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ABSTRACT

The Palo Duro Basin, a broad structural low in the southern Texas Panhandle,
has had a long history of episodic deformation, beginning in the Precambrian. During
the middle Proterozoic, the basin was the site of accumulation of more than 30,000 ft
(9.100 m) of rhyolite flows and related rocks. The establishment of the northwest-
trending structural grain of the area possibly occurred at this time. The presence of
pre-upper Cambrian(?) arkosic clastics within the basin suggests active faulting during
the late Proterozoic to earliest Cambrian. The southérn Panhandle was occupied by a
carbonate shelf in the early Ordovician and again in the Mississippian. Sedimentation
was probably nearly continuous from the early Ordovician to the early Devonian,
however rocks of this age eroded from the central part of the Palo Duro Basin as a
result of the uplift of the northwest-trending Texas Arch during the middle Devonian.

The southern midcontinent underwent major deformation during the Pennsylvanian
Ancestral Rocky Mountain orogeny, when the southern Panhandle became the site of a
distinct depositional basin. Approximately 75 mi (120 km) of left-lateral strike-slip
movement occurred along the Amarillo-Wichita Uplift during this time. The axis of
subsidence, associated with the formation of the larger Permian Basin, shifted
progressively westward during Permian deposition. Renewed subsidence in the late
Triassic formed a large lacustrine basin that extended southward from the Palo Duro
Basin. During the Cenozoic, basement structures were reactivated, as reflected in the
depositional patterns of the upper Miocene to lower Pliocene Ogallala Formation.

The tectonic history of the Palo Duro Basin is closely related to that of the
Wichita megashear. This zone of weakness is interpreted to extend northwestward

from southern Oklahoma to at least eastern Utah. The megashear formed in the late



Proterozoic and was reactivated during early Cambrian rifting, which produced fhe
Southern Oklahéha Aulacogen. Structures were rejuvenated during the late Cambrian
to early Ordovician and ag.ain in the middle Devonian. Major deformation occurred
during the Pennsylvanian Ancestral Rocky Mountain orogeny. The Laramide (late

Cretaceous to early Tertiary) and Basin and Range (late Tertiary) tectonic events

" reactivated segments of the Wichita megashear in Colorado and Utah, however no

evidence of Laramide-age deformation exists along the eastern segment in the Texas
Panhandle and Oklahoma. Baéement structures were reactivated along parts of the
eastefn segment coincident with Basin and Range extension to the west. Recenlt
seismicity and evideﬁce of Quaternary faulting indicate that at least parts of the
eastern, central, and westerh\ segments of the megashear are/undergoing deformation.
Tectonic development of the southwestern United States has been influenced. by
large-scale plate interactions. The Proterozoic basement beneath the Palo Durb Basin
probably formed along a convergeht plate rbnar‘gin about 1,400 Ma ago. Continental
rifting 570 Ma ago pr‘oduced‘ thve‘ Southern Oklahoma Aulacogen and reac>tivated
basement structures within the region. Formation of the Texas Arch occurred during
the middle Devohian. possibly in response to continent-continent collisions along the
eastern and western margins of North America. The Ancestral Rocky Mountain
orogeny was the result of the suturing of Gondwana and Laurussia during the
Pennsylvanian. Crustal thinning in the Permian and Triassic, prior to and during the
separation of North and South America, may havé produced the Permian and Dockum
depositional basins. Interaction between the‘ﬁPacif‘ici and North American plates

produced crustal extension in the western United States and reactivation of basement

| structures in the Texas Panhandle during the Miocene. Present seismicity in the

region is occurring in response to movement of the North American plate away from

the mid-Atlantic ridge.



INTRODUCTION

The saying "what'é past is prologue” has become a cliché, but nevertheless it is
true in geology. To predict the future tectonic stability of’ a regic\in.. one must
understand‘th; history of its tectonic development. T-his report presents an
interpretation of the tectonivc history of the Palo Duro Basin and adjoining region so
that the long-term (by human stgandards, that is >10,000 yr) stability of the area can
be assessed for ‘th‘e‘ purpose of locating a high-level nuclear waste repository.

Evidence of the tectonic development of the Palo Duro Basin (fig. 1) is recorded
in the distribution of Proterozoic and Phanerozoic lithofacies in the southern Texas
Panhandle. Thickness and f‘acies changes in these rocks record repeated, generally
subtle, deformatidn in the area beginning in the Proterozoic and continuing through
the Phanerozoic. Timing of this.‘ tectonic activity coincides with episodes of
deformation along a large regional network of faults (figs. 2 and 3).‘ variously termed
the Wichita lineament “(Salés. 1968), the Wichita megashear (Walper, 1970), the
Olympic-Wichita lineament (Baars, 1976), and the Oklaﬁoma-New Mexico-Colorado-
Utah tectonic zone (Larson and oth‘ers, 1985). The name Wichita megashear is used
in this paper to’ emphasize the continuity of the zéne and the importance of lateral
motion during its history (see discussion under "Tectonic evolution of the Wichita
megashear”). Analysis of the tectonic history of the regional system permits a better
understanding of the tecton_ic history of the Palo Duro Basin.

The term "Palo Duro uBasin" is used in this paper to refer to a broad structural
low in the southern Texas Panhandle that was ai distinct depositional basin only

during the late Pennsylvanian and early Permian, when well-defined carbonate shelf

margins bordered a relatively déep shale basin. This structural basin was occupied by
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Figure 1. Tectonic elements of West Texas and adjacent states. Outline of Permian
Basin (heavy dashed line) based on the present distribution of halite-bearing strata in
the Permian System (McKee and Oriel. 1967). Original distribution of halite was
probably somewhat greater. The Amarillo-Wichita Uplift, Sierra Grande Uplift, Pedernal
Uplift, Diablo Platform. and Central Basin Platform were elements of the Ancestral

Rocky Mountains.



Figure 2. Map of the United States showing major tectonic features.
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Figure 3. Structural geology of the Wichita megashear. Compiled from Rogatz (1939),
Ham and others (1964), Baars and See (1968). MaclLachlan and Kleinkopf (1969),
Foster and others (1972), Mallory (1972). Evans (1979). Casey (1980). DeVoto
(1980), Tweto (1980a. 1983). and Budnik (1984). Inset map shows location of
eastern, middle, and western segments of the Wichita megashear.

Major structures are named; minor structures are indicated by initials: AB -
Ardmore Basin; AU - Arbuckle Uplift; BD - Bravo Dome; CA - Cimarron Arch; CH -
Criner Hills; DB - Dalhart Basin;, HDB - Hardeman Basin: HSB - Hollis Basin: LB -
LeFors Basin; MB - Marietta Basin; MU - Muenster Uplift; OHT - Oldham-Harmon
structural trend; PD - Pedernal Uplift;: PDB - Palo Duro Basin: PF - Pathfinder
Uplift; TB - Tucumcari Basin; TU - Tishomingo Uplift;: WT - Whittenburg Trough.
Faults are numbered: 1. Uncompahgre frontal fault; 2. Gore fault; 3. llse fault; 4.
Apishapa fault: 5. Potter County fault: 6. Wheeler County fault: 7. Lips fault: 8.
Mountain View fault: 9. Reagan fault; 10. Washita Valley fault; 11. central Oklahoma
fault: 12. Burch fault.



local depocenters within a larger depositional framework during the middle and late
Permian, the late Triassic, and the late Tertiary.

The tectonic history of the region was interpreted through the analysis of
published and unpublished structure-contour, isopach, and lithofacies maps of the
Texas Panhandle and published work of other researchers in adjacent regions. This
report is divided into three sections: (1) tectonic history of the Palo Duro Basin,
(2) regional tectonic history, and (3) plate tectonic models. The structural geology of

the basin has been discussed elsewhere (Budnik, 1984).

STRUCTURAL SETTING OF THE PALO DURO BASIN

The present configuration of the Palo Duro Basin is defined primarily on the
basis of structures that formed during the Pennsylvanian Ancestral Rocky Mountain
orogeny and that were modified during later subsidence. The basin occupies the
northern end of a larger broad basement depression that also includes the Midland
Basin (fig. 1). The two basins are somewhat arbitrarily subdivided by the Matador
Arch, a discontinuous alignment of small, isolated basement horsts that extends east-
west across the southern Texas Panhandle (fig. 4). A complexly deformed zone of
horsts and grabens (part of the Wichita megashear), which includes the Oldham-
Harmon structural trend (Budnik, 1984) and the Amarillo Uplift, separates the Palo
Duro Basin from the Anadarko Basin to the northeast (figs. 3 and 4). A
discontinuous structural low consisting of the Whittenburg Trough and the Hollis
Basin lies between the Oldham-Harmon trend and the Amarillo Uplift (Soderstrom,

1968).
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Figure 4. Basement-structure-contour map of the Texas Panhandle. The present

structural configuration of the area is the result of episodic deformation throughout
the Phanerozoic (Budnik, 1984).



Subtle basement positives separate the Palo Duro Basin from adjacent basins to
the east and west. A broad structural divide separates the Palo Duro from the
Hardeman Basin (fig. 4). a small fault-bounded graben (Montgomery, 1984) to the
east. Although these two structural basins probably formed one continuous
depositional basin during the late Pennsylvanian (Dutton, 1980). the pre-Pennsylvanian
history of the Hardeman Basin may be more closely related to that of the Anadarko
Basin, as will be discussed. The western margin of the Palo Duro Basin is formed
by a series of poorly defined basement positives in east-central New Mexico, including
the Roosevelt positive in Roosevelt County (Krisle, 1959). the San Jon high in Quay
County (Krisle,W1959), and the Garcia Lake high in Curry County and Deaf Smith
County, Texas (fig. 4; Budnik, 1984).

Structures within the Palo Duro Basin are generally subtle and not well defined,
in part because of sparse subsurface control. Better delineated structures include the
Castro Trough and adjacent Arney positive (fig. 4: Budnik, 1983, 1984), which form
northwest-trending structural elements within the northwestern part of the basin. The
central Randall positive (Budnik, 1984) is a small basement uplift northeast of the

Arney positive.
TECTONIC HISTORY OF THE PALO DURO BASIN

The southern Texas Panhandle has undergone episodic deformation from the
middle Proterozoic to the present. Timing of this deformation is indicated by the
distribution, thickness. and lithofacies of Proterozoic and Phanerozoic strata and by
the pattern of recent seismicity. Basement structures in the southern Panhandle appear
to have formed in the middle Proterozoic and were reactivated in the early to middle

Paleozoic and in the Pennsylvanian, Permian, Triassic, Cretaceous, and Cenozoic.



