Sources of Salt-Water Pollution

in

Western Tom Green County

by

Bernd C. Richter, Alan R. Dutton, and Charles W. Kreitler

Prepared for the
Railroad Commission of Texas
Austin, Texas
under contract no. IAC (86-87)-1003

Bureau of Economic Geology W. L. Fisher, Director The University of Texas at Austin Austin, Texas 78713-7508

# CONTENTS

| ABSTRACT                                                      | 1   |
|---------------------------------------------------------------|-----|
| INTRODUCTION                                                  | 2   |
| Hydrogeologic Setting                                         |     |
| Methods and Data                                              | 10  |
| Sampling Technique                                            | 14  |
| RESULTS                                                       | 17  |
| Salinity Distribution                                         | 17  |
| Hydrochemical Facies                                          | 1.0 |
| Chemical Composition of Shallow Waters with High Chlorinity   | 21  |
| Chemical Characterization of Brines                           | 29  |
| Brine-Disposal Pits                                           | 46  |
| Abandoned Deep Exploration Holes                              |     |
| DISCUSSION                                                    | 58  |
| Hydrochemical Facies and Salinity                             | 58  |
| Anomalous Chemical Composition and Definition of Brine Source | 59  |
| Investigation of Salinization Mechanisms                      | 63  |
| Deep Water Wells                                              | 64  |
| Natural Discharge of Salt Water from San Angelo Formation     | 65  |
| Abandoned Brine-Disposal Pits                                 | 65  |
| Abandoned Exploration Holes                                   | 70  |
| CONCLUSIONS                                                   | 71  |
| RECOMMENDATIONS                                               | 74  |
| ACKNOWLEDGMENTS                                               | 75  |
| REFERENCES                                                    |     |

| APF         | PENDIX 1. Chemical composition of shallow ground water in Tom Green and eastern Irion Counties                                                    | 80 |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----|
| APF         | PENDIX 2. Conversion factors from mg/L to meq/L                                                                                                   | 97 |
| APF         | PENDIX 3. Surface-casing depths and depths to cement plugs                                                                                        | 98 |
|             | Figures                                                                                                                                           |    |
| 1.          | Simplified geologic map of Concho River watershed                                                                                                 | 3  |
|             | Total dissolved solids in formation water from the San Andres Formation                                                                           | 7  |
| 3.          | Potentiometric surface of the San Andres Formation                                                                                                | 9  |
| 4.          | Oil and gas fields in Tom Green and eastern Irion Counties                                                                                        | 12 |
| 5.          | Total dissolved solids in ground water collected prior to 1942                                                                                    | 18 |
| 6.          | between 1942 and 1954                                                                                                                             |    |
| 7.          | Total dissolved solids in ground water collected after 1954                                                                                       | 20 |
| 8.          | Piper diagrams of hydrochemical facies in shallow aquifers                                                                                        | 22 |
| 9.          | Map of hydrochemical facies in shallow aquifers                                                                                                   | 23 |
| 10.         | Location of test sites at which water samples were obtained                                                                                       | 27 |
| 11.         | Piper diagram of hydrochemical facies of chloride-rich and other ground-water samples collected during this study                                 | 28 |
| 12.         | Plots of Ca, Mg, and Na concentrations and of Br/Cl ratios versus Cl for chloride-rich and other ground-water samples collected during this study | 30 |
| 13.         | Plots of Ca, Mg, SO <sub>4</sub> , and Cl concentrations in water-well and test-hole samples.                                                     | 31 |
| 14.         | Plots of Na. K, and Cl concentrations and Br/Cl ratios for water-well and test-hole samples                                                       | 32 |
| <b>15</b> . | Variation in $\delta D$ and $\delta^{18}O$ in brines and shallow ground water                                                                     | 35 |
| 16.         | Br/Cl ratios in subsurface brines and shallow ground waters                                                                                       | 37 |
| 17.         | Plot of acetate versus $\delta^{18}$ O in subsurface brines                                                                                       | 39 |
| 10          | Plot of $\delta^{13}C$ versus $\delta^{18}O$ in subsurface brings                                                                                 | 40 |

| 19.         | Relation between $\delta^{34} S$ and sulfate concentration in subsurface brines                                              | 41 |
|-------------|------------------------------------------------------------------------------------------------------------------------------|----|
| <b>2</b> 0. | Plots of Ca. Mg. Na. and SO <sub>4</sub> versus CI in subsurface brines                                                      | 45 |
| 21.         | Estimates of water/oil ratios and volume of brine produced in Tom Green and Irion Counties                                   | 47 |
| 22.         | Active brine-disposal areas during 1964                                                                                      | 48 |
| 23.         | Chloride concentration in soil underlying abandoned brine-disposal pit no. 9 near Tankersley                                 | 50 |
| 24.         | Chloride concentration in soil underlying abandoned brine-<br>disposal pits no. 24a and no. 24b in the Susan Peak Field      | 52 |
| 25.         | Location of abandoned exploration boreholes                                                                                  | 54 |
| 26.         | Location of abandoned exploration boreholes with plugging reports inventoried during this study                              | 55 |
| 27.         | Schematic diagram of abandoned borehole no. 22 and test well no. 21, Washington County School Land                           | 57 |
| 28.         | Variation in dissolved sodium and chloride in shallow ground waters and subsurface brines                                    | 60 |
| 29.         | Variation in CI/SO <sub>4</sub> ratio with SO <sub>4</sub> concentration in shallow ground waters and subsurface brines      | 61 |
| 30.         | Variation in CI/SO <sub>4</sub> and Na/Ca ratios in shallow ground waters and subsurface brines                              | 62 |
| 31.         | Plots of Ca, Mg, Na, and SO <sub>4</sub> concentrations versus CI in shallow ground water in the Tankersley area             | 69 |
|             | Tables                                                                                                                       |    |
| 1.          | Generalized stratigraphic chart for Tom Green and eastern Irion Counties                                                     | 6  |
| 2.          | Data used to estimate amount of salt water produced from oil and gas fields in Tom Green and Irion Counties, 1950-1969       | 15 |
| 3.          | Chemical and isotopic composition of shallow ground water                                                                    | 24 |
| 4.          | Chemical composition of subsurface brine collected from oil wells in Tom Green and eastern Irion Counties                    | 33 |
| 5.          | Chemical analyses of subsurface brines from San Angelo,<br>San Andres, Clear Fork, Coleman Junction, and Pennsylvanian units | 43 |
| 6.          | Chloride concentration in soils under abandoned brine-disposal pits                                                          | 66 |

#### **ABSTRACT**

Tom Green County lies in the discharge zone of the Permian Basin regional flow system in West Texas. Hydrochemical facies and ionic ratios of major chemical constituents indicate that much of the saline ground water in the area is a mixture of subsurface brine flowing eastward from the Permian Basin and locally recharged, shallowly circulating meteoric water. Aquifers that contain relatively fresh water in outcropping Paleozoic rocks contain brine and hydrocarbons as shallow as 200 to 900 ft (60 to 270 m) just tens of miles to the west. Chemical composition of ground water is strongly associated with the outcrop of Paleozoic formations from which brine is discharged.

Three major mechanisms for mixing of subsurface brine and shallow ground water could be documented by test drilling but is not reflected in the chemical composition of the mixtures because of the chemical similarity between natural brine in shallow units and brine that flows into the shallow subsurface from the deeper Coleman Junction Formation via insufficiently plugged holes. (1) The presence of brine and thus of natural discharge at shallow depth below the base of fresh water in the Permian San Angelo Formation of central Tom Green County was proven by test drilling. (2) Abandoned exploration holes allow upward flow of brine where depths of surface casing and plugs are less than the base of fresh water. Seepage of brine from the overpressured Coleman Junction Formation into the shallow subsurface was observed in one hole and is suggested by test drilling in another. (3) Leaching of salt from soil underlying former brine-disposal sites is an ongoing process even 20 years after discontinuation of the brine disposalmethod. Water samples collected during drilling into former pits were highly

Sources of Salt-Water Pollution

in

Western Tom Green County

by

Bernd C. Richter, Alan R. Dutton, and Charles W. Kreitler

Prepared for the
Railroad Commission of Texas
Austin, Texas
under contract no. IAC (86-87)-1003

Bureau of Economic Geology
W. L. Fisher, Director
The University of Texas at Austin
Austin, Texas 78713-7508

July 1987

# CONTENTS

| ABSTRACT                                                      |    |
|---------------------------------------------------------------|----|
| INTRODUCTION                                                  | 2  |
| Hydrogeologic Setting                                         | 4  |
| Methods and Data                                              | 10 |
| Sampling Technique                                            | 14 |
| RESULTS                                                       | 17 |
| Salinity Distribution                                         |    |
| Hydrochemical Facies                                          | 21 |
| Chemical Composition of Shallow Waters with High Chlorinity   | 21 |
| Chemical Characterization of Brines                           | 29 |
| Brine-Disposal Pits                                           | 46 |
| Abandoned Deep Exploration Holes                              | 51 |
| DISCUSSION                                                    | 58 |
| Hydrochemical Facies and Salinity                             | 58 |
| Anomalous Chemical Composition and Definition of Brine Source | 59 |
| Investigation of Salinization Mechanisms                      | 63 |
| Deep Water Wells                                              | 64 |
| Natural Discharge of Salt Water from San Angelo Formation     | 65 |
| Abandoned Brine-Disposal Pits                                 | 65 |
| Abandoned Exploration Holes                                   | 70 |
| CONCLUSIONS                                                   | 71 |
| RECOMMENDATIONS                                               | 74 |
| ACKNOWLEDGMENTS                                               | 75 |
| REFERENCES                                                    | 76 |

| APPENDIX 1. Chemical composition of shallow ground water in Tom Green and eastern Irion Counties                                                      | 80 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| APPENDIX 2. Conversion factors from mg/L to meq/L                                                                                                     | 97 |
| APPENDIX 3. Surface-casing depths and depths to cement plugs                                                                                          | 98 |
| Figures                                                                                                                                               |    |
| 가게 되었다. 그는 사람들은 이 사람들은 사람들이 가장 하는 것이 되었다. 그런 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들이 되었다. 그런 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은                  |    |
| 1. Simplified geologic map of Concho River watershed                                                                                                  |    |
| 2. Total dissolved solids in formation water from the San Andres Formation                                                                            | 7  |
| 3. Potentiometric surface of the San Andres Formation                                                                                                 | 9  |
| 4. Oil and gas fields in Tom Green and eastern Irion Counties                                                                                         | 12 |
| 5. Total dissolved solids in ground water collected prior to 1942                                                                                     | 18 |
| 6. Total dissolved solids in ground water collected between 1942 and 1954                                                                             | 19 |
| 7. Total dissolved solids in ground water collected after 1954                                                                                        | 20 |
| 8. Piper diagrams of hydrochemical facies in shallow aquifers                                                                                         | 22 |
| 9. Map of hydrochemical facies in shallow aquifers                                                                                                    | 23 |
| 10. Location of test sites at which water samples were obtained                                                                                       |    |
| 11. Piper diagram of hydrochemical facies of chloride-rich and other ground-water samples collected during this study                                 | 28 |
| 12. Plots of Ca, Mg, and Na concentrations and of Br/Cl ratios versus Cl for chloride-rich and other ground-water samples collected during this study | 30 |
| 13. Plots of Ca, Mg, SO <sub>4</sub> , and Cl concentrations in water-well and test-hole samples.                                                     | 31 |
| 14. Plots of Na, K, and Cl concentrations and Br/Cl ratios for water-well and test-hole samples                                                       | 32 |
| 15. Variation in $\delta D$ and $\delta^{18}O$ in brines and shallow ground water                                                                     | 35 |
| 16. Br/Cl ratios in subsurface brines and shallow ground waters                                                                                       | 37 |
| 17. Plot of acetate versus $\delta^{18}$ O in subsurface brines                                                                                       |    |
| 18. Plot of $\delta^{13}$ C versus $\delta^{18}$ O in subsurface brines                                                                               | 40 |

| <b>1</b> 9. | Relation between $\delta^{34} S$ and sulfate concentration in subsurface brines                                              | 41 |
|-------------|------------------------------------------------------------------------------------------------------------------------------|----|
| 20.         | Plots of Ca, Mg, Na, and SO <sub>4</sub> versus Cl in subsurface brines                                                      | 45 |
| 21.         | Estimates of water/oil ratios and volume of brine produced in Tom Green and Irion Counties                                   | 47 |
| 22.         | Active brine-disposal areas during 1964                                                                                      | 48 |
| 23.         | Chloride concentration in soil underlying abandoned brine-disposal pit no. 9 near Tankersley                                 | 50 |
| 24.         | Chloride concentration in soil underlying abandoned brine-disposal pits no. 24a and no. 24b in the Susan Peak Field          | 52 |
| 25.         | Location of abandoned exploration boreholes                                                                                  | 54 |
| 26.         | Location of abandoned exploration boreholes with plugging reports inventoried during this study                              | 55 |
| 27.         | Schematic diagram of abandoned borehole no. 22 and test well no. 21, Washington County School Land                           | 57 |
| 28.         | Variation in dissolved sodium and chloride in shallow ground waters and subsurface brines                                    | 60 |
| 29.         | Variation in CI/SO <sub>4</sub> ratio with SO <sub>4</sub> concentration in shallow ground waters and subsurface brines.     | 61 |
| 30.         | Variation in CI/SO <sub>4</sub> and Na/Ca ratios in shallow ground waters and subsurface brines                              | 62 |
| 31.         | Plots of Ca, Mg, Na, and SO <sub>4</sub> concentrations versus Cl in shallow ground water in the Tankersley area             | 69 |
|             | Tables                                                                                                                       |    |
| 1.          | Generalized stratigraphic chart for Tom Green and eastern Irion Counties                                                     | 6  |
| 2.          | Data used to estimate amount of salt water produced from oil and gas fields in Tom Green and Irion Counties, 1950-1969       | 15 |
| 3.          | Chemical and isotopic composition of shallow ground water                                                                    | 24 |
| 4.          | Chemical composition of subsurface brine collected from oil wells in Tom Green and eastern Irion Counties                    | 33 |
| 5.          | Chemical analyses of subsurface brines from San Angelo,<br>San Andres, Clear Fork, Coleman Junction, and Pennsylvanian units | 43 |
| 6.          | Chloride concentration in soils under abandoned brine-disposal pits                                                          | 66 |

#### **ABSTRACT**

Tom Green County lies in the discharge zone of the Permian Basin regional flow system in West Texas. Hydrochemical facies and ionic ratios of major chemical constituents indicate that much of the saline ground water in the area is a mixture of subsurface brine flowing eastward from the Permian Basin and locally recharged, shallowly circulating meteoric water. Aquifers that contain relatively fresh water in outcropping Paleozoic rocks contain brine and hydrocarbons as shallow as 200 to 900 ft (60 to 270 m) just tens of miles to the west. Chemical composition of ground water is strongly associated with the outcrop of Paleozoic formations from which brine is discharged.

Three major mechanisms for mixing of subsurface brine and shallow ground water could be documented by test drilling but is not reflected in the chemical composition of the mixtures because of the chemical similarity between natural brine in shallow units and brine that flows into the shallow subsurface from the deeper Coleman Junction Formation via insufficiently plugged holes. (1) The presence of brine and thus of natural discharge at shallow depth below the base of fresh water in the Permian San Angelo Formation of central Tom Green County was proven by test drilling. (2) Abandoned exploration holes allow upward flow of brine where depths of surface casing and plugs are less than the base of fresh water. Seepage of brine from the overpressured Coleman Junction Formation into the shallow subsurface was observed in one hole and is suggested by test drilling in another. (3) Leaching of salt from soil underlying former brine-disposal sites is an ongoing process even 20 years after discontinuation of the brine disposalmethod. Water samples collected during drilling into former pits were highly

saline. The presence of a fourth mixing mechanism of brine and shallow ground water via abandoned water wells could not be proven. No records exist on deep water wells that were drilled into saline portions of aquifers and that were abandoned without plugging.

Geochemical differentiation between shallow subsurface brine and brine from deep Pennsylvanian reservoirs as well as identification of mixing between shallow ground water and the shallow brine system was made possible by (1) using bivariate plots of Ca, Mg, Na, and SO<sub>4</sub> concentrations and of Br/Cl ratios versus chloride concentrations, (2) using bivariate plots of Cl/SO<sub>4</sub> ratios versus SO<sub>4</sub> concentrations and versus Na/Ca ratios, and (3) determining anomalous hydrochemical facies. Organic acids, isotopes of hydrogen, oxygen, carbon, and sulfur, and minor and trace constituents other than bromide did not provide significant information in this study.

#### INTRODUCTION

Saline to brackish ground water is found in many water wells in the Concho River valley of West Texas. Richter and Kreitler (1985) determined that poorquality water in Tom Green, Runnels, and Concho Counties (fig. 1) might be due to natural discharge of subsurface brines, upward movement of brine across confining beds through unplugged water wells and oil wells into aquifers, seepage of saline water from rocks beneath former brine-disposal pits, and evaporative concentration of ground water from shallow water tables that have risen in response to changed agricultural landscaping and increased recharge. Many groundwater samples having high salinity from western Tom Green County appeared to be influenced by mixing of fresh water and subsurface brine. A common concern

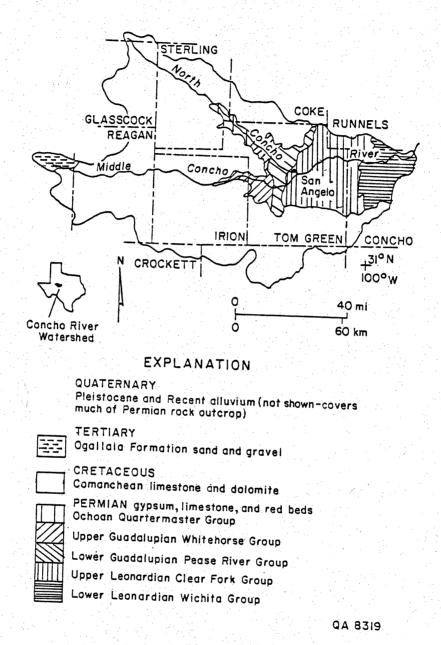



Figure 1. Simplified geologic map of Concho River watershed (modified from American Association of Petroleum Geologists, 1973).

is that recent changes in ground-water salinity might be due to oil field activities, such as seepage from abandoned brine-disposal pits and from oil wells with leaky casings.

This investigation was designed to characterize chemical variations in fresh ground waters and subsurface brines in Tom Green and eastern Irion Counties, Texas, to characterize ground water associated with possible sources of saline water, and to develop diagnostic hydrochemical tools to recognize and locate sources of saline ground water in shallow aquifers. Regional and local hydrogeologic controls on natural occurrence of saline water in the study area must be understood to establish a baseline for documenting anthropogenic salinity effects. Salinity and hydrochemical facies distributions in shallow ground waters are examined, chemical variations among subsurface brines are discussed, and chemical similarities between shallow ground waters and subsurface brines are indicated. We use the term "shallow ground water" to refer to potable water supplies in aquifers at depths of less than about 400 ft (120 m). "Subsurface brine" refers to water of high salinity typically associated with oil fields and commonly occurring at depths of greater than 1,000 ft (300 m).

# Hydrogeologic Setting

The study area in Tom Green and eastern Irion Counties (fig. 1) is at the eastern edge of the Southern Great Plains physiographic province. The Southern Great Plains is inclined to the southeast from altitudes of 6,000 to 8,000 ft (1,800 to 2,400 m) in eastern New Mexico to altitudes of 1,500 to 2,000 ft (450 to 600 m) in Central Texas. Physiography of the study area includes flat alluvium-floored

valleys, formed by the Concho River and its tributaries, separated from the gently rolling, dissected upland of the Edwards Plateau by an escarpment with a maximum height of approximately 100 ft (30 m).

Cretaceous carbonate rocks that underlie the Edwards Plateau in the study area unconformably overlie Permian sandstone, carbonate rock, and shale, which were deposited on the eastern shelf of the Midland Basin and which dip to the west. The Comanche Peak limestone of the Fredericksburg Group and the Antlers sandstone of the Trinity Group form two interconnected aquifers in Cretaceous rock. Potable ground waters also are produced from aquifers in the Permian Clear Fork and Pease River Groups (table 1); the Permian groups in many areas of the Concho River valley are covered by Pleistocene and Quaternary alluvium (Willis, 1954; Lee, 1986).

Drilling for and production of oil started in the area in the early 1900's. Oil and oil shows were originally encountered at depths as shallow as 43 ft (13 m) below land surface (Udden and Phillips, 1911). At present, oil and gas is produced from Paleozoic rocks at depths ranging from as shallow as 900 ft (270 m) in Permian formations to greater than 6,000 ft (1,800 m) in Ordovician rocks. Subsurface brine is prevalent throughout the Paleozoic section at varying depth below land surface. Seepage of salt water from this section at land surface is widespread but not just a recent phenomenon. The occurrence of salt water at and near land surface was reported as early as 1911 (Udden and Phillips, 1911). Upper Permian rocks that compose fresh-water aquifers beneath the Concho River valley contain brine and hydrocarbons just tens of miles west of the study area in the subsurface (McNeal, 1965; Core Laboratories, 1972). For example, figure 2 shows that salinity of subsurface water in the Upper Permian San Andres (Blaine)

Table 1. Generalized stratigraphic chart for Tom Green and eastern Irion Counties.

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | limestone d dolomite  y d shale d shale d s shale d |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Cretaceous  Comanchean  Walnut  Marland cla  Trinity  Antlers  Sandstone and  Sandstone and  Gypsiferous  Whitehorse  Whitehorse  Undifferentiated  Sandstone and  Sandstone a | limestone d dolomite  y d shale d shale d s shale d |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | limestone d dolomite  y d shale d shale d s shale d |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d dolomite y d shale d shale d s shale d            |
| Cretaceous Comanchean Fredericksburg Comanche Peak limestone Walnut marl and cla Trinity Antlers sandstone and undifferentiated sandstone and gypsiferou Whitehorse undifferentiated sandstone and gypsiferous gyp | y<br>d shale<br>d shale<br>d<br>s shale<br>d        |
| Walnut marl and cla Trinity Antlers sandstone an Upper Triassic Dockum undifferentiated sandstone an Uchoan Quartermaster undifferentiated sandstone an gypsiferou Whitehorse undifferentiated sandstone an gypsiferou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d shale<br>d shale<br>d<br>s shale<br>d             |
| Upper Triassic Dockum undifferentiated sandstone and gypsiferous whitehorse undifferentiated sandstone and gypsiferous and gypsiferous and gypsiferous and gypsiferous gypsife | d shale<br>d shale<br>d<br>s shale<br>d             |
| Upper Triassic Dockum undifferentiated sandstone and gypsiferoum Whitehorse undifferentiated sandstone and gypsiferoum gypsife | d shale<br>d<br>s shale<br>d                        |
| Ochoan Quartermaster undifferentiated sandstone and gypsiferous whitehorse undifferentiated sandstone and gypsiferous gypsifer | d<br>s shale<br>d                                   |
| Whitehorse undifferentiated sandstone and gypsiferous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d                                                   |
| T GYDSTI,CI OU.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 511a16                                            |
| Guadalupian San Andres (Blaine) sandstone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |
| Pease River San Angelo sandstone, g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ypsum, and                                          |
| Choza shale and do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lomitic                                             |
| Permian Clear Fork Vale shale and do limestone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lomitic                                             |
| Arroyo shale and ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rly                                                 |
| Leuders limestone and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d dolomite                                          |
| Leonardian Talpa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |
| Grape Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |
| Wichita- Bead Mountain limestone and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | d shale                                             |
| Albany Jagger Bend-Valera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |
| Elm Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |
| Admiral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |
| Wolfcampian Coleman Junction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |
| Cisco limestone and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | t                                                   |
| Virgilian shale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
| Missourian Canyon limestone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |
| Pennsylvanian Desmoinesian Strawn undifferentiated limestone and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | shale                                               |
| Atokan  Bend  Morrowan  Atokan  Bend  Sandstone,  shale, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |
| Lower limestone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
| Ordovician Ellenburger "Ellenburger" dolomite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                     |

Modified from Barnes (1972, 1974), American Association of Petroleum Geologists (1973), and Lee (1986)

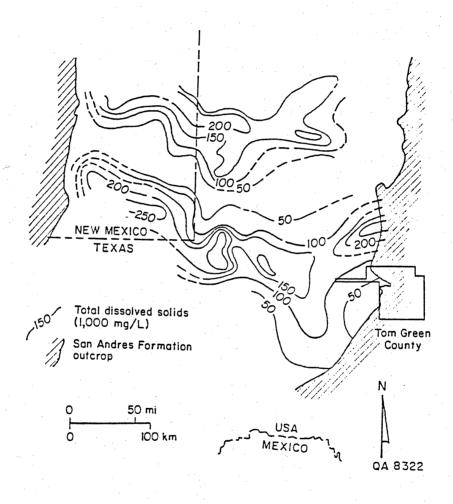



Figure 2. Total dissolved solids in formation water from the San Andres Formation (modified from McNeal [1965]).

Formation varies from 50,000 mg/L in eastern Irion County to more than 200,000 mg/L in the Midland Basin to the west.

The influence of regional and local topographic relief on ground-water flow paths (Toth, 1978) must be understood to distinguish correctly between naturally occurring saline waters and salt-water contamination in Tom Green and eastern Irion Counties. Regional topographic relief across the Southern Great Plains imposes a hydrodynamic gradient on subsurface brine in Paleozoic rocks (McNeal, 1965; Dutton and Orr, 1986; Wirojanagud and others, 1986). Potentiometric surfaces of subsurface brines are inclined toward the east, indicating potential for eastward fluid flow toward formation outcrops (fig. 3). Eastward flow of subsurface water across the Eastern Shelf probably influenced migration of hydrocarbons into reservoirs. The eastward flow during the past several million years also has probably transported subsurface brine to near land surface, where the brine mixes with locally recharged, shallowly circulating water. Richter and Kreitler (1986) showed that brine at shallow (100 ft [30 m]) depths in the southern part of the Rolling Plains northwest of the study area are derived from deep parts of the Permian Basin. Comparison of potentiometric surfaces of hydrostratigraphic units in Paleozoic rocks mapped by McNeal (1965) in Tom Green and eastern Irion Counties indicates that there is potential for movement of subsurface brine upward across confining layers toward discharge sites if pathways exist, such as through fractures and unplugged boreholes. Potentiometric surfaces of subsurface brines in the study area generally are close to land surface in the Concho River valley. This is consistent with observations that brine in the Permian Coleman Junction Formation (table 1), at approximate depths of 1,500 ft (450 m) just east of Tom Green County to 3,000 ft (900 m) in eastern Irion County, rises to near or

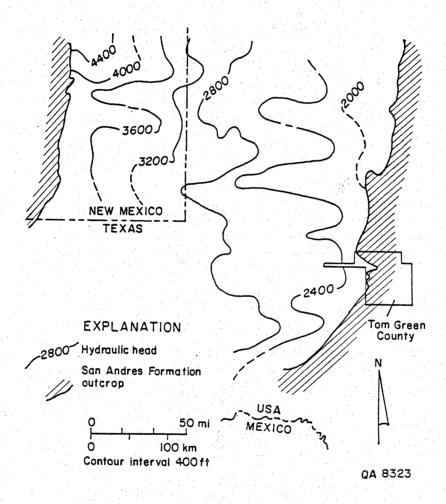



Figure 3. Potentiometric surface of the San Andres Formation based on equivalent fresh-water hydraulic head (modified from McNeal [1965]).

somewhat above land surface in old well bores (Richter and Kreitler, 1985).

Potentiometric surfaces of shallow aquifer units are inclined towards the Concho River and its tributaries (Lee. 1986). reflecting topographic control on flow directions of shallow ground water. Lee (1986) reported that hydraulic head of ground water increases downward from land surface beneath the Concho River and decreases downward beneath the floodplains and plateaus adjacent to the river. This pattern indicates that the rocks of the Edwards Plateau are local recharge areas and that ground-water discharge occurs primarily in the valleys of the Concho River and its tributaries. Subsurface brine in the Southern Great Plains regional ground-water flow system also probably discharges at low elevations in the Concho River valley, influencing ground-water quality in surface-water bodies and fresh-water aquifers.

#### Methods and Data

In this study, we used data on the chemical composition of subsurface brine collected at oil wells and shallow ground water at existing water wells and specially drilled test wells as well as existing chemical data compiled from reports and computer files. To document local variation and hydrogeologic controls on ground-water quality, chemical analyses and production-zone elevations of 646 samples of ground water in Tom Green and eastern Irion Counties (app. 1) were compiled from Work Projects Administration (1941), Willis (1954), Pool (1972), Richter and Kreitler (1985), Lee (1986), and computerized and open-file records of the Texas Natural Resources Information System. Well locations were digitized with Universal Transverse Mercator (UTM) coordinates from base maps.

Reported analyses of the chemical composition of ground water vary in completeness and in conditions of sample treatment. Temperature, pH, and alkalinity were not always measured on site and therefore are unreliable measurements of in situ values; pH commonly is not reported (app. 1). The charge balance of anions and cations is almost always exact, indicating that sodium and potassium were determined together by calculating the difference (Hem, 1985, p. 164).

Seventeen subsurface brines were collected during two weeks in May and June 1986 to establish whether chemical composition of water differs in oil and gas fields in Tom Green and eastern Irion Counties (fig. 4) and whether diagnostic tracers of formation-specific brines could be identified. Brines from the same formation were taken from different fields, but only one sample was collected at each field. Care was taken to avoid sampling wells where natural subsurface brine may have been contaminated by injected salt water. Files at the Central Records Office and at the San Angelo District Office of the Railroad Commission of Texas were reviewed to locate wells used for salt-water injection for disposal or for secondary oil recovery between 1965 and early 1986. All fields that produce oil from the San Andres and San Angelo Formations in the study area contain some salt-water-injection wells. To collect ground-water brine that is representative of these formations, wells as far as possible from injection wells were sampled.

Shallow ground-water samples were collected during April and May 1987. A commercial analytic laboratory in San Angelo, Texas, provided recent chemical analyses of ground water that formed the basis of a sampling program for shallow saline ground waters. Of more than 1,000 samples that were analyzed between 1977 and 1987, 30 samples with chloride concentrations greater than 2,000 mg/L

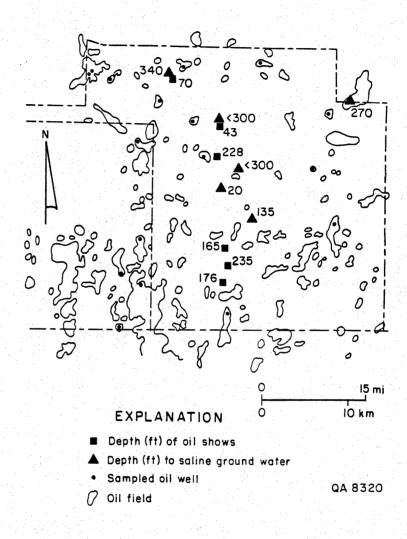



Figure 4. Oil and gas fields in Tom Green and eastern Irion Counties. Also shown is early evidence of shallow oil and salt water (Udden and Phillips, 1911).

were identified. Nine of these 30 sites were resampled. Another four samples were obtained from water wells where salinity reportedly had increased.

Six test holes were drilled by air-rotary method for collection of shallow ground-water samples from below the base of fresh water. Test holes were drilled at sites where salt water had been previously encountered by the land owners during water-well drilling. After samples were collected, test wells were entirely filled with cement. Eight water samples were obtained from 5 test holes; one test hole was dry. Nonsaline water-bearing units encountered during drilling were sealed after a sample was taken, and then drilling continued. Test holes were also drilled by air-rotary method at three abandoned brine-disposal pits. Soil samples were obtained in 5-ft (1.5-m) and in 10-ft (3-m) intervals during drilling, and water samples were collected from the shallowest water encountered. Soil samples were weighed, stored in preweighed plastic cups with screw-on caps, and kept on ice in the field before chloride concentration and moisture content were determined in the laboratory.

Concentrations of chemical constituents are reported in the tables as milligrams per liter (mg/L) and are plotted in dimensions of mg/L and milliequivalents per liter (meq/L). Dimensions of meq/L are calculated by multiplying molar concentrations of an individual constituent by its valence and are used for control of charge balance of a water analysis (control of accuracy). Conversion factors from mg/L to meq/L are listed in appendix 2.

