes and the bedrock geology surrounding this basin do not indicate the presence of any
subsurface faulfs with large throw at the base of the Tertiary basin-fill deposits (top of bedrock)
beneath or near the proposed repository. We anticipate that data from geophysical surveys will

provide evidence of the presence or absence of faults in basin-fill sediments. Basin-fill thickness is
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locally more than 180 m (>600 ft) although mostly less than 150 m (<500 ft), indicating that late
Tertiary Basin and Range faulting and coincident basin sedimentation were not as active in the

northwest Eagle Flat basin as in other basins of Trans-Pecos Texas.

Southeast Eagle Flat Basin

The southeast Eagle Flat Basin has as much as 600 m (2,000 ft) of basin fill (Gates and others,
1980) and the south part of the basin is bounded by two normal faults that are expressed at the

surface, the West Van Horn Mountains fault and the East Eagle Mountains fault.

West Van Horn Mountains Fault

The west-dipping West Van Horn Mountains fault (fault 9, fig. 10) strikes northward at N30°W
to N15°E at the base of the Van Horn Mountains and is a well-expressed part of the regional Rim
Rock fault (DeFord, 1969). Muelberger and others (1979) found no evidence of Quaternary
displacement along this fault. Along most of the fault, Quaternary-Tertiary basin fill is in contact
with limestone and sandstone bedrock of the mountains and, although the contact/fault trace is
sharp, no scarp is distinct. The northwestern 2.5 km (1.5 mi) of the fault trace is a gentle, dissected
scarp with a slope angle of about 7°. Here the fault separates gravel deposits of unknown age on the
upthrown block with Quaternary and Tertiary sand and gravel deposits on the downthrown block.
A middle Pleistocene pediment surface having a stage IV pedogenic caliche occurs on the
downthrown side of the fault. Locally the middle Pleistocene deposits are covered by younger
windblown silt and sand, and in some places the older deposits are eroded and younger sediments
have been deposited. The upthrown gravel deposits form well-dissected hills with relief as much as
30 m (100 ft). Locally, on the upthrown block, a remnant pediment surface of unknown age exists
at the scarp. Its height above the middle Pleistocene surface on the downthrown fault block is 2.4 m

(7.8 ft).
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Even though this fault may not have had surface rupture during the Quaternary, we include it
in this report because part of the fault does exhibit a subtle scarp in basin-fill deposits. The length of
the West Van Horn Mountains fault is 27 km (16.7 mi) and the closest distance between this fault
and the Faskin Ranch reference point is 38.5 km (24 mi). The surface trace of the fault dies out
northward and there is ‘no surface evidence of a northwest-striking fault flanking the southwest side
of the Carrizo Mountains. South of the West Van Horn Mountains fault, strands of the Rim Rock

fault displace bedrock.

East Eagle Mountains Fault

On the west side of the southeast Eagle Flat basin a short, 0.5-km-long (0.3-mi) scarp of the
East Eagle Mountains fault (fault 6, fig. 10) strikes N10°-20°W and dips eastward. This fault is
inferred to be as long as 5 km (3 mi), even though most of the inferred length is covered and only a
short part of the fault, 0.5 km (0.3 mi), has surface expression. The fault is on the Pinyon Ranch,
which is not currently accessible for ground investigations. Faulted deposits are interpreted to be
Quaternary and probably middle Pleistocene on the basis of aerial photograph study and ground
investigations conducted several kilometers to the north and to the east-northeast. The lateral
extent of this fault was interpreted on the basis of the lack of the scarp in northern and southern
surficial deposits that have the same aerial photograph characteristics as the faulted surficial -
deposits. The closest distance between this fault and the Faskin Ranch reference point is 32 km

(20 mi).

Green River Basin

South of the southeast Eagle Flat is the north-trending Green River basin that has more than
600 m (>2,000 ft) of Quaternary-Tertiary basin fill deposits in its deepest part (Gates and others,
1980). Subtle scarps of three faults occur in the north part of this basin, but it is unclear whether

these faults were active during the Quaternary.
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Indio Fault

The Indio fault (fault 18, fig. 10) strikes N20°-45°W, and Bostwick (1953) reported that this
fault dips 75° southwest. Its total length is 20 km (12.4 mi), although only the southeastern 6 km
(3.7 mi) of the fault exhibits a mappable trace where Quaternary(?)-Tertiary gravel deposits are
faulted against more resistant bedrock comprised of Cretaceous limestone and sandstone and
Tertiary trachyte and tuff. Underwood (1963) thought that the gravel deposits on the downthrown
block resulted from late Tertiary fault movement and may be equivalent to the Tertiary Tarantula
gravel, which occurs east of the Green River basin (DeFord and Bridges, 1957). Even though this
fault may not have been active since late Tertiary, we included it in this study because a scarp is

preserved. The closest distance to the Faskin Ranch reference point is 50 km (31 mi).