Proterozoic Igneous Activity and Deformation

Crystalline basement of the southern Texas Panhandle consists largely of
undeformed rhyolite of the Panhandle volcanic sequence that is surrounded and
presumably underlain by coeval granitic rocks (figs. 5 and 6; Flawn; 1956;: Muehlberger
and others, 1967). The volcanic sequence consists predominantly of rhyolite tuffs and
flows and only minor amounts of intermediate and mafic volcanics. Muehlberger and
others (1967) described the widespread occurrence of ignimbrites having well-preserved
eutaxitic structure.

Total thickness of the Panhandle volcanic sequence is unknown, but geological
and geophysical evidence indicates that it must be very thick. Several petroleum
exploration wells were drilled a few hundred feet into the rhyolite without penetrating
the base of the unit. One well, the Catherine H. Whittenburg, Whittenburg-Masterson
No. 1 in Potter County (fig. 7). was drilled 3.821 ft (1,165 m) into basement,
encountering, with the exception of a 270-ft (82-m) thick gabbroic body. only rhyolite.

Seismic reflection lines in the southern Texas Panhandle exhibit strong primary
reflectors (fig. 8) to a depth of at least 30.000 ft (9.100 m: based on an average
interval velocity of 18,000 ft/s, or 5,500 m/s) below the surface of the basement.
These reflections are probably caused by an impedance contrast between the rhyolite
and intercalated diabasic sills or flows, similar to that encountered in the Whittenburg
well (fig. 7). A gravity low, centered in the area of the Panhandle volcanics
(Goldstein, 1982), also suggests a great thickness of rhyolite or rhyolite and
sedimentary rock (Flawn, 1956).

Early age determinations using K-Ar dating techniques suggested that the
rhyolites are approximately 1,100 to 1,200 Ma old (Muehlberger and others, 1966).

However, recent U-Pb dating of zircons from the terrane indicates that the rhyolites

10



<
> e R e d \
; v L =
A e AN IRAD rY > b T 7.
s A 75 A <o N0 ALYy > o vyacrlY
v o¢ A TaAav 7 qva ® 7Y
oA L v [N ) N AR
A A < 441\"‘ 7"’( A 14 v} PR
[ 34t Arv N v bage b oo —— e ———
.‘<( “(A G ‘vl\ ,. vA.‘( ~ e — -
. . T Ore (Fk_)74’4 2 ",-
A, ® A P v Loy
J< v © 4 Fl-q "‘> N <r~ ~ 4 g
1 < > 4( < <, ; ? a Vv [ < -
<

N Uncompohgre, AAST Ly

3
P I A
AN N se
> v NS A e Ty v [
v A >eeta, e,
A\',,_>"79 y

<ANSAS L

AT
S DARICARIPL AN
—_— COLOR’A
ity —L'—-* Dod - o —
v A< >V NEW M-x;cc cKLAHOMA \—
> v < A“Lv vg‘\r

are? )‘)
>

Picuris- Pecos/[

v
4 >

v A A
Lad> r4¢

v o2 'leera

P——
- i

ZO‘O mi
lZOO km
- EXPLANATION
EEanery! v
Lj<‘."’1 525-570 Ma : Iy v ~le|0-1800 Ma
1000 Ma Archean 22500 Ma
1400 Ma Proterozoic voicanics and Fault with evidence of Precambrian
sediments = | origin ‘
QA 6057

:} 1400 Ma Granite and granite

gneiss

Figure 5. Distribution of basement terranes in the southwestern United States (Flawn

1956; Foster and Stipp. 1961: Miller and others. 1963; Muehlberger and Denison.

1964; Muehlberger and others, 1966. 1967; Denison and Hetherington, 1969; Baars,

1976; Lisenbee and others, 1979: Tweto, 1980b. 1983: Condie. 1981). The named
i ic. Igneous activity

faults are reported to have been active during the Proterozoic
associated with the opening of the Southern Oklahoma Aulacogen occurred 525 to 570

Ma ago.
11



OKLAHOMA
ey - ? - s b3 7
= *. |, HANSFORD CO* |« \Fccmus& 1' £on

.
~
.

s

" HEMPHILL C
B

-

D e ——— e
NLEY CO A>V COLLINGSWORTH _CO

n
*)
v
“

¥ 5
il COTTLE CO* ¢
)

<4 7
<

from o ok ok ok oxox
xR oMok oa
L R

7

‘CROS8Y CO ICKENS CO ° .

Grrot
oe

EXPLANATION

Nicn 'e 2-ovince

Tiimen Metased:mentary Terrane

. | S
g -
x % x| Fotd

VR R
< G -
Amarilio Grenitic Terrane Pgnhenc e w2 z2n.c Terrcne Swisher Digbasic Terrane Sterra Grande Grenitic Terrgne Chaves Granitic Terrane

Figure 6. Basement lithologic provinces in the Palo Duro Basin (modified from
Muehlberger and others, 1967). Outline of the Palo Duro Basin is indicated by dashed

line.

12



SP miilivolts Laterolog

2C) 0 500
-+ 0 5000

Pennsylvanian
arkose g

Rhyolite

87+

Whittenburg
- Whittenburg-Masterson No. /

O
@
1

Gabbro

o
©
1

(o] 30 km

Depth below kelly bushing (ft X 100)

110+

Hypothetical synthetic seismogram

Rhyolite

QA 6020

Figure 7. Basement lithologies in the Catherine H. Whittenburg, Whittenburg-Masterson
No. 1 well. Potter County. The well was drilled 3.821 ft (1,165 m) into rhyolite of
the Panhandle terrane. One gabbro body. 270 ft (82 m) thick. was encountered. The
hypothetical synthetic seismogram indicates the expected seismic response from the
sequence. Ag - Amarillo Granite terrane; Pv - Panhandle Rhyolite Terrane:
Sd - Swisher Diabase Terrane.

13



v "S3131D03A
3unjoers dlwsiss wouy 331j0hys 3y Joy paiejnojed usaq sey (s/w 005's) s/ 000°81
Jo £3130)3A |easaiul a8esane uy -ease ay) Ul Saul] J1WsIdS J9Yyjo uo juswaseq jo doj
943 MOJ]3q | |1 S G'E S Yonw se panIasqo Udaq dAeYy S10103|J9Yy "a)1joAys 3jpueyuey

- 3yy ulyum 19ke| syyew e kq pasned A1qeqoid aie awiy janesy fem-omy S G'¢ 1noge
18 $103193j34 judulwoid ayj -aul paysep Kq paiedipur juswaseq jo doj alewnxoiddy

6109 VO

wop 0o
I
. -1_||.||.I.r ||||| L ) quup/\/ |3A3] D3S 3A0QD }} OOBE wnjoQ

e e L ]

LY e e S e BT
ﬁlw@.fhyh..)dnduu@w

‘AKiuno) ynws jeaqg ‘3-33Mms d|1y01d uo1d3)ja1 dlwsies jo ped ussyyon ‘g B4

o —

e - >
-W.lri“ﬁl.fklﬂv.ﬂﬂ. R !

2 e~ Tt
b T ot T TSN ATl )
e e P o T e T e Y L e I\.W.Ad)

\ . -
ety e AT A NI o A i L = Cmpcag - map oty
e T ST e T e ] T A I ey
Tt R e 5T (é-ﬂuﬂlmll(r4 B e Gl T X TR e R A,
R e R A e A S A e e s i I

d : G o S e R L e e e R

- uw. e MU e

=

T=T T s
— T LT o e A
e T Ut R ket

-
T

———— AT

© (S)wniop MOIAQ AW} |8ADI} Aom-Oom |

14



may be 1,350 to 1,400 Ma old (Thomas and others, 1984). Van Schmus and Bickford
(1981) con}sidé.r the younger dates to be minimum ages. The older dates are
consistent with those obtained elsewhere in the midcontinent, suggesting that the
Panhandle rhyolites are part of an exteﬁsive volcanic and plutonic province that
extends from eastern New Mexico to northwestern Ohio (Van Schmus and Bickford,
1981). This vast belt of approximately 1,380- to 1,480-Ma—o|d volcanics separates
roéks that are 1,600 Ma or older on the north from younger Proterozoic rocks (abouft
1,100 Ma old) on the south.

In the centra‘l part of the Palo Duro Basin the rhyolites are overlain by mafic
rocks belonging to the SWisher- diabasic sequence (fig. 6). This sequence consists of
gabbro aﬁd diabase, intercalated with célcareous metasediments (Flawn, 1956). The
Swisher sequence is relatively thin; wells drilled near its margin penetrated less than
600 ft (180 m) of mafic rocks before encountering felsic volcanics (fig. 9)
Muehlberger and others (1967) correléted the Swisher diabase with the De Baca
volcani; sequence in eastern New Mexiéo, which also consists of diabase and
sedimentary rocks.

The age of the Swishgr sequence is in dispute. A K-Ar date of 1,200 Ma was
obtained from a low-potassium pyroxene. in a diabase (Muehlberger and others, 1966).
In the Franklin Mountains ofb West Texas, the correlative De Baca terrane is overlain
by 900-Ma-old rhyolites (Muehlberger and others, 1966). suggesting at least a middle
Proterozoic age for the Swisher/De Baca terrane. In contrast. Roth (1960) described
Paleozoic microfossils from metasediments within the Swisher volcanié’s. Additional
research is ﬁeeded to resolve the age of the sequence.

There appears to be a coincidénce between the geometry of- the Palo Duro Basin
and the distribution of Proterozoic lithologies in the underlying basement (éompare
fi‘gs. 4 and 6). In general, structu‘rélly low areas are underlain by volcanic rocks,

whereas high areas are underlain: by granitic rocks. A large part of the Palo Duro

15
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Basin, as well as the Whittenburg Trough, is underlain by the Panhandle rhyolite or
by rocks of the ‘overlying Swisher sequence. The shallower, eastern part of the Palo
Duro Basin, the Bravo Dome, and most of the Amarillo Uplift are underlain by
granitic rocks. In several places (for example, along the northeastern side of the Bravo
Dome and along the southwestern side of the Amarillo Uplift) contacts between
basement lithologies coincide with faults, located on the basis of structural mapping of
the basement surface (fig. 4). The rhyolites may have once covered the entire region
but they eroded from structurally high areas prior to deposition of the overlying
Arbuckle/Ellenburger Group. These upper Cambrian to lower Ordovician carbonates lie
on granite on the Amarillo Uplift and on rhyolite in the Palo Duro Basin, suggesting
that uplift and erosion of the volcanics took place prior to the late Cambrian.