Drillers' logs and plugging reports for abandoned oil exploration boreholes were used to evaluate pollution hazards of upward-flowing subsurface brines. An abandoned dry hole was selected for test drilling to test the accuracy of plugging

reports and to determine effectiveness of plugging. After a permit for reentering and replugging had been obtained from the Railroad Commission of Texas, the surface plug was drilled out, and plug thickness and position were compared with those of the original plugging report. A test hole 150 ft (45 m) down gradient from the hole was drilled to test for brine leakage from the abandoned borehole.

To assess the potential for salt-water pollution from former brine-disposal pits, the amount of subsurface brine disposed in unlined pits in the study area during 1950 to 1969 was estimated by multiplying reported volume of oil production by water/oil ratios for various leases in the study area. Two independent estimates of water/oil ratios were made: one was based on 4 representative years of data reported in Form W-10, Oil Well Status Report of the Railroad Commission of Texas; the other was derived from brine-production data contained in three operator surveys conducted by the Railroad Commission of Texas. Response to the salt-water surveys was voluntary and may be less complete than Form W-10 data. Water/oil ratios were calculated for individual leases from Form W-10 data and then averaged; ratios from salt-water surveys are averages of total water and oil produced (table 2).

### Sampling Technique

Similar methods were followed for collection and treatment of both subsurface brine and shallow ground water: methods differed only in the need to remove oil from subsurface brine. The proportion of gas, oil, and water produced from sampled oil wells varied among fields. The water/oil ratio in fluid produced from some fields is high enough that adequate sample volume could be separated from

Table 2. Data used to estimate amount of salt water produced from oil and gas fields in Tom Green and Irion Counties, 1950-1969.

# Water/Oil Ratios From W-10 Forms (bbl/bbl)

|                             | <u>1953</u> | <u>1958</u> | <u>1964</u> | <u>1969</u> |
|-----------------------------|-------------|-------------|-------------|-------------|
| arithmetic average          | 0.94        | 0.56        | 0.68        | 1.37        |
| arithmetic median           | 0.09        | 0.07        | 0.19        | 0.18        |
| geometric mean              | 0.05        | 0.02        | 0.17        | 0.18        |
| mean + 1 standard deviation | 1.45        | 0.77        | 1.62        | 2.18        |
| mean - 1 standard deviation | 0.002       | 0.001       | 0.017       | 0.014       |
| sample size                 | 15          | 15          | 22          | 29          |

# Water/Oil Ratios From Salt-Water Surveys

|                                                                       | <u>1957</u> | <u>1961</u> | <u>1967</u> |
|-----------------------------------------------------------------------|-------------|-------------|-------------|
| brine production (bbl) oil production (bbl) water/oil ratio (bbl/bbl) | 3,434       | 2,285,129   | 2,397,417   |
|                                                                       | 2,576,564   | 2,208,644   | 2,908,602   |
|                                                                       | 0.001       | 1.035       | 0.824       |

# Cumulative Oil Production (1,000 bbl)<sup>1</sup>

| <u>1953</u> | <u>1958</u> | <u>1964</u> | <u>1969</u> |
|-------------|-------------|-------------|-------------|
| 6,428       | 17,458      | 30,726      | 42,220      |

# Cumulative Brine Production (1,000 bbl)

| Water/Oil Estimate          | <u>1953</u> | <u>1958</u> | <u>1964</u> | <u>1969</u> |
|-----------------------------|-------------|-------------|-------------|-------------|
| arithmetic average          | 6,042       | 9,776       | 20,893      | 57,841      |
| arithmetic median           | 578         | 1,222       | 5,838       | 7,580       |
| geometric mean              | 321         | 349         | 5,223       | 7,580       |
| mean + 1 standard deviation | 9.320       | 13,443      | 49,776      | 92,040      |
| mean - 1 standard deviation | 13          | 17          | 522         | 591         |

<sup>&</sup>lt;sup>1</sup> From Annual Reports of the Oil and Gas Division, Railroad Commission of Texas.

oil at the wellhead. At other fields with lower water/oil ratios, samples were taken from a separator tank. Sampling followed methods for collection of oil field waters recommended by Lico and others (1982). Oil and water mixtures were collected in a 1-gal bucket with a drum tap inserted in its side. Up to five minutes was generally enough time for oil and water to separate; the water then was drained from the drum tap through a glass-wool-lined funnel into a filter chamber; the glass wool removed any remaining oil. Waters were filtered (A/E-type glass filter or 0.45- $\mu$ m membrane filter) under  $N_2$ -gas pressure to remove suspended solids and particulates. Acid-washed sample bottles were filled from the stream of water leaving the filter.

Temperature was measured in the fluid stream being sampled at the wellhead or separator tank. Alkalinity and pH of some samples were measured at the well site; malfunction of the field pH meter required measurement of alkalinity and pH of nine samples approximately 3 to 8 hours after collection. Standard sample treatment immediately after collection preserved unstable constituents for chemical analysis. Samples for cation analysis were acidified with 5 mL of 6N HCl per 500-mL sample. Fifty mL of ammonical SrCl<sub>2</sub> (Gleason, 1969) were added to 1-L sample for precipitation of  $SrCO_3$  and analysis of  $\delta^{13}C$ . Samples for analysis of  $\delta^{34}$ S of dissolved sulfate were acidified with 5 mL of 6N HCl per 500-mL sample and 5 mL of 5% Cd-acetate were added to prevent any dissolved sulfide ions from oxidizing to sulfate. Samples for  $\delta^{18}O$  and  $\delta D$  were collected in 250-ml glass bottles with screw-on caps. All oil field brines and 10 ground-water samples were analyzed for aliphatic acid (carboxylic acid) anions (acetate, propionate, butyrate, and valerate). These samples were collected in 250-ml polyethylene bottles and treated in the field with several drops of 5% HgCl<sub>2</sub> to inhibit biological alteration of organic acids.

#### **RESULTS**

## Salinity Distribution

Richter and Kreitler (1985) and Lee (1986) recognized that patterns of high chlorinity changed in Tom Green County between the 1940's and 1970's. Distribution of salinity in Tom Green and eastern Irion Counties was reanalyzed in this study to determine if salinity patterns correlate with formation lithology and local physiography. Figures 5 through 7 show that total dissolved solids tends to be less than 500 mg/L in the Cretaceous limestones of the Edwards Plateau (fig. 1) but greater than 1,000 mg/L in Concho River valley alluvium and subcropping Permian formations. There are numerous water samples from wells in the valleys with total dissolved solids of more than 10,000 mg/L. ground waters sampled prior to 1942 show a strong stratigraphic association with the outcrop and subcrop of Permian formations, which strike northeast across the study area (figs. 1 and 5). Salinity distribution mapped from water samples collected between 1942 and 1954 (fig. 6) and between 1955 and 1980 (fig. 7) appears to be less strongly controlled by Permian strata. Overall salinity in the Concho River valley appears to have increased from pre-1942 to the early 1950's and then decreased during the 1960's and 1970's. The exact salinity patterns are affected by data availability because different sets of water analyses were used for each map; changes in county-wide salinity distributions might not reflect changes in water quality at any one well.

## Hydrochemical Facies

Hydrochemical facies distributions reflect rock type and sample position along ground-water flow paths. Hydrochemical facies are named for the ions that

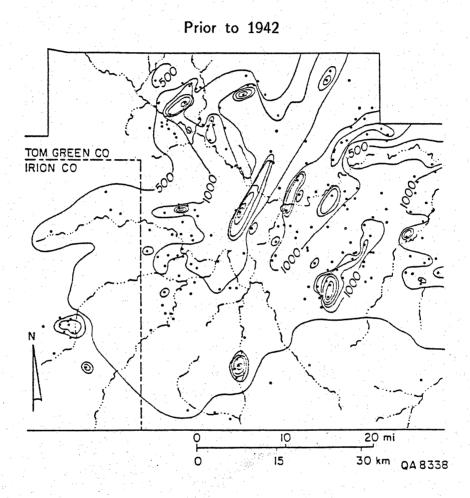



Figure 5. Total dissolved solids in ground water in Tom Green and eastern Irion Counties collected prior to 1942. Variable contour interval (500-1,000-2,000-3,000-10,000-50,000 mg/L).

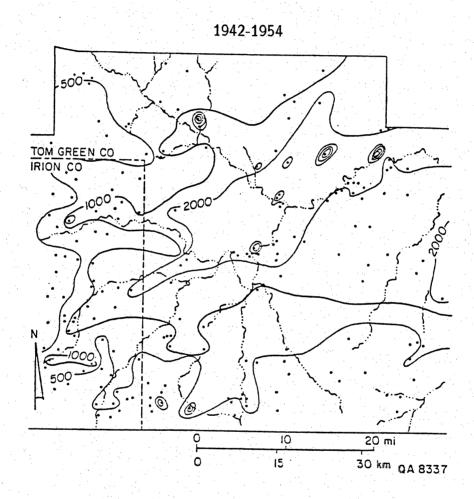



Figure 6. Total dissolved solids in ground water in Tom Green and eastern Irion Counties collected between 1942 and 1954. Variable contour interval (500-1,000-2,000-3,000-10,000-50,000 mg/L).

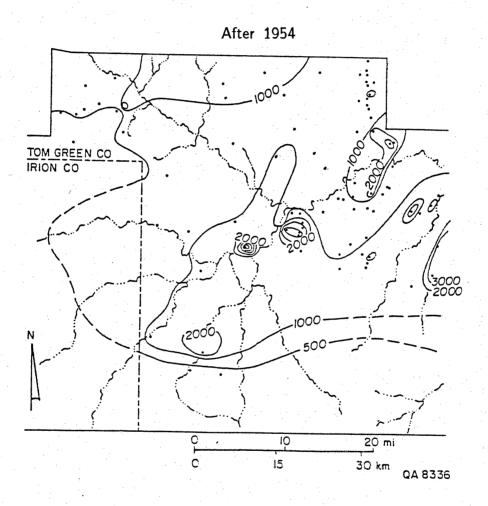



Figure 7. Total dissolved solids in ground water in Tom Green and eastern Irion Counties collected after 1954. Variable contour interval (500-1.000-2.000-3.000-10.000-50.000 mg/L).

account for at least 50 percent of total equivalent concentration as depicted in Piper diagrams (Back, 1966). Mixed-cation and mixed-anion hydrochemical facies are waters in which no one cation or anion is dominant (fig. 8). Major hydrochemical facies in Tom Green and Irion Counties include Ca-HCO<sub>3</sub>. Na-HCO<sub>3</sub>, and mixed-cation-HCO<sub>3</sub> types in limestones of the Cretaceous Trinity and Fredericksburg Groups; mixed-cation-Cl. mixed-cation-SO<sub>4</sub>, and mixed-cation-mixed-anion types in the Pleistocene Leona Formation and other Quaternary carbonate gravels and sands beneath the Concho River valley; and Na-Cl and Ca-SO<sub>4</sub> types in Permian San Angelo, Vale, and Arroyo Formations (table 1) that subcrop beneath Pleistocene alluvium in the Concho River valley (fig. 9). In addition, Na-Cl, Ca-SO<sub>4</sub>. Ca-mixed-anion, and Na-mixed-anion hydrochemical facies are locally present in western Tom Green and eastern Irion Counties and are geographically anomalous owing to their position within large areas dominated by other hydrochemical facies (fig. 8).

## Chemical Composition of Shallow Waters with High Chlorinity

Richter and Kreitler (1985) stated that sources of salinity can be most readily detected in waters with high total dissolved solids (TDS). Therefore, sampling conducted during this study emphasized waters with relatively high concentrations of TDS.

TDS of specially sampled shallow ground water ranged from 832 to 5,332 mg/L, and chloride ranged from 200 to 2,100 mg/L (table 3). Concentration ranges in these samples do not reflect normal water quality of ground water in Tom Green County but represent the most saline waters found at existing water wells. In contrast, samples from previous water-resource

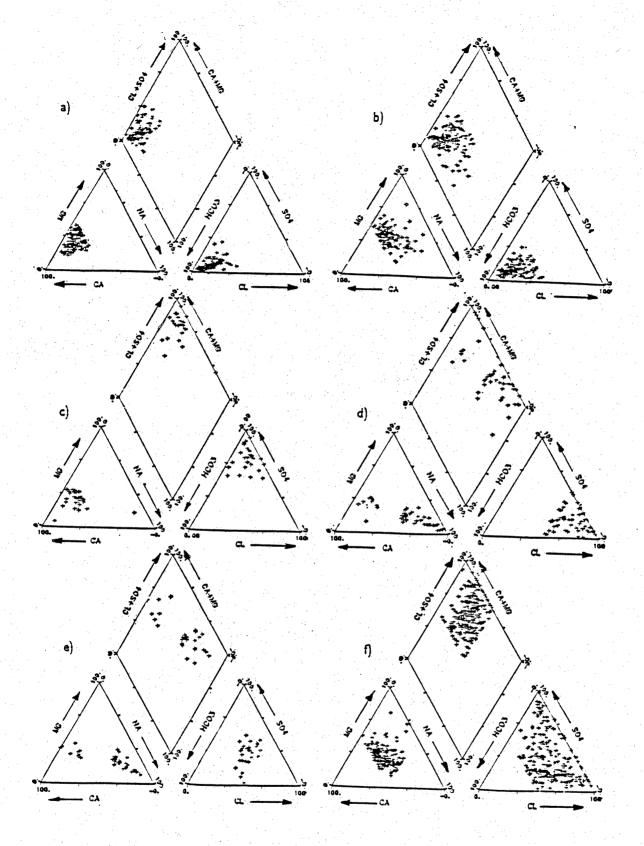
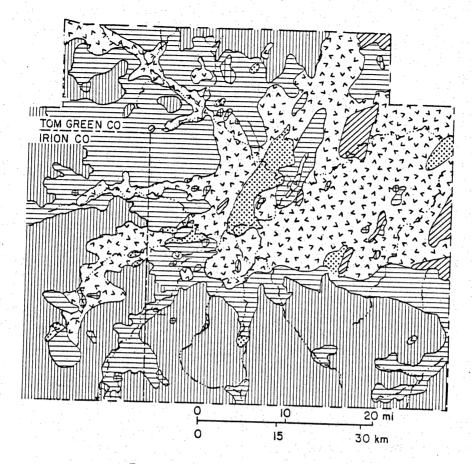




Figure 8. Piper diagrams of hydrochemical facies in shallow aquifers in Tom Green and eastern Tom Green County. (a) Ca-HCO<sub>3</sub>. (b) Na-, Mg-, and mixed-cation-HCO<sub>3</sub>. (c) Ca-SO<sub>4</sub>. (d) Na-Cl and Ca-Cl. (e) Ca-and Na-mixed-anion. (f) Mg- and mixed-cation-mixed-anion, Mg- and mixed-cation-SO<sub>4</sub>, and Mg- and mixed-cation-Cl.



# EXPLANATION HYDROCHEMICAL FACIES

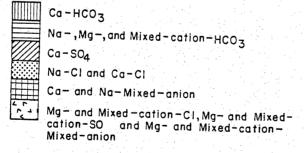



Figure 9. Map of hydrochemical facies in shallow aquifers of Tom Green and eastern Irion County. Isolated occurrences of Na-Cl, Ca-SO<sub>4</sub>, and Na- and Ca-mixed-anion hydrochemical facies are anomalous within regions dominated by Ca-HCO<sub>3</sub> and Na- and Mixed-cation-HCO<sub>3</sub> facies in western Tom Green and eastern Irion Counties and suggest contamination by oil field brine. Well locations of samples shown in figures 5 to 7.

Chemical and isotopic analyses of water-well and test-hole samples collected for this study. (Concentrations in mg/L except where indicated otherwise Table 3.

|            |            |       |      |      |       |     |     |      |       |       |        | 0         |               |
|------------|------------|-------|------|------|-------|-----|-----|------|-------|-------|--------|-----------|---------------|
| Land Owner | Ы          | Depth | င္မ  | β    | S.    | ¥   | HCO | SO   | 5     | TDS   | 푑      | 0-0       | ۵<br>در<br>در |
|            |            | (ft)  |      | )    |       |     | າ   | 4    |       |       | ·<br>· | (%)/      | (00/2)        |
|            |            |       |      |      |       |     |     | 4,   |       |       |        |           |               |
| Corbell    |            |       | 169  | 132  | 149   |     | 200 | 121  | 520   | 1506  | 6.9    | -5.12     | -37.0         |
| Sollars    | 2          |       | 133  | 29   | 42    | 7   | 490 | 65   | 200   | 832   | 6.9    | -4.75     | -35.0         |
| Hardy      | m          |       | 230  | 112  | 691   | 9   | 385 | 183  | 1425  | 3179  | 6.9    | -3.66     | -29.7         |
| Bailey     | 4          |       | 580  | 200  | 2670  | 29  | 340 | 290  | 5280  | 10000 | 7.5    | е<br>е    |               |
| Red Arroyo | 5a         | -     | 820  | 920  | 3960  | 47  | 725 | 4100 | 6430  | 17335 | 7.3    | -2.54     | -23.7         |
| Red Arroyo | 5b         |       | 1890 | 760  | 19730 | 270 | 500 | 3692 | 33140 | 59259 | 7.1    | -5.40     | -35.3         |
| King       | ဖ          |       | 254  | 319  | 1020  | 7   | 860 | 1430 | 1430  | 5332  | 6.7    | -4.74     | -34.2         |
| Stovall    | 7a         |       | 130  | 43   | 320   | 10  | 330 | 232  | 335   | 1589  | 7.7    | -4.00     | -31.0         |
| Stovall    | 7b         |       | 465  | 195  | 2790  | 23  | 340 | 515  | 5030  | 9615  | 7.5    | -4.17     | -31.0         |
| Stovall    | 70         |       | 610  | 240  | 4640  | 80  | 335 | 810  | 8070  | 15061 | 7.6    | -4.14     | -34.6         |
| Williams   | <b>0</b> 0 |       | 530  | 165  | 695   | H   | 330 | 224  | 2100  | 4398  | 7.0    | -4.06     | -32.7         |
| Ducote     | တ          |       | 1465 | 430  | 11540 | 265 | 555 | 645  | 20750 | 35446 | 6.7    | -3.21     | -28.4         |
| Bunyard    | 10         |       | 750  | 270  | 6920  | 175 | 365 | 250  | 12190 | 21482 | 7.2    | ъ.<br>Б.  | . a.          |
| Chandler   | F          |       | 866  | 350  | 1540  | 32  | 400 | 2080 | 3630  | 9330  | 7.2    | -1.90     | -19.2         |
| Chandler   | 12         |       | 455  | 130  | 880   | 7   | 530 | 820  | 1650  | 4363  | 6.9    | -0.45     | -9.7          |
| Latham     | 13         |       | 228  | 80   | 353   | H   | 400 | 138  | 840   | 2124  | 8.     | 1.77      | 0.2           |
| Hoelscher  | 14         |       | 516  | 180  | 687   | က   | 320 | 310  | 2040  | 4559  | 8.8    | -1.97     | -23.1         |
| Baxter     | 12         |       | 472  | 150  | 629   | 4   | 350 | 357  | 1780  | 4178  | 6.7    | -1.86     | -22.8         |
| Schwartz   | 16         |       | 476  | 151  | 662   | ო   | 340 | 353  | 1810  | 4006  | 6.7    | -1.91     | -23.0         |
| Gully      | 11         |       | 414  | 121  | 314   | 4   | 240 | 106  | 1300  | 2869  | 8.9    | -3.55     | -32.2         |
| Lawnhaven  | 18         |       | 413  | 144  | 346   | ហ   | 270 | 487  | 1060  | 3Ø58  | 7.2    | -4.28     | -35.3         |
| Lawnhaven  | 19         |       | 286  | 118  | 340   | 4   | 210 | 298  | 920   | 2533  | 7.0    | -4.02     | -32.7         |
| McClure    | 20         | 9/    | 492  | 185  | 623   | 20  | 275 | 350  | 1880  | 4329  | 8.8    | -3.78     | -32.1         |
| Wash. Cty  | 21         |       | 1290 | 540  | 11240 | 155 | 435 | 3130 | 19380 | 36Ø82 | 7.5    | _<br>□.a. |               |
| Wash. Cty  | 22         | -     | 1720 | 950  | 16960 | 320 | 250 | 4310 | 29610 | 54312 | 7.6    | _         | □.            |
| Jost       | 23         |       | 730  | 310  | 2710  | 20  | 430 | 2500 | 4450  | 11629 | 7.3    | e.        | a.<br>a.      |
| Keyes      | 24         |       | 1730 | 1050 | 4910  | 22  | 265 | 905  | 13070 | 22740 | 6.9    |           | a.<br>a.      |
|            |            |       |      |      |       |     |     |      |       |       |        |           |               |

n.a. not analyzed

| Acet. | 13 п.а. п.а. | 6     | n.a.  | e.  |      | <1.  | 0     |      | 0.<br>_    | <1.  |      | <1.  | <1.  |      | 0.<br>- |       | ⊓.a.  | <1.  | 0     | a.c   |       | .a.<br>∟ | <1.   | 0    | 'n   | <1. |  |
|-------|--------------|-------|-------|-----|------|------|-------|------|------------|------|------|------|------|------|---------|-------|-------|------|-------|-------|-------|----------|-------|------|------|-----|--|
| ω .   | 1.0 0.07     | Ø.Ø6  | 0.27  | 2.3 | 4.1  | 10.0 | 2.09  | <2.Ø | <2.0       | 2.0  | <2.Ø | 6.1  | 5.2  | <2.0 | <2.0    | 0.45  | 0.44  | 0.41 | 0.37  | 0.16  | 0.27  | Ø.19     | 0.23  | 5.9  | 11.0 | 4.4 |  |
| -B    | 2.6          | 1.9   | 4.7   | 8.5 | 14.0 | 61.0 | 5.6   | 1.8  | 9.6        | 16.0 | 3.0  | 35.0 | 15.0 | 8.4  | 6.4     | 2.3   | 7.8   | 9.9  | 4.6   | 5.6   | 8.4   | 9.0      | 6.2   | 40.0 | 33.0 | 9.9 |  |
|       | <0.03 2.81   |       |       |     |      |      |       |      |            | - :  | 3.7  | 1    |      |      |         |       |       |      | ٠.    |       |       |          |       |      |      |     |  |
| ф.    | <0.02        | <0.02 | <0.02 | 1.0 | 9.4  | 3.1  | <0.02 | 4.0  | ø.1        | 6.0  | <0.1 | 6.4  | 1.8  | 9.4  | 4.0     | <0.02 | <0.02 | 0.19 | <0.02 | <0.02 | <0.02 | <0.02    | <0.02 | 1.3  | 3.7  | 1.5 |  |
| Ba    | 0.32         | 0.12  | 0.08  | 6.3 | 4.0  | <0.1 | 70.0  | 0.5  | 4.0        | 4.0  | 0.2  | 7.0  | Ø.5  | 6.3  | <0.1    | 0.13  | 0.11  | 90.0 | 0.09  | 0.28  | 0.08  | 0.08     | 0.10  | Ø.3  | 9.0  | 4.0 |  |
| ΡI    |              | 8     | က     | 4   | 5a   | 26   | ဖွ    | 7а   | <b>7</b> P | 70   | 00   | တ    | 10   | 11   | 12      | 13    | 14    | 12   | 16    | 17    | 18    | 19       | 20    | 21   | 22   | 23  |  |

Acet. - acetate Prop. - propionate

investigations (for example, Willis, 1954, and Lee, 1986) predominantly have low TDS. Hydrochemical facies of these samples include Ca-HCO<sub>3</sub>, mixed-cation-Cl, and Na-Cl types.

Occurrence of salt water at shallow depth is not a recent phenomenon, having been noted in Tom Green County during the early 1900's (Udden and Phillips, 1911). The San Angelo Formation has long been known to contain salty water at shallow depth. To obtain undisturbed ground-water samples from the San Angelo Formation, two test holes (no. 4 and no. 5, table 3 and fig. 10) were drilled at or near the San Angelo Formation outcrop (fig. 1). Water samples obtained from these test holes had high chloride concentrations. Chloride concentrations in test hole no. 5, drilled next to a tributary of Red Arroyo in San Angelo, increased from 6,430 mg/L at 7-ft (2-m) depth to 33,140 mg/L at a 68-ft (20-m) depth below land surface. Twelve hours after this well was drilled, hydrogen-sulfide brine started flowing at land surface from 68 ft (20 m) below land surface. In test hole no. 4, also drilled within the city of San Angelo, water with a chloride content of 5,280 mg/L (no. 4, table 3) was encountered at 58 ft (17 m) below land surface.

Chloride is the dominant anion in all samples but one (no. 1, table 3) that were collected from water wells during this study (fig. 11). The two waters with the lowest salinity (no. 1 and no. 2) also have among the lowest proportions of dissolved sodium and chloride (fig. 11). Most samples with low TDS reported for Tom Green County are Ca-HCO<sub>3</sub> or mixed-anion-HCO<sub>3</sub> types, not Na-Cl types (compare figs. 5-7 with fig. 9). Sample no. 6 (table 3), having a relatively high sulfate concentration and a Mg/Ca ratio greater than one, has an unusual chemical composition compared with that of other samples. This sample was obtained from a water well that is located west of the Middle Concho River just north of

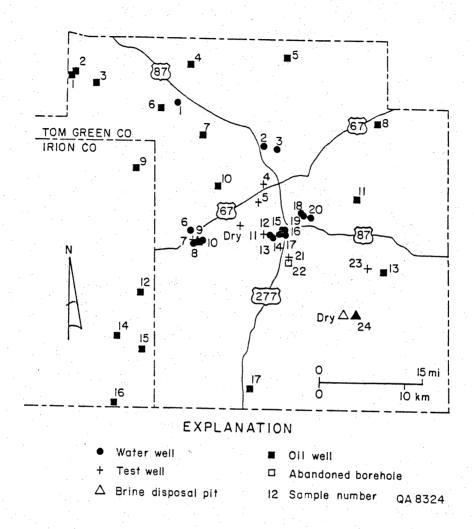



Figure 10. Location of test sites at which water samples were obtained.

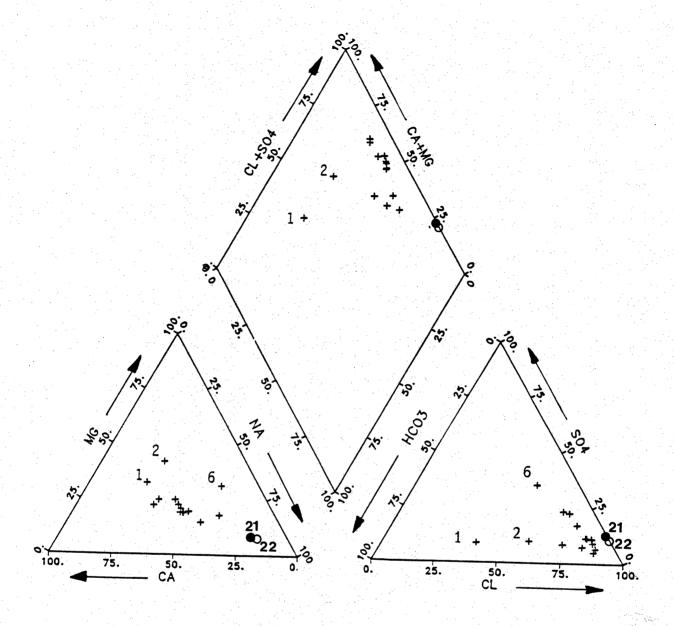



Figure 11. Piper diagram of hydrochemical facies of chloride-rich and other ground-water samples collected during this study.

Highway 67 (between San Angelo and Tankersley, fig. 10). Taken from a land surface elevation of approximately 30 ft (9 m) above the nearby Middle Concho River and a well depth of 50 ft (15 m), this water sample probably constitutes a mixture of local ground water and river water. The other water samples range from a mixed cation-chloride hydrochemical facies to a Na-Cl facies (fig. 11).

Calcium, magnesium, and sodium concentrations in water-well samples increase with increasing chloride concentrations (fig. 12). The covariance between the cationic and chloride ionic concentrations is small. The Br/Cl ratios vary widely and decrease with increasing chloride concentration (fig. 12). In plots of chemical constituents of water-well and test-hole samples, ratios of Ca/Cl, Na/Cl, and K/Cl seem to be fairly constant over the range of chloride concentrations (figs. 13 and 14). Ratios of SO<sub>4</sub>/Cl and Mg/Cl of test-hole samples vary considerably over the range of chloride concentrations (figs. 13 and 14). Test-hole and water-well samples show distinctly different Br/Cl ratios (fig. 14).

#### Chemical Characterization of Brines

Chemical and isotopic compositions of 17 subsurface brines collected from oil wells in Tom Green and eastern Irion Counties are listed in table 4. The brines do not form distinct groups or associations but appear as a continuous array (fig. 15). One end member of the array (SA), represented by San Andres, San Angelo, and Clear Fork brines, plots close to the meteoric water line and is isotopically similar to shallow ground waters measured by Richter and Kreitler (1985). Brine samples from the Canyon and Strawn fields define another end member (C/S) in this and subsequent plots. This end member plots to the right

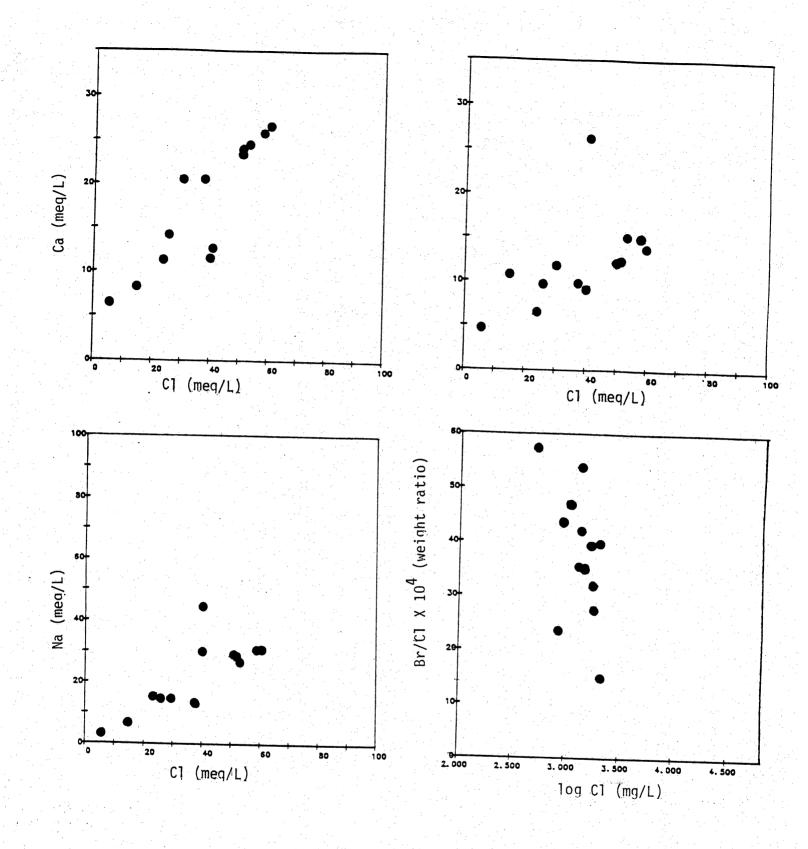



Figure 12. Plots of Ca, Mg, and Na concentrations and of Br/Cl ratios versus Cl for chloride-rich and other ground-water samples collected during this study.

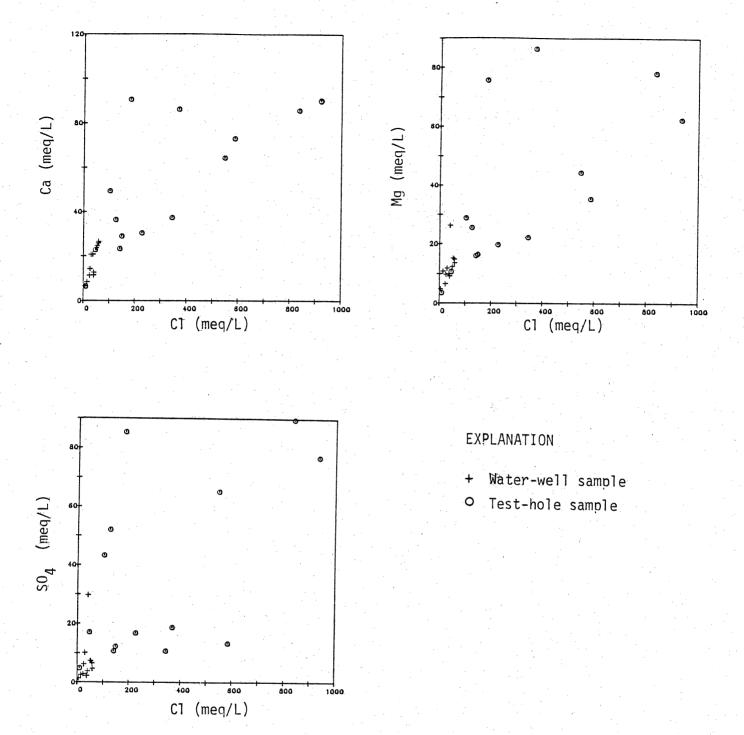



Figure 13. Plots of Ca, Mg, SO<sub>4</sub>, and Cl concentrations in water-well and test-hole samples. Samples from water wells, shown here and in figure 12, generally have lower Ca, Mg, SO<sub>4</sub>, and Cl concentrations than samples from test wells.