China Canyon Fault

The China Canyon fault (fault 19, fig. 10) strikes N10°-20°W, dips eastward, and is 1 to 1.5 km
(0.6 to 0.9 mi) long. The scarp is subtle and dissected, and Quaternary-Tertiary basin-fill deposits are
faulted against Tertiary Tarantula gravel. Twiss (1959) mapped an inferred fault trace in the same
area, although he inferred a length of 8.8 km (5.5 mi). We have not identified a scarp along most of
this inferred length. This fault is included in the study because a scarp exists, although it is
unknown whether the faulted basin-fill silt, sand, and gravel in this area is Tertiary or Quaternary.
Thus, this fault may have been inactive since late Tertiary. The closest distance to the Faskin Ranch
reference point is 52 km (32.3 mi). The China Canyon fault is en echelon to the Green River fault
(fault 20, fig. 10). These faults probably have had different rupture histories because 2.4 km (1.5 mi)
separates the two faults, and the Green River fault bounds a deeper part of the basin (>600 km

[>2,000 ft] basin fill) than the China Canyon fault (basin fill on hanging-wall block).
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Green River Fault

The Green River fault (fault 20, fig. 10) strikes N15°-30°W, dips west- southwest and is 9 km
(5.6 mi) long. It is well dissected and is composed of three main subtle scarps that are between 1.5
and 2 km long. Quaternary-Tertiary basin-fill deposits are faulted against Tertiary Tarantula gravel.
Like the China Canyon fault, it is unknown whether the Green River fault has ruptured since the
late Tertiary. The Green River fault is included in this study because a subtle scarp exists. The closest

distance to the Faskin Ranch reference point is 52 km (32.3 mi).

Red Light Bolson

The northwest-trending Red Light bolson lies southwest and south of thé proposed Eagle Flat
repository. The bolson contains several southwest-dipping Quaternary fault scarps along its east
margin, and one of these is the Quaternary fault scarp closest to the proposed repository.
Quaternary-Tertiary basin fill is thickest, more than 600 m (>2,000 ft) thick (Gates and others,

1980), at the southeast part of the bolson.

West Eagle Mountains-Red Hills Fault

The West Eagle Mountains-Red Hills Fault (fault 1, fig. 10) consists of a dissected 1.5-km-long
(0.9-mi) scarp located west of the Eagle Mountains and two en echelon dissected scarps, 7 km (4.3
mi) and 1 km (0.6 mi) long, located west of Red Hills. This fault could be as long as 40 km (24.8 mi)
if surface expression of the fault has been eroded and the trace is covered along the west margin of
Devils Ridge and most of the west edge of the Eagle Mountains. This fault strikes N35°-55°W. The
Quaternary-Tertiary basin fill west of the Eagle Mountains is about 300 m (~1,000 ft) thicker than
the basin fill west of Red Hills, suggesting different fault histories.

The scarp closest to the proposed repository is 13.5 km (8.3 mi) south- southwest of the Faskin

Ranch reference point. This scarp, west of Red Hills, is very subtle, with a maximum scarp-slope
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angle of only 4° and scarp heights between 1.4 and 4 m (4.6 to 13 ft). The faulted pediment
deposits, probably middle Pleistocene, have a gravelly stage IV pedogenic caliche that is locally as
much as 0.6 m (2 ft) thick. These deposits are offset between 1 and 2.5 m (3 and 8 ft) along the
7-km-long (4.3 mi) scarp.

The projected trace of the West Eagle Mountains-Red Hills fault has no surface expression
where it is covered by upper Pleistocene deposits, with a stage II to III pedogenic calcic horizon and
younger, probably Holocene, deposits. These upper Pleistocene and younger deposits do not appear
to be faulted. The Faskin Ranch reference point is as close as 10.5 km (6.5 mi) to the inferred trace of

the fault.