An early phase of deformation in the Palo Duro Basin is also indicated by the
arkosic sandstone and tuff that overlie the Swisher diabase in the Castro Trough. The
clastics, which are approximately 100 ft (30 m) thick in the Sun Oil Company Herring
No. 1 well (fig. 10: Roth, 1960). underlie a basal Cambrian(?) quartzose sandstone.
The arkose may have been derived from the Panhandle rhyolite, present in the Arney
positive to the northeast of the trough, during active faulting in the late Proterozoic
or earliest Phanerozoic. The source of the tuff is unknown but may be related to the
middle Cambrian volcanics (Gilbert, 1983) currently exposed in the Wichita Mountains

to the east.

Early to Middle Paleozoic Deformation
A stable shelf occupied the area of the Palo Duro Basin during the early
Paleozoic. Basal Cambrian(?) quartzose sandstones are overlain by carbonates of the

Ellenburger Group (late Cambrian to early Ordovician: Ruppel, 1985). Sometime
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between the middle Ordovician and early Miésissippian.‘ a‘northwesti—trending area in
the central Panhandle was uplifted to form the Texas Arch (fig. 11; Adams, 1954).

Ellenburger Group carbonates and Cambrian(?) clastics eroded from the crest of the

“arch (Ruppel. 1985), except where preserved in downfaulted blocks such as the Casfro

Trough (Budnik, 1983). Silurian and Devonian sediments are present on the
northeastern'flank (Hardeman Basin; fig. 12a) and southwestern flank (Midland Basin)
of the arch but are absent from the crest owingv'to'erosion or nondeposition (Adams,

1954). Precise timing of uplift and accompanying faulting is unknown. However, on

the eastern flank of the arch. in the Hollis Basin, units as young as early Devonian

(Hunton Group) are unconformably overlain by upper Devonian and ‘Iower’ Miss‘issippfan

strata (Tarr and others, 19‘65), suggesting a middle Dévonian age of deformation

"(Eddleman, 1961; Ham and Wilson. 1967). The east side of the arch. in Armstrong,

Briscoe, Hall. and Motley Counties, coincides with the boundary between volcanic and

“plutonic basement terranes (compare figs. 6 and 11). suggesting a reactivation of pre-

Ordovician (Proterozoic?) structures in this area.

During the Mississippian, the southern Panhandle was again the site of a

carbonate platform with »shaIIow—wéter' carbonate (now dolomite) deposited on the

Texas Arch, and relati\}ely deeper water limestone deposited on the flanks of the arch

(Ruppel, 1985). Carbonate:deposition was interrupted briefly during the late

» ’I\J/IissiS,sippian by an influx of clastics (Totten, 1956; Ruppel. 1985), which was

possibly in response to initial uplift of the Ancestral Rocky Mountains (Budnik and

Smith, 1982)7
Pennsylvanian to Early Permian Deformation

During the Pennsylvanian Period, the Palo Duro Basin underwent three pulses of

deformation (Ham and Wilson, 1967). Initially, the northern end of t_hé Texas Arch
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was uplifted, tilting the Mississippian carbonate shelf to the south. During this phase,
Mississippian and older stravt.a‘ eroded from a wide, east-west-trending band to the
north of the present structiirai basin (fig. 12a). while lower Pennsylvanian (Morrowan)

sediments deposited primarily in the southern part of the basin and in the Hardeman

‘Basin to the east (Budnik and Smith. 1982).

The second and main period of deformation. occurred during the middle
Pennsylvanian (Desmoinesian; Dutton, 1982; Goldstein, 1982) Ancestral Rocky
Mountain orogeny. It was during this time that the Amaiillo Uplift and related
struétures foimed as a result of left-lateral strike-slip faulting (see discussion under
"Tectonic evolution oi the Wichita megashear”). Most of the arkosic debris that shed
to the south from the Amarillo Uplift weis trapped in the Whittenburg Trough and in
the Hollis Basin, although some of the clastics reached the Palo Duro Basin through
lows in the Oldham-Harmon trend (fig.‘ 13). Abrupt thickness changes exhibited by
Desmoinesian sediments indicate that intrabasinal structures (for example, the Castro
Trough) probably reached their greatest relief at this time. By the end of the
Desmoinesian, bathymetric relief had been reduced and a carbonate shelf covered most
of the area (fig. 14; Dthton. 1982).

During the third phase of deformation, in the late Pennsylvanian, the region was
differentiated into a well-defined depdsitionai basin as a resultbof réjuvenation of
basement structuies. Carbonate-shelf-margin complexes and basinal shale deposition
were dciminant during this period (Dutton, 1982). Carbonate buildups were localized on
structurally high blocks. such as the central Randall high, within the basin, and along
the Oldham-Harmon trend and the Matador Arch (fig. 15: Budnik and Smith, 1982).
Subtle movement of basement structures throughout the late Pennsylvanian and
earliest Permian (Wolfcampian) maintained these highstanding areas. This phase of

deformation culminated with erosion or nondeposition, or both, of upper Pennsylvanian
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(Virgilian, Cisco Series) deposits on structures in the southwestern part of the basin
(Budnik and Smith, 1982), on the Amarillo Uplift. and on the Anton-Irish structure
before deposition of the Wolfcamp Series (fig. 15). The pre-Permian isopach map
(fig. 16) delineates a strong northwest-southeast trend to the axis of the basin at the

end of the Pennsylvanian.

Permian Basin

The end of the Wolfcampian was a time of profound change in patterns of
deformation and deposition in the Palo Duro Basin. During the Pennsylvanian and
early Permian, relatively high local topographic relief existed within a well-defined
normal-marine depositional basin. These conditions changed, however. near the end of
the Wolfcampian, when the marine shelf margin and basin systems were replaced by a
widespread carbonate shelf (Dutton, 1982). The basin axis shifted from northwest- to
north-northwest-trending (compare figs. 16 and 17) during the early Permian.
Deposition during the remainder of the Permian, primarily of evaporites and red beds,
was controlled by regional subsidence associated with the larger Permian Basin
(fig. 1). Distinction between the Palo Duro and surrounding depositional basins was
reduced as a result of subsidence below sea level of the intervening uplifts (Goldstein,
1984).

Pennsylvanian structures continued to subtly influence depositional patterns during
the middle and late Permian. These deposits thin over structural highs in the basin
(the central Randall high, the Arney positive, and the lllusion Lake structure) and
along the Matador Arch (fig. 18). The relationship between thickness and structure
has been obscured by salt dissolution along the Oldham-Harmon trend. A

correspondence between basement lows and areas of thick clastics in the middle
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Permian Glorieta Formation was noted by Presley and McGirIIis (1982) and in the
upper Permian .S-alado/TansiI‘I‘; Formations by McGillis and Presley (1981). Structural
influence continued through the end ,Qf the Permian, as is suggested by the thinning
of t‘he Alibates Formation over the Arney positive and the Littlefield and lllusion Lake
structures (McGillis and Presley, 1981)

The relationship between thickness of Permian strata and basement istructiure is
probably the ’result of recurrent movement on‘ the older structures, not merely the
effect of differentialycomnac’tion. The best evidence of this is the episodic influence of
structures on depositional patterns. For example, the lower and upper salt-bearing
intervals of the middle Permian San Andres Formation thin over structural high.s.
whereas the middle.non-salt—bearing interval shows no correspondence between
structiure and thickness (Fracasso and Hovorka, 1984). The change in lithology and
coincident change in effect of local structure on thickness suggest that there may have
been a large-scale but subtle tectonic influence on depositional patterns in the San
Andres. In addition to the influence of local structure on the thickness of Permian
strata, a change in regional subsidence patterns occurred. A progressive shift to the
southwest of the axis of thickest sediment accumulation is evident from a comparison
of isopach maps of the pre—Permian, Wolfcampian, and upper Leonardian through
Ochoan (figs. 16, 17, and 18).

The Palo Duro Basin has been deformed since the Paleozoic, as indicated by the
folding of tne Alibates Formation (uppermost Permian) over structures within the
basin and‘over elements of the Amarillo_ Uplift to the north and the Matador Arch to
the south (fig. 19; B’udnik, 1984). For example, there has been more than 200 ft
(60 m) of differential uplift of blocks along the Matador Arch since the Permian

(Budnik, 1984). Folding of the Alibates Formation at Palo Duro Canyon took place
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prior to deposition of the Dockum Group in the late Triassic (Collins, 1984). However,
along the western part of the Amarillo Uplift, folding of the Alibates Formation
occurred during deposition of the lower part of the Miocene Ogallala Formation (see

discussion under "Cenozoic deposition and deformation™).
Structural Controls on Triassic Deposition

During the late Triassic, depositional patterns were influenced by some of the
same basement structures that affected Permian and earlier deposition. Regionally. the
Dockum Group is primarily of lacustrine origin within the center of the Permian Basin,
Whereas'fluvial/deltaic deposits are more common around the margins (McGowen and
others, 1979). indicating that regional subsidence continued to be the dominant
structural influence in the area into the Triassic. Local structures (for example, the
Castro Trough) appear to have influenced the distribution of sand in the lower
Dockum Group (Budnik. 1984). Johns (1985) also noted that thick accumulat'ions of
sand in the Doékum Group occuby structurally low areas along the Matador Arch and
elsewhere in the basin. Patton (1923) reported intraformational angular unconformities
within the Dockum Group on the northern flank of Bush Dome, suggesting that
elements of the Oldham-Harmon trend were undergoing active deformation during the

late Triassic.
Structural Influence on Cretaceous Deposition
Cretaceous strata are absent from all but the southernmost (fig. 19) and

northwesternmost parts of the Panhandle as a result of erosion or nondeposition.

Sufficient data are not available to determine if sediments were deposited elsewhere in
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the basin and later eroded or if the present distribution approximates the original
extent of the déposifs.‘ The Panhandle may have been the site of a stable shallow
shelf dufing the Cretaceous. with the shoreline to the northwest and deeper water to
the southeast (Scot-t, 1977). Lower Cretaceous (Aptian through lower Cenomanian)
marine strata‘onlap Triassic and older units inorthwestward of the Gulf Coasf toward
the Texas Panhandle (Adkins. 1932). Northwest of the Palo Duro Basin, in :
‘northeastern New Mexico and adjacent afeas, lower and upper Cretaceous (upper‘
Albian té Campanian) fluvial/deitaic clastiés overlie Juréssic nonmarine clastics
(Kauffman, 1977). |

Lower Cretaceous unit:é are preserved beneavth the Ogallala Formation in Hale,
"Lamb, and Floyd Counties along the structural axis of the Palo Duro Basih (fig. 19:‘
Budnik, 1984). Cretaceous strata are absent from the Petersburg structure, part of the
I\:/Iiatador Arch (fig. 19) that may have been a topographic high during the‘early‘
Cretaceous or was uplifted; or both, and the Cretaceous strata eroded pfior to

deposition of the Ogallala Formation in the late Tertiary.
Cenozoic Deposition and Deformation

During the late Miocene and- early Pliocene, the western Great Plains, including
the Texas Panhandle, was the site of deposition of the Ogallala Formation. a vast‘
alluvial apron that spread eastward from uplifts along the Rio Grande rift in central
New Mexico and Colorado _(fig. 20; Schultz, 1977; Seni. 1980). iDeposition of the
Ogallala' Formation in Texas was initiated during the late Miocene (Clarendonian,
approximately 10 Ma ago) based on vertebrate fossil dat\a (Schuvltz. 1977; Winkler.A
1985). Ogallala deposition ended during thé late Mioéene to early Pliocene

(Hemphillian, 4 to 5 Ma ago: lzett, 1975). Isotopic ages of 4.7 and 6.6 Ma were
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obtained from an ash bed near the top of the Ogallala Formation in Hemphill County,
Texas (lzett, 1975). Basalt flows dated 2 to 3 Ma old occupy stream valleys that
eroded into the Ogallala in northeastern New Mexico (Stormer, 1972). In the Texas
Panhandle, the Ogallala is locally overlain by Blancan (Pliocene, >2.8 Ma old)
lacustrine deposits (Schultz, 1977).