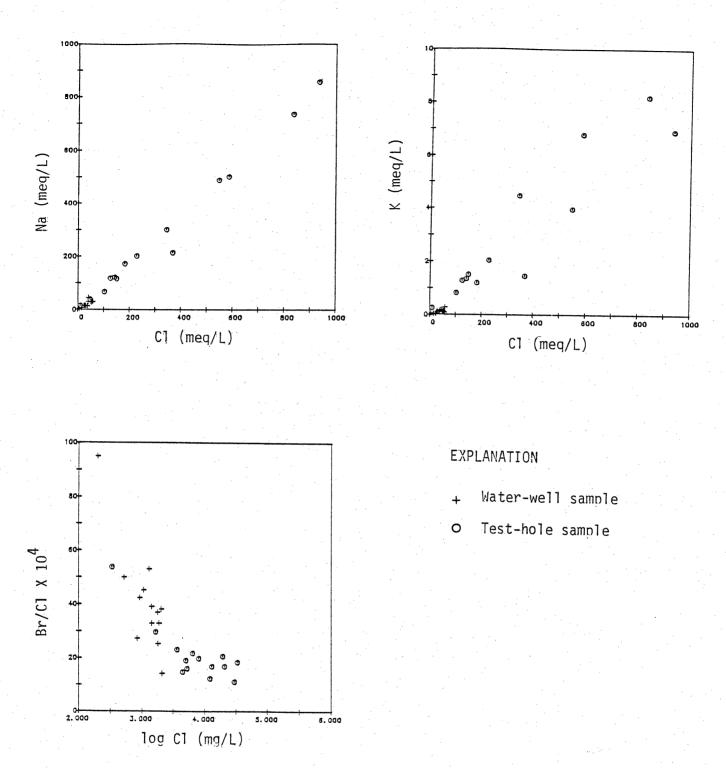



Figure 14. Plots of Na. K, and CI concentrations and Br/CI ratios for water-well and test-hole samples. Samples from water wells, shown here and in figure 12, generally have lower Na, K, and CI concentrations and higher Br/CI ratios than samples from test wells.

Table 4. Chemical composition of subsurface brine collected from oil wells in Tom Green and eastern Irion Counties (concentrations in mg/L).

|                          |                | Depth   | Тетр. |          |       |        |        |      |             |          |                       | 0 S            | ٥ 18 0    | 834s-s0               |
|--------------------------|----------------|---------|-------|----------|-------|--------|--------|------|-------------|----------|-----------------------|----------------|-----------|-----------------------|
| No. Fied                 | Formation (ft) | (ft) °c | ပ     | Ηď       | Ca    | D<br>D | S<br>S | ¥    | HC03        | \$0<br>4 | -<br>-<br>-           | (00/0)         | (00/0)    | t (00/ <sub>0</sub> ) |
| 1 Water Valley           | San Andres     | 1000    | 25.   | 7.65     | 1980  | 867    | 32620  | 399  | 297.13 1860 | 1860     | 52620                 | 52620 -34,-35  | -5.2      | 35.08,35.68           |
| 2 Water Valley           | Clear Fork     | 1500    | 25.5  | 5.5 6.65 | 2240  | 822    | 29750  | 445  | 797.44 3490 | 3490     | 47680 -37             | -37            | -5.2      |                       |
| 3 Hall                   | San Andres     | 1800    | 31. ( | 6.85     | 2410  | 1330   | 28930  | 488  | 611.96 3230 | 3230     | 48510                 | -33,-35        | -2.0      | 27.84,28.30           |
| 4 Carlsbad               | Strawn         | 2860    | 23.5  | 8.8      | 13970 | 2960   | 62400  | 545  | 72.60       | 19       | 119850                |                | -0.1      | 21.22                 |
| 5 Eliza Baker, N. Canyon | Canyon         | 6500    | 22.   | 6.5      | 9310  | 1970   | 40560  | 1050 | 145.82      | 760      | 81470                 | -32            | -4.0      | 19.07                 |
| 6 T.D. (6575)            | Strawn         | 00069   | 30.   | 9.6      | 10150 | 1680   | 53660  | 397  | 212.32      | 10       | 102840                | -12            | +0.3      |                       |
| 7 KWB                    | Strawn         | 7500    | 26.   | 6.5      | 13040 | 1640   | 55590  | 320  | 131.79      | 24       | 113140                | -11            | 9.0+      | 13.00                 |
| 8 SSR                    | Canyon         | 4300    | 29.5  | 6.9      | 9260  | 1530   | 40840  | 450  | 81.15       | 660      | 78960 -16             | -16            | -3.0      | 22.45                 |
| 9 Arden                  | Canyon         | 6500    | 33.   | 6.32     | 11350 | 1610   | 54790  | 534  | 195.85      | 10       | 105300                | 6-18-          | -0.2      | 22.86                 |
| 10 Pulliam               | Canyon         | 5200    | 42.   | 8.8      | 9530  | 1610   | 43940  | 445  | 115.92      | 540      | 86150                 | -19            | -0.8      | 20.55                 |
| 11 Veribest              | Strawn         | 4700    | 25.5  | 6.3      | 13110 | 1830   | 43820  | 250  | 20.13       | 53       | 90740                 | တ              | -1.1      | 19.45 19 36           |
| 12 Brooks                | San Angelo     | 1300    | 26.   | 7.4      | 831   | 599    | 15840  | 206  | 198.29      | 20       | 26360                 | -35            | -4.8      | 40.26                 |
| 13 Halfman               | Strawn         | 4700    | 32.   | 6.2      | 8230  | 1510   | 38180  | 593  | 204.39      | 950      | 74250                 | -22,-27        | -3.1      | 18.97                 |
| 14 Mim, NW               | San Angelo     | 1100    | 27.5  | 6.35     | 1290  | 701    | 27100  | 216  | 294.08      | 10       | 42790 -27             | -27            | -4.0      |                       |
| 15 Dove Creek            | Canyon         | 6700    | 33.5  | 6.3      | 12740 | 1830   | 61420  | 431  | 71.99       | 11       | 123600                | 123600 -12,-15 | +0.4,+0.7 | 10.31                 |
| 16 Tankersley            | Wolfcamp       | 5500    | 40.   | 6.55     | 20960 | 2780   | 47460  | 2560 | 93.96       | 350      | 176320                | <b>φ</b>       | +6.2,+6.2 | 14.15                 |
| 17 H-J                   | Strawn         | 5500    | 34.5  | .5 7.15  | 2980  | 682    | 29180  | 741  | 362.42      | 1240     | 362.42 1240 49520 -44 | -44            | -5.5      | 22.28                 |
|                          |                |         |       |          |       |        |        |      |             |          |                       |                |           |                       |

.. - indicates sample not analyzed

|                   | Prop.     | <b>1</b>    | <b>\</b>       | 8          | 14       | 11           | 15          | 13     | 12     | 14     | 7            | 55       | ,<br>1     | <del>- 1</del> | <b>~</b> 1 | 11         | 9          | 4           |
|-------------------|-----------|-------------|----------------|------------|----------|--------------|-------------|--------|--------|--------|--------------|----------|------------|----------------|------------|------------|------------|-------------|
|                   | Acet.     | <b>~</b>    | 7              | 82         | 128      | 107          | 187         | 228    | 130    | 136    | 68<br>83     | 137      |            | 79             |            | 140        | 725        | 27          |
|                   | T0C       | *21         | 80             | 82         | 80       | 22           | 88          | 128    | 85     | 130    | 22           | 20       | ∞<br>*     | 38             | *          | 102        | 510        | 38          |
|                   | H         | 8           |                | က          | 39       | ω            | 34          | 28     | 12     | 27     | 12           | 14       | 7          | တ              | က          | 21         | 75         | <del></del> |
|                   | Ŗ<br>Ľ    | 67          | 4 73           | 61         | 460      | 200          | 410         | 450    | 280    | 430    | 350          | 360      | 360        | 230            | 60         | 480        | 320        | 20          |
|                   | S         | 59.1        | 52.            | 25         | 1020     | 357          | 287         | 1320   | 375    | 819    | 378          | 598      | 39.4       | 569            | 73.8       | 169        | 547        | 120         |
|                   | Σ<br>Σ    |             |                |            |          |              |             |        | - 4    |        |              | 4.93     |            |                |            |            |            |             |
|                   | <u>.</u>  | 3.6         | က              | 8          | 13.2     | 16.9         | 9.9         | 15.8   | 12.9   | 11.5   | 12.9         | 11.4     | 3.4        | 16.1           | 2.7        | 8.4        | 4.9        | 10.3        |
|                   | Щ.        | 223         | 0.2            | 102        | 291      | 70           | 185         | 153    | 108    | 344    | 19.6         | 82       | 0.1        | 98             | 0.2        | 142        | 1300       | 1.2         |
|                   | Ba        | 0.25        | 0.15           | 0.62       | 30.40    | 68.8         | 178         | 450    | 1.85   | 56.70  | 1.42         | 5.20     | 0.37       | 09.0           | 0.33       | 131        | 17.40      | Ø.39        |
| ۍ <sub>د</sub> و₊ | (%/%)     | -23.91      | -19.42         | -11.79     | -8.76    | -3.05        | -2.37       | -3.82  | -4.26  | -4.40  | -3.16; -2.89 | -6.45    | -19.62     | +0.55          | -25.42     | -7.65      | -0.90      | +1.5;+1.58  |
|                   | Formation | San Andres  | Clear Fork     | San Andres | Strawn   | Canyon       | Strawn      | Strawn | Canyon | Canyon | Canyon       | Strawn   | San Angelo | Strawn         | San Angelo | Canyon     | Wolfcamp   | Strawn      |
|                   |           | ×           | <u>`</u>       |            |          | ż            |             |        |        |        |              |          |            |                |            |            |            |             |
| .:                | 4o. Field | Water Valle | 2 Water Valley | Hall       | Carlsbad | Eliza Baker, | T.D. (6575) | KWB    | SSR    | Arden  | Pulliam      | Veribest | Brooks     | Halfman        | Mia, NW    | Dove Creek | Tankersley | J −H        |
|                   | Š         | -           | 8              | က          | 4        | ιo           | 9           | /      | œ      | တ      | 10           | 11       | 12         | 13             | 14         | 15         | 16         | 17          |

\* - indicates below detection limit TOC - total organic carbon Acet. - acetate Prop. - propionate

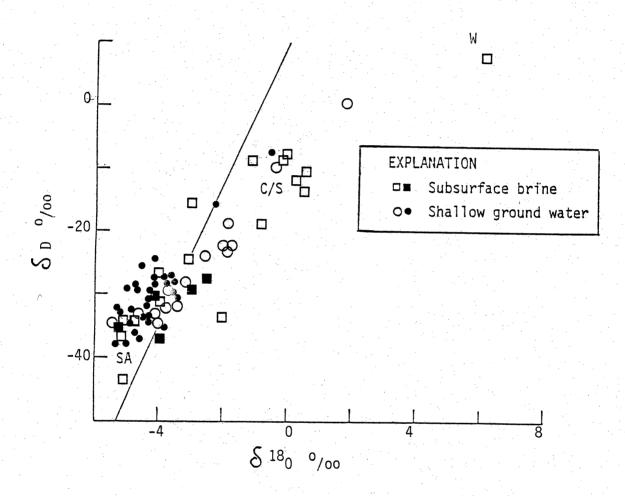



Figure 15. Variation in  $\delta D$  and  $\delta^{18}O$  in brines and shallow ground water from Tom Green, eastern Irion, Concho, and Runnels Counties. Brine end members marked by: SA - San Andres/San Angelo/Clear Fork, C/S - Canyon/Strawn, and W - Wolfcamp. Line shows meteoric water line defined by  $\delta D = 10 + 8 \ \delta^{18}O$  (Craig, 1961).

of the meteoric water line: the Wolfcamp sample (W) plots particularly far from the meteoric water line. Differences between end members defined by samples from the Permian units and Pennsylvanian units do not simply reflect differences between shallow and deep waters, however, because two deep Strawn samples (Eliza Baker North and H-J, samples 5 and 17 [table 4]) are similar to the San Andres/San Angelo/Clear Fork end member. Most shallow ground-water samples plot closer to San Andres/San Angelo/Clear Fork samples than to deep Canyon and Strawn samples.

The Br/Cl ratio in subsurface brines increases with increasing chloride concentration and shows end members similar to those of previous plots (fig. 16). The Br/Cl ratio of the Canyon/Strawn end member is similar to that of most deep-basin brines (Whittemore, 1984; Richter and Kreitler, 1986). The San Andres/San Angelo/Clear Fork subsurface brine end member has a Br/Cl ratio similar to that derived from halite dissolution. In contrast, the Br/Cl ratios of shallow ground waters from Tom Green, Runnels, and Concho Counties decrease with increasing chloride concentration. Ground-water samples with the highest chlorinity and lowest Br/Cl ratio plot near the San Andres/San Angelo/Clear Fork subsurface brine end member (fig. 16).

Alkalinity, which is the ability of a water to neutralize acid, may distinguish brine sources from shallow and deep oil fields. Alkalinity of subsurface brine at depths of 1,000 to 1,800 ft (300 to 550 m) in San Andres and San Angelo oil fields is due to dissolved bicarbonate ions; alkalinity of brine in deeper Pennsylvanian and in Wolfcamp fields is primarily due to dissolved short-chain aliphatic acid (carboxylic acid) anions (table 4). Acetate and propionate ions account for 61% to 98% of total organic carbon (TOC) in samples with organic

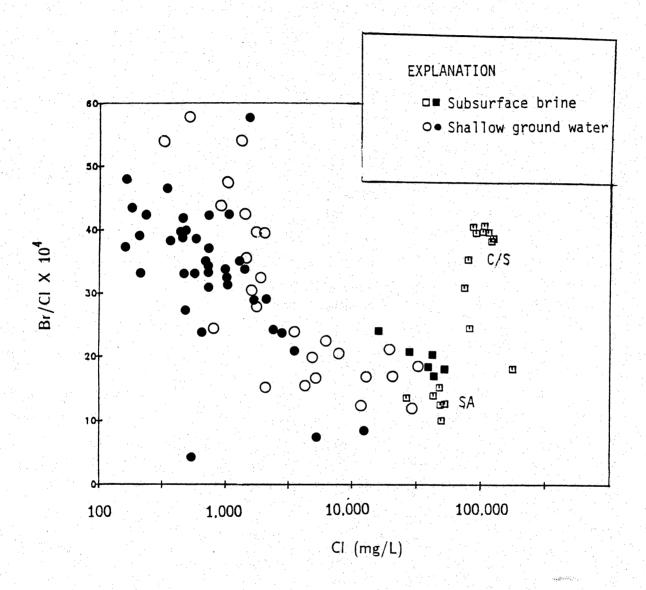



Figure 16. Br/Cl ratios in subsurface brines and shallow ground waters in Tom Green, eastern Irion, Runnels, and Concho Counties. Brine end members SA, C/S, and W as identified in figure 15.

ions; analytic error and possible presence of organic ions other than the aliphatic acid anions account for the discrepancy.

Acetate concentration varies directly with  $\delta^{18}O$  (fig. 17). The San Andres/San Angelo/Clear Fork end member has low acetate concentration, high bicarbonate alkalinities, and the most negative  $\delta^{18}O$  and  $\delta^{13}C$  (fig. 18) values. The Canyon/Strawn end member has greater acetate concentrations and more positive  $\delta^{18}O$ ; the sample from a Wolfcamp field has the highest acetate concentration (fig. 17) and very enriched  $\delta^{18}O$  and  $\delta^{13}C$  compositions (fig. 18).

A continuous array is not well defined in a plot of  $\delta^{34}S$  versus dissolved  $SO_4$  concentrations, although previously defined end members are recognizable (fig. 19). Sulfate concentration is probably controlled by formation temperature and activity of sulfate-reducing bacteria and tends to decrease with depth. High  $SO_4$  concentrations in shallow Permian formations might reflect (1) dissolution of bedded anhydrite, (2) low activity of sulfate-reducing bacteria, or (3) oxidation of sulfides as subsurface brines move along regional flow paths into shallower depths across the Eastern Shelf. Some of the subsurface brines have  $\delta^{34}S$  values similar to values typical of Paleozoic sulfate-bearing rocks (Holser, 1979), possibly reflecting dissolution of anhydrite. Other brines throughout the stratigraphic section have significantly enriched  $\delta^{34}S$  compositions: these more positive  $\delta^{34}S$  values most likely result from sulfate reduction by bacteria.

In Tom Green County, three brine systems are capable of contaminating shallow ground water. First, the most shallow aquifer units with salinity problems in the area are in the San Angelo and San Andres Formations and the Clear Fork

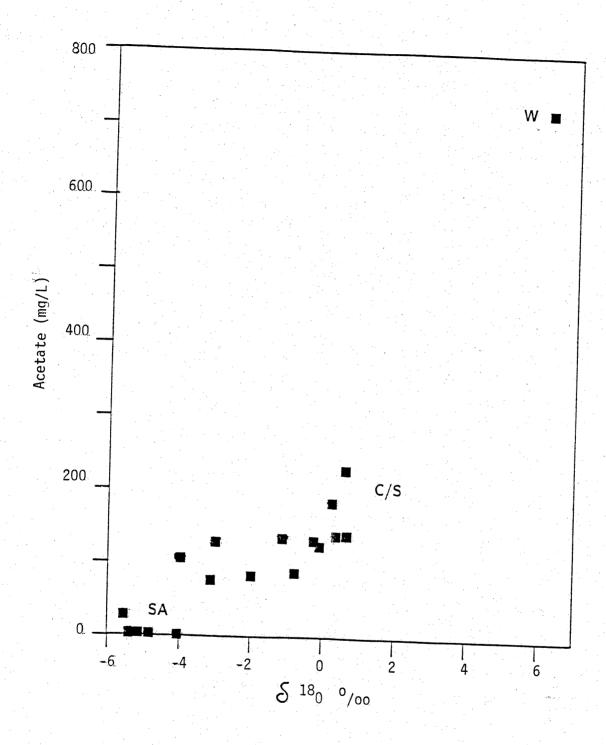



Figure 17. Plot of acetate versus  $\delta^{18}$ O for subsurface brines from Tom Green and eastern Irion Counties. Brine end members SA, C/S, and W identified in figure 15.

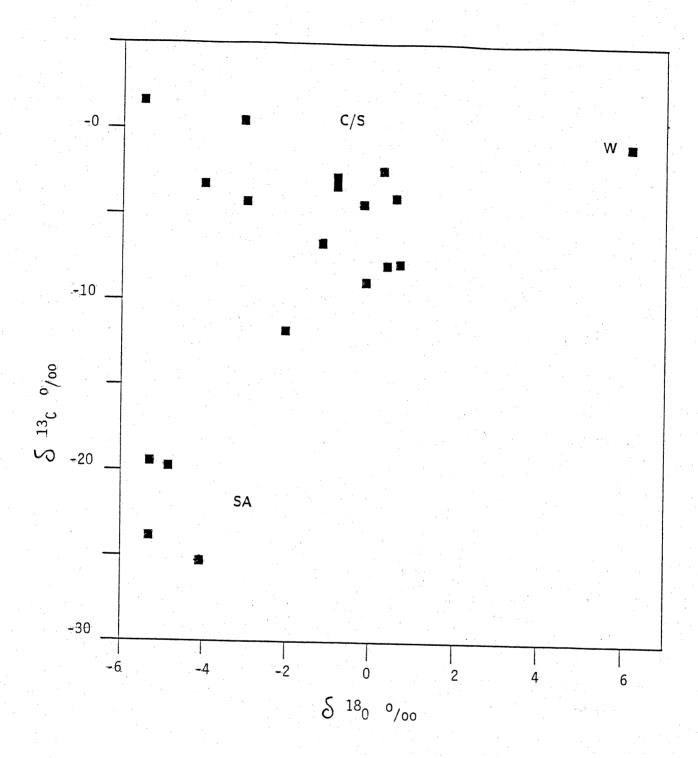



Figure 18. Plot of  $\delta^{13}$ C versus  $\delta^{18}$ O in subsurface brines from Tom Green and eastern Irion Counties. Brine end members SA, C/S, and W identified in figure 15.




Figure 19. Relation between  $\delta^{34}$ S and sulfate concentration in subsurface brines from Tom Green and eastern Irion Counties.

Group. In western Tom Green County, 30 ft (9 m) of shale separates the San Andres from the San Angelo Formation; this shale is absent in the center and northern part of Tom Green County (T. L. Koederitz, personal communication, 1987). Oil is produced from these strata at depths of 900 to 1,200 ft (270 to 360 m) below land surface in the western part of Tom Green County. Eight samples from San Angelo, San Andres, and Clear Fork fields were selected to characterize the composition of these shallow brines (table 5). Second, the Coleman Junction Formation underlies the county at depths of approximately 3,000 (900 m) ft in the west and 1,000 ft (300 m) in the east. Brine flows to land surface from this unit in most cases where a pathway exists. Because of the lack of chemical data from the Coleman Junction Formation in Tom Green County, 14 reported brine analyses of water samples (table 5) outside the county were used to investigate its chemical characteristics. Third, most oil production in Tom Green County is from Pennsylvanian strata. Therefore, Pennsylvanian brines can contact shallow ground water where oil production or brine-disposal methods have been faulty.

Brines in Pennsylvanian units have higher CI, Ca, Mg, and Na concentrations but lower sulfate concentrations than the analyzed brines from Permian units (fig. 20). Brines from the Coleman Junction Formation show the least scatter, although data were combined from six counties. This suggest that brine composition in the Coleman Junction Formation is uniform throughout an area extending 150 mi (240 km) north from Tom Green County to Knox County. Brines from San Angelo/San Andres/Clear Fork units have a similar average chemical composition but greater variability (fig. 20). Therefore, Coleman Junction brines cannot be distinguished from San Angelo/San Andres/Clear Fork brines at shallow depths using these chemical indices. Brines that were collected at land surface by the district office of the Railroad Commission of Texas (table 5) from

Table 5. Chemical analyses of brines from San Angelo, San Andres, Clear Fork, Coleman Junction, and Pennsylvanian units. Also listed are chemical analyses from samples collected at various surface leaks by the Railroad Commission of Texas. (Concentrations in mg/L.)

| County    | Ca    | Mg       | Na            | Alkalinity<br>mg/L | SO <sub>4</sub> | Ċl     | Source         |
|-----------|-------|----------|---------------|--------------------|-----------------|--------|----------------|
|           |       | San Ange | lo, San And   | res, Clear F       | ork             |        |                |
| Tom Green | 1890  | 760      | 19730         | 500                | 3695            | 33140  |                |
| Tom Green | 849   | 769      | 16050         | 355                | 864             | 27420  | a              |
| Tom Green | 931   | 696      | <b>15</b> 600 | 548                | 9               | 27200  | b              |
| Tom Green | 2460  | 1050     | 16000         | 405                | 3180            | 19500  | С              |
| Tom Green | 2880  | 880      | 37500         | 427                | 4160            | 62200  | С              |
| Tom Green | 1980  | 867      | 32620         | 300                | 1860            | 52620  |                |
| Tom Green | 2240  | 822      | 29750         | 800                | 3490            | 47680  |                |
| Irion     | 831   | 599      | 15840         | 200                | 20              | 26360  |                |
| Tom Green | 2410  | 1330     | 28930         | 700                | 3230            | 48510  |                |
| Irion     | 1290  | 701      | 27100         | 295                | 10              | 42790  |                |
|           |       |          | Coleman       | Junction           |                 |        |                |
| Tom Green | 1720  | 950      | 16960         | 250                | 4310            | 29610  |                |
| Runnels   | 1940  | 1059     | 22500         | 1                  | 2310            | 38000  | b              |
| Runnels   | 2500  | 1122     | 22900         | 164                | 4170            | 38300  | b              |
| Coke      | 2298  | 1070     | 28727         | 277                | 3575            | 48200  | b              |
| Coke      | 2033  | 942      | 22013         | 561                | 4676            | 36524  | d              |
| Coke      | 3060  | 1070     | 27800         | 340                | 3620            | 48400  | d              |
| Fisher    | 2490  | 855      | 20600         | 470                | 2850            | 36100  | d              |
| Knox      | 3150  | 1051     | 26642         | 201                | 3266            | 47162  | d              |
| Runnels   | 2530  | 994      | 25200         | 188                | 3800            | 43200  | d              |
| Jones     | 2664  | 459      | 22460         | 122                | 4400            | 37400  | е              |
| Jones     | 1520  | 864      | 15940         | 149                | 2000            | 28500  | е              |
| Jones     | 2120  | 750      | 23500         | 180                | 3700            | 39500  | е              |
| Jones     | 2376  | 730      | 19150         | 251                | 4240            | 32600  | е              |
| Jones     | 1570  | 620      | 21200         | 212                | 4300            | 34000  | е              |
| Unknown   | 2400  | 975      | 27080         | 334                | 3670            | 46000  | f              |
|           |       |          | Pennsylva     | nian               |                 |        |                |
| Tom Green | 9530  | 1610     | 43940         | 215                | 540             | 86150  |                |
| Tom Green | 13040 | 1640     | 55590         | 380                | 24              | 113140 |                |
| Tom Green | 10150 | 1680     | 53660         | 420                | 10              | 102840 |                |
| Irion     | 12740 | 1830     | 61420         | 225                | 11              | 123600 |                |
| Tom Green | 9560  | 1530     | 40840         | 225                | 660             | 78960  |                |
| Tom Green | 13110 | 1830     | 43820         | 180                | 53              | 90740  |                |
| Tom Green | 9970  | 1970     | 40560         | 265                | 760             | 81470  |                |
| Tom Green | 13970 | 2960     | 62400         | 215                | 19              | 119850 |                |
| Irion     | 11350 | 1610     | 54790         | 350                | 10              | 105300 |                |
| Tom Green | 2980  | 682      | 29180         | 395                | 1240            | 49520  | . Hay          |
| Tom Green | 8230  | 1510     | 38180         | 290                | 950             | 74250  |                |
|           |       |          |               |                    |                 |        | and the second |

Table 5 (cont.)

|           | Ca   | Mg      | Na             | Alkalinity    | SO <sub>4</sub> | Cl    | Source               |
|-----------|------|---------|----------------|---------------|-----------------|-------|----------------------|
|           |      |         |                | mg/L          | 4               |       |                      |
|           |      |         | <b>D</b> • • • | <b>.</b>      |                 |       |                      |
|           |      | various | Brines fro     | om Surface Le | eaks            |       |                      |
| Runnles   | 4530 | 5       | 31600          | 985           | 3750            | 51600 | b                    |
| Runnels   | 2400 | 881     | 26100          | 412           | 3930            | 41200 | b                    |
| Runnels   | 1605 | 1110    | 7440           | 141           | 3390            | 15500 | g                    |
| Runnels   | 2310 | 1120    | 25700          | 136           | 4080            | 41900 | g                    |
| Concho    | 4350 | 1405    | 34250          | 121           | 3935            | 46370 | g<br>g               |
| Concho    | 2525 | 2440    | 7270           | 100           | 2950            | 27500 | g                    |
| Irion     | 2720 | 171     | 32200          | 580           | 150             | 54600 | g                    |
| Irion     | 3000 | 1       | 30700          | 494           | 452             | 56840 | g                    |
| Irion     | 900  | 720     | 17350          | 362           | 69              | 31990 | g                    |
| Runnels   | 2025 | 945     | 20650          | 63            | 3860            | 38000 | g                    |
| Runnels   | 2625 | 1815    | 20825          | 204           | 3376            | 43520 | g                    |
| Runnels   | 1084 | 644     | 7820           | 0             | 4260            | 12000 | g                    |
| Runnels   | 2500 | 1200    | 22760          | 11            | 3800            | 42990 | g                    |
| Runnels   | 2500 | 1525    | 25850          | 181           | 3632            | 37920 | g                    |
| Runnels   | 1533 | 1080    | 6850           | 132           | 3580            | 14000 | g                    |
| Runnels   | 2060 | 800     | 19320          | 55            | 2760            | 36130 | ρ                    |
| Runnels   | 2800 | 1220    | 29800          | 155           | 4200            | 49100 | g<br>g               |
| Runnels   | 1540 | 1100    | 6900           | 63            | 3300            | 13560 | σ                    |
| Runnels   | 3750 | 1400    | 27900          | 147           | 2700            | 55340 | g<br>g               |
| Runnels   | 2275 | 1148    | 30250          | 146           | 4114            | 53160 | ø                    |
| Runnels   | 740  | 440     | 10780          | 26            | 1030            | 19500 | 80 80 80<br>80 80 80 |
| Runnels   | 2600 | 1250    | 29250          | 100           | 3540            | 50398 | g .                  |
| Runnels   | 2060 | 800     | 19320          | 55            | 2760            | 36130 | σ                    |
| Runnels   | 780  | 312     | 15120          | 150           | 1670            | 19780 | σ                    |
| Runnels   | 1975 | 915     | 22400          | 35            | 3840            | 36000 | g                    |
| Runnels   | 2340 | 1060    | 30250          | 350           | 4000            | 55000 | g                    |
| Runnels   | 1540 | 400     | 13300          | 55            | 4000            | 32280 | g                    |
| Runnels   | 2080 | 1070    | 30700          | 81            | 3260            | 52000 | g                    |
| Runnels   | 3750 | 1400    | 27900          | 147           | 2700            | 55340 | g                    |
| Runnels   | 2250 | 1150    | 24450          | 163           | 3960            | 40760 | g                    |
| Runnels   | 2300 | 1400    | 28550          | 129           | 1320            | 54460 | g                    |
| Runnels   | 2500 | 1200    | 22760          | 11            | 3800            | 42990 |                      |
| Runnels   | 2300 | 1400    | 28550          | 129           | 1320            | 54460 | g<br>g               |
| Runnels   | 2450 | 1100    | 29850          | 88            | 5060            | 51250 | g                    |
| Runnels   | 3280 | 1       | 19540          | 7             | 2550            | 32320 | g                    |
| Runnels   | 2600 | 1250    | 29250          | 100           | 3540            | 50398 | g                    |
| Tom Green | 5600 | 1700    | 37800          | 55            | 3200            | 80000 | δ<br>σ               |
| Tom Green | 2575 | 1150    | 30800          | 460           | 4040            | 55000 | g<br>o               |
| Tom Green | 2250 | 850     | 28400          | 153           | 4680            | 45451 | 80<br>80<br>80<br>80 |
| Tom Green | 3390 | 177     | 27430          | 560           | 3810            | 45500 | ნ<br>თ               |
| Tom Green | 4400 | 1170    | 30900          | 300<br>0      | 2280            | 57430 | g                    |
| Tom Green | 3850 | 6       | 19800          | 399           | 1840            | 42000 | g<br>g               |
| Tom Green | 1820 | 800     | 26180          | 286           | 3000            | 45050 | g                    |
|           | 1920 | 500     | 20100          | 200           | _ 000           | T3030 | 5                    |
|           |      |         |                |               |                 |       |                      |

Core Laboratories, Inc., 1972 Richter and Kreitler, 1985

b

Willis, 1954 С

d

e

Laxson, and others, 1960 Price, 1978 Aqua Science Lab, San Angelo

Texas Railroad Commission, San Angelo

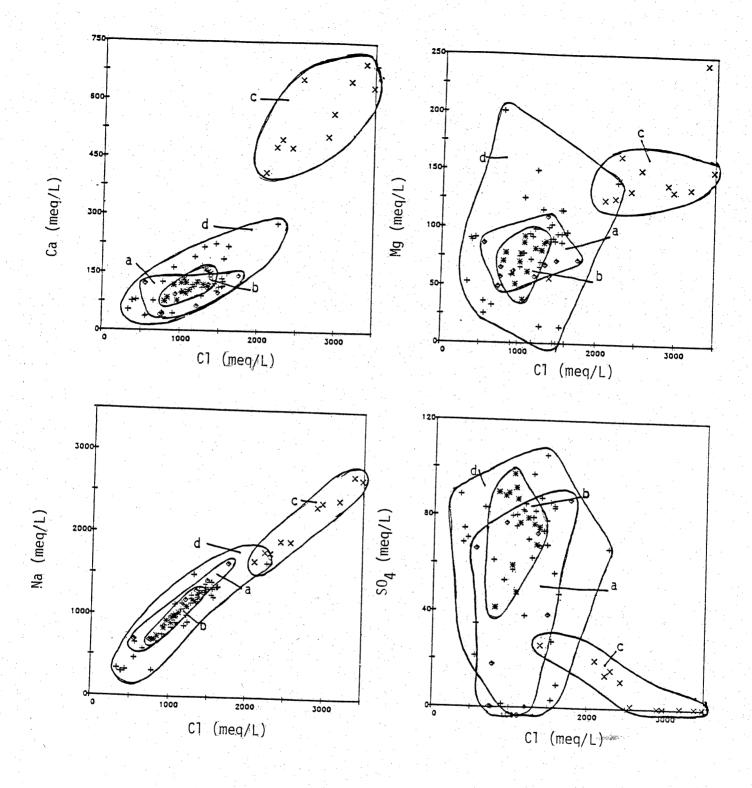



Figure 20. Plots of Ca, Mg, Na, and SO<sub>4</sub> versus Cl in (a) San Angelo/San Andres/Clear Fork subsurface brines, (b) in Coleman Junction brines, (c) in Canyon/Strawn and Wolfcamp brines, and (d) in brines from surface leaks and of unknown origin (see table 5).

leaky injection wells, leaky tank batteries, flowing core holes, abandoned exploration holes, and so forth, in Irion, Runnels, Concho, and Tom Green Counties generally have lower ionic concentrations than brines in Pennsylvanian units but overlap with Coleman Junction and San Angelo/San Andres/Clear fork brines (fig. 20).