West Indio Mountains Fault

The West Indio Mountains fault (fault 3, fig. 10) separates the Indio Mountains from the south
part of the Red Light bolson. This fault consists of several strands, strikes N30°-45°W, and is inferred
to be as much as 47 km (29 mi) long. The scarp of one strand has a slope angle of 11° to 14° and a
height as much as 3 m (10 ft). This fault strand displaces middle Pleistocene gravelly deposits
having a stage IV caliche 1.8 to 2.5 m (6 to 8 ft). Local, probably upper Pleistocene deposits having a
stage II to III calcic soil horizon are offset 0.9 m (3 ft) by this strand, indicating that individual
surface rupture events may have ranged from about 1 to 1.5 m (3 to S ft). Another fault strand has a
scarp with a slope angle of 18° and height of 3.5 m (11.5 ft). Probable upper Pleistocene gravel and
sand deposits with boulders and cobbles have a stage II to III calcic soil and are offset 2.5 m (8 ft) by
this fault. Erosion has removed much of the middle Pleistocene deposits along fault strands in this
area; however, projections of probable middle Pleistocene deposits on the upthrown and
downthrown fault blocks at several localities suggest as much as 3 to 5 m (10 to 15 ft) of maximum
offset on these deposits.

The West Indio Mountains and the West Eagle Mountains—Red Hills faults are interpreted to

have had separate rupture histories because (1) different thicknesses of basin-fill sediments occur on
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the downthrown fault blocks, (2) the en echelon faults are separated by 4 km (2.5 mi), and (3) the
West Indio Mountains fault displaces upper Pleistocene deposits, whereas no evidence exists that

the West Eagle Mountains-Red Hills fault offsets upper Pleistocene deposits.

Nick Draw Fault

The short, 2.5-km-long (1.5-mi) Nick Draw fault (fault S, fig. 10) occurs in the southwest part
of the Red Light bolson. This fault strikes N10°- 15°E and dips west. About 1.2 km (0.7 mi) of the
fault is a well-expressed scarp with erosion-resistant Tertiary ignimbrite of the upthrown block in
contact against Quaternary-Tertiary basin-fill deposits of the hanging-wall block. Displacement
during Quaternary is uncertain. The closest distance to the Faskin Ranch reference point is 29 km

(18 mi).

Southeast Hueco: Bolson

The southeast Hueco Bolson lies about 23 to more than 50 km (~14 to >31 mi) west of the
proposed repository site and contains several well-expressed Quaternary faults (Collins and Raney,
1991a). The Hueco Bolson is Iarger and deeper than the other basins in our study area, suggesting it
has had a more active Cenozoic structural history. Cenozoic basin fill is as thick as 2,850 m (9,350

ft) (Collins and Raney, 1991a).

Caballo Fault

The 48-km-long (29-mi-long) Caballo fault (fault 2, fig. 10) bounds the west flank of the
Quitman Mountains and the east margin of the southeast Hueco Bolson. Jones and Reaser (1970)
named a fault strand flanking the southern Quitman Mountains the Caballo fault, and Collins and
Raney (1991a) described the probable northwest extension of the fault. The Caballo fault strikes

N35°-55°W and dips southwest. Most of the surface trace is difficult to identify in the field and on
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aerial photographs because the surface has been disturbed by erosion of the older sediments and
deposition of younger alluvium. A well-dissected scarp at the northwest extension of the fault trace
is probably the fault scarp, although it has not been excavated. Locally the scarp has a compound-
slope angle, and its total height is 10.5 m (34 ft). The steep part of the compound slope is 15°.
Collins and Raney (1991a) estimated as much as 24 m (78 ft) of possible offset for middle
Pleistocene gravel deposits having stage IV-V caliche, although erosion of sediments makes precise
measurement difficult. Offset of upper Pleistocene gravel deposits having a stage III calcic soil
horizon is 7 m (23 ft), and younger upper Pleistocene deposits are not faulted. The approximate
amount of vertical offset during the last surface rupture was about 1.7 m (~15.5 ft), assuming that
the steep part of the compound scarp reflects the latest single rupture event. The closest distance to

the Faskin Ranch reference point is 23 km (14.3 mi).

Ice Cream Cone Fault

The northwest-trending Ice Cfeam Cone fault (fault 4, fig. 10) strikes N15°-60°W, dips as much
as 85° southwest, and has a surface trace of about 9 km (5.6 mi). This fault, described by Collins and
Raney (1991a, their fault 12), offsets upper Pleistocene deposits 13.8 m (45 ft). Younger upper
Pleistocene pediment gravel deposits are not faulted. The closest distance to the Faskin Ranch

reference point is 29 km (18 mi).