Although the midcontinent was relatively stable during the Tertiary, compared
with the Rocky Mountains to the west, parts of the Texas Panhandle were
tectonically deformed during this time, as indicated by facies patterns and folding in
the Ogallala Formation. Regionally, the distribution of the Ogallala was influenced
primarily by paleotopography and by collapse structures that formed as a result of the
dissolution of deeper Permian evaporites (Frye and Leonard, 1959: Seni, 1980).
However, structural and stratigraphic studies in the Texas Panhandle indicate that the
Ogallala has been tectonically deformed at least locally, most notably where it overlies
the Amarillo Uplift.

Almost all of the structural relief between the Amarillo Uplift and adjacent basins
developed during the Pennsylvanian and early Permian, as evidenced by the large
quantity of syntectonic arkose shed into the basins (Dutton, 1982). However,
reactivation of basement structures resulted in the folding and faulting of upper
Permian and Triassic strata and the lower part of the Ogallala Formation along the
western part of the Amarillo Uplift (fig. 21; Budnik, 1984). The upper (Hemphillian)
part of the Ogallala is only broadly folded, indicating that deformation took place
during Ogallala deposition.

Within the basin, reactivation of Paleozoic structures has had a subtle but
recognizable effect on Cenozoic strata. These effects have been masked in part by

erosion and by late Cenozoic salt dissolution, processes that have been more active
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along the margins of the basin than in the basin interior. Depositional patterns, as
defined by isopachous and sand trends in the Ogallala Formation (Seni, 1980), appear
to reflect the position of large-scale basement structures in the Panhandle. Major
distributary channel systems occupied the axes of the Anadarko and Palo Duro Basins
(Budnik, 1984), indicating that the structures had enough topographic expression in
the Neogene to influence drainage patterns. Baker (1932) also recognized that the
Ogallala Formation was thickest in the axis of the Anadarko Basin and that it
thinned over the Amarillo Uplift; he attributed this change in thickness to uplift during
deposition.

Post-Ogallala déformation has continued along the western Amarillo Uplift. At
present, the formerly flat-lying Pliocene lacustrine deposits (the Rita Blanca beds:
Anderson and Kirkland, 1969; Schultz, 1977) dip as much as 10 degrees off the uplift
in Hartley County (Budnik, 1984). Microseismicity in that area (Acharya, 1984, 1985)
suggests that the Whittenburg Trough to the west of the Amarillo Uplift is currently
undergoing tectonic deformation.

Extent of late Cenozoic surface faulting in the region is not well documented,
except to the west of the Palo Duro Basin in New Mexico. Barnes (1977) indicates
that the northeast-trending Alamosa Creek fault in Roosevelt County, New Mexico
(fig. 4). displaces the Ogallala Formation. Lovelace (1972) and Barnes (1977) indicate
that, to the north, the Bonita fault in Quay County, New Mexico, offsets Quaternary
deposits. North of the Palo Duro Basin, in Potter and Carson Counties, abrupt
thickening of the Ogallala Formation across basement structures (Budnik, 1984, his
figs. 18 and 20) suggests that movement along the Potter County fault (fig. 4) may
have occurred during deposition of the unit. Although post-Paleozoic faults have not

been recognized within the Palo Duro Basin, Finch and Wright (1970) suggested,
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based on the deflection of topographic contours from Curry County, New Mexico, to

Crosby County, Texas, that late Cenozoic tectonic deformation offset the surface of

the Southern High Plains. |

 In addition té differential uplift of basement blocks during the Tertiary, regionall
southeastWard tilting of the Texas Panhandle and adjacent areas has occurred since
the early Cretaceous. Lower Cretacéous strata to the south of the Palo Duro Basin,
which were deposited/at or near sea level, currently have a southeastward dip of
8‘ft/mi (1.5 m/km; Brand, 1953). McGookey (1984) noted that Cretaceous istrata‘
were about 3,000 ft (910 m) a.bc‘)ve sea level in Lubbock County. south bf the basin,
and 4,800 ft (1,450 m) above sea level in Quay County, New Mexico, west of the
basin, indicating a slope of aboﬁt 12 ft/mi (23 m/km) southeastward.

The timing of this tilting is not closely constrained but most likely coincided with

- regional orogenic movements either (1) in the late Cretaceous to Eocene (Laramide

orogeny) or (2) in the Miocene during opening of the Rio Grande rift and deposition
of the Ogallala Formation. Paleogene sediments are absent from the Texas PanhandI‘e
as a result of erosion or deposition or both, so no record exists from which to
evaluate the possibility of early Tertiary uplift. Tilt of the Cretaceous strata is
approximately equal to that of the presént High Plains surface (8 to 10 ft/mi, or 1.5
to 2 m/km; Brand, 1953), Which is about the same gradient as that of the surface of -
modern alluvial-fan analogs of the Ogallala (Seni, 1980). Uplift and tilting may have
occurred during the opening of the Rio Grande rift.'just prior to or during the onset
of Ogallala deposition in the late Miocene, and provided the initial slope upoﬁ which
the unit was deposited. Gable and Hatton (1983) prdjécted 300 to 3.000 bft (100 to
1,000 m) of epeirogenic uplift of the western Great Plains, including the Texas
Panhandle, in the past '10‘ Ma, suggesting that tilting of the region may have océurred

during deposition of the Ogallala Formation.
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Summary

The Palo Duro Basin and surrounding region have had a long history of
tectonism, beginning in the Precambrian. The Palo Duro Basin was the site of a
tremendous outpouring of rhyolite ignimbrites during the middle Proterozoic.
Deformation of the area in the latest Proterozoic - earliest Phanerozoic locally
produced interbedded arkosic sandstone and tuff. Relative stability during the late
Cambrian through middle Devonian allowed development of a carbonate-dominated
shelf. Uplift of the Texas Arch in the middle Devonian occurred along preexisting
faults. A carbonate shelf was reestablished in the Mississippian, with shallow-water
carbonates deposited along the axis of the Texas Arch and deeper water sediments
deposited along the flanks.

The area underwent major deformation during the late Paleozoic, beginning with a
southward tilting of the carbonate shelf in the late Mississippian to early
Pennsylvanian. Recurrent uplift in the Pennsylvanian and early Permian maintained
highstanding basement blocks. Subsidence, related to the development of the larger
Permian Basin, and subtle deformation continued episodically to the end of the
Paleozoic. Older structures, reactivated during the Triassic, influenced depositional
patterns in the Dockum Group. The present distribution of Cretaceous strata suggests
that basement blocks along the Matador Arch may have formed topographic highs
during the early Cretaceous or have been uplifted since then. Parts of the Amarillo
Uplift and smaller structures within the Palo Duro Basin were reactivated during the
deposition of the Ogallala Formation in the Miocene; at approximately the same time
the entire region was uplifted and tilted eastward. Faulting in eastern New Mexico
and possibly along the Amarillo Uplift may have occurred since deposition of the

Ogallala.
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TECTONIC EVOLUTION OF THE WICHITA MEGASHEAR

The tectonic history of the southwestern United States, including the Palo Duro
Basin, appears to have been influenced by the recurrent activation of the Wichita
megashear, a fundamental zone of weakness extending from southern Oklahoma to
eastern Utah (figs. 2 and 3). The tectonic history of the Palo Duro Basin reflects the
history of this larger tectonic feature; timing of deformation in the basin closely
corresponds to the timing of deformation along the megashear.

The existence of a throughgoing zone of weakness from southern Oklahoma to
eastern Utah has been postulated by a number of authors (Hunt, 1963; Sales. 1968;
Walper, 1970: Baars, 1976; Larson and others, 1985), although others, for example
Kluth and Coney (1981). have recognized no evidence of a throughgoing megashear in
the region. The megashear can be subdivided into three parts for ease of discussion:
(1) an eastern segment in Oklahoma and the Texas Panhandle; (2) a middle segment
in northeastern New Mexico and southeastern and central Colorado; and (3) a western
segment in southwestern Colorado and eastern Utah (fig. 3). The eastern segment of
the Wichita megashear consists of a complex zone of uplifts and basins that includes
the Amarillo-Wichita and Arbuckle Uplift-s and related structures in southern Oklahoma
and the Texas Panhandle. The middle segment is composed of major faults in
northeastern New Mexico and southeastern and central Colorado (fig. 3) that have
been collectively called the Apishapa and Gore-lise fault systems by Tweto (1980a).
Faults withih and adjacent to the Apishapa/Sierra Grande Uplift align with, or are
en echelon to, faults along the western edge of the Frontrange Uplift (the Gore-llse
fault system) and eastern edge of the central Colorado Trough (fig. 3; Maher, 1953;

Anderman, 1961; Lewis and others, 1969; DeVoto. 1980: Tweto, 1980a, 1980b).
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The Western‘ segment of the Wichita megashear is occupied by the Uncompahgre
Uplift (fig. 3) m southwestern Colorado and eastern Utah. This segment forms a
miajor‘part of the Olympic-Wichita lineament of Baars (1976). The extent of the
Wichita megashear is unknown beyond the Uncompahgre Uplift because pfe—Mesozoic
strata are allochthonous to the northwest (Roberts and others. 1965). However,
included in Laramide thrust sheets in Utah are as much as 5 mi (8 km) of
Pennsylvanian and lower Permian strata that were deposited in the Oquirrh Basin
(Roberts and others, 1965). Dickinson (1977) proposAed-that thé Oquirrh Basin formed
during late Paleozoic rifting of the western Great Bésin: it is possible that the
megashear formed the eastern limit of this rifting. Baars (1976)‘ and Baars.and
Stevenson (1981) projected the zone of weakness northwestward to connect with the
OIympic-WalIO\/\\/a Iineément in Washington (Raisz. 1945; Wise, 1963); however, the -
present Pacific Northwest of the United States was probably beyond the edge of the

North. American continent until the Mesozoic (Burchfiel and Davis, 1972).
Proterozoic Origin of the Wichita Megashear

The Wichita megashear appears to have formed as a zone of weakness across the
southwestern part of the North American craton during the Precambrian. Each of the
three segments of the system harks boundaries between contrasting basement
lithologies or has other evidence of Pr_oterozoic faulting or both (fig. 5).