## Brine-Disposal Pits

Geometric means of water/oil ratios were used to estimate brine volume produced before 1969, the year unlined surface disposal pits were banned. The water/oil ratios appear to slightly increase from 1953 to 1969 (fig. 21a), as is commonly observed over the life of oil fields. According to data reported in Form W-10, water/oil ratios derived from compiled salt-water surveys lie within one standard deviation of the geometric mean ratio. The best estimate of cumulative brine production before 1969 in Tom Green and Irion Counties is 7 to 8 million bbl (fig. 21b). If spread uniformly across the two counties, the average annual production of salt water would form a 0.0004-inch-thick (0.0009-cm) layer. In comparison, natural specific discharge of ground water from the Permian Basin has been estimated at 0.43 inch/yr (1.08 cm/yr) (R. Senger, personal communication, 1987). Therefore, the volume of salt water disposed of in brine-disposal pits is much less than the volume of natural discharge. However, brine-disposal pits constitute highly saline point sources, whereas natural discharge is widespread and has much lower concentration gradients. Therefore, local impacts of brine-disposal pits may be significant.

On aerial photographs taken during 1964, 10 general areas of active, brine-filled pits were identified (fig. 22). No field check of these sites was performed,

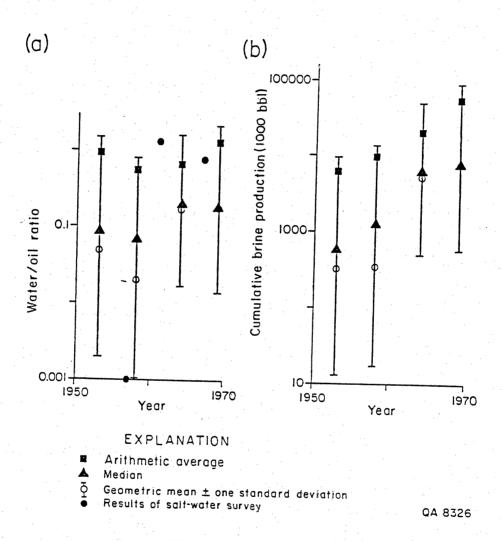



Figure 21. Estimates of (a) water/oil ratios from Form W-10 and salt-water surveys and (b) projected volume of brine produced in Tom Green and Irion Counties, derived by multiplying cumulative oil production by water/oil ratios.

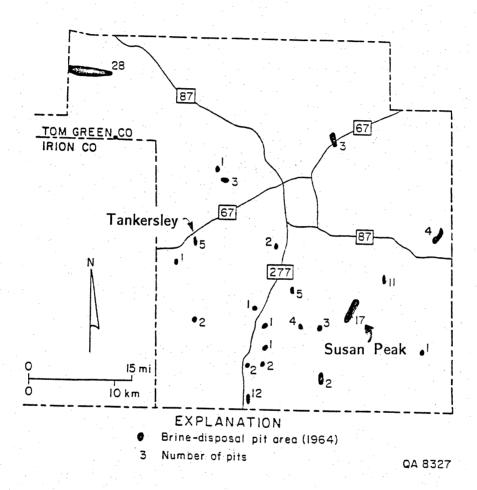



Figure 22. Active brine-disposal areas identified on photographs taken during 1964.

erabelgist in

and these sites probably were not the only disposal sites being used at the time. Figure 22 does not show all sites of disposal pits abandoned before and after 1964, many of which are still visible because of the lack of vegetation cover.

Disposal of brine into unlined surface pits was discontinued in the late 1960's after brine contamination of shallow ground water was traced to the pits, indicating that most of the brine pumped into the pits did not evaporate. For example, Reed (1961) traced plumes of brine contamination in Mitchell and Scurry Counties, Texas, that extended from disposal pits along the direction of groundwater flow. When disposal of brine into surface pits stopped in 1969, flushing and dilution of polluted soil and ground water began near the pits.

To determine if salt water is still being flushed out and if a pollution hazard still exists owing to the amount of salt water that remains in or above shallow ground water, three abandoned brine-disposal pits were tested for soil chlorinity and chemical characteristics of shallow ground water beneath the pits.

Between 1952 and 1967 approximately 100,000 bbl of brine were deposited in up to 5 ponds in one area 2 mi (3.2 km) east of Tankersley (fig. 22). The site of the abandoned pits is now covered by vegetation, but drilling at this site revealed evidence of previous brine disposal. An oily smell was noticed in the upper 3 ft (1 m) below land surface, and ground water at the water table at a depth of 46 ft (14 m) was highly mineralized (CI=20.750 mg/L) (no. 9, table 3). Chloride concentrations in soil samples were highest from 5 ft to 10 ft (1.5 to 3 m) below land surface and lowest at the water table (fig. 23). Salt water also seeped into a test well at a depth of 24 ft (7 m) in an abandoned disposal pit in Susan Peak Field, southeast Tom Green County (fig. 24). The amount of water from the seep and salinity (CI=13.070 mg/L) of the water (no. 24, table 3) were lower than

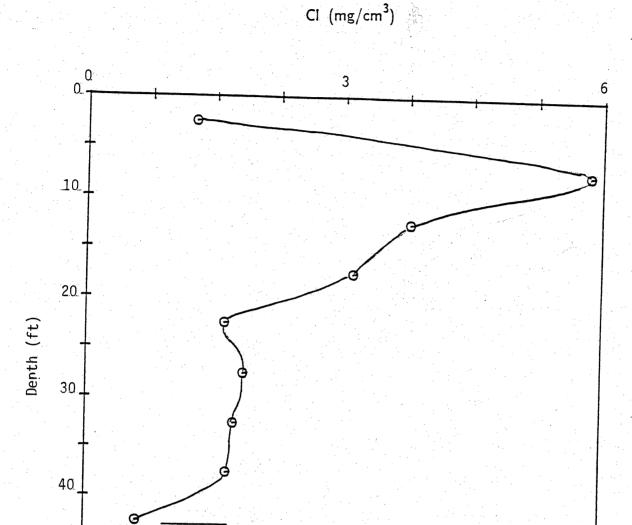



Figure 23. Chloride concentration in soil underlying abandoned brine-disposal pit no. 9 near Tankersley (see figs. 10 and 22). Bar indicates water table at a depth of 46 ft (14 m).

50

TANKERSLEY

those at the test well in the pit near Tankersley. The chloride profile with depth indicates that chloride concentrations in the soils are smaller at the Susan Peak site and peak in chloride concentration at the depth of the seep rather than near land surface (fig. 24). At the Tankersley site, chloride concentrations were lowest at the water table. This suggests that brine at the Tankersley abandoned pit has been diluted and flushed from the soil. The water sample obtained at the Susan Peak abandoned pit seems to be percolating downward more slowly through the carbonate rock matrix. No water was encountered during drilling at a second abandoned brine-disposal site in the Susan Peak Field (fig. 24b). Soil chlorinity at the second site was much smaller than at the other disposal pits (fig. 24). The total amount of brine pumped into surface ponds and the duration of disposal-pit operation at any of the Susan Peak Field leases are unknown.

# Abandoned Deep Exploration Holes

Pathways for upward movement of salt water into shallow aquifers occur in old, deep exploration wells that were not plugged or were inadequately plugged by present standards. These wells include those drilled for water and hydrocarbons. Marshall (1976) reported that during the severe drought in 1953 many water wells west of San Angelo were drilled to depths of 500 ft (150 m) and that after salt water was encountered many of those holes were abandoned but not plugged. Locations of these wells were not given by Marshall (1976). A search among hundreds of drillers' logs of water wells in western Tom Green County did not confirm that water exploration wells were commonly drilled deep and that salt water was encountered. Local water-well drillers and the representative of a well-service business, all having decades of experience in the study area, could recall

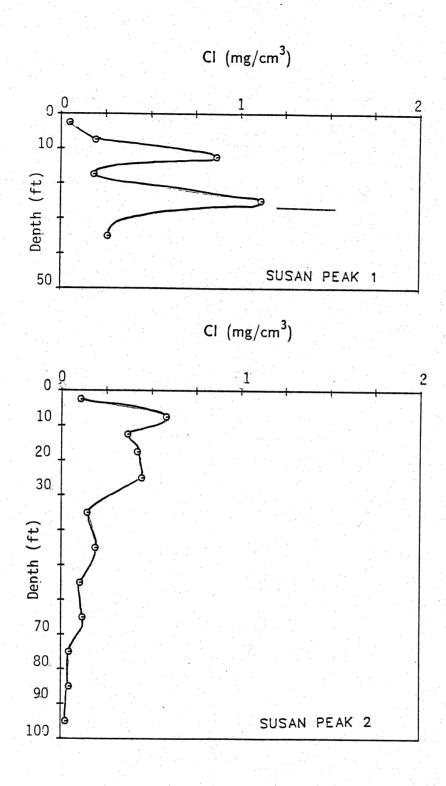



Figure 24. Chloride concentration in soil underlying abandoned brine-disposal pits no. 24a and no. 24b in the Susan Peak Field (see figs. 10 and 22). Bar indicates water table at a depth of 24 ft (7.3 m).

---

only a few such deep drillings. Specific deep water wells could not be located. Therefore, in the following discussion of deep holes, only those holes that were drilled for exploration of oil and gas resources are considered.

In Tom Green County, more than 1,000 deep oil exploration wells have been drilled and abandoned because no oil or gas was found (fig. 25). Many of these wells were drilled and abandoned before regulations for drilling and plugging to protect water resources were implemented. Brine contamination from inadequately plugged holes can be extensive where it remains undetected. For example, Reed (1961), mapped the extent of salt-water pollution caused by an unplugged dry hole that leaked brine into shallow ground water for 22 years. Ground water beneath an estimated 400 to 600 acres (1.6 to 2.4 km<sup>2</sup>) of land had been affected by salt water from this hole (Reed, 1961).

Excluding areas where Cretaceous rocks overlie older strata (fig. 1), required depths of surface casing (established by Texas Department of Water Resources) vary between 150 ft (45 m) and 350 ft (105 m) below land surface. Brine flow from the overpressured Coleman Junction Formation from other brine-bearing formations to land surface is possible where an artificial pathway is provided. Therefore, correct depths of cement plugs and surface casing in abandoned holes are important for protecting ground-water resources.

To test for possible leakage of brine from an abandoned exploration borehole, a hole having a shallow surface-casing depth and no plug was selected between the Coleman Junction Formation and the base of surface casing, according to plugging report no. 53 (appendix 3, figs. 11 and 26). The hole had been drilled to a depth of 6,212 ft (1,890 m) in 1955 and was plugged within 30 days after drilling was completed. The reported plugging consisted of one plug made of 5

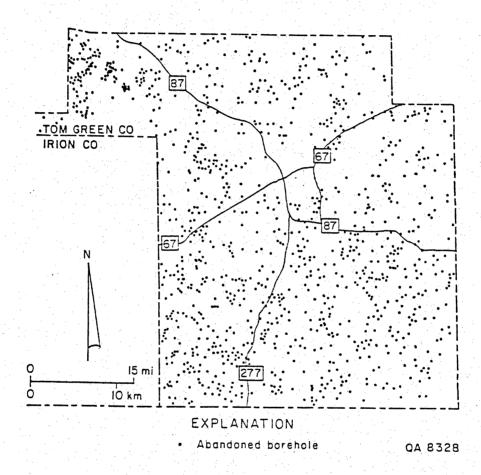



Figure 25. Location of abandoned exploration boreholes for oil and gas in Tom Green County.

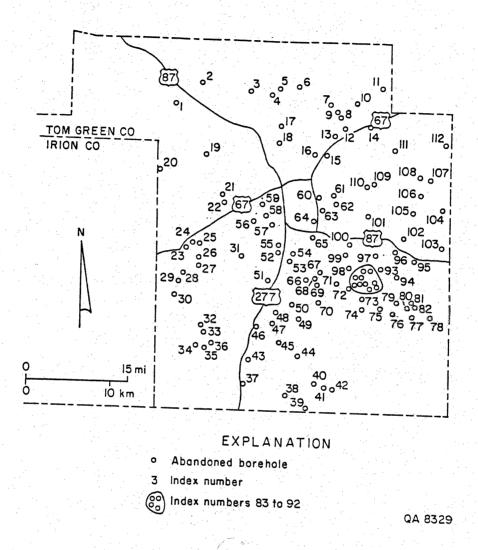
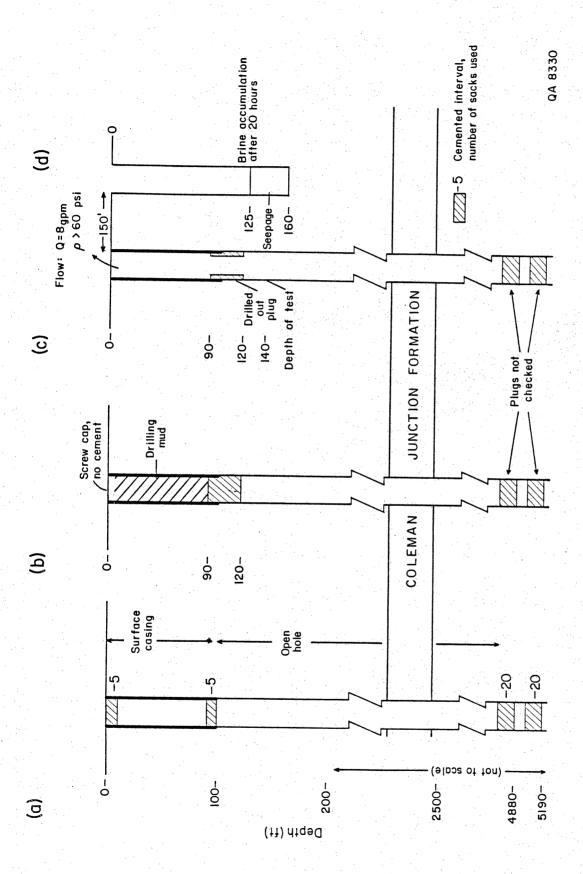




Figure 26. Location of abandoned exploration boreholes with plugging reports that were inventoried during this study (appendix 3).

sacks of cement at the top of the well, a second plug made of 5 sacks at the base of surface casing at a 100-ft (30-m) depth, and two plugs made of 20 sacks of cement each at 4,880-ft (1,490-m) and 5,190-ft (1,580-m) depths (fig. 27a). Drilling mud stood in the hole from 1 ft (0.3 m) below the capped wellhead to 90 ft (27 m) below the top of surface casing (fig. 27b), at which depth a 30-ft (9-m) plug was found. Drilling mud and water were then bailed from the borehole to lower water level to 140 ft (42 m) below land surface. Within 30 minutes, hydrogen-sulfide brine began to flow at land surface from the borehole at a rate of 8 gal/min (0.5 L/sec) at a surface pressure of greater than 60 psi (414 kPa). Chloride concentration in a sample (no. 22, table 3) obtained after mud was bailed from the well and the flowing water clarified was 29,160 mg/L. To check for possible leakage of brine from this abandoned borehole, a 160-ft-deep (48-m) test hole was drilled approximately 150 ft (45 m) north and down gradient of the brine well (fig. 27d). No major water-bearing units were encountered during drilling, but a seep was detected at approximately 127 ft (38 m) below land surface. After 24 hours, 35 ft (10 m) of water had collected in the borehole from this seep. The water sample (no. 21, table 3) was a hydrogen-sulfide brine with a lower chloride concentration (19,380 mg/L) than that in the adjacent abandoned borehole. Sample nos. 21 and 22 plot at identical concentration percentages of major cations and major anions in a Piper plot (fig. 11), indicating that they are the same water type. Concentration ratios of major anions and cations for the two samples indicate that sample no. 21 resulted from dilution of sample no. 22; the ratio of brine to diluting water was approximately 3:2. Concentrations of bicarbonate and bromide do not follow this dilution trend.



21. Washington County School Land lease. (a) Condition according to of abandoned hole. (d) Shallow test hole no. 21 drilled 150 ft (45 m) plugging report. (b) Actual condition of abandoned hole. (c) Testing Schematic diagram of abandoned borehole no. 22 and test well no. away from abandoned borehole (borehole 22 of table 3 is identical with abandoned borehole 53 of appendix 3). Figure 27.

#### DISCUSSION

# Hydrochemical Facies and Salinity

Ca-HCO<sub>3</sub> hydrochemical facies (fig. 8a) most likely originates from reaction of recharging water with calcite (CaCO<sub>3</sub>) and dolomite [CaMg(CO<sub>3</sub>)<sub>2</sub>] in Cretaceous carbonate rocks beneath plateaus that flank the Concho River valley. Na-HCO<sub>3</sub> and mixed-cation-HCO<sub>3</sub> hydrochemical facies (fig. 8b) develop as ground water flows through Cretaceous rock toward discharge areas in the Concho River valley (fig. 9). The change from Ca-HCO<sub>3</sub> facies to Na-HCO<sub>3</sub> and mixed-cation-HCO<sub>3</sub> facies is probably due to ionic exchange of dissolved calcium for sodium adsorbed on clays that are disseminated within the limestones and form partings between limestone beds. Solution of dolomite continues along the flow path and most likely accounts for the increased magnesium concentration.

Na-CI (fig. 8d) and Ca-SO<sub>4</sub> (fig. 8c) hydrochemical facies coincide with Permian formations beneath the Concho River valley and probably reflect discharge of the naturally occurring saline ground water that flows eastward within Permian rocks across West Texas. The mixed-ion composition of ground water prevalent in Concho River valley alluvium (figs. 8f and 9) may originate from mixing of (1) ground water that is discharged from Permian and Cretaceous formations and (2) ground water that is locally recharged to the alluvium from precipitation, irrigation, and seepage from rivers and streams. Lee (1986) hypothesized that the salinity increase during the early 1950's was caused by recharge from evaporatively concentrated irrigation water. Overproduction of ground water for irrigation during the drought of the early 1950's also might have decreased hydraulic head in shallow aquifers and increased the amount of subsurface brine that discharged from the regional flow system and mixed with shallow ground water.

Locally occurring Na-Cl. Ca-SO<sub>4</sub>, Ca-mixed-anion, and Na-mixed-anion hydrochemical facies have an anomalous distribution within regionally defined hydrochemical facies (fig. 9). Some of these samples probably reflect point-source contamination of ground water; other samples probably were collected from deep wells that tapped an aquifer other than the principal one in a given area.

# Anomalous Chemical Composition and Definition of Brine Source

Among all samples, irrespective of hydrochemical facies, chloride concentration is closely correlated with sodium concentration (fig. 28), indicating that most ground water in the study area has been influenced by varying amounts of Na-Cl water. Subsurface brines collected during this study form an end member of the Na-Cl trend. The geographically anomalous samples of Na-Cl, Ca-SO<sub>4</sub>, and mixed-anion hydrochemical facies that were previously mentioned are intermediate in salinity between fresh-water samples and subsurface brines.

Ratios of  $\text{CI/SO}_4$  versus  $\text{SO}_4$  ions are inversely related among subsurface brine samples (fig. 29); as is commonly observed, sulfate concentrations are low in brines with the highest chlorinity. A similar inverse trend exists among all ground-water samples from aquifers in the study area; although there is considerable scatter, the negative slope of the shallow ground-water data is statistically significant. The San Andres/San Angelo/Clear Fork and Coleman Junction brine end member in the  $\text{CI/SO}_4$  versus  $\text{SO}_4$  plot is similar to shallow ground water with the highest  $\text{SO}_4$  concentrations and lowest  $\text{CI/SO}_4$  ratios and is also similar to some of the anomalous Na-CI, Ca-SO<sub>4</sub>, and mixed-anion hydrochemical facies.

A plot of  $CI/SO_4$  versus Na/Ca ratios of ions in the shallow ground waters (fig. 30) shows a positive slope that reflects the influence of Na-Cl facies (fig. 29).

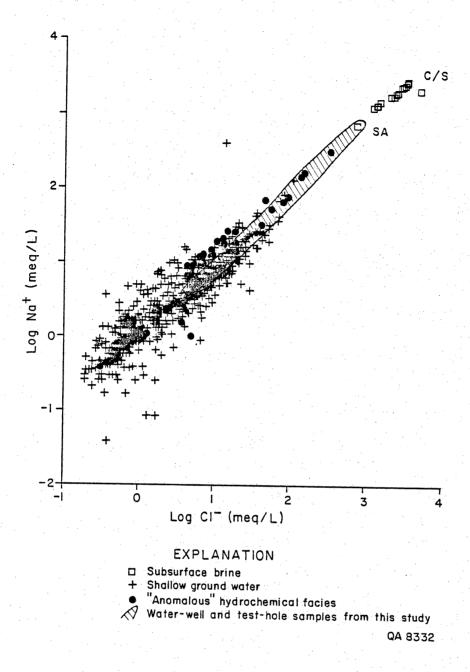



Figure 28. Variation in dissolved sodium and chloride in shallow ground waters and subsurface brines in Tom Green and eastern Irion Counties.

Geographically anomalous samples of Na-Cl and Ca-SO<sub>4</sub> hydrochemical facies plot between shallow ground water and subsurface brines.

Water-well and test-hole samples collected during this study also plot close to shallow subsurface brines from these brine units. Brine end members marked by: SA - San Andres/San Angelo/Clear Fork, C/S - Canyon/Strawn, and W - Wolfcamp.

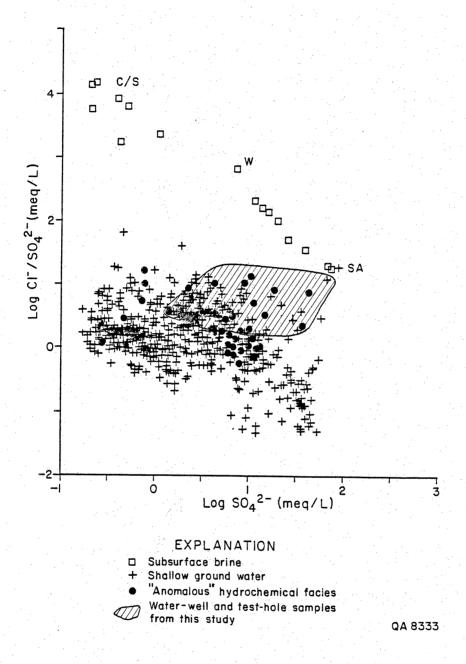



Figure 29. Variation in Cl/SO<sub>4</sub> ratio with SO<sub>4</sub> concentration in shallow ground waters and oil field brines in Tom Green and eastern Irion Counties. Anomalous samples of Na-Cl and Ca-SO<sub>4</sub> hydrochemical facies in shallow ground water are marked by solid circles. Brine end members as identified in figure 28.

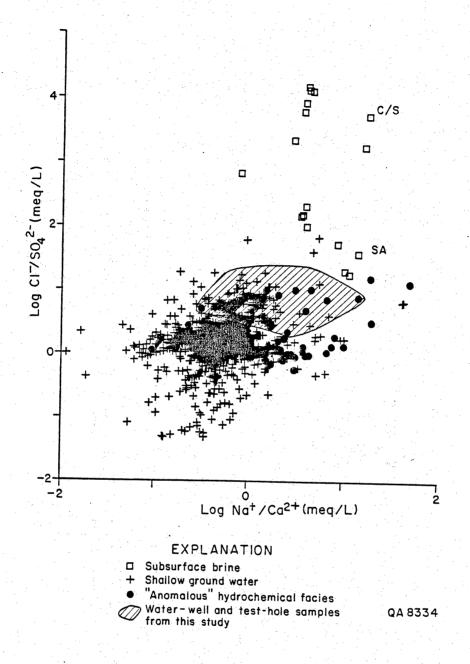



Figure 30. Variation in CI/SO<sub>4</sub> and Na/Ca ratios in shallow ground waters and oil field brines in Tom Green and eastern Irion Counties. Brine end members as identified in figure 28. Anomalous samples of Na-Cl and Ca-SO<sub>4</sub> hydrochemical facies in shallow ground water are marked by solid circles.

Samples of anomalous Na-Cl and Ca-SO<sub>4</sub> waters from shallow aquifers again are more similar to the San Andres/San Angelo/Clear fork end member of subsurface brines than to the Canyon/Strawn end member. The same association of shallow ground water and the San Angelo/San Andres/Clear fork end member is shown by plotting Br/Cl ratios versus Cl (fig. 16). Low Br/Cl ratios in high-Cl ground waters seem to eliminate Pennsylvanian brines as possible salt-water sources for mixtures with shallow ground water. The similarity between the most saline shallow ground water, ground water with geographically anomalous hydrochemical facies, and the San Andres/San Angelo/ Clear Fork end member of subsurface brines that is shown on many different plots (figs. 16 and 28 through 30) suggests that anomalous waters result from discharge of brines from the San Angelo/San Andres/Clear Fork or the Coleman Junction units into shallow ground water.

## Investigation of Salinization Mechanisms

Waters were previously defined as anomalous based on their geographic distribution within regionally prevalent hydrochemical facies. This includes samples with high and low chloride concentrations. Mixing of subsurface brine with shallow ground water and sources of brine can be detected most readily at high chloride concentrations (Richter and Kreitler, 1985). Therefore, shallow ground waters with chloride concentrations higher than average were sampled to investigate salinization mechanisms.

Water samples from wells and test holes are intermediate between low-CI shallow ground water and subsurface brines in all the preceding plots: Na versus CI (fig. 28) and  $CI/SO_4$  versus  $SO_4$  (fig. 29) and ratios of Na/Ca (fig 30).

Therefore, waters with high chlorinity follow the trend of samples with anomalous hydrochemical facies and are more similar to subsurface brines from the San Angelo/San Andres/Clear Fork end member and to brines from the Coleman Junction Formation than to brines from Pennsylvanian units. The low Br/Cleratio of the saline samples (fig. 16) also supports this association. But because San Angelo/San Andres/Clear Fork brines and brines from the Coleman Junction Formation (fig. 20) are not readily distinguishable, it is impossible to identify a brine source within Leonardian or Guadalupian units (table 1) or to determine the dominant mixing mechanism responsible for high-saline ground waters in Tom Green County. Possible mixing mechanisms are (1) natural discharge of salt water from the San Angelo, San Andres, and Clear Fork units in western Tom Green County, (2) discharge of the same units through unplugged water wells that were drilled into saline portions of these units, (3) discharge of Coleman Junction brine through insufficiently plugged deep holes, and (4) continued leakage of salt water from soils into shallow ground water under sites of former brine disposal. These mixing mechanisms are discussed in the following sections.

### Deep Water Wells

Deep water wells probably are not major contributors to salt-water problems in Tom Green County. No written records of such deep wells exist, and on the basis of informal surveys of well drillers, it can be assumed that the actual number of wells is relatively small. Where they occur, unplugged deep water wells may pose a local salinization hazard.

# Natural Discharge of Salt Water from San Angelo Formation

Two test holes were drilled into the San Angelo Formation to test the natural salinity of its ground water. All three samples were saline with chloride concentrations ranging from 5.280 mg/L to greater than 30.000 mg/L, and hydraulic head was high enough for salt water to flow to land surface from one of the test holes. Willis (1954) reported a similar saline water with a chloride concentration of 29,500 mg/L from a 122-ft-deep (37-m) well approximately 2.5 mi (4 km) southwest of test hole no. 5 (fig. 10). The 1948 collection date of this sample preceded oil exploration drilling in the area. Therefore, it can be assumed that samples collected from test hole no. 5 and the sample reported by Willis (1954) are representative of shallow saline ground water from the San Angelo Formation, that salt water in the San Angelo Formation at shallow depths tends to be naturally saline, and that the San Angelo Formation could be a major contributor to the salinity of shallow ground water.

#### Abandoned Brine-Disposal Pits

High-salinity ground water was encountered at shallow depths in two of three tested abandoned brine-disposal pits. The total mass of chloride in storage beneath abandoned pits can be estimated from average soil chlorinity and average pit size. Chloride concentrations in soil underlying pit no. 9 near Tankersley vary, from 0.6 mg/cm<sup>3</sup> at depths from 40 to 45 ft (12 to 13.5 m) to 5.8 mg/cm<sup>3</sup> at depths of 5 to 10 ft (1.5 to 3 m) (table 6; fig. 23). In contrast, chloride content of soil in the upper 20 ft (6 m) of test hole no. 7 outside the pit area is only 0.007 mg/cm<sup>3</sup> (table 6). At an average chloride content of 2.4 mg/cm<sup>3</sup> (table 6) of soil and a size for the former five ponds of approximately 120 ft x 180 ft (36 x

Table 6. Chloride concentration in soils under abandoned brine-disposal pits.

| Location      | Depth Interval (ft) | Chloride <sub>3</sub><br>(mg/cm <sup>3</sup> ) |
|---------------|---------------------|------------------------------------------------|
| Tankersley    | 0-5                 | 1.26                                           |
|               | 5-10                | 5.86                                           |
|               | 10-15               | 3.77                                           |
|               | 15-20               | 3.11                                           |
|               | 20-25               | 1.62                                           |
|               | 25-30               | 1.85                                           |
|               | 30-35               | 1.74                                           |
|               | 35-40               | 1.66                                           |
|               | 40-45               | 0.61 (Water)                                   |
| Susan Peak #1 | 0-5                 | 0.05                                           |
|               | 5-10                | 0.19                                           |
|               | 10-15               | 0.86                                           |
|               | 15-20               | 0.18                                           |
|               | 20-30               | 1.12 (Seep)                                    |
|               | 30-40               | 0.26                                           |
| Susan Peak #2 | 0-5                 | 0.11                                           |
|               | 5-10                | 0.58                                           |
|               | 10-15               | 0.34                                           |
|               | 15-20               | 0.42                                           |
|               | 20-30               | 0.44                                           |
|               | 30-40               | 0.14                                           |
|               | 40-50               | 0.19                                           |
|               | 50-60               | 0.10                                           |
|               | 60-70               | 0.12                                           |
|               | 70-80               | 0.04                                           |
|               | 80-90               | 0.04                                           |
|               | 90-100              | 0.03                                           |

55 m), there is an estimated 66 metric tons of chloride in the soil beneath the five abandoned pits and above water table at a water depth of 45 ft (14 m). This is approximately 4% of the total amount of dissolved chloride (approximately 1.500 metric tons in 100,000 bbl of brine from Pennsylvanian reservoirs) that was pumped into disposal ponds in this area between 1952 and 1967. However, the 66 metric tons represent a significant, long-term salinization potential. Assuming the ground-water recharge rate is 1 inch/yr (2.5 cm/yr) (recharge estimates for the Texas High Plains range from 0.5 to 1.6 inches/yr; R. Nativ, personal communication, 1987) and assuming that chloride is leached from the soil to produce salt water with a constant CI concentration of 20,000 mg/L (as in sample no. 9), it would take more than 60 years to reduce chloride concentrations in the soil to the levels measured in soil away from the abandoned disposal pits.