Arroyo Diablo Fault

The 15-km-long (9.3-mi) Arroyo Diablo fault (fault 10, fig. 10) bounds the northeast margin of
the southeast Hueco Bolson and is located about 5 to 6 km (3 to 4 mi) south of the Finlay
Mountains. This fault, previously studied by Collins and Raney (1991a, their fault 10), strikes N30°-
60°W, and in outcrop dips about 60° to 85° southwestward. Muéh of the trace of the Arroyo Diablo
fault is covered by unfaulted sediments of late Pleistocene and Holocene age. Where a scarp is

preserved in the middle Pleistocene deposits having stage IV to V. pedogenic caliche, the scarp is
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commonly covered by windblown sand. The most distinct, uncovered scarp has heights bétween 1.7
and 2.5 m (5.5 and 8 ft). This scarp has compound slopes that have angles as much as 15° at the
steepest part of the scarp. Middle Pleistocene deposits having stage IV to V pedogenic caliche are
displaced vertically as much as 3 m (10 ft). The approximate offset on the Arroyo Diablo fault
during the last surface rupture was about 0.6 m (~2 ft), assuming that the steep parts of compound
scarps reflect the latest single rupture event. The closest distance to the Faskin Ranch reference point

is about 39 km (24 mi).

Amargosa Fault

The Amargosa fault (fault 11, fig. 10) flanks the northeast base of Sierra de San Ignacio, Sierra
de la Amargosa, and Sierra San Jose del Prisco, and separates these mountains from the southwest
edge of the southeaSt Hueco Bolson (Collins and Raney, 1991a, théir fault 14). The Amargosa faultv is
composed of en echelon fault strands, and it has a surface trace of about 70 km (43 mi) and a
regional strike of N40°-S0°W. It dips northeast between 75° and 80° at the surface. The fault appears
to exhibit mostly vertical offset where we studied it, although Barnes and others (1989) and Keaton
and others (1989) reported grabenlike extensional features along the fault as evidence of lateral
components of fault slip.

The Amargosa fault has the most distinct fault scarp in the southeast Hueco Bolson. Scarp-
slope angles are between 19° and 27°. Scarp heights range between 32 and 2.8 m (10S and 9 ft),
depending on the age of faulted sediments adjacent to the fault, because multiple ruptures have
caused older Quaternary surfaces to be offset more than younger ones. Probably middle Pleistocene
gravelly piedmont deposits having a pedogenic caliche displaying a stage IV to V morphology are
offset 24 m (78 ft). Upper Pleistocene gravelly deposits with a stage III to IV pedogenic calcic
horizon are offset as much as 6.5 m (21 ft), and younger upper Pleistocene gravelly deposits having

a stage II pedogenic calcic horizon are offset 2.5 to 4.5 m (8 to 15 ft). Results of aerial photographic
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mapping suggest that young, possibly Holocene deposits, may be offset at some localities along the

Amargosa fault. The closest distance to the Faskin Ranch reference point is 41 km (25.4 mi).

Campo Grande Fault

The Campo Grande fault (fault 12, fig. 10) is a 45-km-long (28-mi) fault that bounds the
northeast side of the Hueco Bolson (Collins and Raney, 1990, 1991a, their fault 15). This fault lies
approximately midway between the Rio Grande and Diablo Plateau and is composed of en echelon
fault strands that are 1.5 to 10 km (0.9 to 6 mi) long and that have strikes of N25°-75°W. Dips are
between 60° and 89° southwest, and grooves on fault planes indicate mostly dip-slip movement.
Subsurface studies indicate that the surface trace of the Campo Grande fault represents three en
echelon subsurface fault segments that are each between 21 and 34 km (13 and 21 mi) long (Collins
and Raney, 1991a, 1991b). The southeast part of the Campo Grande fault is the best surface
expression of the fault. At this part of the fault, the heights of scarps range between 1.5 and 11.5 m
(5 and 37 ft) and scarp slopes are 4° to 17°. Middle Pleistocene gravelly pediment deposits having a
stage IV to V pedogenic caliche are offset as much as 10 m (32 ft). Upper Pleistocene gravel deposits
having a stage III to IV pedogenic calcic horizon are offset as much as 3 m (10 ft). Younger upper
Pleistocene gravel deposits having a stage II pedigenic calcic horizon are unfaulted. On the
downthrown block of one fault strand, faulted calcic soil horizons (0.5 to 1.0 m [1.6 to 3 ft] thick;
stage III morphology) that have vertical separations of 1 to 2 m (3 to 6.5 ft) indicate at least five
episodes of movement, deposition, and surface stabilization since the middle Pleistocene. Maximum
vertical offsets during single faulting events have been as much as 2 m (6.5 ft), judging from the
vertical separations of these faulted, calcic Soil horizons. Maximum vertical offset during the last
faulting event was about 1 to 1.5 m (~3 to S ft). The closest distance to the Faskin Ranch reference