The eastern (Amarillo-Wichita-Arbuckle) segment a‘ppears to delineate the northern
edge of a local accumulation of 1,200- to 1,400-Ma-old volcanic and sedimentary rocks
within the regionally ext\ensive middle Proterozoic terrane (Brewer and others, 1983).

South of the segment, geological and geophysical evidence (fig. 8) indicates the

presence of a thick (at least 30.000 ft, or 9.100 m) sequence of volcanic and 'possibly
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sedim‘entary rocks, which exhibit distincflayering on seismic reflection profiles :(Brewér
and others, 1398.1'). These rocks include the Tillman Group in southwestern Oklahoma
(Flawn, 1956; Brewer and others, 1981), the Panhandle rhyolite sequence of the Texas
Panhandle (fig. 5; Flawn, 1956k: MthIberger and others, 1967), and the Las Animas
Formation of sou‘theastern Colorado (Tweto, 1983). North of the segment the
basement apparently consists primarily of granitic rocks (Muehlberger and others,
1967) that do not appear layered on seismic reflection data (Brewer_ and others,
1983). - On the basis of this contrast in the nature of ther basement, Brewer and
others (1983) suggested that the distribution of the Proterozoic units was in pa‘rt’
controlled by faulting in the area of the present Wichita Uplift.

Faults that form the middle and western (Colorado) segments of the Wichita
mregash‘earv afso originvated in the Proterozoic (Ba‘ars,' 1976; Tweto, 1980a). For
example, the Las Animas Group is preserved in an east-west-trending graben along the
Apishapa fault system in southeastern Colorado, which bdeveloped prior to the
déposition of upper Cambrian strata, prbbably in the late Proterozoif: (Tweto, 1983).
To the northwest, the north-northwest-trending Gore-lise fault system (fig. 5) predated
the emplacement of a 1,700-Ma-old granite in the Wet Mountains (Tweto, 1980a). In
southwestern Colorado, the Coalbank Pass fault (one of a number of faults along the
front of the Uncompahgre Uplift: fig. 5) offsets a 1,780-Ma-old granite and is in turn
intruded by a 1,400-Ma-old granite (Baars, 1976). Thus the eastern, central, and
western segments of the Wichita megashear all exhibit evidence of fofmation during
the Proterozoic. | |

"~ Another fault zone, which includes the Picuris-Pecos and Tij’eras faults (fig. 5;
Miller and others, 1963: Kelley, 1979) in central New Mexico, has had a significant

influence on the tectonic development of the region. These north-northeast-trending
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faults are apparently unrelated to the Wichita megashear. The Tijeras fault, which lies
along the east side of the Sandia Range near Albuquerque, separates Precambrian
gr,eensto;les from gﬁeisses. Aplite and pegmatite dikes associated with 1,400- to
1,800-Ma-old plutonism are arranged en echelon to the fault in the greenstone,
indicating movement of the fault at that time (Lisenbee and others, 1979). To the
north, in the southern éangre de Cristo Mountains, the Picuris-Pecos fault zone also
may have formed during the Precambrian (Mi"er and others, 1963). Schists, 1.700‘to
1,800 Ma old (R'obértson and Moench, 1979), are complexly deformed adjacent fo the
fault and are intruded by undeformed mafic dikes of probable Precambrian age that

p‘a‘rallel the fault.
Latest Proterozoic - Earliest Phanerozoic Rifting

Deciphering the latest Proterdzoic - earliest Phanerozoic tectonic history of fhe
region is difficult because much of the section is missing owing to erosion or
nondeposition. Even so, evidence exists that the previously described faults along
each segment of the system were reactivated during >this period.

A major rifting event along the eastern segment produced the Southern
Oklahoma Aulacogen approximately 525 to 570 Ma ago (fig. 5: Hoffman and others,
1974; Gilbert, 1983). The location and orientation of the rift were controlled by the
~ preexisting Proterozoic faults (Brewer and others, 1981). The resulting trough was
filled with up to 20,000 ft (6.100 m) of bimodal volcanics and volcaniclastic sediments
(Ham and others, 1964). These are underlain and possibly intruded by a Iqrge volume

of mafic and granitic plutonic rocks (Gilbert, 1983).
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To the northwest, in south-central Colorado, alkalié dikes and small intrﬁsives
were emplaced parallel to the llse and related faults (fig. 5) 495 to 535 Ma ago
(Singewald. 1966: Olsen and others, 1977). Along the Uncompahgre Uplift in western
C‘o‘Iorado similar intrusives yield ages of 497 and 570 Ma (Olsen and others, 1977;
Larson ’and'others. 1985). This igneous activity coincides with that in the Southern
Oklahoma Aulacogen, ihdicating that the én'tire megashear was reactivated during the

Cambrian (Larson and others, 1985).

Early to Middle Paleozoic Deformation

Along the eastern seghent of the Wichita megashear, post-rifting cooling and
resulting crustal thickening at the site of the Southern Oklahoma Aulacogen init‘iated
subsidenée and formation of the Ahadarko Basin in the late Cambrian, about 525 Ma
“ago (fig. 12a: Feinstein, 1981). During this phase‘of deposition, which continued into
the early bévonian (Ham and Wilson, 1967). as much as 15.000 ft (4.500 m) of
shallow-water carbonates and clastics of fhe Timbered Hills Group (upper Cambrian),
the Arbuckle Group (Ellenburger equivalent: upper Cambrian and lower Ordovician). the
Simpsoh and Viola Groups amndv Sylvan Formation (Ordovician). and the Hunton Group
(Silurian and lower Devonian) were deposited in the basin (Feinstein, 1981). Basement
faults were reactivated b‘riefly during the latest Cambrian to earliest Ordovician. as
- indicated by an anomalo‘us increase in the subs‘idience rate, which was followed by a
resumption of subsidence at a rate predicted by the typical post-rifting thermal-decay
model until the early Devonian (Feinstein, 1981). |

A regional erosion surface developed across the midcontinent during the middle
Devonian (Ham and Wiblson. 1967). Pre-middle Devonian strata were downwarped into

the Anadarko Basin and truncated by erosion at this time, 'so that upper Devonian
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~and Mississippian strata onlap Cambrian through lower Devonian units around the
margins of the basin (fig. 12a). Mississippian strata rest on Proterozoic basement on
- the crest of the Texas Arch to the southwest of the basin (Adams, 1954; Ruppel,
1985) and on the flanks of the Transcontinental Arch to the northwest (Craig and
Conner, 1979). Abrupt facies changes in the Kinderhook Series along the north side of
the Amarillo Uplift suggest renewed fault activity during the early Mississippian (Mapel
and others, 1979: Ruppel, 1985).

Available data foi the central and western segments of vthe Wichita megashear
indicate that Proterozoic faults were reactivated at aboth the same time as those in
Oklahoma and Texas. The coarsening of clastic sedimentary rocks of‘the Sawptch
(upper Cambrian) and Parting (upper Devonién) Formations and the presence of
“clastic rocks in‘the dominantly carbonate Leadville Formation (lower Mississippian) in
the vicinity of the Gore fault suggest episodic reactivation pf the central segment
(Baars, 1975; Tweto, 1980b). Similarly, in southwest Colorado, abrupt .facies changes
in ‘the Ignacio (upper Cambrian),‘ Elbert (upper Devonian), and Leadville Formations at

the margins of northwest-trending grabens indicate concurrent tectonism on the

western segment during deposition of those units (Baars and See, 1968).

‘Late Paleozoic Deformation
The most intense Paleozoic deformation along the Wichita megashear took place
during the formation of the Ancestral Rocky Mountains during the Pennsylvanian and
early Permian (ver Wiebe, 1930; Ham and Wilson, 1967; Mailory'. 1972). Proterozoic
faults were reactivated and new faults formed to produce a series of uplifts and

basins along all segments of the system (fig. 3; Tweto, 1980b; Baars and Stevenson,

1981; Kluth and Coney. 1981; Brewer and others, 1983; Larson and others, 1985).
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Although all major faults within the eastern segment exhibit large-scale vertical
separation (Ham.;'and'others. 1964). motion along the segment appears to have beeni
dominantly left-slip. This interpretation is supported by the primarily northwest trend»
of en echelon“fold‘s and faults and ‘the pfesence of displaced lower Paleozoic subcrop
and facies trends (Ham, 1950; ‘Tanner, 1967: Carter, 1979; Evans, 1979; Booth, 1981;
Haas, 1981, Axtmann, 1983; Harding, 1985).

Determining the amount of 6ffset along the eastern segment of the Wichita
megashear has been difficult owing to 4a‘ lack of uniq‘ue geologic relationships (biercing
poinfs) to correlate across the zone. Pennsylvanian strata exhibit abrupt lateral facies
changes that do not -intersect but instead parallel the megashear (Frezon and Dixon,
1975; Dutton, 1982): hence they provide no information abéut the amount of
horizontal movement. Similarly, Mississippian Sfrata. which were deposited on a broad
carbonate shelf and sIope\ (Ruppel, 1985), contain only gradual lateral changes in
fac‘ies that are difficult ;o define precisely enough to use as piercing points. However,
the displaced intersection of lower P‘aleozoic units with the middle Devoni/an erosion
sﬁrface to the north and south of the Amarillo-Wichita Uplift provides an opportunity
to calculate the amount of horizontal offset along the megaéhear.