Present chloride concentrations in soils under former disposal pits are not always as high as those beneath the Tankersley pits. For example, maximum concentrations of 0.7 and 1.3 mg/cm<sup>3</sup> were measured in soil samples from two disposal pits at the Susan Peak Field in southeastern Tom Green County (table 6, fig. 24). However, chloride content of one seep sample (no. 24, table 4) obtained at a shallow depth was high. The Susan Peak brine-disposal pits that were tested appear to be inactive in aerial photographs taken in 1964. Many brine-disposal ponds existed in the Susan Peak Field, but duration of brine disposal and the amount of brine pumped into tested pits are unknown. It is possible that less brine volume was disposed into the Susan Peak Field pits than into Tankersley pits, which could explain the differences in soil chlorinity.

In the Tankersley area, leakage of salt water from the soil underlying the former pits into shallow ground water may have spread a considerable distance.

Sample no. 9 obtained in a conglomerate bed at 46 ft (14 m) directly below the pit floor, had a chloride concentration of 20,750 mg/L. A water sample (no. 10, table 3) from a 40-ft-deep (12 m) hole drilled approximately 0.5 mi (0.8 km) east of test hole no. 9 had a chloride concentration of 12,190 mg/L; this sample was obtained from a gravel bed at 24 ft below land surface. In plots of Ca, Mg, Na, and SO<sub>4</sub> versus chloride (fig. 31), sample no. 10 lies intermediate between sample no. 9 and samples obtained from test hole no. 7, which was drilled approximately 300 ft (90 m) west of the Tankersley pit no. 9. Because ground-water flow in this area is from west to east (Lee, 1986), transport of salt water from the former pits is mainly toward the east. Along the flow path, salinity of the salt water contaminant plume decreases as the salt water spreads out and becomes diluted. Samples from test hole no. 7 are less affected by this spread because test hole no. 7 is located up gradient (300 ft [90 m]) from the abandoned pits.

In 1978, the District Office of the Railroad Commission of Texas analyzed water samples from 21 water wells located between Tankersley and Twin Buttes Reservoir. In plots of Ca, Mg, Na, and SO<sub>4</sub> versus Cl, the trend of these samples consistently differs from the trend defined by sample nos. 7, 9, and 10 (fig. 31). Therefore, sample nos. 7, 9, and 10 are anomalous for this area. Leaching of salt from beneath abandoned disposal pits might account for this anomalous water composition. Richter and Kreitler (1985) concluded that the high salinity of a water sample (their no. 39) from a well approximately 1,000 ft (300 m) south of the abandoned brine-disposal pit no. 9 most likely resulted from the mixing of shallow ground water and subsurface brine. Four additional samples from this well were obtained by the Railroad Commission of Texas in 1985 following the Richter and Kreitler (1985) report. Chemical composition of these samples does not follow the trend indicated by other water samples but does fit the trend defined by

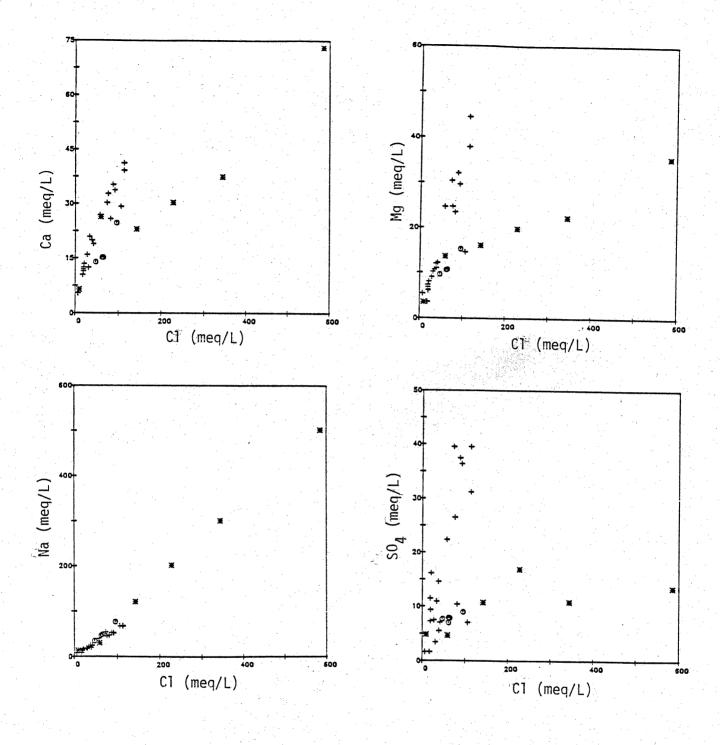



Figure 31. Plots of Ca, Mg, Na, and SO<sub>4</sub> concentrations versus Cl in shallow ground water in the Tankersley area. Data sources are:

+ - Railroad Commission of Texas records; o - well no. 39 (Richter and Kreitler, 1985); and \* - test holes 7, 9, and 10.

sample nos. 7. 9. and 10 (fig. 31). This would indicate that the subsurface brine that affected ground-water composition at well no. 39 possibly derived from leaching of salt from the abandoned brine-disposal pit.

# Abandoned Exploration Holes

Abandoned dry holes provide a pathway for subsurface brine to contaminate shallow ground-water where surface-casing depth and location of plugs are inadequate to prevent brine discharge. Cases of brine flow at land surface and contamination of shallow ground water have been investigated by the Railroad Commission of Texas; 11 wells were reentered and plugged in Tom Green County during 1984 to 1987. Some exploration holes had never been plugged. Other boreholes had inadequate plugs. At test hole no. 22 (current study), brine leaked from the uncased section of the hole into test hole no. 21, 150 ft (45 m) away (fig. 27).

Similar conditions may exist in other deep exploration boreholes that were abandoned more than 25 years ago. Abandoned boreholes that possibly allow Coleman Junction brine to flow upward into permeable units at shallow depths appear to be most concentrated in southeastern Tom Green County (fig. 26). Test drilling was performed in this area to detect possible brine leakage from abandoned exploration boreholes. Current regulations specify that surface casings extend to depths from 150 to 350 ft (60 to 105 m) below land surface, which reflects the approximate depth to the base of fresh water in this area. In 1985, the Railroad Commission of Texas at San Angelo studied abandoned exploration holes in the area after a ground water was encountered with an unusually high chloride concentration of 4,676 mg/L at a depth of 75 ft (23 m). An abandoned exploration hole (no. 90, app. 3) with surface casing extending to a 240-ft (73-m)

depth and a reported cement plug at depths of 204 to 248 ft (62 to 75 m), was suspected as the source of salt water approximately 1 mi (1.6 km) south of the contaminated well. The abandoned hole was reentered and replugged by the Railroad Commission of Texas. During the present study, an identical saline water (CI=4.450 mg/L) was obtained at 75 ft (23 m) from test hole no. 23, drilled at the site of the contaminated and plugged water well. This suggests that brine is still moving through the shallow subsurface in this area. Among several holes that could allow brine leakage from the Coleman Junction Formation in this area, hole no. 88 (fig. 26; app. 3) may be the source, considering its proximity to test hole no. 23 and the shallow depth of its surface casing (170 ft [52 m]) and to reported plugging (25 sacks of cement at 195 ft [60 m]) when compared to the depth of the base of fresh water (250 to 325 ft [75 to 97 m], established by TDWR) in that area.

# CONCLUSIONS

Natural movement of salt water from the San Angelo, San Andres and Clear fork units into the shallow subsurface of western Tom Green County seems to be responsible for the regionally poor quality of shallow ground water. Brine flow from deep and overpressured formations upwards via insufficiently plugged exploration holes can affect large areas where many such wells exist. Similarly, contamination of water resources by leaching of salts from beneath abandoned brine-disposal pits can affect areas where large amounts of brine were disposed. These three saltwater sources affect shallow ground-water quality in parts of Tom Green County, Texas. The chemical composition of the likely sources of salt water are similar; the similarity prevents the distinction of salt-water sources for most cases of

pollution. Therefore, contamination from natural and man-made sources can be separated only by deductions based on the natural hydrogeological settings and historical records of drilling activities and brine disposal.

Poor-quality ground waters in shallow aquifers in Tom Green and eastern Irion Counties, Texas, are chemically most similar to subsurface brines from the San Andres. San Angelo, and Clear Fork units. The subsurface brines are moving eastward along regional flow paths and are discharging into shallow aquifer systems in western Tom Green County. Evidence for discharge of brine from regional flow systems of the Permian Basin include: (1) potentiometric gradient in brine-bearing formations showing eastward flow toward formation outcrops, (2) prevalence of subsurface brine just tens of miles west of outcrops, (3) excellent correlation of Na and Cl ionic concentrations among all samples, (4) association of Na-Cl and Ca-SO<sub>4</sub> hydrochemical facies with outcrops and subcrops of Permian formations, (5) chemical similarity between subsurface brines and shallow ground water, and (6) artesian fluid potentials of these formations in test hole no. 5.

Brines from the Coleman Junction Formation flow from the deep subsurface into shallow aquifer units through inadequately plugged boreholes. Discharge of brine from the Coleman Junction Formation is expected for the following reasons.

(1) Artesian fluid potentials in this brine-bearing unit are higher than those in overlying units and are near or at land surface. (2) Brine seeped from abandoned hole no. 22 into test hole no. 21. (3) Over the past decades, several cases of brine flowing at land surface from abandoned holes in Tom Green, Concho, and Runnels Counties were reported and were attributed to flow communication between the holes and the Coleman Junction aquifer.

Leaching of salt from soils underlying abandoned brine-disposal ponds is an ongoing process two decades after this disposal method was discontinued.

Differences in salinity of soil and ground water under abandoned disposal pits are probably associated with the history of brine disposal at each site.

The existence of deep water wells that possibly allow upward flow of saline water into better quality zones could not be documented. Regionally, the potential for contamination from the few reported water wells probably does not play a significant role realtive to the other salinity sources.

Hydrochemical facies and Br/Cl, Cl/SO<sub>4</sub> and Na/Ca ratios used together help distinguish where shallow ground waters are influenced by subsurface brine being discharged from the Permian Basin regional ground-water flow system. However, because the brines in the San Angelo, San Andres, and Clear Fork units are chemically similar to brines in the Coleman Junction Formation, it is not always possible to distinguish between natural salinity and artificial contamination of shallow ground water. In western Tom Green County, natural mixtures of shallow ground water and discharging San Angelo, San Andres, and Clear Fork brines cannot be separated from mixtures of shallow ground water and Coleman Junction brine moving upward in inadequately plugged well bores. In eastern Tom Green County, where Clear Fork formations crop out, brines are not known to occur, but the Permian formations do have distinct hydrochemical facies. Instances of high salinity in shallow ground water in eastern Tom Green County most likely are associated with inflow of brine from the Coleman Junction Formation.

Chemical and isotopic analyses of shallow ground waters and subsurface brines included some constituents that proved useful for this study and others that did not meet expectations. In this study, plots of major chemical constituents such as Ca, Mg, Na, SO<sub>4</sub> and Cl and plots of Na/Cl, Na/Ca, and Cl/SO<sub>4</sub> ratios were the most useful tools used to distinguish between brines and to distinguish salt water leached from beneath abandoned brine-disposal pits from other types of salt water.

Low Br/Cl ratios in chloride-rich ground water indicate mixing between shallow ground water and subsurface brines from San Andres. San Angelo, and Clear Fork units. Information gained from oxygen ( $\delta^{18}$ O), hydrogen (H²), carbon ( $\delta^{13}$ C), and sulfur ( $\delta^{34}$ S) isotopes was similar to information gained from major ions; therefore, routine measurements in salinity investigations of this kind is not justified. The difference in concentrations of organic acids (acetate and propionate) between brines in Pennsylvanian versus San Angelo, San Andres, and Clear Fork units allows another basis for distinction. However, because the aliphatic acid anions are dilute in the subsurface brines at shallow depths and might be destroyed by bacteria in shallow aquifers, these constituents probably cannot be used to recognize sources of salinization.

# RECOMMENDATIONS

This program field tested three hypotheses on the sources of brine. Detailed testing of any one source, however, was not possible. Two areas that need additional work are the contamination potential from abandoned brine-disposal pits and the effectiveness of plugs set at different depths in a borehole in preventing brine migration to potable ground-water supplies.

To assess contamination of water resources by abandoned disposal pits, an inventory and mapping of all former sites of brine disposal is needed. Many former disposal sites can still be recognized (1) from aerial photographs, (2) in the field from a lack of vegetation cover, and (3) from questionnaires sent to operators of oil wells. Test drilling and geophysical investigations at additional sites to trace the extent of salt-water plumes moving from those sites by more detailed monitoring will help to quantify salinization hazards associated with abandoned brine-disposal pits. Abandoned disposal pits that were previously investigated

should be tested first to determine how rapidly salinity associated with the saltwater plumes is changing.

The effectiveness of plugs set at different depths needs to be investigated. Cement plugs are generally set at the base of fresh water. Surface casing is also set from land surface to the base of fresh water. In Tom Green County, plugs have also been set at the top of the Coleman Junction Formation. The importance of these Coleman Junction plugs is unknown. There are brine-bearing formations above the Coleman Junction that would be unaffected by this plug. Wells with plugs at different depths need to be monitored. A well with just a plug at the base of fresh water should be monitored, and a well with an additional Coleman Junction plug should be monitored to determine which approach effectively prevents brine migration.

#### **ACKNOWLEDGMENTS**

This investigation was funded by the Railroad Commission of Texas under contract no. IAC(86-87)-1003. Railroad Commission personnel at the San Angelo District Office assisted in locating oil wells and providing access for brine sampling. Aqua Science Lab of San Angelo generously provided results of chemical analyses. D. Pfeiffer assisted in data analysis. Chemical analyses were performed by Mineral Studies Laboratory, Bureau of Economic Geology, The University of Texas at Austin. Lower Colorado River Authority performed analyses for organic acids and University of Waterloo, Waterloo, Ontario, Canada, analyzed isotopes of oxygen, hydrogen, and carbon. Global Geochemistry Corporation, Canoga Park, California, analyzed sulfur isotopes. Many individuals in Tom Green County who gave us permission to drill test holes and to collect water samples from their wells, deserve our special thanks.

## REFERENCES

- American Association of Petroleum Geologists, 1973, Geological highway map of Texas: U.S. Geological Highway Map Series, Map No. 7.
- Back, William. 1966, Hydrochemical facies and ground-water flow patterns in northern part of the Atlantic coastal plain: U.S. Geological Survey Professional Paper 498-A, 42 p.
- Barnes, V. E., 1972, Abilene sheet: The University of Texas at Austin, Bureau of Economic Geology, Geologic Atlas of Texas, scale 1:250,000.
- 1974, San Angelo sheet: The University of Texas at Austin, Bureau of Economic Geology, Geologic Atlas of Texas, scale 1:250,000.
- Carothers, W. W., and Kharaka, Y. K., 1978, Aliphatic acid anions in oil-field waters Implications for origin of natural gas: American Association of Petroleum Geologists Bulletin, v. 62, no. 12, p. 2441-2453.
- Core Laboratories, Inc., 1972, A survey of subsurface saline water of Texas:

  Austin, Texas Water Development Board Report 157, v. 1, 113 p.
- Craig, Harmon, 1961, Isotopic variations in meteoric waters: Science, v. 133, no. 3465, p. 1702-1703.
- Dutton, A. R., and Orr, E. D., 1986, Hydrogeology and hydrochemical facies of the San Andres Formation in eastern New Mexico and the Texas Panahandle: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations No. 157, 58 p.
- Gleason, J. D., Friedman, Irving, and Hanshaw, B. B., 1969, Extraction of dissolved carbonate species from natural water for carbon-isotope analysis: U.S. Geological Survey Professional Paper 650-D, p. D248-D250.

- Hem, J. D., 1985. Study and interpretation of the chemical characteristics of natural water (3rd ed.): U.S. Geological Survey Water-Supply Paper 2254, 263 p.
- Holser, W. T., 1979, Mineralogy of evaporites, in Burns, R. G., ed., Marine minerals: Mineralogical Society of America Short Course Notes, v. 6, p. 211-286.
- Kier, R. S., Brown, L. F., Jr., and McBride, E. F., 1980, The Mississippian and Pennsylvanian (Carboniferous) Systems in the United States--Texas: The University of Texas at Austin, Bureau of Economic Geology Geological Circular 80-14, 45 p.
- Laxson, R., and others, 1960, Resistivities and chemical analyses of formation waters from the west-central Texas area: West-Central Texas Section, Society of Petroleum Engineers of American Institute of Mining, Metallurgical, and Petroleum Engineers, 21 p..
- Lee, J., 1986. Shallow ground-water conditions, Tom Green County, Texas: U.S. Geological Survey, Water-Resources Investigations Report 86-4177, 88 p.
- Lico, M. S., Kharaka, Y. K., Carothers, W. W., and Wright, V. A., 1982, Methods for collection and analysis of geopressured geothermal and oil field waters:

  U.S. Geological Survey Water-Supply Paper 2194, 21 p.
- Marshall, M. W., 1976, City of San Angelo pollution abatement program, Water Department: Memorandum to T. L. Koederitz, P. E., Water Pollution Control and Abatement Program Director.
- McNeal, R. P., 1965, Hydrodynamics of the Permian Basin, <u>in</u> Young, A., and Galley, J. E., eds., Fluids in subsurface environments: American Association of Petroleum Geologists Memoir 4, p. 308-326.
- Pool, J. R., 1972, Water well and ground-water chemical analyses data, Irion County, Texas: Texas Water Development Board Report 146, 38 p.

- Price, R. D., 1978, Occurrence, quality, and availability of ground water in Jones

  County, Texas: Texas Department of Water Resources Report 215, 224 p.
- Reed, E. L., 1961, A study of salt water pollution of the Colorado River, Scurry and Mitchell Counties, Texas: prepared for The Colorado River Municipal Water District, Big Spring, Texas, 21 p.
- Richter, B. C., and Kreitler, C. W., 1985, Sources of shallow saline ground water in Concho, Runnels, and Tom Green Counties: The University Of Texas at Austin, Bureau of Economic Geology, report prepared for the Railroad Commission of Texas under contract no. IAC(84-85)-2122, 60 p.
- \_\_\_\_\_\_ 1986, Geochemistry of salt water beneath the Rolling Plains, North-Central Texas: Ground Water, v. 24, no. 6, p. 735-742.
- Toth, Josef, 1978, Gravity-induced cross-formational flow of formation fluids, Red Earth Region, Alberta, Canada analysis, patterns, and evolution: Water Resources Research, v. 14, p. 805-843.
- Udden, J. A., and Phillips, W. B., 1911, Report on oil, gas, coal and water prospects near San Angelo, Tom Green County, Texas: Report to the Chamber of Commerce, San Angelo, Texas, 36 p.
- Whittemore, D. O., 1984, Geochemical identification of saltwater sources, <u>in</u>

  French, R. H., ed., Salinity in watercourses and reservoirs: Proceedings, 1983

  International symposium on state-of-the-art control of salinity, Salt Lake City,

  Utah, Butterworth, p. 505-514.
- Willis, G. W., 1954, Ground-water resources of Tom Green County, Texas: Austin, Texas Board of Water Engineers Bulletin 5411, 100 p.
- Wirojanagud, Prakob, Kreitler, C. W., and Smith, D. A., 1986, Numerical modeling of regional ground-water flow in the Deep-Basin Brine aquifer of the Palo Duro Basin, Texas Panhandle: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations 159, 68 p.

Work Projects Administration 1941. Tom Green County, Texas - records of wells and springs, drillers' logs, water analyses, and map showing locations of wells and springs: Austin, Texas Board of Water Engineers, Work Projects Administration Project 17279, 80 p.

Appendix 1. Chemical composition of shallow ground water in Tom Green and eastern Irion Counties.

|          |        | <b>a</b>       | 7       | -        | 7       | -       | 7       | -       | _        | 7       | 7         | _         | _        | ┌┤           | -         | -         | 7         | -       | _       | -        | -          | _         | -       | _         | 7            | _       | _       | -       | 7         | 7         | 7        | T       | 7           |
|----------|--------|----------------|---------|----------|---------|---------|---------|---------|----------|---------|-----------|-----------|----------|--------------|-----------|-----------|-----------|---------|---------|----------|------------|-----------|---------|-----------|--------------|---------|---------|---------|-----------|-----------|----------|---------|-------------|
|          |        | <              | 13      | -        | 13      | -       | 13      | -       | 16       | 13      | တ         | 13        | 13       | တ            | 14        | 13        | 13        | -       | _       | 13       | -          | 13        | 13      | 18        | 16           | -       | 13      | 15      | -         | 13        | 0        | 13      | <b>н</b> `` |
|          |        |                |         |          |         |         |         |         |          |         |           |           | ٠.       |              |           |           |           |         | :<br>:  | ٠.<br>:  |            |           |         |           |              |         |         |         |           |           |          |         |             |
| Land     | tion   | (ft)           | 2210    | 2150     | 2055    | 2070    | 2060    | 2090    | 2115     | 2115    | 2190      | 2160      | 2040     | 2020         | 2020      | 1990      | 2015      | 2085    | 2020    | 2010     | 2020       | 2000      | 2010    | 1960      | 1975         | 2040    | 2040    | 2080    | 1980      | 1990      | 1985     | 1990    | 1980        |
| <u>•</u> | ţ      |                |         | -        | _       | :_      |         | _       | _        | _       |           | _         |          |              | _         | _         | _         |         |         | _        | _          | _         |         |           | _            |         |         |         | _         |           |          |         |             |
| Sample   | depth  | (ft)           | 8       | 8        | 36      | 99      | 99      | 99      | 146      | 100     | 8         | 2         | 8        | 45           | 99        | 48        | . 66      | 140     | 26      | 26       | 99         | 86        | 100     | 4         | 56           | 8       | 82      | 108     | 99        | . 65      | 65       | 9       | 75          |
| 3 T      | ٠.     |                |         |          |         |         |         |         |          |         |           |           |          |              | 1         |           |           |         |         |          |            |           |         |           |              |         |         |         |           |           | ÷.       |         |             |
|          | E      | tion*          |         | ,        |         | 1       |         | ı       | 1        |         | ì         | ,         | ,        |              | 1         |           |           |         |         | 1        |            |           |         |           |              |         |         |         |           |           |          |         |             |
|          | Ŗ      | 4              |         |          |         |         |         |         |          |         |           |           |          |              |           |           |           |         |         |          |            |           |         |           |              |         |         | ł.      |           |           |          |         |             |
|          | •      | 131            | 9       | 9        | 9       | 6       | 40      | 40      | 40       | 40      | 40        | 40        | 9        | 6            | 40        | 38        | 40        | 40      | 9       | 9        | 9          | 40        | 94      | 40        | 40           | 39      | 6       | 94      | 40        | /40       | 6        | 9       | 40          |
|          | Sample | date           | 12/     | 12/03/   | 12/04/  | 10/01/  | 12/02/  | 02/     | 29/      | 762     | 11/29/    | 09/12/    | 12/      | 11/          | 09/10/    | 18/       | /90       | 05/     | /90     | 12/05/   | /90        | 12/08/    | 01/     | /90       | 01/          | `       | 01/     | 11/29/  | 12/02/    | 12/02/    | 2/05/40  | 2/02/40 | 2/02/       |
|          | S      | 7              | 09/12   | 12/      | 12/     | 10/     | 12/     | 12/02   | 11/29    | 11/29   | 11/       | 60        | 09/12/   | 09/11        | 60        | 02/       | 12/       | 12/     | 12/     | 12/      | 12/        | 12/       | 10/01/  | 12/08/    | 10/01        | 04/07   | 10/01   | 11/     | 12/       | 12/       | 12/      | 12/     | 12/         |
|          |        | 표              |         |          |         |         | 1       | i       |          | 1       |           | 1         | i        | ,            | ı         | 1         |           | ı       |         |          | ı.         |           | 1       |           | í            | ı       | Ţ       | ı       |           | ,         |          | ı       | 1           |
|          |        |                |         |          |         | 60      | 03      |         |          |         |           |           |          |              |           |           |           |         |         |          |            |           |         |           | 60           |         |         |         |           |           |          |         |             |
|          |        | S<br>N<br>N    | . !     | 1.       | . 1     | 32.     | 28.0    | 1       |          | 1       | 1         | .1        |          |              | 1         | 1         |           | 1       |         |          | , <b>!</b> | 1         | 1       | 1         | 45.0         | 1       | 1       | • • .   | . 1       |           | 1.       | 1       | 1           |
|          |        | 5              | 27      | 15       | 13      | 001     | 45      | 16      | 92       | 20      | 11        | 33        | 20       | 12           | 902       | 6         | 63        | 14      | 18      | 9Ø1      | 17         | 38        | 991     | 550       | 170          | 58      | 38      | 330     | 24        | 21        | 22       | 20      | 28          |
|          |        |                |         |          |         |         |         |         | _        |         |           |           |          |              | ·         |           |           |         |         | <u>.</u> |            |           |         |           |              |         |         | Ä,      |           |           |          |         |             |
|          |        | S0.            | 98      | ,        | 14      | 46      | 20      | 16      | 421      | 31      | 27        | 39        | 120      | 12           | 698       | 79        | 38        | 1       |         | 115      | 12         | 20        | 31      | 123       | 787          | 30      | 27      | 2605    | 20        | 12        | 10       | 12      | 22          |
|          |        | HC03           | 03      | 48       | 305     | 84      | 59      | 354     | 336      | 336     | 305       | 78        | 20       | 16           | 90        | 36        | 84        | 36      | 27      | 72       | 64         | 96        | 28      | 17        | 48           | 64      | 88      | 71      | 99        | 84        | 287      | 18      | 80          |
|          |        | Ξ              | 4       | m        | ر.<br>س | m.      | က       | ო       | <u>ო</u> | m       | m         | ຕ         | 4        | -            | Q         | m         | m         | 'n      | 4       | m.       | 4          | 'n        | 4       | m         | ຕ.<br>ເ      | 4       | 4       |         | m         | ຕ.        | 7        | e.      | 4           |
|          |        | ¥              | •       | ٠.       | •       | . •     | •       |         | •        |         | •         |           | •        |              | •         | •         |           |         | •       | •        | •          |           | •       | •         |              |         | •       | •       | •         | •         | •        |         |             |
|          |        | S<br>Z         | 31      | 7        | 4       | 38      | 25      | 11      | 153      | 63      | ဖ         | φ         | 20       | 30           | 480       | 28        | 19        | Н       | 7       | 61       | 14         | 61        | 82      | 93        | 362          | 21      | 41      | 866     | 17        | 18        | 15       | 49      | 16          |
|          |        | 20<br><b>≥</b> | 8       | 31       | 33      | 4       | 40      | 34      | 72       | 11      | 9         | 42        | 62       | 24           | 134       | 40        | 44        | 31      | 37      | 53       | 40         | 20        | 54      | 67        | 202          | 4       | 4       | 264     | 32        | 36        | 36       | 32      | <b>4</b>    |
|          |        |                | 7       | •••      | •       |         |         |         | •        |         |           | •         |          |              | Ä,        |           | •         |         |         |          |            |           |         | •         | Ñ            |         | •       | Ñ       |           |           |          | •,•     |             |
|          |        | <b>e</b>       | 89      | 69       | 28      | 107     | 16      | 99      | 120      | 99      | 46        | 67        | 100      | 13           | 334       | 82        | 88        | 69      | 81      | 96       | 88         | 94        | 83      | 94        | 244          | 91      | 82      | 591     | 92        | 89        | 42       | 48      | 88          |
|          |        | _              | က       | ∞.       | 8       | ιo      | ო.      | 7       | 4.       | 0       | œ         | ო.        | 7        | œ.           | 4         | œ         | 7         | 9       |         | ٠        | m.         | œ         | 4       | 9.        | o.           | œ       | œ       | ശ       | œ         | 4         | 7        | œ       | m.          |
|          | Long   | (utm)          | 38173   | 443916.8 | 445663  | 446176  | 446218  | 444433  | 443595   | 443937  | 442223    | 437369    | 437608   | 437312       | 39612     | 39436     | 38500     | 436133  | 438566  | 439347   | 439773     | 440975    | 440871  | 442245    | 443127.9     | 442548  | 442546  | 443014  | 445265.8  | 445871    | 446760   | 446726. | 447621      |
|          | ٠.     | _              | 438     | 443      | 445     | 446     | 446     | 444     | 443      | 443     | 442       | 437       | 437      | 437          | 438       | 438       | 438       | 436     | 438     | 438      | 438        | 446       | 446     | 442       | 443          | 442     | 442     | 443     | 445       | 445       | 446      | 446     | 44          |
|          |        |                | 6.      | 2        | 0       | 9.      | 9       | D.      | ما       | _       | ~         | O         | œ        | 0            |           | S.        | თ         | 2       | 7.      | .–.      | 0          | 2         | 4       | m         | 4            | ~       | 7       | ო       | ر<br>ما   | 8         | 8        | o       | 4           |
|          | Lat.   | (utm)          |         | 306      | 394.    |         | •       | •       | •        | 910.    | 785.      | 421.      | 167.     |              | 400.      | 148.      | 773.      | . •     | 250     | 378.     | 398.       | 204       | 388.    | 587.      | <b>456</b> . |         | •       | 158.    | 552.      | 444.      | 542      | 372.    | 295         |
|          | ت      | 3              | 3505843 | 3506306  | 3501094 | 3501007 | 3500468 | 3500425 | 3501568  | 3501910 | 3501785.7 | 3502421.9 | 3498167. | 3497657      | 3496400.1 | 3495148.5 | 3494773.9 | 3493765 | 3494250 | 3494378  | 3493698    | 3492204.2 | 3492888 | 3493587.3 | 3493456      | 3496653 | 3496653 | 3498158 | 3495552.5 | 3494444.8 | 3493542. | 3494072 | 3494295     |
|          |        |                | က       | w        | m       | m       | က       | က       | က        | m       | w         | ຕ         | က        | <sub>.</sub> | က         | က         | m         | က       | က       | m        | ന          | m         | က       | က         | က            | ო       | က       | က       | m         | m         | m        | m<br>,  | က<br>်      |

Appendix  $1\!\!1$  (cont). Chemical composition of shallow ground water.