point is 42 km (26 mi).
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Arroyo Macho Fault

The short, 1.5-km-long (0.9-mi) Arroyo Macho fault strikes N30°-40°E and dips southeast
(Collins and Raney, 1991a, their fault 11). Albritton and Smith (1965) measured 2 m (6.5 ft) of
throw on middle Pleistocene gravelly pediment deposits having a stage IV to V pedogenic caliche.

The closest distance to the Faskin Ranch reference point is 44 km (27.3 mi).

Acala Fault

The Acala fault (fault 26, fig. 10) strikes N40°-50°W, dips southwest, and has a surface trace of
about 10 km (6.2 mi) (Collins and Raney, 1991a, their fault 7). The scarp has a single-slope angle of
9° (maximum), and the scarp is about 2.2 m (7.2 ft) high. Middle Pleistocene gravelly pediment
deposits having a stage IV to V pedogenic caliche are estimated to be displaced about 18 m (59 ft). A
shorter fault scarp having a surface trace of about 3 km (1.8 mi) (Collins and Raney, 1991a, their
fault 8) is roughly en echelon to the longer scarp. The shorter scarp strikes N60°-70° and dips
southwest. Its scarp has a single-slope angle of about 4°, and the scarp is only about 1 m (3 ft) high.
Middle Pleistocene gravelly pediment deposits having a stage IV to V pedogenic caliche are offset

about 4 m (13 ft). The closest distance to the Faskin Ranch reference point is 68 km (42 mi).

Llanos de Chilicote

Llanos de Chilicote lies in Chihuahua, Mexico, southwest of the proposed Eagle Flat
repository. Two faults, the West Sierra de la Lagrina fault and the West Sierra Labra fault (faults 23
and 25, respectively, fig. 10), that bound mountain ranges of the Llanos de Chilicote region have
been mapped as the contact between Quaternary-Tertiary gravel and sand deposits and Cretaceous
bedrock (San Antonio El Bravo sheet; Coordinacién General de los Servicios Nacionales de
Estadistica, 1982). We do not currently have aerial photographs available, and we have not visited

the area on the ground. We do not know whether fault scarps exist in this area. Gries (1979; 1980)
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hypothesized that Cenozoic extension in this region may have reactivated older structures and

caused flowage of thick evaporite sequences in the subsurface without causing surface rupture.

West Sierra de la Lagrina Fault

The West Sierra de la Lagrina fault (fault 23, fig. 10) has been mapped as a 41-km-long
(25.4-mi) structure that strikes north-northwest at N5°-35°W and dips west (Coordinacion General
de los Servicios Nacionales de Estadistica, 1982). The closest distance to the Faskin Ranch reference

point is 61 km (40 mi).

West Sierra Labra Fault

The West Sierra Labra Fault (fault 25, fig. 10) has been mapped as a 22-km-long (13.6-mi)
structure that strikes north-northwest at N0°-30°W and dips west (Coordinacién General de los
Servicios Nacionales de Estadistica, 1982). The closest distance to the Faskin Ranch reference point is

65 km (40 mi).

Salt Basin Graben System

The north-trending Salt Basin Graben System lies east of the proposed repository site. The
graben system comprises a 200-km-long (124-mi) series of fault-bounded basins that include the Salt
Basin, Wild Horse Flat, Michigan Flat, Lobo Valley, and Ryan Flat geographic areas (fig. A1).
Tertiary—Quaternary basin fill is greater than 600 m (>2,000 ft) thick in some areas, although basin

fill is mostly less than 300 m (<1,000 ft) thick (Gates and others, 1980).