Below fhe middle Devonian unconformity north of the Amarillo Uplift, Cambrian
through lower Devonian strata strike north-south and dip eastward into the Anadarko
Basin from the Sierra Grande Uplift (fig. 12a; Panhandle Geological Society, 1969).
South and east of the uplift, Oirdovician units di(p‘ northeastward off the Texas Arch

in the Texas Panhandle into the Hollis and Hardeman Basins (Adams, 1954). In

addition. regionally the Arbuckle/Ellenburger Group (Cambro-Ordovician) thickens

toward the center of the Anadarko Basin (Huffman, 1959). However, the subcrop
. , , o
pattern and isopachous trends north of the megashear do not line up with those to

the south of the megashear (fig. 12a), but instead appear to be horizontally offset
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75 mi (120 km) in a left-lateral sense. Removal of this ‘offset aligns the subcrops in
the Anadarko Basin with those in the Hollis-Hardeman Basins (fig. 12b) and also
realigns isopachous trends within the Arbuckle/Ellenburger Group across the
megashear. This estimate of the amount of offset across the entire Afnarillo Uplift is
consistent with estimates of as much as 20 mi (30 km: Carter, 1979) and 40 mi
(65 km; Tanner, 1967) of left-slip on individual faults along the Arbuckle Uplift
(fig. 3) at the eastern end of the segment. An alternative interpretation has been
presented by Nielsen and Brown (1984), who attribute the apparent strike-slip offset
in the Arbuckle Uplift to reverée dip-slip on the fauits.

Although the preservation of thick sequences of syntectonic sediments (Mallory,
1958, 1972.'1975) provides evidence of dip-slip on fault zones, large-scale
Pennsylvanian strike-slip faulting of approximately 60 mi (100 km) or more has not
been recognized or proposed for the middle and western segments of the Wichita
megashear. In part this may be because the older structures have been overprinted by
younger tectonism (Tweto, 1980c) or buried beneath younger deposits (Baars and
Stevenson, 1984). As noted by Reading (1982)., however. dip-slip movement commonly
occurs along transcurrent faults, and, in the case of ancient strike-slip fault zones,
may be the only provable direction of motion. However. evidence of at least a
component of Pennsylvanian strike-slip faulting occurs along the middle and western
segments. For example, the Gore-lise fault system, part of the middle‘segment of the
Wichita megashear, is similar to other sfrike-slip fault zones (Reading, 1980) in that it
is a linear zone of closely spaced, en echelon to subparallel, high-angle faults (DeVoto,
1980; Tweto, 1980a). Tweto (1980a) interprets this zone to have originated as a
strike-slip fault during the Precambrian, which was reactivated with mainly dip-slip in

the Pennsylvanian. A large amount of vertical separation (as much as 10,000 ft, or
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3,000 m; DeVoto, 1972) occurs between the Frontrange Uplift and the central
Colorado Trough across the fault system. However, this relief may not have developed
as a result of simple block faulting. The presence of small fault-bounded basins that
were filled with syntectonic deposits that exhibit abrupt facies changes and complex
onlap and overlap relations (DeVoto, 1972) suggests lateral movement as well.

Pennsylvanian left-lateral strike-slip faulting has also been proposed along the
western segment of the Wichita megashear (Szabo and Wengerd, 1975; Stone, 1977).
However, this faulting may have been preceded and followed by right-lateral movement
during the Precambrian (Baars, 1976: Baars and Stevenson, 1981) and the Laramide
orogeny (Hite, 1975) along the same trend. Northwest-trending faults along the front
of the Uncompahgre Uplift and within the adjacent Paradox Basin had reverse offset
during the Pennsylvanian (Stone, 1977: White and Jacobson, 1983) when more than
3.000 ft (900 m) of arkosic sediments were deposited adjacent to the uplift (Clair,
1958: Mallory, 1975). However, a left-lateral component of movement is suggested by
the en echelon arrangement and north-northwest orientation of folds within the
Paradox Basin (Szabo and Wengerd, 1975) and within and to the north of the uplift
(Stone, 1977).

The architecture of the entire Wichita megashear also is compatible with left-
lateral strike-slip faulting. The eastern and middle segments are in a right-stepping en
echelon arrangement, whereas the middle and western segments form a left-stepping
en echelon pattern (fig. 3). Under a left-lateral regime, this geometry would be
predicted (Rodgers, 1980) to produce an uplift between the eastern and middle
segments (the Sierra Grande Uplift) and a basin between the middle and western
segments (the central Colorado Trough). Thus, although it is difficult to prove that

the Ancestral Rocky Mountains formed in response to large-scale left-lateral strike-slip
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faulting, major and minor structures found all along the feature support the
hypothesis. |

Several ph‘ases -of late Paleozoic deformétion are recognized along the Wichita
megashear. Initially, the region along the Wichita megashear was broadly folded during
the latest Mississippian or earliest Pennsylvanian, at which time Mississippian and
older strata eroded from large areas (Ham and Wilsbn, 1967; DeVoto, 1980). These
epeirogenic movements were fol|ov‘véd by a series of pulses of deformation (van der
| Gracht, 1931; Tomlinson and McBee, 1962;: Ham and Wilson, 1967; DeVoto, 1972),
- which includéd (1) differentiation of the region into discrete uplifts and basins in the
early Pennsylvanian (Morrowan-Atokan); (2) rapid uplift to maximum topographic feliéf
during the middle Pennsylvanian (Desmoinesian), accompanied by strike-slip fauiting:—
and (3) rejuvenation of structures in the late Pennsylvanian and early Permian
(Virgilian to Wolfcampian; Ham and Wilson, 1967: DeVoto, 1972: Mallory, 1975; Kluth
and Coney. 1981). In Oklahoma, the earliest and latest pulses have been named.
re‘spectiVely. the Wichita and Arbuckle orogeniés (van der Gracht, 1931; Tomliﬁson and
McBee, 1962; Ham and Wilson, 1967): the intermediate pulse was the culmination of
the Ancestral Rocky Mountain orogeny (Mallory, 1958, 1972, 1975; Martin, 1965;
Ohlen and Mclntyre,,1965: ‘li)eVoto. 1972, 1980; Stone, 1977 Casey, 1980; Kluth and
Coney, 1981; Goldstein, 1982). "

Tectonic activity decreased during the middle and late Permian; however,
preexisting structures continued to infiuen'ce depositional patterns (Budnik. 1984).
Uplifts along the eastern segment of the megashear subsided during the formation of
the Permian Basin (Goldstein, 1984), although subdued uplifts on all segments
re‘mai}‘ned sources of arkosic sediments (Rascoe and Baarsb,' 1972). Widespread
unconformities within upper Permian strata are present throughout the region,

indicating that epeirogenic movements continued (Rascoe and Baars, 1972).
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Post-Paleozoic Deformation

Although bthe,early and middle Mesozoic were times‘of relative stability, some
evidence exists that minor deformation on the Wichita megashear continued. Along
the western segnﬁént. Proterozoic faults were reactivated during the late Permian or
early Triassic. The Cutler Formation (Permian) was deformed as a result of movement
on faults along the Uncompéhgré Uplift prior to deposition of the Dolores Formation
during the late Triassic (Weimer, 1980). Minor foiding also occurred in the latest
Triassic and again in the latest Jurassic along the Apishapa fault systerﬁ in
northeasternmost New Mexico and in adjoining states (Stovall, 1943; Baldwin.-and
Muehlberger, 1959).

Two fnajor post-Paleozoic orogenic‘events affe‘cted the region: (1) the Laramide
orogeny in the late Cretaceous and early Tertia?y and (2) the Basin and Range event
in the late Tertiary. Many of the preexisting structures, primarily anng the cehtral
and western segments of the megashear, were reactivated as a result of these events
(Tweto. 1980b). During the Laramide orogeny the region Was subjected to east-
northeast compression (Chapin and CatHer, 1981; Price and Henry, 1985), resulting in
reverse offset on older faults in Colorado (fig. 22: Tweto. 1980c). Rotation of the
stress field in the Eocene resulted in later right-lateral strike-slip faulting (Chapin and
Cather, 1981) along the central segment of the megashear and along the previously
mentioned preexisting zone of weakness in central New Mexico. The Cordilleran
orogenic belt to the west of the megashear underwent large-scale thrusting .at this
time (Coney, 1972). The eastern segment of the Wichita megashear does not appear
to have been reactivated during the Laramide orbgeny. although this.may‘ be more

apparent than real because of the lack of post-Paleozoic strata in much of the area.
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Where Triassic and Cenozoic strata are present in the Texas Panhandle, however, no
evidence of post-Triassic, pre-Miocene folding or faulting exists.

The dominant stress direction in the region during the middle Tertiary (31 to 12
Ma ago) was east-northeast-oriented extension (Price and Henry, 1985). Under this
stress regime, the Rio Grande rift, a narrow zone of crustal extension, formed in
central New Mexico and Colorado (fig. 20; Chapin, 1979, Cordell, 1982; Baldridge and
others, 1984). Three phases of deformation have been recognized along the rift
(Chapin and Seager, 1975; Golombek and others, 1983): (1) initial downwarping and
formation of broad basins from about 30 Ma ago until 10 or 12 Ma ago (Zoback and
others, 1981; Morgan and Golombek, 1984): (2) the beginning of active rifting with
the formation of narrow fault-bounded basins and marginal uplifts accompanying a
change in stress orientation to WNW-ESE extension (Zoback and others, 1981) about
10 to 12 Ma ago; and (3) reduced fault activity resulting in more subdued topography
and development of throughgoing axial drainage from about 4 to 5 Ma ago to the
present.

Extension across the Rio Grande rift was accommodated in part through the
reactivation of preexisting fault zones (Eaton, 1979: Tweto, 1979; Cordell, 1982;
Baldridge and others, 1984). Older structures associated with the north-northwest-
trending Gore-llse fault system (fig. 20) influenced the location of rift basins in central
and northern Colorado (Taylor, 1975; Tweto, 1979). Similarly, the Tijeras and other
north-northeast-trending faults in northern and central New Mexico were reactivated
during rifting (Miller and others, 1963; Chapin and Seager, 1975; Kelley, 1979: Tweto.,
1979; Cordell, 1982). However, the character of axial basins changes along the length
of the rift; in central Colorado the rift basins are small and discontinuous (Chapin.
1979; Tweto., 1979). whereas to the south they are wider, deeper, and relatively

continuous (Kelley, 1979: Tweto, 1979). Basins along the entire rift were filled with
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syntectonic\fluvial, eolian, and lacustrine deposits (the Santa Fe Group and related
units; fig. 20) derived from bordering uplifts primarily during the late Miocene to early
Pliocene (Clarendonian and Hemphillian; Galusha and Blick, 1971; Tedford. 1981). The
decrease in fault activity about 4 to 5 Ma ago is indicated by the presence of
relatively undeformed basalt flows and Blancan (Pliocene) ancestral Rio Grande fluvial
deposits that overlie faulted, strongly tilted, and eroded strata of the Santa Fe Group
- (Chapin and Seager, 1975; Seager and others, 1984).