|        |         | æ        |    |  | 7         | -         | _         | 7          | _         | -        | . —      |          | _        | H        | _         | -         | _         | _         | 7         | _         | _         | _        | _        | _        | _        | 7         | _          | -      | _       | _           | _            | ,       |           | 7        | _      | _          | _      | _    | _        | _         | 7       | _    | 7      | 7          |  |
|--------|---------|----------|----|--|-----------|-----------|-----------|------------|-----------|----------|----------|----------|----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|----------|----------|----------|-----------|------------|--------|---------|-------------|--------------|---------|-----------|----------|--------|------------|--------|------|----------|-----------|---------|------|--------|------------|--|
|        |         | ∢        |    |  | 13        | 13        | 13        | ω          | <b>œ</b>  | 13       | 4        | <b>9</b> | П,       | 14       | 16        | 14        | 13        | 13        | 9         | ဖ         | 14        | 14       | 14       | 16       | 13       | -         | 9          | 7      | 15      | <del></del> | <del>.</del> | 12      | 9 9       | 16       | 9      | 16         | 13     | 15   | 13       | 15        | 14      | 15   | 12     | 16         |  |
|        | t 0 0 0 | (ft)     |    |  | 1990      | 1990      | 2005      | 2180       | 2180      | 2015     | 1965     | 1945     | 1940     | 1920     | 1920      | 1915      | 1910      | 1935      | 1940      | 1900      | 1900      | 1945     | 1945     | 2020     | 2035     | 2300      | 2120       | 2180   | 2260    | 2340        | 2205         | 2000    | 2040      | 2040     | 1950   | 1880       | 1860   | 1855 | 1860     | 1840      | 1820    | 1800 | 1755   | 1770       |  |
| Clamas | depth   | (ft)     |    |  | 85        | 82        | 85        | 200        | 200       | 100      | 89       | 7.1      | 42       | 54       | 99        | 65        | 75        | 6.0       | 80        | 92        | 15        | 65       | 7.1      | 114      | 75       | 119       | <b>Ø</b> 6 | 99     | 150     | 32          | 20           | 88      | 116       | 110      | 100    | 42         | 87     | 20   | 96       | 100       | 7.0     | 82   | Ø6     | <b>6</b> 0 |  |
|        | Forma   | tion.    |    |  |           | , ,       | 1         | . <b>!</b> | 1         | ı        | 1        |          | 1        | ı        | ı         |           | ı         |           | 1         | •         | ı         | •        | 1        | 1        | 1        | 1         |            | 1      | ŀ       | 1           | 1,           | ı       | ı         | ١.       |        | 1.         | 1      | .1   | ,        | 1         | ı       | 1    | i,     | 1          |  |
|        | Sample  |          |    |  | 10/01/40  | 12/05/40  | 12/05/40  | 04/05/39   | 10/01/40  | 10/01/40 | 02/17/38 | 10/01/40 | 04/05/39 | 02/11/38 | 09/09/40  | 09/11/40  | 09/11/40  | 10/01/40  | 10/01/40  | 01/12/41  | 09/30/40  | 4        | 09/30/40 | 09/30/40 | 30/      | 11/29/40  | /88/       | /28/   | /53/    | /59/        | •            | ╮.      | 20        | 09/30/40 | 1701   | 10/02/40   | Į,     |      | `        | /05/      | /02/    | 02/  | /16/   | 01/16/41   |  |
|        |         | H        |    |  | ï         | ı         |           | ٠.<br>١    | 1         | ı.<br>I  | 1        | ,1       |          | 1        | ,         | ,         |           | ì         | ı.<br>L   | ,         |           | ı        |          | ı        | ı        | ı         | ı          | 1      | ı       | ı           |              | ı.      | 1         | ı        | ı      |            | 1 :    | ı    |          |           | ,I      |      | ,1     |            |  |
|        |         | o<br>N   |    |  | . 1       | ı         | 1         | ı          | •         | j        | 36.0     | ı        | •        | 38.0     | 1         | 22.0      | 1         | ı         | 1         | ı         | •         | ţ        |          | 1        |          | ı         | ı          | 96.0   |         | 1           | •            | 1       |           |          | ı      | 29.0       |        | !    | 28.0     | •         | 39.0    | •    | •      | 1          |  |
|        |         | 5        |    |  | 64        | 45        | 62        | 260        | 280       | 96       | 178      | 890      | 23       | 420      | 220       | 425       | 160       | 48        | 1330      | 3130      | 650       | 630      | 280      | 190      | 36       | 24        | 4990       | 46     | 64      | 16          | 56           | 310     | 218       | 225      | 100    | 200        | 94     | 91   | 76       | 80        | 480     | 120  | 110    | 260        |  |
|        |         | 80       | 4  |  | 25        | 15        | 17        | 392        | 461       | 21       | 67       | 109      | 24       | 183      | 78        | 112       | 43        | 51        | 248       | 962       | 78        | 101      | 102      | 543      | 20       | 12        | 499        | 59     | 383     | 12          | 20           | 1377    | 112       | 101      | 8/1    | 54         | 40     | 349  | 45       | 543       | 240     | 1357 | 1886   | 108        |  |
|        |         | HCO      | 7) |  | 433       | 317       | 588       | 525        | 470       | 390      | 323      | 421      | 415      | 415      | 433       | 366       | 433       | 464       | 403       | 451       | 329       | 293      | 293      | 445      | 390      | 323       | 482        | 323    | 329     | 323         | 354          | 494     | 526       | 421      | 244    | 348        | 302    | 226  | 329      | 244       | 599     | 171  | 122    | 336        |  |
|        |         | ¥        |    |  | 1         | 1         |           | 1          | 1         | ļ        |          | 1        |          | 1        | ı         | , 1       | 1         | ı         | 1         | 1         | ť         | 1        | 1        | 1        | .I       | ì         | ı          | 1      | !       | 1           | 1            | T.      | 1         | ŧ,       | i      | , <b>1</b> | ı      | 1    | ı        | 1         | •       | 1    |        | 1          |  |
|        |         | s<br>Z   |    |  | 49        | 25        | 15        | 293        | 487       | 54       | 1        | 332      | 19       | 129      | 83        | 106       | 7.1       | 96        | 809       | 1709      | 282       | 179      | 200      | 136      | 46       | 4         | 3393       | 2      | 166     | 15          | 37           | 105     | 132       | 00 1     | 2      | 67         | 9      | 69   | 20       | 136       | 153     | 228  | 237    | 92         |  |
|        |         | 8        | )  |  | 40        | 36        | 38        | 96         | 103       | 36       | 22       | 68       | 38       | 97       | 63        | 82        | 51        | 38        | 108       | 246       | 7.1       | 103      | 91       | 112      | 43       | 58        | 105        | 38     | 44      | 23          | 24           | 271     | 20        | 80 L     | 40     | 60         | 36     | 61   | 58       | 22        | 83      | 126  | 185    | 89         |  |
|        |         | <b>.</b> |    |  | 85        | 26        | 29        | 80         | 82        | 88       | 163      | 140      | 97       | 191      | 128       | 188       | 109       | 22        | 279       | 425       | 150       | 174      | 150      | 178      | 60       | 74        | 23         | 110    | 88      | 20          | 80           | 373     | χ<br>Φ ;  | 107      | ٥,     | 103        | 61     | 111  | 68<br>8  | 140       | 212     | 283  | 378    | 127        |  |
|        | - 000   | (c tm)   | •  |  | 447904.0  | 447904.1  | 447420.5  | 448887.8   | 448920.0  | 450074.1 | 447309.5 | •        | •        | 451300.4 | 451308.5  | 451840.5  | 452679.3  | 454823.4  | 454786.8  | 458279.0  | •         | 458434.2 | 458410.1 | •        | 459679.1 | •         | 453344.5   | •      | •       | •           | 453784.3     | •       | •         | •        | •      | •          | •      | •    | 474090.7 | •         | •       |      | 973    | 479578.5   |  |
|        | +<br>a  | (utm)    |    |  | 3494420.7 | 3494428.7 | 3494980.8 | •          | 3497454.0 | •        | 91695.   | 90547.   | 90069.   | 86707.   | 3486715.2 | 3486853.5 | 3486441.9 | 3489068.2 | 3489365.9 | 3487741.9 | 3487556.4 | ٠        |          |          | 496106   | 3499836.8 | 499949.    | 501649 | 501844. | 502326.     | 5ø3181.      | 504010. | 3502234.4 | •        | 977.09 | 497256     | 497203 | •    | ς.       | 3493413.1 | 492387. | •    | 492000 | 3491407.1  |  |
|        |         |          |    |  |           |           |           |            |           |          |          |          |          |          |           |           |           |           |           |           | 4.        |          |          |          |          |           |            |        |         |             |              |         |           |          |        |            |        |      |          |           |         |      |        |            |  |

Appendix 1 (cont). Chemical composition of shallow ground water.

|        | ω.                 | 2 1                                     | 4        |          |          |            | . 6      | 9          | 3 1                    | 3        | 3         | e .       |           |           | 7 -      | 7 -      | 0 4      | <br>- u   | 0 7      |          | 3         | 12 1     | 16 1     | 14 1     | 1 9        | 1 9       | 13        | 4 i      |            | 0 4      | -<br>-   | · -       | <br>     | 1 1      | 1 0                   | 0 9      | 9 7      | 1 -      | 1              |
|--------|--------------------|-----------------------------------------|----------|----------|----------|------------|----------|------------|------------------------|----------|-----------|-----------|-----------|-----------|----------|----------|----------|-----------|----------|----------|-----------|----------|----------|----------|------------|-----------|-----------|----------|------------|----------|----------|-----------|----------|----------|-----------------------|----------|----------|----------|----------------|
|        | ∢                  |                                         |          | ٠.       |          |            | _        | ' '7'<br>' | _                      |          | Τ.        | <br>      |           |           |          |          |          | • •       |          |          |           |          |          |          |            | •         |           |          |            |          |          |           |          |          |                       |          |          |          |                |
| Land e | tion<br>(ft)       | 1740                                    | 1        | 1810     | 1820     | 1820       | 1820     | 1820       | 1780                   | 1820     | 1870      | 1870      | 1900      | 18/10     | 1860     | 7070     | 1780     | 00.0      | 1016     | 1815     | 1820      | 1820     | 1825     | 1830     | 1830       | 1800      | 1790      | 1/80     | ן ני<br>ני | 1 7 5 5  | 1760     | 1700      | 1750     | 1755     | 1760                  | 7 7 7 8  | 1770     | 1818     | 2<br>7<br>7    |
| Sample | depth<br>(ft)      | 89                                      |          | 20       | 69       | 6 0<br>6 0 | 99<br>46 | 46         | 20                     | 9        | 70        | 9.        | 8 i       | 175       | 9 :      | 101      | 2 G      | 0 0       | 701      | 8 8      | 125       | 125      | 98       | 99       | <b>0</b> 6 | 22        | 80        | 99       | L          | ٥ ٥      | 9 0      | 7 0       | 9 6      | 9 0      | D 0                   | D 0      | 4 n      | 800      | 9              |
|        | Torm<br>toon<br>#a | . <b>1</b> -                            | i        | ŀ        | 1        | 1          | 1 1      | •          | ı                      |          | •         | i         | 1         | ı         |          | ŀ        | •        | •         | 1        |          | . 1       | ì        |          | 1        | 1          | •         | :<br>•    | 1        | i          | !        | •        | 1         | •        |          | I                     | ı        | 1 1      | ) (      | l              |
|        | Sample<br>date     | 01/15/41                                | 01/15/41 | 10/02/40 | 10/02/40 | 02/18/38   | 10/02/40 | 10/02/40   | 01/22/41               | 01/22/41 | 02/11/38  | 09/30/40  | 09/30/40  | 10/02/40  | 04/04/39 | 10/31/40 | 10/29/40 | 14/22/10  | 10/30/40 | 09/00/41 | 01/25/41  | 09/08/41 | 09/08/41 | 10/31/40 | 11/19/40   | 11/18/40  | 11/01/40  | 10/29/40 | 10/29/40   | 10/29/40 | 10/29/40 | 01/10/41  | 01/15/41 | 10/12/41 | 10/29/40              | 10/29/40 | 10/31/40 | 10/23/40 |                |
|        | Ŧ                  | i                                       | 1        | 1        | r        | 1          | 1        | )<br> :    | ı,                     |          | 1         |           | 1         | ı         | ı        | I.       | 1.       | ı         |          | I (      | ı         | 1.1      |          |          | ı          | ï         | 1         | ı        | 1          | ı        |          | ١.        |          | ı        | į.                    | i        |          | <b>.</b> | ı              |
|        | 0<br>E             | 100 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | ı        | 1        | 1        | 1          | 1        | I I        |                        | 1        | 21.0      |           | 1         | ı         | ï        | 1        | 31.0     | ı         | •        | 1 1      | 1         |          | J.       |          | j          | 1         |           | 1        |            | ı        | . ē      | 7.1.0     |          | 30.1     | 55.60<br>6.00<br>6.00 | 9.0      | 1 10     | 9.77     | 1              |
|        | 5                  | 300                                     | 270      | 74       | 9/       | 205        | 922      | 370        | 18                     | 230      | 80        | 48        | 24        | 260       | 250      | 13       | 320      | 919       | 400      | 7 7 6    | 160       | 345      | 200      | 220      | 230        | 108       | 110       | 154      | 180        | 997      | D C      | 200       | 386      | 0/2      | 760                   | 280      | 150      | 920      | L40            |
|        | S0 <sub>4</sub>    | 83                                      | 94       | 1668     | 1803     | 1060       | 1419     | 400        | 23                     | 1547     | 20        | 23        | 23        | 2211      | 56       | 23       | 196      | 181       | 1966     | 100      | 1264      | 989      | 88       | 92       | 88         | 69        | 104       | 142      | 576        | 123      | 7630     | 100       | 7.7      | 121      | 200                   | 211      | 125      | 707      | 2138           |
|        | HC03               | 293                                     | 262      | 207      | 134      | 268        | 275      | 1/1        | 348                    | 214      | 329       | 360       | 525       | 238       | 360      | 561      | 390      | 463       | 171      | 787      | 134       | 251      | 282      | 220      | 293        | 256       | 348       | 311      | 250        | 268      | 737      | 582       | 7.57     | 662      | 281                   | 275      | 400      | 070      | 0/7            |
|        | <b>×</b>           | 1                                       | 1        | ı        | 1        | . 1        | i,       | 1. 1       |                        | 1        | 1         | 1         | 1         | ı         | ţ        | i        | į        | ı         | •        | 1        | i .i      | ì        | 1        | ı        | 1          | •         | ı         | ı        | I          | ı        | ı        | •         | ı        | ı        | ı                     | ı        |          | 1        | 1              |
|        | æ                  | 57                                      | 95       | 154      | 173      | 92         | 140      | 141<br>175 | 12                     | 9        | 37        | 22        | 44        | 295       | 41       | 85       | 184      | 191       | 435      | 621      | 147       | 146      | 86       | 26       | 95         | 16        | 103       | 25       | 106        | 72       | 230      | 4 6       | e e      | E (      | 123                   | 179      | 62       | 000      | 00<br>00<br>00 |
|        | <b>8</b>           | 28                                      | 46       | 146      | 158      | 121        | 139      | n 0        | 88                     | 180      | 38        | 39        | 54        | 243       | 28       | 49       | 89       | 114       | 155      | 2 5      | 117       | 105      | 41       | 41       | 40         | 45        | 20        | 49       | 68         | 41       | 269      | D (       |          | 25       | 93                    | 46       | 5        | 132      | 791            |
|        | , es               | 160                                     | 126      | 431      | 429      | 371        | 458      | 900        | 92                     | 498      | 75        | 72        | 83        | 490       | 138      | 61       | 130      | 146       | 468      | 1 8      | 341       | 266      | 102      | 87       | 120        | 87        | 102       | 127      | 185        | 129      | 584      | 1/1       | 146      | 157      | 130                   | 130      | 118      | 230      | 4<br>20<br>20  |
|        | Long.<br>(utm)     | 487863.5                                | 80046.   | • •      | 471519.1 | •          | ٠.       | 4/0039.2   |                        | • '      | 465027.3  | •         | 464646.8  | 463056.3  | •        | •        | 66663.   | •         | •        | • •      | 47399F 9  |          |          | •        | 472617.2   | 477073.6  | 479871.3  | •        |            | ٠        | 84849.   |           | 84751    | 488578.6 | 86829.                | 88057.   | •        | 84252.   | 482994.5       |
|        | Lat.<br>(utm)      | 3486969.9                               | 487414.  |          |          | 89820      | 89796.   | 3489580.3  | 3469560.2<br>3488061 6 | • •      | 3487186.5 | 3487178.4 | 3491114.0 | 3484291.3 | 482942.  | 481668.  | 482046.  | 3483298.4 | 481569   | 480608.  | 3482050.4 | 482789   | 480845   | 479451.  | 478963.    | 3477384.4 | 3476491.6 | •        | •          | •        | •        | 3483715.5 | ٠.       | •        | • ,                   | •        | •        | 78547.   | 3473918.9      |

Appendix 1 (cont). Chemical composition of shallow ground water.

|      |        | <b>a</b>      |  | -         | -         | -         | 7         | -         | <del>, -1</del> , | -         | -         | ~         | <del>, i</del> | -         | 7         | <b>;</b><br>,, | -         | 7         | -         | 런         | 7         | _         | -         | 7        | 7        | П        | <b>-</b> | -        | _        | 7         |           |           | <b>→</b> -  | <del>-</del> | · —      | -         | -         | , <del></del> | 7         | _         | -         | -         |  |
|------|--------|---------------|--|-----------|-----------|-----------|-----------|-----------|-------------------|-----------|-----------|-----------|----------------|-----------|-----------|----------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|----------|----------|----------|----------|----------|-----------|-----------|-----------|-------------|--------------|----------|-----------|-----------|---------------|-----------|-----------|-----------|-----------|--|
|      |        | ∢             |  | 16        | 15        | 16        | 16        | 16        | က                 | 16        | 13        | 10        | 15             | က         | 14        | 14             | 16        | 16        | 14        | 16        | 4         | 16        | 14        | 14       | 14       | က        | က        | 15       | 16       | 16        | 13        | ¢         | ο α         | <b>σ</b>     | 00       | П         | က         | 16            | 13        | 13        | 13        | 14        |  |
| 2 4  | tion   | (ft)          |  | 1815      | 1800      | 1805      | 1845      | 1845      | 1845              | 1830      | 1860      | 1860      | 1850           | 1830      | 1820      | 1830           | 1855      | 1870      | 1835      | 1860      | 1860      | 1860      | 1855      | 1865     | 1865     | 1870     | 1870     | 1840     | 1870     | 1870      | 1865      | 1900      | 7007        | 1910         | 2080     | 1970      | 1970      | 1980          | 2000      | 1985      | 1970      | 2020      |  |
| Samo | depth  | (ft)          |  | 60        | 20        | 20        | 99        | 09        | 89                | 82        | 125       | 125       | 92             | 96        | 20        | 20             | 06        | 123       | 82        | 100       | 100       | 130       | 88        | 75       | 99       | 116      | 116      | 110      | 100      | 100       | 67        | 43        | 7.17        | 50           | 89       | 46        | 46        | 110           | 120       | 60        | 60        | 88        |  |
|      | Forma- | tion          |  | 1         | L         | 1         | !         | ı         | i                 | .1        | i         | ı         | 1              | 1         | 1         | 1              | 1.        | 1         | •         | ì         | 1         | .1:       | i         | 1        | ı        | 1        | 1        | 1        | . i      |           | i         | •         | <b>)</b> :  | ı ı          | •        | I.        | 1         | ı             |           | 1         | •         |           |  |
|      | Sample | date          |  | 10/31/40  | 11/11/40  | 10/31/40  | 11/15/40  | 11/15/40  | 11/15/40          | 11/11/40  | 02/15/38  | 02/15/38  | 11/06/40       | 11/01/40  | 11/01/40  | 11/01/40       | 11/06/40  | 02/15/38  | 11/01/40  | 02/15/38  | 10/03/40  | 02/15/38  | 11/01/40  | 10/22/40 | 10/22/40 | 02/15/38 | 10/03/40 | 08/19/40 | 02/15/38 | 10/03/40  | 09/04/40  | 08/21/40  | 08/25/40    | 08/26/40     | 08/26/40 | 02/18/38  | 08/22/40  | 08/22/40      | 08/26/40  | 08/26/40  | 08/26/40  | 08/58/40  |  |
|      |        | 품             |  | ,         | •         | 1         | •         | ţ         | ı                 | . P       | ı         | ı         |                | 1         | 1         | 1              | ļ         | ť         | 1         | ı         | ı         |           | 1.        | ı        | 1        | •        | •        | 1        |          | ı         |           | ı         |             | ĺ            | 1        | 1         |           |               |           | ı         | ı         | i,        |  |
| ÷.   |        | %<br>90<br>80 |  | 1         | ,         | ı         | 1         |           | ı                 | 1         | 1         | 1         | 1              | 1.        | 1         | •              | . 1.      | 1         | 46.0      | 1         | .1        | ţ         | 1 /       | 1        | 1        | •        | 1        |          | 26.0     | 28.0      | 80.0      | ı         | )<br>       | F 1          | 22.0     | ı         | ı         | •             | 1         | •         | 1         | 30.0      |  |
|      |        | ប             |  | 96        | 86        | 310       | 265       | 89        | 20                | 140       | 154       | 195       | 220            | 155       | 320       | 280            | 160       | 185       | 333       | 260       | 300       | 255       | 600       | 1100     | 345      | 368      | 314      | 375      | 132      | 122       | 146       | 517       | A 2 2 2 2 2 | 17           | 330      | 4         | 42        | 220           | 192       | 28        | 210       | 230       |  |
|      |        | S0.           |  | 197       | 614       | 217       | 238       | 169       | 315               | 169       | 24        | 79        | 1098           | 753       | 154       | 100            | 104       | 225       | 138       | 133       | 98        | 133       | 127       | 132      | 26       | 2029     | 1881     | 2100     | 183      | 171       | 68        | 12        | 4188        | 23           | 249      | 28        | 478       | 99            | 33        | 27        | 27        | 29        |  |
|      |        | HC03          |  | 378       | 293       | 329       | 262       | 317       | 79                | 409       | 329       | 226       | 201            | 275       | 262       | 238            | 281       | 275       | 214       | 281       | 293       | 280       | 256       | 226      | 317      | 226      | 244      | 290      | 317      | 317       | 378       | 311       | 707         | 415          | 506      | 537       | 421       | 421           | 378       | 415       | 470       | 323       |  |
|      |        | ¥             |  | ı         | 1         | ì         | 1         | ı         | 1                 | •         | ŀ         | 1         | . i            | 1         |           | 1              |           | 1         | 1         | 4         | 1         | 1         | 1         | ı        | 1        | 1        | L        | 1        | 1        | 1         | 1         | •         | 1 1         | 1            | ŀ        | i         | ı         | 1             | ı         | 1         | 1         | 1         |  |
|      |        | e<br>Z        |  | 96        | 147       | 86        | 94        | 27        | 9                 | 72        | 20        | 28        | 158            | 132       | 113       | 109            | 98        | 110       | 108       | 113       | 140       | 107       | 239       | 66       | 149      | 308      | 265      | 366      | 62       | 99        | 99        | 35        | 7596        | 18           | 284      | 41        | 80        | 163           | 115       | 21        | 96        | 98        |  |
|      |        | N<br>B        |  | 28        | 96        | 75        | 69        | 23        | 38                | 69        | 22        | 99        | 123            | 9/        | 23        | 46             | 32        | 51        | 22        | 49        | 44        | 48        | 99        | 135      | 23       | 117      | 167      | 184      | 60       | 54        | 24        | 8 5       | 200         |              | 72       | 28        | 41        | 25            | 21        | 42        | 23        | 42        |  |
|      |        | <b>g</b>      |  | 83        | 132       | 171       | 144       | 102       | 100               | 123       | 20        | 28        | 308            | 252       | 148       | 110            | 93        | 115       | 143       | 121       | 111       | 121       | 163       | 277      | 128      | 680      | 236      | 263      | 112      | 107       | 112       | 61        | 0000        | 500          | 100      | 145       | 227       | 99            | 92        | 67        | 107       | 94        |  |
|      | Long.  | (utm)         |  | 482831.5  | 483588.0  | 486204.9  | 488169.4  | 487511.6  | 486670.3          | 483993.6  | 477070.7  | 476829.6  | 475470.9       | 477035.9  | 475455.7  | 472299.1       | 473041.6  | 471597.6  | 468884.4  | 465250.0  | 465226.1  | 465047.2  | 465447.4  | 463067.6 | 462978.1 | •        |          | •        | •        | •         | 459996.9  | 454443.8  | 455751 B    | 452035.8     | 444976.2 | 447505.1  | 447505.0  | 444130.4      | 443878.7  | 441835.9  | 440337.1  | 442474.2  |  |
|      | Lat.   | (utm)         |  | 3473346.5 | 3473134.4 | 3473456.2 | 3469505.5 | 3469679.5 | 469010.           | 3470068.6 | 3470908.0 | 3470922.6 | 472352         | 3473864.2 | 3476031.3 | 3475505.4      | 3472850.8 | 3471105.5 | 3475740.9 | 3471508.6 | 3471532.9 | 3471723.8 | 3475759.2 | •        |          | . •      | •        | •        | ٠        | 3476267.5 | 3476204.0 | 3475400.4 | 3479899 9   | 3478879.9    |          | 3474211.0 | 3474202.9 | 3473385.1     | 3474212.0 | 3474439.0 | 3474526.9 | 3476833.6 |  |

Appendix 1 (cont). Chemical composition of shallow ground water.