East Flat Top Mountains Fault

Fifty-three kilometers (34 mi) north-northeast of the Faskin Ranch reference point, the East

Flat Top Mountains fault (fault 21, fig. 10) bounds the west side of the Salt Basin. This 23-km-long
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(14.2-mi) fault strikes northward at N25°W-N5°E and dips toward the east. A subtle scarp located at
the north part of this fault has a scarp-slope angle of 3° and height of about 2.5 m (~8 ft). The
faulted surficial sediments at this locality are unconsolidated, lacking a well-developed calcic soil
horizon, and probably are of Holocene or late Pleistocene age. Offset of the faulted geomorphic

surface is about 1.5 m (5 ft).

North Sierra Diablo Fault

The North Sierra Diablo fault (fault 22, fig. 10) strikes westward at N75°- 85°W, dips north, and
separates the north part of Sierra Diablo from the Salt Basin. Most of the 13.5-km-long (8.3-mi) fault
is covered or inferred, although a 4-km-long (2.5-mi) scarp occurs at the fault’s east end. The closest

distance to the Faskin Ranch reference point is 54 km (33.5 mi).

East Sierra Diablo Fault

The 37-km-long (23-mi) East Sierra Diablo Fault (fault 8, fig. 10) strikes northward at N10°W-
N20°E, dips toward the east, and bounds the west side of the Salt Basin. This fault is composed of a
series of about 11 en echelon fault strands, and about 60 percent of the fault's length is covered or
inferred. The longest continuous scarp, located at the north part of the East Sierra Diablo fault and
5 km (3 mi) long, has a scarp-slope angle of 8° and height of 1.8 m (6 ft). The faulted surficial
sediments consist of an upper, unconsolidated, 2-m-thick (6.5-ft) package of probably Holocene-
upper Pleistocene boulder- to pebble-sized gravel and sand with a stage II to I calcic soil. This upper
sediment package overlies an older, middle Pleistocene gravel and sand package with a greater than
1-m-thick (>3-ft) stage IV caliche horizon. Offset on the upper sediment package is about 1.5 m
(5 ft), and offset on the lower, stage IV caliche horizon is unknown because the caliche horizon is
not exposed in gullies on the downthrown fault block. It is unknown whether the entire length of
this fault has had the same rupture history. The closest distance to the Faskin Ranch reference point

is 37 km (23 mi).
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West Delaware Mountains Fault

The West Delaware Mountains fault (fault 24, fig. 10) trends northwest at N25°-45°W, dips
southwest, and separates the west flank of the Delaware Mountains from the deep part of the Salt
Basin. This fault is about 64 km (~40 mi) long and consists of multiple en echelon fault strands.
Most scarps along this fault are between 1 and 7 km (0.6 and 4.3 mi) long. At the north part of the
West Delaware Mountains fault, multiple northwest-striking faults form a broad, 3- to 5-km-wide

(1.8- to 3-mi) zone. The closest distance to the Faskin Ranch reference point is 64 km (40 mi).

East Carrizo Mountain-Baylor Mountain Fault

The 41-km-long (25.4-mi) Carrizo Mountain-Baylor Mountain fault (fault 7, fig. 10) separates
the west side of Wild Horse Flat from the mountains the fault is named after. This fault strikes
northeast at N10°-40°E and dips southeast. About 85 percent of this fault's length is covered and
inferred. Three scarps along this fault are 1, 1.2, and 3 km (0.6, 0.7, and 1.8 mi) long. An eroded, |
subtle scarp, located west-southwest of Van Horn, has a scarp-slope angle of 5° and a height of
1.8 m (6 ft). The faulted pediment surface at this scarp has a stage IV pedogenic caliche suggesting a
~ middle Pleistocene age for the faulted surficial deposits. Locally on the upthrown fault block,
sandstone bedrock is at the surface. Offset on the middle Pleistocene deposits is 1.6 m (5.2 ft). The

closest distance to the Faskin Ranch reference point is 37 km (23 mi).

Fay Fault

The Fay fault (fault 13, fig. 10) is a short, 4-km-long (2.5-mi) fault located at the north part of
the Van Horn Mountains. This fault strikes north-northwest at N5°-20°W, dips east, and consists of
two en echelon scarps. The scarp of the north part of this fault has a scarp-slope angle of 13° and
height of 1.4 m (4.6 ft). Surficial middle Pleistocene deposits with stage IV pedogenic caliche are

offset 1.2 m (4 ft). The closest distance to the Faskin Ranch reference point is 43 km (26.7 mi).
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Deep Well Fault

The 1.3-km-long (0.8-mi) Deep Well fault (fault 15, fig. 10) is located at the north part of the
Van Horn Mountains. We do not know whether this fault has ruptured during the Quaternary.
Aerial photograph studies indicate that a sharp contact exists between Quaternary-Tertiary gravel
deposits and Permian limestone along the fault's trace. The Deep Well fault strikes north- northwest
at N10°-30°W, dips west, and the closest distance to the Faskin Ranch reference point is 47 km

(29 mi).