- As previously discussed, evidence from the Ogallala Formation suggests that the
Texas Panhandle was also undergoing deforfnaﬁon in the late Miocene to early
Pliocene. Basement blocks along the Amarillo Uplift were elevated about 500 ft
(150 m) relative to adjoining blocks during initial deposition of the Ogallala Formation
in the Clarendonian. Deformation there appears to have ended in the Hemphillian
because the upper part of the Ogallala is only broadly warped over these blocks.
Basement structures elsewhere in the basin also were subtly rejuvenated at this time.
The timing of deposition and deformation of the Ogallala Formation in the Texas
Panhandle coincides with the most active phase of faulting along the Rio Grande rift
to the west about 10 until 4 Ma ago and suggests that both the eastern and middle
segments of the Wichita megashear were reactivated at that time (fig. 20).

The pattern of deformation that was established in the late Tertiary continued to
the present. The Rio Grande rift appears to be the focus of Quaternary faulting
(fig. 23: Nakata and others, 1982) and recent seismicity (fig. 24; Kirkham and
Rodgers, 1981; Sanford and others, 1981). However, evidence of Quaternary faulting‘
albng the Meers fault in Oklahoma (fig. 23: Donovan and others, 1983) and seismicity
in the Texas Panhandle (fig. 24; Woollard. 1958; Acharya, 1984, 1985) indicate that
the eastern segment of the Wichita megashear also has remained tectonically active ﬁp

to the present.
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Summary

The tectonic history of the southwestern United States has been characterized by
recurrent deformation along the Wichita megashear, a network of faults that extends
from Oklahoma northwestward into eastern Utah. Each of the three segments of the
megashear exhibits evidence of deformation beginning in the Proterozoic, at least
1,400 Ma ago. Rifting about 525 to 570 Ma ago produced the Southern Oklahoma
Aulacogen along the eastern segment and scattered igneous activity along the central
and'western segments. The area was again deformed in the latest Cambrian to
earliest Ordovician a'nd in the middle Devonian. The major Phanerozoic deformation
occurred in the Pennsylvanian to early Permian, when the Ancestral Rocky Mountains
were formed. The central and western segments were reactivated during the Laramide
orogeny (late Cretaceous to early Tertiary): effects of this event have not been
recognized along the eastern segment. The Rio Grande rift formed by extension. in
part along the central segment of the megashear. Parts of the eastern segment also
were reactivated during the late Tertiary as a result of extension to the west.
Seismicity and evidence of Quaternary faulting along all three segments\indicate that

currently the megashear is locally undergoing deformation.
TECTONIC MODELS

The geologic evolution of the Palo Duro Basin has been influenced by large-scale
plate tectonic interactions and resulting intraplate deformation. Although the nature of
these interactions, especially prior to the Mesozoic. is not well understood, it is

appropriate to set the Palo Duro Basin in the context of plate tectonics.
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The southwestern United States has been cited as a classic example of
continental accretion (Condie, 1982). The age of the Precambrian rocks at the top of
thé basement becomes progressively younger to the séutheast (fig. 5). frqm Archean
(>2.500 Ma old) in soufhern Wyoming to late Proterozoic (Grenville, 1,000 Ma old) in
the Llano area of Texas (Van Schmus and Bickford, 1981; Condie, 1982). The
basement  terranes form east-northeast-trending belts across the midcontinent (Van
Schmus and Bickford, 1981). Van Schmus and Bickford (1981) and Condie (1982)
suggested that the accretion of the continental crust formed és a result of episodic
subduction along a conVergent ‘plate margin. Condie (1982) proposed a‘model for the
southern edge of the continent invo‘Iving<cy‘cIic back-arc rifting and convergence
followed by collapse of back—aré basins appioximately 1,760 to 1,800 Ma, 1,720 to
1,760 Ma, 1.650 to 1,720 Ma, and 1,100 to 1,200 Ma ago. He did not specifically -
address the origins of the Panhandle rhyolite sequence. |

The tectonic setting of this tremendous pile of 1,380- to 1,480-Ma-old,
predominantly siliceous volcanics that in part underlie thé_ Palo Duro Basin is
enigmatic. As pointed out by Van Schmus and Bickford (1981), the position of the
terrane between areas of older and younger basement suggests that the volcanics
formed at a plate mafgin. However, there.is a conspicuous lack of iﬁtermediate and
basic rocks usually associated with such a setting. On the basis of the acidi¢c nature
ofithe rocks, the volcanics may haQe formed in a continental rift environment. If this
interpretation were correct, however, o‘der rocks would be present both north and
south of the terrane and the volcanics would have more éhemical variafioﬁ, neither of
which has been noted. Van Schmus and Bickford (1981) concluded ‘tyhat the Panhandle
and related volcanics of the midcontinent are on the average much more acidic than
rocks being formed at modern continental margins, and therefore it is difficult to

determine the tectonic setting at the time of formation 1,400 Ma ago.
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_ As previously discussed, faults associated with the Wichita megashear in Colorado
(Baars, 1976:; Tieto, 1980a) and in Oklahoma. (Brewer and others, 1983) appear to
haﬁve developed by at least 1,400 Ma'v,ago. The origin of the megasnear may be
related to that of the Panhandle volcanics, but a model for the origin of an initial
throughgoing zone of weakness has not been formulated. |

The Wichita megashear was reactivated episodically during the Paleozoic_‘.
beginning in the Cambrian. The Southern Oklahoma Aulacogen (fig. 5) represents a
failéd rift that formed at a triple junction during continental separation about 570 Ma
ago (Hoffman and others, 19?4: Walper, 1977; -Gilbert, 1983). The location of the rift
éppears to have been control|ed by the presence of the Wichita megashear; which is
consistent with the observation of Burke and Dewey (1973) and Rankin (1976) that
preexisting zones of weakness strongly influence the geometry of the plate margins
during breakup. Evidence of igneous activity along the eastern (Gilbert, 1‘983).\ central
(Gore-llse), and western (Uncompahgre) segments (Olsen and others, 1977; Larson and
others, 1985) of the megashear suggests that the entire zone of weakness was
reactivated at this time.

A relatively minor reactivation of the Wichita megashear in the latest Cambrian to
early Ordovician is indicated by an increase in subsidenne rates in the Anadarko Basin
(Feinstein, 1981) and an abrupt increase in graibn'size in the Ignacio (Baars and See,
1968) and Sawatch (Tweto, 1980b) Formations in the vicinity of the Gore-lise and
Uncompahgre fault zones. This movement on the megashear may be related to a
change in plate motion‘\s from that of continental separation in the Cambrian to
continental convergence in the Ordovician (Bird and Dewey, 1970).

The late Devonian to early Mississippian was a time of major tectonic activity
a‘Iong the eastern (Acadian orogeny: Rodgers, 1967) and western (Antler orogeny,

Nilsen and Stewart, 1980) margins of the North American plate. An increase in grain
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size of the upper Devonian Elbert (Baars and See, 1968) and Parting (Tweto, 1980b)
Formations in the vicinity of faults associated with the Wichita megash\ear indiﬁates
contemporaﬁeity of deformation within the plate. The uplift of the Transcontinental
and Texas Arches in the middlerDevonian (Ham and Wilson, 1967) probably occur‘redk
~in response to initial orogenic activities at the plate mérgins. Facies changes in 'the
Leadville Formation (Baars and See. 1968: Tweto, 1980b) along preexisting faults in
Colorado and in equivalent strata in the Anadarko Basin (Mapel and others, 1979)
indicate that there was minor rejuvenation of str‘u'ctur‘-es along the megashear in the
early Mississippian at the end of the Antler and Acadian orogenies (Rodéers. 1967;
Nilsen and Stewart, 1980). | |
. During the Pennsylvanian, major tectohic activity took place (fi‘g.‘ 25) along the
eastern (Alleghenian orogeny) and southern (Ouachita orogeny) margins of North
America and along the Wichita megashear (Ancestral Rocky Mountain orogeny). The
Ouachfta a‘nd Alleghenian orogenies occurred during the colli‘sion between the northern
part of Gondwana (South America and Africa) and Laurussia (including North America
and Europe) in the late Paleozoic (Hatcher, 1972; ‘Graham and others, 1975; LeFort
and van der Voo, 1981; Pindell and Dewey, 1982). It has been previously suggested
(Walper, 1977: Kluth and éoney. 1981;) that the Ancestral Rocky Mountains also
formed as a result of this collision. The Ouachitas are thought to represent
continehtal margin deposits (Keller and Cebull, 1973: Morris, 1974) that were
deformed during plate convergence (Wickham énd others, 1976; Viele., 1979). whereas
it has been broposed' (Kluth and Coney, 1981) that the Ancestral Rocky Mountains
were formed as the continental block south of the Wichita megashear was pushed»
northwestward by South America. The Kluth and Coney (1981) model. however, is
not consistent with the apparent middle Pennsylvanian left-lateral displacement and

east-northeast compression along the megashear, but instead requires right-lateral
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Gondwana )) Thrust faults '//. Spreading center

Laurussia " Sulure zone =~ Sirke slp fault
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Figure 25. Plate configuration during the late Paleozoic. From Badham and Halls
(1975). LeFort and van der Voo (1981). Dewey (1982). and Thomas (1983). Symbols:
A - Appalachian belt;: AM - Arbuckle Mountains; CS - Caledonian suture;
HS - Hercynian suture; M - Marathon belt; MA - Mauritanide belt; O - Ouachita
belt; SR - Shawneetown - Rough Creek fault zone;: WM - Wichita megashear;
Y - Yucatan. Relative motion between Gondwana and Laurussia is indicated by
numbered arrows: (1) early to middle Pennsylvanian and (2) late Pennsylvanian to
early Permian. A spreading ridge formed the western edge of the North American
plate until closure of the proto-Atlantic. at which time an east-dipping subduction
zone must have developed between the ridge and the continent.
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movement and north-northwest-oriented compression. Kluth and Coney (1981)
suggested that.'aﬁy left-lateral movement in southern Oklahoma was caused by
thrusting in the Marathon region, presumably in the latest Pennsylvanian to early
Permian.

Middle Pennsylvanian left-lateral motion along the megashear can be explained,
however, by an alternative modei in which the Appalachians., not the Ouachitas,
férmed the main impingement zone‘betV\‘/een Gondwana and Laurussia (fig. 25). The
collision. would have imparted an east-west maximum principal compressive stress
acroés the megashear, reéultiﬁg in left-lateral strike—slip movement. The relative
magnitude of def,orma.tion in the Appalachian and Ouachita orogenic belts is difficult
to assess becéuse of the complexity‘ of the areas and the lack of surface exposures in
most of the Ouachitas. Th'e Appalachians appear to have und/ergone hundreds of
kilometers of shortening durihg the Alleghenian orogeny (Roeder and o‘thers. 1978;
Harris and Bayer, 1979; Cook and others, 1981), although at least some of the
shortening may have taken place during earlier orogenic events (Hatcher, 1978). In
western Africa, a similar amount of shortening (Arthaud and Matte, 1977) took place
across the Mauritanides (fig. 25) as a result of éastward—directed, thin-skinned
deformation (Graham ‘and others, 1975; Leco‘rche and others, 1983) in the late
Mississippian to middle Pennsylvanian (Michard and Pique, 1979). In contrast, total
shortening across the part of the Ouachitas in Arkansas may have been approximately
60 mi (100 km) (Viele, 1979; Lillie and others. 1983; Lillie, 1985) and less than
30 mi (50 km) across the part adjacent to the Llano Uplift of Texas (fig. 2: Rosendal
and Erskine, 1971).