| Mg         Na         K         HCO         SO         CI         NO         pH         Sample formation         Formation         Gepth           2         33         25         35.4         18         228         33.0         66.0         69/26/40         100         66.0         69/16/40         100         66.0         66.0         66.0         66.0         100         66.0         100         66.0         100         66.0         100         66.0         100         66.0         100         66.0         100         66.0         100         66.0         100         66.0         100         66.0         100         66.0         100         66.0         100         66.0         100         66.0         100         66.0         100         66.0         100         66.0         100         66.0         100         66.0         100         66.0         100         66.0         100         66.0         100         66.0         100         66.0         100         66.0         100         66.0         100         66.0         100         66.0         100         66.0         100         66.0         100         66.0         100         66.0         100                                                                                                                                                                                                                                                                                                                                                                                         |     |               |        |              |            |           | e    |      |     |                |                | Samo       | Land         |          |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------|--------|--------------|------------|-----------|------|------|-----|----------------|----------------|------------|--------------|----------|-------|
| 39         25         - 354         10         28         33.0         - 98/26/40         - 83         2045         11         240         2040         11         2040         11         2040         11         2040         11         2040         11         2040         11         2040         11         2040         11         2040         11         2040         11         2040         11         2040         11         2040         11         2040         11         2040         11         2040         10         2040         11         2040         11         2040         11         2040         11         2040         10         2040         10         2040         10         2040         10         2040         10         2040         10         2040         10         2040         10         2040         10         2040         10         2040         10         2040         10         2040         10         2040         10         2040         10         2040         10         2040         10         2040         10         2040         10         2040         10         2040         10         2040         10         2040 <td< th=""><th>ی</th><th></th><th>a<br/>Z</th><th>¥</th><th>НСО</th><th>SO</th><th>5</th><th>Š</th><th>Ŧ</th><th>Sample<br/>date</th><th>Forma-<br/>tion</th><th>depth (ft)</th><th>tion<br/>(ft)</th><th>. ∢</th><th>00</th></td<>                                                                                                                                                                     | ی   |               | a<br>Z | ¥            | НСО        | SO        | 5    | Š    | Ŧ   | Sample<br>date | Forma-<br>tion | depth (ft) | tion<br>(ft) | . ∢      | 00    |
| 12         28         3.9         26         3.9         1.0         284.0         40.2         148         28         3.0         98/26/40         40         244         18         224         148         620         -         98/26/40         -         40         244         18         236         670         66.0         -         98/26/40         -         160         2040         11         20         2040         18         2040         18         2040         18         2040         18         2040         18         2040         18         2040         18         2040         18         2040         18         2040         18         2040         18         2040         18         2040         18         2040         18         2040         18         2040         18         2040         18         2040         18         2040         18         2040         18         2040         18         2040         18         2040         18         2040         18         2040         18         2040         18         2040         18         2040         18         2040         18         2040         18         2040         18         2040<                                                                                                                                                                                                                                                                                                                                                                                                 |     |               |        |              | <b>v</b> ) | 4         |      | 7)   |     |                |                |            |              |          |       |
| 39         26         -         354         10         28         33.0         -         089/26/40         -         49         2046         -         99/83/40         -         49         2046         -         99/83/40         -         49         2046         -         99/83/40         -         120         2100         110         210         2100         110         210         2100         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210<                                                                                                                                                                                                                                                                                                                                                                                                 |     |               |        |              |            |           |      |      |     |                |                |            |              |          |       |
| 122         282         - 482         148         626         - 608/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         - 408/26/40         -                                                                                                                                                                 | 62  |               | 52     | 1            | 354        | 10        | 28   | က    | . 1 | 08/26/40       | 1              | 83         | 2045         | 13       | • • • |
| 91         27.0         24.4         23.0         57.0         66.0         60.0         60.0         20.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         1                                                                                                                                                                                                                                                                                                                                                             | 28  |               | 282    | ı            | 482        | 148       | 620  | ı    |     | 08/26/40       | •              | 40         | 2040         | 14       | 1.    |
| 47         281         233         530         -         69/03/40         -         60         2080         1           180         776         -         491         2073/40         -         69/03/40         -         60         2080         1         1         1         206         1         4         207         4         -         -         69/03/40         -         60         2080         1         4         2         1         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 34  |               | 270    | 1            | 244        | 230       | 210  | 66.0 | ı   | 08/26/40       | ı              | 120        | 2100         | 14       |       |
| 180         776         - 494         18         26         - 699/03/40         - 40         40         180         776         - 494         18         26         - 6770         - 69/03/40         - 60         2000         1122         236         176         - 60         176         - 60         2000         1         126         2000         1         126         2000         1         126         2000         1         1         2000         1         1         2000         1         1         2000         1         1         2000         1         1         2000         1         1         2000         1         1         2000         1         2000         1         2000         1         2000         1         2000         1         2000         1         2000         1         2000         1         2000         1         2000         1         2000         1         2000         1         2000         1         2000         1         2000         1         2000         1         2000         1         2000         1         2000         1         2000         1         2000         1         2000         1         2000                                                                                                                                                                                                                                                                                                                                                                                                               | 37  |               | 243    | 1            | 281        | 233       | 530  | !    | ı   | 09/03/40       | •              | 99         | 2080         | 14       | ٠.    |
| 180   776   - 451   206   1570   - 09/03/40   - 151   2065   2200   46   116   - 454   67   680   - 680/26/40   - 680   2200   1180   - 454   67   480   - 08/27/40   - 680   2200   1181   - 454   67   480   - 08/27/40   - 156   2220   1181   - 454   67   480   08/27/40   - 156   2220   1182   - 184   - 184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18  |               | 107    | , i          | 484        | 18        | 58   | ı    | •   | 09/03/40       | 1              | 40         | 2070         | 13       | •     |
| 12         23\$         -         36\$         214         580         -         -         69\/27\/40         -         69\/27\/40         -         69\/27\/40         -         120         200         1         24         136         -         200         -         69\/27\/40         -         69\/27\/40         -         160         220         1         200         1         1         200         1         1         200         1         1         1         200         1         1         1         2         200         1         1         1         1         1         2         200         1         1         1         1         2         200         1         2         0         0         1         1         1         2         0         0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <td>150</td> <td></td> <td>776</td> <td>i</td> <td>451</td> <td>206</td> <td>1570</td> <td>: 1</td> <td>1</td> <td>/80</td> <td></td> <td>151</td> <td>2065</td> <td>ဖ</td> <td>-</td>                                                                                                                                                                                                                                                                 | 150 |               | 776    | i            | 451        | 206       | 1570 | : 1  | 1   | /80            |                | 151        | 2065         | ဖ        | -     |
| 46         116         -         494         67         40         -         08/27/40         -         60         2000           128         131         -         378         644         2030         -         -         08/27/40         -         156         220         1           43         158         -         378         544         2030         -         -         08/27/40         -         156         220         1           46         160         -         384         144         176         -         08/27/40         -         200         1         1         200         1         1         200         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 138 | . *-          | 230    | 1            | 366        | 214       | 280  | •    | 1.  | 08/26/40       | 1              | 87         | 2120         | 14       |       |
| 24         31         -         342         13         20         -         08/27/40         -         156         2220         1         2         -         08/27/40         -         156         2260         1         2         -         08/27/40         -         126         2080         1         1         2         0         1         1         1         2         0         1         2         0         1         2         0         1         1         1         2         0         0         1         1         1         1         4         2         0         0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <td>46</td> <td></td> <td>116</td> <td>ı</td> <td>464</td> <td>67</td> <td>40</td> <td>•</td> <td>ı</td> <td>08/27/40</td> <td>•</td> <td>99</td> <td>2000</td> <td>13</td> <td></td>                                                                                                                                                                                                                                                                                       | 46  |               | 116    | ı            | 464        | 67        | 40   | •    | ı   | 08/27/40       | •              | 99         | 2000         | 13       |       |
| 128         1187         -         378         544         2030         -         -         08/27/40         -         126         2080           43         1680         -         384         156         -         -         08/27/40         -         74         2000         1           46         160         -         384         144         176         -         -         08/27/40         -         200         1         46         1940         1         1         46         1940         1         1         46         1940         1         1         46         1940         1         1         60         1         68/27/40         -         08/27/40         -         68/27/40         -         68/27/40         -         68/27/40         -         68/27/40         -         68/27/40         -         68/27/40         -         68/27/40         -         68/27/40         -         68/27/40         -         68/27/40         -         68/27/40         -         68/27/40         -         68/27/40         -         68/27/40         -         68/27/40         -         68/27/40         -         68/27/40         -         68/27/40                                                                                                                                                                                                                                                                                                                                                                                                                 | 83  |               | 31     |              | 342        | 13        | 20   | •    |     | 27/            | 1              | 150        | 2220         | 13       | •     |
| 37         158         - 384         56         271         - 68/22/46         - 74         2000           43         168         - 397         113         47         - 68/22/46         - 68         1940         1           46         160         - 384         144         176         - 68/22/46         - 68         1940         1           45         161         - 680         105         64         - 68/22/46         - 68         1950         1           49         127         - 680         28         168         - 68/22/46         - 80         1950         1           31         110         - 421         93         70         - 68/22/46         - 80         1980         1           27         255         - 445         288         240         20.0         - 68/23/46         - 50         2020           27         36         - 427         58         32         - 68/23/46         - 62         2010         1           28         26         24         26         37         - 68/23/46         - 62         2010         1           24         36         24         28         26         24                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 256 | , <del></del> | 1187   | 1            | 378        | 544       | 2030 | ı    | ľ   | ``             | 4              | 125        | 2080         | ဖ        | •     |
| 43         100         - 397         113         47         - 68/22/46         - 68/140         - 68/140         1 66         - 1940         1 6         1 64         - 68/23/46         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/140         - 68/                                                                                                                                                                                                                                        | 108 |               | 158    | ı            | 384        | 26        | 271  | I,   | 1   | . `            | ı              | 74         | 2000         | 14       |       |
| 46         160         - 384         144         176         - 68/23/40         - 69/23/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40         - 86/22/40 <td>52</td> <td></td> <td>100</td> <td></td> <td>397</td> <td>113</td> <td>47</td> <td>ı</td> <td>ı</td> <td>22/</td> <td>1</td> <td>25</td> <td>1940</td> <td>13</td> <td>• •</td> | 52  |               | 100    |              | 397        | 113       | 47   | ı    | ı   | 22/            | 1              | 25         | 1940         | 13       | • •   |
| 42         161         -         580-105         64         -         -         08/22/40         -         30         1950         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960         1960                                                                                                                                                                                                                                                                                                                                                                    | 72  | 4             | 160    | 1            | 384        | 144       | 176  | i    | ı   | 23/            | 1              | 46         | 1940         | 16       |       |
| 49         127         -         500         28         166         -         -         08/22/40         -         45         201         -         45         201         -         45         201         -         45         201         -         45         201         -         45         201         -         45         201         -         45         201         -         45         201         -         45         201         -         45         201         -         40         -         40         -         40         -         40         -         40         -         40         -         40         -         40         -         40         -         40         -         40         -         40         -         40         -         40         -         40         -         40         -         40         -         40         -         40         -         40         -         40         -         40         -         40         -         40         -         40         -         40         -         40         -         40         -         40         -         40         -                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 99  |               | 161    | 1.           | 580        | 105       | 64   |      | ı   | 22/            | 1              | 30         | 1950         | ß        |       |
| 70         621         - 403         478         678         20.0         - 62/21/38         - 45         2010           31         110         - 421         93         70         - 60.0         - 69/23/40         - 35         1980         1           41         58         - 426         20.0         - 60.0         - 60/23/40         - 35         2070         1           27         36         - 415         22         32         - 68/21/40         - 65         2070         1           24         35         - 364         26         37         - 68/21/40         - 65         2070         1           24         35         - 366         62         42         - 68/21/40         - 65         2070         1           24         35         - 36         42         - 68/21/40         - 65         2040         1           25         91         - 427         58         38         - 708/21/40         - 65         2040         1           25         91         - 427         58         38         - 708/21/40         - 65         2040         1           26         103         - 323         31         36 </td <td>79</td> <td></td> <td>127</td> <td>1</td> <td>200</td> <td>58</td> <td>166</td> <td></td> <td>1</td> <td>•</td> <td></td> <td>80</td> <td>1980</td> <td>13</td> <td></td>                                                                                                                                                                                                                                                                      | 79  |               | 127    | 1            | 200        | 58        | 166  |      | 1   | •              |                | 80         | 1980         | 13       |       |
| 31       110       - 421       93       70       - 08/23/40       - 55       1980       1         41       58       - 445       288       240       20.0       - 08/23/40       - 50       2020         27       36       - 445       58       24       6       2000       - 08/21/40       - 50       2070       1         24       15       - 409       26       37       - 08/21/40       - 65       2040       1         24       15       - 364       28       - 08/21/40       - 65       2040       1         26       52       - 36       62       42       - 08/21/40       - 67       2040       1         26       52       - 366       62       42       - 08/21/40       - 67       2040       1         26       52       - 323       50       64       38.0       - 08/21/40       - 67       2040       1         27       193       - 360       229       32.0       - 08/21/40       - 67       2040       1         28       193       - 360       229       33.0       - 08/21/40       - 67       2040       1         29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 99  |               | 621    | 1            | 403        | 478       | 878  | 20.0 | •   | 21/            |                | 45         | 2010         | 9        |       |
| 52         255         - 445         288         240         20.0         - 68/23/40         - 50         2020           41         58         - 427         58         32         - 68/27/40         - 85         2070         1           24         36         - 427         58         37         - 68/27/40         - 65         2040         1           24         35         - 364         28         28         - 68/27/40         - 67         2040         1           26         52         - 365         62         42         - 68/27/40         - 67         2040         1           26         52         - 365         62         42         - 68/27/40         - 67         2040         1           27         - 366         229         320         23.0         - 68/27/40         - 67         2040         1           31         55         64         38.0         - 68/27/40         - 67         2040         1           59         193         - 360         229         32.0         - 68/21/40         - 60         2040         1           50         116         - 378         140         92         - 68 <td>26</td> <td></td> <td>110</td> <td>1</td> <td>421</td> <td>93</td> <td>92</td> <td>1</td> <td>į</td> <td>08/23/40</td> <td>1</td> <td>32</td> <td>1980</td> <td>13</td> <td></td>                                                                                                                                                                                                                                                                     | 26  |               | 110    | 1            | 421        | 93        | 92   | 1    | į   | 08/23/40       | 1              | 32         | 1980         | 13       |       |
| 41         58         - 427         58         32         68/27/40         - 35         2070         1           24         36         - 416         22         32         68/21/40         - 65         2070           24         36         - 416         22         32         68/21/40         - 65         2040           24         36         - 364         28         68/21/40         - 65         2040           26         52         - 365         62         42         - 68/21/40         - 65         2040           22         91         - 427         58         38         - 68/21/40         - 60         2040           22         91         - 427         58         38         - 68/21/40         - 60         2040           23         193         - 64         38.0         - 68/21/40         - 60         2040         1           50         193         - 64         38.0         - 68/21/40         - 60         2040         1           50         193         140         92         - 68/21/40         - 60         2040         1           42         116         - 409         140                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 101 |               | 255    | 1.           | 445        | 288       | 240  | 20.0 | í   | 23/            | 1              | 20         | 2020         | ω        |       |
| 27         36         - 415         22         32         - 68/21/40         - 65         2070           24         15         - 409         26         37         - 08/21/40         - 65         2040           24         35         - 28         - 28         - 08/27/40         - 67         2040         1           25         - 305         62         42         - 08/27/40         - 67         2040         1           22         91         - 427         58         38.0         - 08/27/40         - 67         2040         1           22         91         - 427         58         38.0         - 08/27/40         - 67         2040         1           22         93         - 323         31         36         - 70         60         2040         1           30         193         - 368         23.0         - 08/21/40         - 60         2040         1           42         116         92         - 68         23.40         - 47         2000         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9   | 4             | 28     | 1            | 427        | 28        | 32   | •    | •   | 27/            | ı              | 32         | 2070         | 13       |       |
| 24         15         - 409         26         37         68/21/40         - 65         2040           24         35         - 354         28         - 67         - 67/21/40         67         2040         1           26         52         - 305         62         42         - 68/27/40         - 67         2040         1           22         91         - 323         50         64         38.0         - 68/27/40         - 67         2040         1           59         193         - 323         50         64         38.0         - 68/27/40         - 60         2040         1           59         193         - 323         31         36         - 68/27/40         - 60         2040         1           44         - 323         31         36         - 68/27/40         - 60         2040         1           42         116         - 409         140         92         - 68/23/40         - 65         1970         1           42         116         - 409         140         92         - 60         1970         1           59         134         140         24         - 60         140                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9   | 8             | 36     | i.           | 415        | 22        | 32   | •    |     | •              | ı              | 808        | 2070         | -        |       |
| 24       35       - 354       28       68/27/40       67       2040       1         26       52       - 305       62       42       67       2040       1         26       52       - 305       62       42       67       2040       1         22       91       - 427       58       38       68/27/40       - 67       2040       1         30       193       - 323       50       64       38.0       - 68/27/40       - 60       2040       1         30       144       - 323       31       36       - 68/23/40       - 60       1970       1         42       116       - 409       140       92       - 68/23/40       - 65       1970       1         42       116       - 409       140       92       - 60       - 68/23/40       - 65       1970       1         49       288       - 409       295       345       - 60/23/40       - 65       1950       1       1950       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 116 |               | 12     | ľ            | 409        | 58        | 37   | . 1  | 1   | `              | 1              | 65         | 2040         | -        |       |
| 26       52       - 365       62       42       - 08/27/40       - 67       2040       1         22       91       - 427       58       38       - 08/27/40       - 60       2050       1         23       19       - 427       58       38.0       - 08/27/40       - 60       2040       1         59       193       - 36       229       320       23.0       - 08/21/40       - 47       2000       1         42       116       - 409       140       92       - 08/23/40       - 47       2000       1         42       116       - 409       140       92       - 08/23/40       - 65       1970       1         49       296       345       - 08/23/40       - 65       1970       1         49       296       345       - 08/23/40       - 65       1970       1         57       22       275       - 20       - 08/21/40       - 65       1970       1         57       22       275       - 20       - 20       - 20       - 20       1970       1         59       194       - 31       47       600       24.0       - 08/24/40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7   |               | 32     | 1            | 354        | <b>58</b> | 28   | 1    | •   | 27/            | •              |            | 1            | -        |       |
| 22       91       - 427       58       38       -       - 08/27/40       -       50       2050       1         31       55       -       323       50       64       38.0       -       08/27/40       -       60       2040       1         59       193       -       323       31       36       -       08/21/40       -       47       2000       1         42       116       -       409       140       92       -       08/23/40       -       40       1970       1         42       116       -       409       126       -       08/23/40       -       40       1970       1         49       288       -       409       295       -       08/23/40       -       40       1950         32       67       -       366       70       63       -       08/23/40       -       40       1950         57       2       76       53       -       08/21/40       -       40       1950         50       194       -       11       40       -       20       -       08/21/40       -       40       1950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9   | i i           | 25     | 1.           | 302        | 62        | 42   |      | ı   | `              | r              | 67         | 2040         | 13       |       |
| 31       55       -       323       50       64       38.0       -       08/27/40       -       60       2040       1         59       193       -       360       229       320       23.0       -       08/21/40       -       47       2000       1         30       44       -       323       31       36       -       08/23/40       -       40       1970       1         42       116       -       409       140       92       -       -       08/23/40       -       40       1970       1         49       288       -       409       295       345       -       -       08/23/40       -       65       1950       1         57       2       -       266       70       63       -       08/21/40       -       68/21/40       -       65       1950       1         57       2       -       26       -       -       08/21/40       -       90       1970       1         59       194       -       31       170       -       -       09/04/40       -       26       1960         52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7   | ``.           | 91     | ı            | 427        | 28        | 38   | 1    | 1   | $\overline{}$  | 1              | 20         | 2050         | 13       |       |
| 59       193       -       360       229       320       23.0       -       08/21/40       -       47       2000       1         30       44       -       323       31       36       -       08/23/40       -       40       1970       1         42       116       -       409       140       92       -       -       08/23/40       -       40       1970       1         69       324       -       37       272       -       68/23/40       -       65       1970       1         49       288       -       409       295       345       -       08/23/40       -       65       1950       1         57       2       2       70       63       345       -       08/23/40       -       68/23/40       -       80       1970       1         57       2       2       7       2       2       7       2       40       1970       1         59       194       4       4       4       4       4       4       40       1970       1         59       194       -       34       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 76  |               | 22     | ı            | 323        | 20        | 64   | 38.0 | ,   | 27/            |                | 68         | 2040         | 13       |       |
| 30     44     - 323     31     36     - 08/23/40     - 40     1970     1       42     116     - 409     140     92     - 08/23/40     - 85     1970     1       69     324     - 378     272     560     - 08/23/40     - 65     1970     1       49     288     - 409     295     345     - 08/23/40     - 65     1950       32     67     - 366     70     63     - 08/21/40     - 30     1970     1       59     194     - 316     7     60     24.6     - 08/21/40     - 90     1970     1       59     194     - 317     47     600     24.6     - 09/04/40     - 65     1960     1       37     92     - 348     51     230     29.0     - 09/04/40     - 65     1960     1       52     188     - 403     187     270     - 08/23/40     - 25     1910     1       52     188     - 403     187     270     - 08/23/40     - 25     1910     1       58     20     - 342     334     280     - 08/23/40     - 30     1890     1       58     20     - 49     12     44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 137 |               | 193    | 1 .          | 360        | 229       | 320  | 23.0 | 1   | 21/            | •              | 47         | 2000         | 16       |       |
| 42       116       - 409       140       92       08/23/40       - 85       1970       1         69       324       - 378       272       580       - 08/23/40       - 65       1950       1         49       288       - 409       295       345       - 08/21/40       - 65       1950       1         32       67       - 276       - 20       - 08/21/40       - 87       2020       1         59       194       - 316       47       600       24.00       - 08/04/40       - 90       1970       1         37       92       - 348       51       230       29.00       - 09/04/40       - 65       1960       1         52       188       - 403       187       270       - 08/04/40       - 65       1910       1         52       188       - 403       187       270       - 08/23/40       - 25       1910       1         52       188       - 403       187       270       - 08/23/40       - 30       1890       1         58       20       - 342       334       280       - 08/04/40       - 30       1890       1         58       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25  |               | 4 .    | ı            | 323        | 31        | 38   | 1 -  | ı   | 23/            | ľ              | 40         | 1970         | 13       |       |
| 69       324       -       378       272       560       -       08/23/40       -       65       1950         49       288       -       409       295       345       -       -       08/21/40       -       40       1950         32       67       -       276       -       -       08/21/40       -       30       1970       1         59       194       -       276       -       08/21/40       -       90       1970       1         59       194       -       08/21/40       -       65       1960       1         37       92       -       348       51       230       29.0       -       08/04/40       -       65       1960       1         52       188       -       403       187       270       -       08/23/40       -       25       1910       1         48       226       -       334       280       -       -       08/23/40       -       25       1910       1         58       20       -       44       -       09/04/40       -       30       1890       1         74<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7   | ₹.            | 911    | 1            | 409        | 146       | 36   | ì    | ı   | •              | i              | 82         | 19/10        | 13       |       |
| 49       288       - 409       295       345       08/23/40       - 40       1950         32       67       - 366       70       63       - 08/21/40       - 30       1970       1         57       22       - 275       - 20       - 08/21/40       - 90       1970       1         59       194       - 09/04/40       - 09/04/40       - 65       1970       1         37       92       - 348       51       230       29.0       - 09/04/40       - 65       1945       1         52       188       - 403       187       270       - 08/23/40       - 25       1910       1         48       226       - 342       334       280       - 08/21/40       - 30       1890       1         58       20       - 49       12       44       - 09/04/40       - 40       1885       1         74       208       - 256       70       670       - 09/04/40       - 69/04/40       - 90       1910       1         68       249       - 256       70       670       - 09/04/40       - 90       1910       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 162 |               | 324    | ı            | 378        | 272       | 280  |      | i   | ╲.             | 1              | 65         | 1950         | ဖ        |       |
| 32       67       - 366       70       63       - 08/21/40       - 30       1970       1         57       22       - 275       - 20       - 08/21/40       - 87       2020         59       194       - 317       47       600       24.0       - 09/04/40       - 87       2020         37       72       - 458       43       170       - 09/04/40       - 65       1960         37       92       - 348       51       230       29.0       - 09/04/40       - 80       1945       11         52       188       - 403       187       270       - 08/23/40       - 25       1910       11         48       226       - 342       334       280       - 08/21/40       - 30       1890       1         58       20       - 49       12       44       - 09/04/40       - 40       1885       1         74       208       - 256       70       670       - 09/04/40       - 80       1910       1         68       249       - 329       121       630       - 09/04/40       - 90       1910       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 123 |               | 887    | ı            | 409        | 282       | 345  | ı    | ļ   | ຺              | ı              | 40         | 1950         | <b>∞</b> |       |
| 57       22       - 275       - 20       - 08/21/40       - 87       2020         59       194       - 317       47       600       24.0       - 09/04/40       - 90       1970       1         37       72       - 458       43       170       - 09/04/40       - 65       1960         37       92       - 348       51       230       29.0       - 09/04/40       - 80       1945       1         52       188       - 403       187       270       - 08/23/40       - 25       1910       1         48       226       - 342       334       280       - 08/21/40       - 30       1890       1         58       20       - 49       12       44       - 09/04/40       - 40       1885       1         74       208       - 256       70       670       - 09/04/40       - 80       1910       1         68       249       - 329       121       630       - 09/04/40       - 90       1910       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 89  |               | 19     | 1            | 366        | 92        | 23   | L,   | ı   | •              |                | 30         | 1970         | 13       |       |
| 59       194       -       317       47       600       24.0       -       09/04/40       -       90       1970       1         37       72       -       458       43       170       -       -       09/04/40       -       65       1960       1945       11         52       188       -       348       51       230       29.0       -       08/23/40       -       66       1945       11         48       226       -       342       334       280       -       -       08/21/40       -       30       1890       11         58       20       -       49       12       44       -       -       09/04/40       -       40       1885       11         74       208       -       256       70       670       -       -       09/04/40       -       90       1910       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7   |               | 22     | 1            | 275        |           | 20   |      | 1   | `              | 1              | 87         | 2020         | Ġ.       |       |
| 37     72     -     458     43     170     -     -     09/04/40     -     65     1960       37     92     -     348     51     230     29.0     -     08/04/40     -     80     1945     11       52     188     -     403     187     270     -     -     08/23/40     -     25     1910     11       48     226     -     342     334     280     -     -     08/21/40     -     30     1890     1       58     20     -     49     12     44     -     -     09/04/40     -     40     1885     1       74     208     -     256     70     670     -     -     09/04/40     -     90     1910     1       68     249     -     329     121     630     -     -     09/04/40     -     90     1910     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 203 | വ             | 194    | 1            | 317        | 47        | 800  | 24.0 | ı   | `              | 1              | 96         | 1970         | 14       |       |
| 37     92     -     348     51     230     29.0     -     09/04/40     -     80     1945     1       52     188     -     403     187     270     -     -     08/23/40     -     25     1910     1       48     226     -     342     334     280     -     -     08/21/40     -     30     1890     1       58     20     -     49     12     44     -     -     09/04/40     -     40     1885     1       74     208     -     256     70     670     -     -     09/04/40     -     80     1910     1       68     249     -     329     121     630     -     -     09/04/40     -     90     1910     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 140 | က             | 72     | ı            | 458        | 43        | 170  | 1    |     | •              |                | 99         | 1960         | _        |       |
| 6 52 188 - 403 187 270 - 08/23/40 - 25 1910 1<br>7 48 226 - 342 334 280 - 08/21/40 - 30 1890 1<br>5 58 20 - 49 12 44 - 09/04/40 - 40 1885 1<br>8 74 208 - 256 70 670 - 09/04/40 - 80 1910 1<br>7 68 249 - 329 121 630 - 09/04/40 - 90 1910 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 130 | m             | 95     | 1            | 348        | 21        | 230  | 0    | ı   | •              | 1              | 808        | 1945         | 16       |       |
| 7 48 226 - 342 334 280 08/21/40 - 30<br>5 58 20 - 49 12 44 09/04/40 - 40<br>0 74 208 - 256 70 670 09/04/40 - 80<br>7 68 249 - 329 121 630 09/04/40 - 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 116 | വ             | 188    | ŗ            | 403        | 187       | 270  |      | í   | 08/23/40       | i              | 25         | 1910         | 16       |       |
| 5       58       20       -       49       12       44       -       -       09/04/40       -       40         0       74       208       -       256       70       670       -       -       09/04/40       -       80         7       68       249       -       329       121       630       -       -       09/04/40       -       90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 137 | 4             | 226    | i            | 342        | 334       | 280  | 1    | •   | 08/21/40       | ı              | 30         | 1890         | 16       |       |
| 0 74 208 - 256 70 670 09/04/40 - 80 7 68 249 - 329 121 630 09/04/40 - 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12  | ω.            | 20     | , <b>1</b> , | 49         | 12        | 44   | : 1. |     | 09/04/40       | 1              | 40         | 1885         | 10       |       |
| 7 68 249 - 329 121 630 09/04/40 - 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 196 | 7             | 208    | 1            | 526        | 20        | 670  | 1    | ì   | 09/04/40       | •              | 80         | 1910         | 14       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 187 | Ø             | 249    | ı            | 329        | 121       | 630  |      |     | 09/04/40       | 1              | 96         | 1910         | 14       |       |

Appendix 1 (cont). Chemical composition of shallow ground water.

| Land Sample eleva- Forma- depth tion tion (ft) (ft) | 199 1905  | 9         |          | 1980     | 1935     | 1905     | 1895     | 9         |           |           |            |           |           |           |           |           |          |           |          |          |           |           |           |           |           |                       |           |                        |          |               |                      |           |          |           |          |      |
|-----------------------------------------------------|-----------|-----------|----------|----------|----------|----------|----------|-----------|-----------|-----------|------------|-----------|-----------|-----------|-----------|-----------|----------|-----------|----------|----------|-----------|-----------|-----------|-----------|-----------|-----------------------|-----------|------------------------|----------|---------------|----------------------|-----------|----------|-----------|----------|------|
|                                                     | 129       | 99        | _        |          |          | Ż        | ä        | 1920      | 1920      | 1890      | 1880       | 1865      | 1865      | 1885      | 18/6      | 10/0      | 1880     | 1000      | 1915     | 1865     | 1870      | 1860      | 1860      | 1880      | 1890      | 2000                  | 1 6       | 9697                   | 1 6      | 2160          | 2017                 | 1 1       | 1950     | 1950      | 7.000    | CT07 |
| Forma-<br>tion                                      |           | -         | 150      | 260      | 126      | 130      | 105      | 112       | 100       | 167       | 107        | 96        | 06        | 100       | 102       | 121       | 101      | 5 5       | 108      | 74       | 80        | 100       | 100       | 102       | 96        | 12                    | 1 L       | n 1                    | 1 (      | 173           | 211                  | 1 1       | 25       | 52        | 52       | 1    |
|                                                     | 1         | ı         |          | i        | 1        | 1        |          | 1         | 1         | 1.        | J          | ı         | ı         | i         | 1         | 1         | •        | 1         | 1        | 1        | i         | •         | ı         | ij        | 1,        | •                     | i         |                        | 1        | 1             | 1                    | í, I      |          | •         |          |      |
| Samp le<br>date                                     | 10/06/40  | 10/17/40  | 10/15/40 | 05/12/37 | 10/15/40 | 10/15/40 | 10/17/40 | 10/17/40  | 10/22/40  | 10/22/40  | 10/17/40   | 10/17/40  | 10/22/40  | 10/22/40  | 10/22/40  | 10/22/40  | 11/14/40 | 11/14/40  | 11/14/40 | 02/15/38 | 11/15/40  | 02/15/38  | 10/03/40  | 11/15/40  | 11/15/40  | 10/30/40              | 10/15/40  | 10/18/40               | 10/18/40 | 10/18/40      | 10/10/40<br>69/16/20 | 10/10/38  | 02/16/38 | 09/04/40  | 02/16/38 |      |
| Ŧ                                                   |           | ,         | ı        | 1        | ı        | T,       | ı        | ŀ,        | ı         | ı         | 1,         | L         | 4         | 1         | ı         | F         |          | )<br>     |          | 1        | 1         |           | ı         | ı         | i         | •                     | ŀ         | 1 1                    | . ·      | •             | ) 4                  |           |          |           | , 1      |      |
| 8<br>8                                              | ı         | . 1       | ı        |          | 1        | 1        | 1        | ï         | i         | I         | 1          | 1         |           | ı         | 1         | 1         |          | )         |          |          | ı         | 41.0      | 29.0      | 1,        | 1         | •                     |           | l 1                    |          | 1             | -                    | 1 1       | •        | 1         |          |      |
| <b>.</b> 5                                          | 230       | 102       | 30       | 5190     | Ø6       | 190      | 3100     | 6000      | 270       | 1080      | 134        | 360       | 180       | 380       | 240       | 330       | 9/1      | 2 4       | 99 1     | 141      | 480       | 240       | 220       | 170       | 21        | 5<br>5<br>8<br>7<br>8 | 9 7       | 7 6                    | 7.7      | 21            | B 7 C                | 3.1       | 129      | 24        | 44       |      |
| \$0 <b>4</b>                                        | ő         | 62        | 99       | 1734     | 47       | 621      | 1416     | 2814      | 714       | 520       | 87         | 105       | 101       | 295       | 140       | 18/       | 9 6      | 761       | 92       | 312      | 312       | 1172      | 1745      | 1536      | 575       | 20                    | 7 7       | 47                     |          | <b>4</b><br>ω | 1 L                  | 7.2       | 1 00     | 27        | 25       |      |
| нсоз                                                | 878       | 305       | 293      | 244      | 378      |          |          | 200       | 302       | 299       | 302        | 287       | 305       | 268       | 317       | 300       | 107      | 000       | 342      | 329      | 122       | 293       | 256       | 317       | 384       | 293                   | 283       | 000                    | 588      | 299           | 0 0                  | 300       | 311      | 293       | 342      |      |
| ×                                                   |           |           | 1        | 1        | i d      | 1        | 1        | 1         |           | •         | , <b>1</b> | ŀ         | 1         | i         | ı         | r         | ı        | 1         | 1        | ı        | 1.        | 1         | 1         | í         | i         | 1                     | ı         | 1 1                    | i        | 1             | •                    | i 1       |          | 1         | ı        |      |
| a<br>Z                                              | 101       | 57        | , o      | 3420     | 54       | 967      | 1826     | 3990      | 188       | 573       | 83         | 150       | 104       | 161       | 102       | 215       | 4<br>7   | 0 0       | g (C     | 61       | 142       | 86        | 254       | 123       | 36        | 22                    | 51        | 2 6                    |          | 23            | 2 2                  | 4 C       | 7 7      | 32        | 7        |      |
| <u>N</u>                                            | 9         | 4         | 24       | 198      | 27       | 42       | 198      | 292       | 63        | 92        | 30         | 21        | 30        | 92        | 46        | <u></u>   | [ ]      | 1 0       | 9 K      | 77       | 110       | 179       | 209       | 220       | 22        | 22                    | 9 0       | 8 6 6                  | 7.7      | 53            | 9 9                  | 18        | · .      | 20        | 23       |      |
| <b>.</b>                                            |           | 67        | 92       | 427      | 104      | 67       | 527      | 771       | 284       | 569       | 92         | 127       | 106       | 179       | 134       | 2/1       | E ;      | 111       | 104      | 140      | 136       | 360       | 380       | 373       | 253       | 78                    | 9 c       | 7.0                    | 9        | 62            | 9 6                  | ο α<br>/  | 112      | 89        | 108      |      |
| Long.<br>(utm)                                      | 465020 7  | ס כ       |          |          |          | •        | •        | . •       | 471312.6  | 470331.1  | 468356.4   | 466348.2  | 469491.7  | •         | 473648.5  | •         | 475307.3 | 475747 4  | 476817 8 | 483242.3 | 484551.5  | 489097.3  | 489136.0  | 485918.9  | 485907.7  | 475836.7              | 475429.9  | 485199.1<br>487657.2   | 48/65/.2 | 485805.1      |                      | 462498.9  | 457857 9 | 457830.3  | 453434.4 |      |
| Lat.<br>(utm)                                       | 0464041 [ | 3462456 2 | •        |          |          |          | 55782.   | 3464955.9 | 3466543.9 | 3467686.0 | 3467285.1  | 3469183.2 | 3469175.0 | 3468873.1 | 3470551.0 | 3470606.3 |          | 3408521.4 |          |          | 3467191.1 | 3467111.1 | 3467099.1 | 3465714.6 | 3465321.0 | 3458346.5             | 345/482.3 | 3455138.5<br>3447299 9 |          | 47726.        | 50000                | 3454668.4 | -        | 3463815.9 |          |      |

Appendix { (cont). Chemical composition of shallow ground water.

| <b>6</b>                       | • | ⊣ .      | -         | -          | -         | -           | -        | _         | -         | 7         | 7         | 8         | 8         | 0         | 8         | 8         | 8         | 7         | 7         | 8        | 8        | 7        | 0        | 7         | ~         | N         | 7        | 2        | 8        | 8         | 8        | 8        | 0         | 8        | 8         | 8        | 8         | 7    | 7         | 7        | 8         |
|--------------------------------|---|----------|-----------|------------|-----------|-------------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|----------|----------|----------|-----------|-----------|-----------|----------|----------|----------|-----------|----------|----------|-----------|----------|-----------|----------|-----------|------|-----------|----------|-----------|
| < *                            |   | ထ        | 11        | -          | -         | H           | 13       | ٦         | 16        | œ         | 13        | 15        | 6         | 13        | O         | 13        | 13        | -         | 13        | 7        | <b>o</b> | _        | m,       | 13        | 12        | 133       | ω        | 13       | 133      | 13        | 13       | 13       | 13        | 13       | 16        | 13       | 13        | -1   | Н,        | 13       | თ         |
| Land<br>eleva-<br>tion<br>(ft) |   | 2060     | 2050      | , t        | 2175      | 2115        | 2115     | 2170      | 2280      | 2180      | 2080      | 2240      | 1985      | 1965      | 1947      | 1970      | 1928      | 1922      | 2190      | 2310     | 2310     | 2280     | 2305     | 2100      | 2230      | 2220      | 2220     | 2100     | 1918     | 1890      | 1900     | 1920     | 1885      | 1875     | 1850      | 2400     | 2420      | 2310 | 2180      | 2300     | 2000      |
| Sample<br>depth<br>(ft)        |   | 99/      | 20        | t·         | 140       | 120         | 120      | 120       | 220       | 200       | 175       | 158       | 132       | 140       | 85        | 120       | 79        | 4         | 116       | 65       | 72       | 125      | 209      | 160       | 178       | 120       | 150      | 7.7      | 83       | 68        | 116      | 100      | 104       | 22       | 45        | 148      | 135       | 72   | 48        | 202      | 21        |
| Formation #1                   |   |          | 1         | 1          | 1         | 1           |          | ı         | ı         | KCT       | KCT       | KCT-QLe   | PLC       | PLC       | PLC       | PLC       | PLC       | PLC       | KCT       | KCT      | KCT      | KCT      | KCT      | KCT       | 1         | KCT       | KCT      | KCT      | PLC      | PLC       | PLc<br>C | PLC      | PLC       | PLC      | PLC       | KCT      | KCT       | KCT  | KCT-QLe   | KCT      | gre       |
| Sample<br>date                 |   | 10/03/40 | 02/18/38  | 08/20/40   | 10/21/40  | 02/11/38    | 10/03/40 | 10/14/40  | 10/14/40  | 01/20/20  | 03/21/50  | 01/28/49  | 10/01/48  | 10/01/48  | 10/01/48  | 01/28/49  | 10/01/48  | 10/07/48  | 07/21/50  | 01/20/20 | 01/20/20 |          | 07/21/50 | 01/20/50  | 02/00/10  | 01/58/50  | 01/20/50 | 05/05/50 | 10/07/48 | 10/01/48  | 10/07/48 | 01/24/49 | 10/07/48  |          | 10/07/48  | 01/21/20 | 07/25/50  | _    | 02/10/10  | 07/11/50 | 09/15/50  |
| Ŧ                              |   | 1        | ı         | 1          | 1         | 1           | 1        | į         | 1         | 7.9       | 7.4       | ı         | 1         | ļ         | ľ         | ı         | 1         | : 1       | 8.0       | 8.2      | 8.1      | 7.8      | 8.1      |           | 7.7       | 6.7       | 7.8      | 7.3      | 1        | I         |          | 1        | r         | ,        | ı         | 8.2      |           | 8.1  | 7.8       | 8.0      | 8.2       |
| 80<br>3                        |   | ı        | 36.0      | ı          |           | 1           |          |           |           |           |           | 7.2       | 12.0      | 45.0      | 16.0      |           |           |           |           |          |          |          | 0.5      | 9         | 9         | 3.5       | 1.2      | 9        | 33.0     | 16.0      | 8.0      | 9.2      | 2.5       | 9.6      | 12.0      | 0.0      | 7.2       | 8.   | 5.0       | 0.5      | 3.5       |
|                                |   | 5350     | 28        | 27         | 21        | 15          | 30       | 19        | 110       | 159       | 140       | 22        | 75        | 78        | 67        | 20        | 40        | 20        | 63        | 11       | 56       | 12       | 17       | 36        | 151       | 13        | 192      | 28       | 130      | 7         | 58       | 76       | 71        | 81       | 82        | 16       | 18        | 12   | 12        | 13       | 21        |
| \$0 <b>4</b>                   |   | 892      | 449       | 1          | 10        | 17          | 1        | 16        | 63        | 377       | 7.4       | 780       | 37        | 32        | 31        | 45        | 36        | 32        | 22        | 6        | 20       | 39       | 421      | 24        | 1770      | ж<br>4    | 329      | 144      | 89       | 31        | 13       | 38       | 28        | 37       | 242       | 81       | 23        | 12   | 16        | 19       | 46        |
| нсоз                           |   | 8/8      | 329       | 287        | 293       | 275         | 195      | 305       | 299       | 354       | 360       | 180       | 284       | 294       | 184       | 370       | 322       | 322       | 371       | 363      | 334      | 277      | 277      | 362       | 191       | 302       | 331      | 424      | 380      | 358       | 320      | 326      | 436       | 368      | 272       | 242      | 256       | 347  | 385       | 392      | 348       |
| ¥                              |   | i        | l,        | Í          | •         | :, <b>I</b> | J        | ı         | 1         | ı         | ı         | 1         | 1,        | ı         | 1         | ļ         | i         | 1         | 1         | ı        | . I,     | 1        | ť,       | 1         | 1         | ì         | ŀ        | í .      | ı        | •         | 1        | 1        | i         | ı        | 1         | . 1      | i         | ı    | ı         | 1        | ı         |
| ø.<br>Z                        | 1 | 3778     | 38        | 31         | 12        | 15          | 24       | 19        | 81        | 211       | 43        | 96        | 13        | 52        | 20        | 46        | 56        | 37        | 53        | 7        | 19       | 17       | 26       | 18        | 140       | 12        | 215      | 101      | 71       | 37        | 13       | 30       | 63        | 37       | 25        | 52       | 12        | 6    | 10        | 19       | 20        |
| Мg                             | ; | 101      | 105       | 17         | 14        | 16          | 16       | 12        | 22        | 73        | 67        | 81        | 48        |           | 33        | 41        | 40        | 30        | 54        | 36       | 47       | 24       | 63       | 45        | 231       | 31        | 25       | 23       | 21       | 41        | 38       | 49       | 40        | 46       | 99        | 36       | 58        | 28   | 58        | 38       | 64        |
| S                              |   | 528      | 117       | <b>6</b> 0 | 80        | 69          | 38       | 81        | 94        | 99        | 98        | 201       | 9         | 73        | 34        | 92        | 63        | 84        | 75        | 89       | 20       | 62       | 150      | 99        | 384       | 4         | 85       | 26       | &<br>&   | 9/        | 28       | 62       | 87        | 11       | 86        | 41       | 48        | 78   | 84        |          | 24        |
| Long.<br>(utm)                 | . | 451495.4 | 451740.4  | 452837.3   | 458161.6  | 450973.6    | 450981.7 | 447158.2  | 443030.2  | 449025.4  | 466110.0  | 456001.7  | 474676.2  | 474731.8  | 474777.0  | 473312.6  | 474614.6  | 475808.2  | 423794.8  | •        |          | 419393.5 | 422097.5 | 28963     | 30396     | •         | • .      | •        | •        | •         | 475381.4 | •        | 474805.3  | 475067.8 | 475566.0  | 421625.5 | . •       | •    | . •       | 438643.5 | 437073.3  |
| Lat.<br>(utm)                  |   | •        | 3448891.4 | 3444855.1  | 3447487.5 | 3441091.2   | •        | 3441890.6 | 3442660.5 | 3499152.8 | 3503770.0 | 3503481.1 | 3506050.3 | 3504144.4 | 3503806.4 | 3503666.5 | 3502706.4 | 3502213.5 | 3501045.3 | 498064   |          | 496295.  | •        | 3502666.4 | 3497366.0 | 3496889.5 | •        | •        | 501581   | 3499404.0 |          | •        | 3497946.1 | 497335   | 3495825.5 | 490950   | 3490116.1 | • .  | 3492724.8 | 4851     | 3476234.1 |