East Van Horn Mountains-Sierra Vieja Fault

(Neal, Mayfield, and Sierra Vieja Segments)

The 61-km-long (38-mi) East Van Horn Mountains-Sierra Vieja fault (fwault 16, fig. 10) bounds
the West side of Lobo Valley and Ryan Flats. This fault consists -of three distinct geometric segments,
the Neal, Mayfield, and Sierra Vieja segments, which may have had different rupture histories. The
East Van Horn Mountains-Sierra Vieja fault was also been called the Mayfield fault by Muehlberger
and others (1979; 1985) and Doser (1987). We use the name Mayfield (after Twiss, 1959) to refer to
the central segment of the long boundary fault.

The Neal fault (fault 16a, fig. 10), the north segment, strikes northward at N10°W-N25°E, dips
east, and is about 18 km (~11 mi) long. This fault is comprised of a main 13.6-m-long (8.4-mi) scarp
and several associated en echelon shorter scarps that are as much as 2 km (1.2 mi) long. One of the
shorter scarps has a scarp-slope angle of 8° and a height of 2.2 m (7 ft). Offset of middle Pleistocene
gravel capped with é stage IV pedogenic caliche is 1.8 m (6 ft) across this short scarp, which is near
the north end of the Neal fault. The main 13.6-km-long (8.4-mi) scarp has a very distinct single
slope with slope angles ranging between 14° and 22° and heights ranging between 1.6 and 4.8 m
(5.2 and 15.7 ft). On the upthrown block, bedrock is shallow and locally is at the surface. Offset of
middle Pleistocene deposits capped by a stage IV pedogenic caliche is at least 5 m (16.4 ft). The

closest distance to the Faskin Ranch reference point is 48 km (30 mi).
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The northwest-trending Mayfield fault (fault 16b, fig. 10) is the middle segment. It strikes
N30°-55°W, dips northeast, and is about 20 km (~12.4 mi) long. It has a single slope scarp with
scarp-slope angles ranging between 18° and 23° and heights between 4 and 7 m (13 and 23 ft).
Similar to the Neal scarp, bedrock is shallow and locally at the surface on the upthrown fault block.
Offset of middle Pleistocene deposits capped by a stage IV pedogenic caliche is as much as 6 m
(19.6 ft). The closest distance to the Faskin Ranch reference point is 57 km (35.4 mi).

The Sierra Vieja fault (fault 16¢, fig. 10) makes up the south segment of the fault series that
bounds the west edge of Lobo Valley and Ryan Flat. The Sierra Vieja fault strikes northward at
N30°W-N20°E, dips ‘east, and is about 25 km (~15.5 mi) long. It consists of multiple en echelon
strands. Some of the strands have 4.5-m-high (15-ft) compound scarps with steep scarp-slope angles
as much as 20°. Similar to the Neal and Mayfield scarps, bedrock is shallow and locally is at the
surface on the upthrown fault block. Offset of possible middle Pleistocene deposits is as much as
8.2 m (27 ft), and offset of possible late Pleistocene~-Holocene deposits is as much as 3.5 m (11.4 ft).
The last surface rupture may have been as much as 1.5 m (S ft) if the steep part of the compound
scarps was caused by a single rupture. The closest distance to the Faskin Ranch reference point is

77 km (48 mi).

West Wylie Mountains Fault

The West Wylie Mountains fault (fault 17, fig. 10) separates the north part of Lobo Valley from
the Wylie Mountains and Canning Ridge. This fault is inferred to be about 20 km (~12.5 mi) long,
and two 1-km-long (0.6-mi) scarps having Quaternary-Tertiary basin-fill on the hanging-wall block
occur at the southwest flank of the Wylie Mountains and west flank of Canning Ridge. The north
part of the fault has been mapped in bedrock at two localities (Hay- Roe, 1957). The West Wylie
Mountains fault strikes N10°-30°W and dips southwest. The closest distance to the Faskin Ranch

reference point is 48 km (30 mi).
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