The kinematics of the interaction between Gondwana and Laurussia have yet to
be completely resolved (Mosher, 1983); therefore all models are highly speculative. The

following, much simplified model is proposed to explain the late Paleozoic tectonic



history of the Wichita megashear; other models may fit the data as well or better.
The proposed Mbdel suggests that, during the late Paleozoic, Laurussia was moving
eastward from a spreading ridge to the west. Paleomagﬁetic and paleoclimatologic data
indicate that Gondwana was moving northward at this time (Bambach and others,
1980), although geologic data (Arthaud and Matte, 1977; Badham, 1982) suggest that
Africa had a relative westward component of motion as well at the time of collision
in the Pennsylvanian. A continent-continent collision betweeﬁ North America and Africa
began in the late Mississippian to early Pennsylvanian (LeFort and van der Voo,
1981), possibly reaching maxim.um east-west shortening in the middle Pennsylvanian.

During the late Pennsylvanian and early Permian», relative movement between
Africa and North Arﬁerica became primarily .oblique to left-lateral strike-slip (LeFort
and van der Voo, 1981; Badham. 1982). In Morocco, at the northern end of the
Mauritanides, the early phase of deformation was followed in the late Pennsylvanian
to early Permian by right-lateral motion along east-west-trending strike-slip faults
(Arthaud and Matte, 1977). possibly in response to the northwestward movement of
Africa against North America and Europe (LeFort and van der Voo, 1981). This
northwestward motion also induced _strike-slip movement on the former (Taconic-
Acadian-Caledonian) suture between North America and Europe (fig. 25; LeFort and
van der Voo, 1981; Bradley, 1982; Dewey, 1982; Mosher, 1983).

To the west, along the Ouachitas, the above-described Jplate motions would result
in primarily west- to northwest-directed convergence during the middle Pennsylvanian,
with a component of right-oblique-slip (transpression) along the eastern part of the
orogenic belt (Cebull and others, 1976;: Thomas, 1983; Owen and Carozzi, 1986). The
lack of evidence of major shortening on the same scale as that proposed for the
Appalachians suggests that deformation along the western part of the suture may

“have been taken up primarily by fragmentation of the northern part of South America
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(fig. 25). These fragments of South America later formed the Yucatan, Florida Straits,
and other smaIAI’er blocks during the opening of the Gulf of Mexico in the Mesozoic
(Pindell, 1985).

The eastward progress of the part of North America to the north of the
megashear would have been slowed by its collision with Africa (Yamano and Uyeda,
1985). whereas the block of continental crust to the south would have continued
eastward, deforming the northern part of South America, possibly along preexisting
zonés of weékness. This change in relative velocities of the two parts of the plate
may have reactivated the Wichita megashear with left-lateral motion (fig. 25). As
pbinted out by Kluth and Coney (1981), intraplate deformation during the middle
Pennsylvanian was concentrated along the Ancestral Rocky Mountains because of the
presence of a preexisting zone of weakness. Elsewhere, for example in southern New
Mexico and Trans-Pecos Texas (Crosby and Mapel, 1975; Greenwood and others,
1977) and in the midcontinent (Prichard, 1975; Stewart, 1975; Wanless, 1975a,
1975b). the North American plate was broadly folded in the middle Pennsylvanian.

Late Pennsylvanian to early Permian deformation within the North American plate
was produced by relative northward movement of Gondwana, resulting in thrusting in
the Marathon region (Marathon orogeny) and along the eastern end of the Wichita
megashear (Arbuckle orogeny). Uplift of the Central Basin Platform and related
structures in Trans-Pecos Texas and southern New Mexico (Greenwood and others,
1977: Ross, 1979) also coincided with this change in direction of convergence. |

Following the consolidation of Pangea in the early Permian, the Palo Duro Basin
and the Wichita megashear lay far from a plate margin. The dominant influences on
deposition during the middle and late Permian were regional subsidence associated

with the Permian Basin and continued broad uplift of Pennsylvanian structures in
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Colorado (Peterson, 1980). No satisfactory plate tectonic model has been proposed to
explain‘ the formation of the Permian Basin. Dewey and Pitman (1982) suggested that
the basin may have formed as a result of post-rifting cooling, however Bally (in
Dewey and Pitman, 1982) pointed ‘out that no evidence of late Paleozoic rifting exists
in the area. The Permian Basin may have formed in response to stretching of the
crust prior to breakup of Pangea in the Triassic. This process would have continued
into the late Triassic. thus explaining the coincidence between the Permian and
Dockum Bésins. Dickinson (1981), on the other hand, proposed that the Dockum
depos’itional‘b'asinf developed as a resu‘ItA of the uplift of central Texas during the
separation of North and Séuth America. | |

Although faults associated with the éentral and western segments of the Wiéhité
megashear were reactivated during the late Cretaceous through Eocene Laramide
orogeny (fig. 22; Tweto, v1979).>the eastern segment exhibits no evidence of
deformation at this time, suggesting that the megashear itself y\)/aé not reactivated,
possibly because of ‘an inappropriate orientation of s‘treSSes. The transition from
Laramide compression to Basin and Range tension resulted from a change in stress
orientations related to a change in plate motions in the North Atlantic (Coney, 1972;
Chapin and Catbher. 1981; Zoback and <‘)thers,‘ 1981). During Basin and Range
deformation, older structures associated with the central segment of the Wichita
megashear in Colorado and preexisting faults in New Mexico underwent extension to
form the Rio Grande rift.

Evidence for\ reactivation of structures in the T“exas Panhandle during the Mfocehe
is consistent with a pattern of recurrent deformation along the Wichita megashear in
response to plate interaction along the eastern or western r'na‘rgins of the North
~ American plate (Kluth and Coney. 1981; Larson and others, 1985). In fhe case of late
Tertiary deformation, the coincidence in timing between reactivation of the megashear

and Basin and Range extension to the west suggests that the two are interrelated.
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As previously noted, the Rio Grande rift, which is a relatively wide and
continuous feature in New Mexico and southern Colorado, becomes narrower and less
continuous to the north (fig. 20). This change in character occurs at the intersection
of the rift and the Wichita megashear. The preexisting north-northwest-trending faults
in central Colorado were reactivated during Basin and Range extension (Tweto, 1979),
implicitly with a right-lateral strike-slip component. During the opening of the Rio
Grande rift, the Wichita megashear formed a boundary between the area of no
extension to the northeast and the area that underwent extension to the southwest
(fig. 26). forming, in essence, an intracratonic transform fault with apparent left-lateral
offset.

The magnitude of WNW-ESE extension of the central segment of the rift has
been estimated to be approximately 5 to 10 mi (10 to 15 km) (Cordell. 1982). The
amount of WNW-ESE extension on the northern segment could be expected to be
much less because the motion would be translated into oblique-slip along the north-
northwest-trending faults. The net horizontal slip on the Wichita megashear, therefore,
could have been 5 mi (10 km) or more. This is a necessarily crude estimate because
many of the details of the fault motions at that time are still unknown. Also, this
assumes that the Colorado Plateau remained relatively fixed and that all of the
extension across the rift was produced by an eastward shift of the eastern part of
New Mexico and the Texas Panhandle. Alternatively, it has been proposed that
eastern New Mexico remained fixed (with no movement along the Wichita megashear)
and that the Colorado Plateau rotated clockwise as the Rio Grande rift opened
(Eaton, 1979). However, the deformation of the Ogallala Formation in the Texas
Panhandle suggests that there had to have been some eastward component of rifting.

Although relatively stable at the present time, the midcontinent is undergoing low-

level seismic activity, primarily along older basement structures (Woollard, 1958:
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Figure 26. Neogene tectonic setting of the southern Rocky Mountains and southern
‘Great Plains. Large arrows indicate direction of extension: small arrows indicate
predicted direction of movement on faults. The Wichita megashear east of the Rio
Grande rift formed an intraplate transform fault during Neogene extension.



Docekal, 1970: Acharya, 1984, 1985), in;luding the Wichita megashear. This intrapla"te
“activity is occurfing in response to large-scale plate /motion‘s (Sbar and Sykes, 1973;
Hinze and others. 1980; Zoback and Zoback. 1980‘). possibly caused by either ridge-

push or drag on the base of the lithosphere (Zoback -and Zoback, 1980).

CONCLUSIONS

The tectonic history of the Palo Duro Basin is closely related to fhét of large
régional structures, especially 't}.le- Wichité megashear. Analyéis of the southern Ro‘cky
Mountains and southern Great Plains has allowed a more precisebdeﬁnition of the
téctonic, history‘ of the Panhandle, including the Palo Duro Basin. Although the effects
are generally subtle, tifning of this episodic intraplate deformation closely coincides
with changes in pléte motions. |

The earliest record preserved in the Palo Duro Basin is that of  widespread
extrusion of rhyolites, possibly near a pla'te margirn. about 1,400 Ma ago. The
northwestv‘ structural trend associated with the later Amarillo Uplift may have
originated at this time. Reactivation of the Wichita megashear occﬁrred during
continental breakup and forrﬁéﬁbn of the Southern Oklahoma Aulacogen about 570 Ma
ago. Structures within the Palo Duro Basin ‘(for example,‘ the Castro Trough) may
have formed at this time.

The Pa‘lo Duro Basin remained relatively stab.é untilythe.middle Devonian, when
~ regional foldi’ng produced the Texas Arch, possibly in response to plate interactions
along the éastern and Western margins of North America. With the exception of minor
activity along the megashear, the fegion was tectonically quiescent during the

/

Mississippian. Formation of thé Palo Duro depositional basin and maj:or"uplifts

7

adjoining the basin occurred in the Pennsylvanian as a result of the collision of North

America and Africa during the assemblage of Pangea: Stretching of the continental
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crust prior to the separation of North and South America may have produced the
Permian and Déi:kum depositional basins. The Palo ‘Duro Basin was again tectonically
stable during the early Tertiary; however, structures along the Amarillo Uplift and
possibly within the Palo Duro Basin were reactivated in the late Miocene in response
to Basin and Range extension to the west. Present seismicity in the region may be

related to large-scale plate motions.
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