Appendix 1 (cont). Chemical composition of shallow ground water.

| Mg         |
|------------|
| ş          |
|            |
| 39 37      |
| 8          |
|            |
| 27 80      |
| 158 195    |
| 41 29      |
|            |
|            |
|            |
| 113 106    |
| 164 160    |
|            |
|            |
| 52 90      |
| 59 49      |
| 110 186    |
| 158 121    |
| 34 35      |
| 44 106     |
| 46 90      |
| 193 147    |
|            |
| 138 210    |
| 101 189    |
| 7          |
| 54 96      |
|            |
| က          |
| S          |
|            |
|            |
| 192 205    |
| 40 46      |
| 1050 16000 |
|            |
|            |
|            |
|            |
|            |
| 65 195     |
|            |

Appendix 1 (cont). Chemical composition of shallow ground water.

|      |          | . (    | <b>6</b>    |  | 8         | 8         | 8        | N         | 8        | 8         | ^         | 1 0      | 8         | 8         | 8         | 8        | 8        | 8        | 8         | 8        | Ø         | 7         | 8           | က         | က        | က         | က        | က         | ო        | က         | က         | က          | က         | m 1       | <b>n</b> (           | ٠<br>د               | , c      | 0 0       | י מ       | י ני     | ט מ       | ) (r      | က         |
|------|----------|--------|-------------|--|-----------|-----------|----------|-----------|----------|-----------|-----------|----------|-----------|-----------|-----------|----------|----------|----------|-----------|----------|-----------|-----------|-------------|-----------|----------|-----------|----------|-----------|----------|-----------|-----------|------------|-----------|-----------|----------------------|----------------------|----------|-----------|-----------|----------|-----------|-----------|-----------|
|      |          |        | ∢ .         |  | 16        | 4         | 14       | 16        | ິຕ       | 14        | , cr      | 12       | 16        | 00        | ω         | 13       | -        | 13       | 13        | 14       | 16        | m         | <del></del> | -         | -        | 13        | 13       | _         | -        | 13        | 13        | 13         | က         | 16        | ٠. <del>د</del>      | 1 C                  | 0 6      | 2 -       | ٠         | 1 6      | 2 7       | 2 5       | 4         |
| Land | e e va - | tion   | (†t)        |  | 1855      | 1863      | 1861     | 1867      | 1880     | 1888      | 1820      | 1865     | 1895      | 2080      | 2150      | 2010     | 2200     | 2015     | 2015      | 1805     | 1810      | 1884      | 2255        | 2300      | 2220     | 2240      | 2330     | 2260      | 2190     | 2120      | 2120      | 2180       | 2130      | 2090      | 22.00                | 2130                 | 2130     | 2130      | 2180      | 2000     | 2140      | 2080      | 2080      |
|      | Sample   | depth  | (††)        |  | 110       | 140       | 117      | 38        | 207      | 128       | 62        | 78       | 86        | 60        | 148       | 60       | 57       | 99       | 99        | 4        | 103       | 214       | 177         | 80        | 45       | 165       | 120      | 91        | 39       | Ø6        | 75        | 22         | 121       | 22        | 2 6                  | 4 0                  | 2 4      | 7 20      | 199       | 143      | 1 1 2     | 25.       | 96        |
|      | ı        | TOTE . | t i on      |  | QL.       | PLC-QLe   | 0Le      | PLC       | PLC      | QLe       | P<br>C    | PLC      | PLC       | KCT       | KCT       | KCT      | KCF      | QLe      | QL.       | PLC-QLe  | QL.       | PLC       | KCT         | QA I -KCT | QA!      | KCT       | KCF-KCT  | KCT       | - AD     | KCT       |           | QAI-KCT    | QAI-KCT   | WAI-KCI   | NCT T-D              | KCT-T2N              | KCTLTIN  | YCT - LOX | KCT.      | KCT.     | X Y       | 0A I - P  | QAI-P     |
|      |          | Sample | da<br>te    |  | 12/16/48  | 08/30/20  | 08/28/50 | 09/22/48  | 12/23/48 | 08/28/50  | 12/08/48  |          | 01/20/49  | 09/21/50  | 02/13/20  | 05/18/50 | 05/18/50 | 02/10/10 | 08/19/47  | 04/06/48 | 11/02/48  | 01/03/49  | 05/19/50    | 09/13/67  | 09/11/62 | 10/03/67  | 09/12/67 | 09/12/67  | 09/11/67 | 05/15/40  | 10/02/67  | 89/60/80   | 09/15/67  | 19/80/60  | 01/12/01<br>0E/21/40 | 00/21/40<br>08/25/40 | 82/22/28 | 07/12/67  | 10/06/67  | 19/96/67 | 10/03/01  | 06/25/40  | 10/02/01  |
|      |          |        | Ē           |  | ı         | 7.7       | 7.5      | ı         |          | 7.5       |           | <br>!    | 1         | 7.9       | 7.4       | 7.9      | 8.7      | 8.0      | 7.2       |          | 1         | 1         | 8.0         | 7.7       | 8.7      | 7.7       | 6.7      | 7.7       | 7.7      | ř,        | 7.5       | 8.         | 4 (       | 0.1       |                      | <i>i</i>             | α        | ,<br>,    | 6         | 0 00     | 0. 6      |           | 9.7       |
| -    |          | 2      | e<br>N      |  | 0.6       | 2.5       | 9.6      | 0.0       | 3.5      | 6.3       | 0.0       | 0.0      | 0.0       | 2.0       | <u>ه</u>  | 80       | 60       | a        |           | 47.0     | 19.0      | 1.2       | 8.4         |           | 1        |           | 1        | ı         | 1,       | J         | 1         | t          | •         | 1,        |                      | <b>1</b>             |          | ı         |           | ı        | ,         | ı         | 1         |
|      |          | -      | 5           |  | 215       | 267       | 253      | 82        | 100      | 276       | 86        | 115      | 188       | 252       | 540       | 62       | 16       | 64       | 89        | 525      | 184       | 165       | 19          | 11        | 20       | 22        | Ξ        | 12        | 16       | 63        | 136       | 58         | 9 .       | 100       | י<br>ע               | 310                  | 88       | 25        | 18        | 22       | 24        | 240       | 324       |
|      |          | Č      | 50<br>4     |  | 63        | 464       | 96       | 203       | 440      | 134       | 2140      | 2200     | 263       | 307       | 528       | 75       | 14       | 104      | 100       | 181      | 112       | 914       | 16          | 13        | 23       | 36        | 28       | 12        | 21       | 12        | 11        | 98         | 08/1      | 0 5       | α<br>4 <b>α</b>      | 2.5                  | 6.4      | 14        | 17        | 92       | 72        | 18        | 70        |
|      |          | (      | ر<br>ا<br>ا |  | 275       | 299       | 290      | 326       | 275      | 292       | 244       | 242      | 318       | 308       | 343       | 378      | 310      | 378      | 390       | 287      | 274       | 240       | 308         | 411       | 361      | 333       | 596      | 316       | 361      | 439       | 432       | 412        | 184       | 174       | 342                  | 378                  | 436      | 444       | 405       | 375      | 295       | 403       | 317       |
| .*   |          | 2      | ۷           |  | 1         | ı         | ı        | 1         | 1        | 1         | 1         | 1        | ı         | 1         | 1         | 1        | 1        | 1        | ı         | 1        | ŀ         | 1         | ı           | 1         | .1       | 1         | · Į      | 1         | 1        | ı         | ŀ.        | 1          | 1         | 1         | ŀĺ                   | ı                    | ı        | 1         | ı         | i        | •         | ٠,        | 1         |
|      | ٠        | 2      | ø<br>Z      |  | 96        | 86        | 120      | 28        | 45       | 136       | 124       | 151      | 84        | 289       | 613       | 7.1      | 10       | 43       | 42        | 117      | 84        | 99        | 14          | 18        | 19       | 33        | 11       | 7         | 16       | 31        | 24        | 7 °        | 9 0       | 671       |                      | 210                  | 42       | 16        | 14        | 41       | 4         | 61        | 75        |
|      |          |        | O)          |  | 44        | 72        | 44       | 47        | 69       | 41        | 228       | 243      | 82        | 34        | 33        | 56       | 21       | 29       | 25        | 97       | 46        | 118       | 52          | 33        | 32       | 36        | 33       | 31        | 35       | 28        | 95        | 4 1        | 1 / 3     | 000       | 4 6                  | 126                  | 53       | 42        | 37        | 40       | 34        | 29        | 75        |
|      |          | į      | <u>ه</u>    |  | 103       | 247       | 108      | 112       | 179      | 124       | 544       | 530      | 112       | 99        | 25        | 96       | 78       | 85       | 96        | 220      | 86        | 302       | 67          | 80        | 72       | 21        | 23       | 99        | 72       | 6         | 138       | 7.7        | 900       | 2 4       | 3.2                  | 208                  | 81       | 84        | 19        | 28       | 49        | 125       | 141       |
|      | -        | Long.  | (new)       |  | 471955.0  | 474176.8  | 469955.1 | 475499.4  | 475274.8 | 469864.4  | 488081.7  | 487222.1 | 483258.8  | 435829.1  | 445117.5  | 452362.3 | 448349.0 | 437764.0 | 437788.2  | 472494.5 | 477758.7  | 474855.7  | 442854.3    | 417930.7  | 419996.4 | 430392.2  | 417293.1 | 420921.1  | 421496.4 | •         | 428235.4  | ٠          | 420303.3  | •         | 418302.5             |                      |          |           | •         | •        | 433242.1  | 429001.4  | 429025.4  |
|      | # 1      | Lat.   | (man)       |  | 3472934.8 | 3471122.8 |          | 3470637.2 |          | 3467385.3 | 3472752.7 | •        | 3465255.5 | 3455961.9 | 3453325.4 |          | •        | •        | 3496396.3 |          | 3482029.6 | 3468880.8 | 3450107.1   | 3487778.0 | •        | 3485499.1 | 481309   | 3480689.8 |          | 3482339.7 | 3482299.9 | 3477616.10 | 3478406 0 | 3471600 1 | 475296               | 3475296.8            | 475312   | 3472814.0 | 3474404.0 | 474603   | 3484160.9 | 3478960.8 | 3478968.4 |

Appendix 1 (cont). Chemical composition of shallow ground water

|                           |                                       |           |           |        |      |         |      |          |        |                |                | Sample        |               |        |      |
|---------------------------|---------------------------------------|-----------|-----------|--------|------|---------|------|----------|--------|----------------|----------------|---------------|---------------|--------|------|
| Long. Ca Mg Na K HCD.     | A eN                                  | S<br>S    | ×         |        | HCO  | 0S      | 5    | N<br>N   | Ŧ      | Sample<br>date | Forma-<br>tion | depth<br>(ft) | _             | ⋖      | Ф    |
|                           | · · · · · · · · · · · · · · · · · · · |           | :         |        | က    | 4.      |      | <b>m</b> |        | }<br>}<br>}    |                |               |               | •      | )    |
|                           |                                       |           |           |        |      |         |      |          |        |                |                |               |               |        |      |
| 429427.1 114 49 177 - 361 | 14 49 177 -                           | 1         | 1         | - 361  | 361  | 115     | 320  | J        | 7.5    | 10/25/66       | QAI-P          | 40            | 2040          | 14     | m    |
| 8934.4 85 50 25 -         | 50 25 -                               | 25 -      | . 1.      | - 378  | 378  | 16      | 100  | •        | ı      | 08/25/40       | QAI-P          | 72            | 2085          | 13     | m    |
| 9 91 174 -                | 9 91 174 -                            | 174 -     | ı         | - 405  | 405  | 97      | 432  | •        | 7.8    | 10/05/67       | QA I -P        | 108           | 2100          | 14     | က    |
| .3 64 27 32 -             | 4 27 32 -                             | 32 –      | •         | - 332  | 332  | 56      | 35   | ı        | 7.5    | 19/10/60       | - A            | 99            | 2020          | 13     | ຕ    |
| .5 59 22                  | 22 15 -                               | 15        | 1         | - 276  | 276  | 15      | 18   | 1        | 7.8    | 07/22/68       | KCT            | 240           | 2430          | 7      | ო    |
| 7971.6 77 21 19 -         | 21 19 -                               | 19 -      | 19 - 292  | - 292  | 292  | 58      | 31   | 1        | 7.4    | 07/22/68       | KCF            | 236           | 2350          | -      | က    |
| 19611.9 59 26 9 -         | 26 99 -                               | 1 .<br>Oi | ţ.        | - 281  | 281  | 18      | 18   |          | 7.3    | 07/22/68       | KCT-TrD        | 270           | 2360          | -      | က    |
| 21998.8 69 20 9 -         | 200 9 -                               | ်<br>ဂ    | 1         | - 293  | 293  | 12      | 13   |          | 7.5    | 19/10/80       | KCT            | 70            | 2210          | -      | ന    |
| 24813.7 310 154 276 -     | 154 278 -                             | 276 -     | 1         | - 265  | 265  | 1240    | 346  | 1        | 7.5    | 19/10/80       | ۵.             | 113           | 2180          | 12     | က    |
| 16680.5 70 23 29 -        | 23 29 -                               | - 63      | •         | - 272  | 272  | 29      | 49   | •        | 7.4    | 02/28/68       | KCF-KCT        | 73            | 2330          | -      | က    |
| 17633.9 58 27 13 -        | 8 27 13 -                             | 13        | 1.        | _ 284  | 284  | 24      | 12   |          | 7.8    | 02/28/68       | KCT            | 150           | 2340          | 7      | က    |
| 19335.4 58 30 5 -         | 30 02                                 | I<br>LO   | 1         | - 304  | 304  | Ξ.      | တ    |          | 7.7    | 02/28/68       | KCF-KCT        | 185           | 2350          | 7      | က    |
| .4 129 52 80 -            | 52 80 -                               | 80        |           | - 357  | 357  | 141     | 181  | 1        | 7.5    | 08/53/67       | O.A.           | 4             | 2150          | 16     | က    |
| 24931.1 61Ø 2Ø1 665 -     | 201 665 -                             | - 999     |           | - 253  | 253  | 2298    | 851  | 1        |        | 09/56/60       | ۰.             | 202           | 2160          | 15     | က    |
| .0 640 190 690 -          | 190 690 -                             | - 069     |           | - 23,4 | 23,4 | 2270    | 880  | 1        | 7.2    | 19/10/80       | ۵              | 202           | 2160          | 15     | က    |
| 95 29 35 -                | 29 35 -                               | 35 -      | i         | - 354  | 354  | 24      | 28   | ŧ.       | 7.2    | 19/10/80       | QAI-KCT        | 65            | 2140          | -      | က    |
| 96 40 112 -               | 40 112 -                              | 112 -     | 1         | - 320  | 320  | 213     | 128  | 1        | 7.9    | 07/19/68       | QAI-P          | 70            | 2090          | 16     | ო    |
| .0 202 75 234 -           | 75 234 -                              | 234 -     | 1         | - 453  | 453  | 449     | 342  | 1.       | 7.5    | 12/08/67       | QAI-P          | 40            | 2090          | 16     | ო    |
| .2 171 83 331 -           | 83 331 -                              | 331 -     | •         | - 327  | 327  | 200     | 359  | 1        | 7.5    | 07/19/68       | QAI-KCT        | 68            | 2140          | 16     | က    |
| 27719.2 139 51 122 -      | 9 51 122 -                            | 122 -     | 1         | - 428  | 428  | 157     | 233  | 1,       | 7.9    | 07/23/68       | 0A1-P          | 25            | 2090          | 16     | က    |
| 19849.1 69 29 9 -         | 9 29 9 -                              | ၊<br>တ    | 9 - 268   | - 268  | 268  | 31      | 42   | 1        | ı      | 07/23/40       | KCF-KCT        | 150           | 2355          | -      | က    |
| .2 75 33 14 -             | 5 33 14 -                             | 14        | 1         | - 388  | 388  | 4       | 13   | 1        | 7.3    | 10/25/66       | KCF-KCT        | 150           | 2355          | -      | က    |
| 16857.0 48 33 32 -        | 8 33 32 -                             | 32 -      | 1         | - 287  | 287  | 53      | 41   |          |        | 08/08/40       | KCT            | 200           | 2400          | 13     | က    |
| .9 54 29 30 -             | 4 29 30 -                             | 3.0       | -         | - 276  | 276  | 32      | 39   | 1        | 7.8    | 07/24/68       | KCT            | 220           | 2400          | 13     | က    |
| 19734.6 96 53 201 -       | 53 201 -                              | 201 -     | 1,        | - 323  | 323  | 292     | 230  | 1        | i      | 07/23/40       | KCF-KCT        | 190           | 2315          | 16     | က    |
| 19742.7 72 29 47 -        | 29 47 -                               | 47 -      | 1         | - 299  | 299  | 67      | 63   | i        | 7.8    | 07/25/68       | KCF-KCT        | 190           | 2315          | 13     | က    |
| .8 89 3Ø 8.5 -            | 30 8.5 -                              | 9.2       | 1.        | - 334  | 334  | 40      | 28   |          | !      | 09/25/41       | KCF-KCT        | 62            | 2210          | -      | ന    |
| 21837.9 111 33 35 -       | 33 35 -                               | 32        |           | - 415  | 415  | 25      | 28   | •        | 7.4    | 89/80/80       | KCF-KCT        | 88            | 2210          | 1      | ო    |
| 21325.6 100 54 179 -      | 54 179 -                              | 179 -     | 179 - 330 | - 330  | 330  | 307     | 182  | •        | 7.8    | 08/20/47       | KCT            | 150           | 2280          | 16     | က    |
| .6 97 49 175 -            | 7 49 175 -                            | 175 -     | 1         | - 276  | 276  | 340     | 189  | •        | 7.2    | 07/18/68       | KCT            | 180           | 2280          | 16     | က    |
| .ø 125 53 137 –           | 53 137 -                              | 137 -     | ı         | - 510  | 510  | 178     | 163  | •        | 7.5    | 89/80/80       | QAL-KCT        | 87            | 2185          | 13     | က    |
| 2.8 140                   | 67 193 -                              | 193 -     |           | - 354  | 354  | 449     | 219  |          | 7.4    | 07/18/88       | KCF-KCT        | 185           | 2230          | 16     | က    |
| 421769.9 70 40 123 - 388  | 0 40 123 -                            | 123 -     | 1,        | - 388  | 388  | 155     | 100  | 1        | 7.5    | 10/03/66       | KCT            | 150           | 2250          | 13     | က    |
| _                         | 21 52 -                               | - 29      | 1         | - 315  | 315  | 19      | 88   |          | 7.4    | 08/16/67       | 0A I - P       | 204           | 2180          | -      | ന    |
| 2300 -                    | 57 82 230 -                           | 2300 -    | ı         | - 328  | 328  | 260     | 281  |          | 8      | 08/15/67       | KCT-TrD        | 120           | 2200          | 18     | m    |
| 7 52 220 -                | 52 220 -                              | 2200 -    | 1         | - 329  | 329  | 300     | 250  | ļ        |        | 06/21/40       | KCT            | 165           | 2240          | 00     | ന    |
| 50 115 -                  | 15 50 115 -                           | 115 -     | ı         | - 490  | 490  | 141     | 138  | 1        | 7.4    | 08/08/68       | DA I-KCT       | 5.4           | 2185          | 13     | · 67 |
| 2.1 91 54 239 -           | 91 54 239 -                           | 239 -     |           | - 332  | 332  | <br>331 | 237  | 1        | 7 7    | 12/20/87       | KCELKCT        | 108           | 2250          | α      | , u  |
| 2024.9 510 310 1530 -     | 10 310 1530 -                         | 10 1530 - | 1         | - 115  | 115  | 1760    | 2900 | •        | 7.3    | 07/19/68       |                | 24            | 2240          | ) (C   | ) (f |
| 29829.7 77 36 142 -       | 77 36 142 -                           | 36 142 -  | 1         | - 328  | 328  | 162     | 160  |          | 7.6    | 07/19/68       | 0A I -P        | 139           | 2140          | )<br>9 | ) m  |
|                           |                                       |           |           |        |      |         | r 19 |          | ;<br>, |                |                | )<br>)<br>    | )<br> -<br> - | )<br>  | •    |

Appendix 1 (cont). Chemical composition of shallow ground water.

|               |                |     |       |        |            |       |       |           |        |      |                |                |               | Land         |                |
|---------------|----------------|-----|-------|--------|------------|-------|-------|-----------|--------|------|----------------|----------------|---------------|--------------|----------------|
|               |                |     |       |        |            |       |       |           |        |      |                |                | Sample        | eleva-       |                |
| Lat.<br>(utm) | Long.<br>(utm) | 3   | S S   | e<br>Z | · <b>*</b> | HCO   | 80    | 5         | 9<br>9 | H    | Sample<br>date | Forma-<br>tion | depth<br>(ft) | tion<br>(ft) | <b>8</b>       |
|               |                |     |       |        |            | ກ     | 4     |           | יטי    |      |                |                |               |              |                |
|               |                |     | :<br> | - 1. · |            |       |       |           |        |      |                |                |               |              |                |
| 3465885.0     | 431863.2       | 127 | 88    | 350    |            | 332   | 384   | 510       | 1      | 7.7  | 07/19/68       | QAI-P          | 100           | 2050         | မှ             |
| 3457991.0     | 9747.          | 74  | 38    | 125    | 4          | 281   | 19    | 262       |        | 7.5  | 12/19/67       | KCF-KCT        | 266           | 2400         | 14             |
| 3461040.8     | 429077.2       | 78  | 43    | 342    | 1          | 362   | 338   | 327       | 1.     | 7.8  | 12/19/67       | KCT            | 135           | 2200         | 00             |
| 3453437.8     | •              | 72  | 20    | 21     | 1.         | 278   | 21    | 33        | ,      | 7.2  | 08/14/68       | KCF-KCT        | 147           | 2320         | _              |
| 53096.        | 418645.3       | 9/  | 18    | 28     | 1          | 281   | 43    | 37        | 1      | !    | 07/05/40       | KCF            | 74            | 2290         | -              |
| ₹.            | 418661.2       | 105 | 21    | 131    | 1          | 316   | 21    | 227       | 1      | 7.3  | 08/14/68       | KCF            | 74            | 2290         | 14             |
| ഥ             | 421604.1       | 96  | 17    | တ      | ī          | 281   | 41    | 27        |        | ,    | 05/24/40       | KCF            | 12            | 2220         | -              |
| 3455908.1     | •              | 68  | 18    | 21     | 1.         | 307   | 30    | 38        | •      | 7.3  | 08/11/67       | KCF            | 11            | 2220         | <del>-</del> - |
| 57257.        | •              | 96  | 45    | 141    |            | 342   | 199   | 170       | 1      | ı    | 07/23/40       | KCT            | 110           | 2240         | 16             |
| 56738.        |                | 78  | 23    | 198    | 1.         | 342   | 292   | 180       |        | ı    | 08/11/40       | KCT            | 100           | 2230         | œ              |
| •             | •              |     | 44    | 159    | 1          | 315   | 566   | 160       | ı      | 8.5  | 08/11/61       | KCT            | 103           | 2270         | 16             |
| 54972.        | •              | 64  | 58    | 18     | 1          | 298   | 24    | 27        | ľ      | 7.7  | 08/14/68       | KCF-KCT        | 569           | 2400         | -              |
| 3449713.2     |                | 69  | 39    | 82     | 1.         | 338   | 105   | 78        | 1      | 7.5  | 10/14/66       | KCT            | 200           | 2260         | 13             |
| 3452319.7     | 7439.          | 87  | 24    | 153    | 1          | 284   | 37    | 275       | i      | 7.5  | 08/14/68       | KCT-TrD        | 265           | 2290         | 9              |
| 3451260.9     | 6875.          | 128 | 81    | 420    | 1          | 348   | 620   | 475       | ı      | 7.4  | 08/12/68       | KCT-TrD        | 300           | 2270         | 00             |
| 3451274.9     | 0481.          | 84  | 24    | 189    | ı          | 310   | 292   | 219       | 1      | 7.5  | 10/09/01       | KCF-KCT        | 168           | 2300         | 16             |
| 4             | 423088.2       | 98  | 21    | 23     | ì          | 284   | 45    | 42        |        | 7.5  | 10/00/01       | KCF-KCT        | 369           | 2500         | -              |
| 4             | 424530.7       | 141 | 18    | 425    | ľ          | 329   | 627   | 470       | ı      | i    | 08/27/40       | KCF            | 260           | 2360         | 00             |
| 3450518.4     | 424554.7       | 125 | 7.1   | 403    | 1          | 327   | 280   | 455       | 1      | 7.5  | 08/12/68       | KCF            | 261           | 2360         | 00             |
| 449564.       | 427055.0       | 7.0 | 21    | 11     | •          | 289   | 15    | 18        | i      | 7.8  | 10/01/67       | KCF-KCT        | 250           | 2260         | -              |
| •             | 417908.0       | 43  | 33    | 43     | 1          | 267   | 54    | 40        | 1      | 7.8  | 10/14/66       | KCF-KCT        | 335           | 2400         | 13             |
| 3446733.2     | •              | 26  | 58    | 18     | 1          | 273   | 33    | 28        | ı      | 7.8  | 10/00/01       | KCF-KCT        | 333           | 2450         | 13             |
| •             | •              |     | 16    | 12     | 1          | 282   | 16    | 23        | 1      | 7.8  | 19/90/60       | KCF-KCT        | 320           | 2240         |                |
| •             | . •            | 69  | 58    | 41     | 1          | 588   | 14    | 87        | ı      | 7.9  | 09/01/62       | KCF-KCT        | 112           | 2270         | 13             |
| 3448431.9     | 428408.6       | 11  | 17    | 16     | 1,         | 284   | 19    | 24        | •      | 9.7  | 19/90/60       | KCT            | 235           | 2200         | -              |
| 3451419.1     | 3503.          | 91  | 138   | 14     |            | 329   | 13    | 27        | •      | 9.7  | 08/58/67       | QAI            | 33            | 2180         | -              |
| 445221.       | 429781.8       | 21  | 30    | 27     | 1          | 278   | 36    | 30        | ı      | 7.9  | 09/01/67       | KCF-KCT        | 335           | 2350         | 13             |
| 3444412.8     | 431307.0       | 99  | 22    | 52     | 1          | 270   | 30    | 30        | . 1    | 7.7  | 09/01/62       | KCF-KCT        | 259           | 2350         | -              |
| •             | 32519.         | 20  |       | ဗ      | 1          | 281   | 36    | <b>58</b> | ı,     | •    | 19/90/60       | KCF-KCT        | 365           | 2450         | 13             |
| 3441508.3     | 426563.5       | 89  | 14    | 12     | 1          | 230   | 16    | 24        | 1      | 6.9  | 07/12/61       | KCF            | 145           | 2270         | -              |
| 41524.        | •              | 67  | 17    | 13     | 1          | 251   |       | 21        | 1      | 7.8  | 07/21/67       | KCF            | 145           | 2270         |                |
| 39850         | •              | 72  | 18    | တ      | 1          | 278   | 13    | 14        | i      | 9.7  | 08/58/67       | KCF            | 135           | 2300         | -              |
| 43052         | •              | 26  | 17    | 56     | ij         | 337   | 59    | 31        |        | 7.9  | 07/21/67       | KCF            | 140           | 2275         | -              |
| 439790.       | 426991.1       | 47  | 50    | 17     | h.         | 220   | 18    | 21        | •      | 1    | 01/21/40       | KCF            | 120           | 2310         | 13             |
| 439847.       | 5144.          | 69  | 23    | 30     | ı          | 279   | 36    | 38        | •      | 7.9  | 08/11/67       | KCF            | 325           | 2330         | -              |
| 443357.       | 9222.          |     | 89    | 440    | ı          | 307   | 282   | 422       | ŀ      | 7.8  | 09/01/67       | KCF-KCT        | 400           | 2400         | 00             |
| 44096         | 428647.6       |     |       | 63     |            | 276   | 43    | 34        | r      | 7.8  | 08/28/67       | KCF            | 240           | 2310         | 13             |
| 44210         | 30120.         |     | 18    | 12     | 1          | 566   | 15    | 17        | i      |      | 09/01/67       | KCF            | 220           | 2340         | -              |
| 43969         | 28622.         |     | က     | 272    | ì          |       | 323   | 231       | 1      | 8.2  | 08/24/65       | KCF-KCT        | 445           | 2350         | ω              |
| 3489038.4     | 476232.2       | 525 | 8623  | 8678   | 4.0        | 243 8 | 86008 | 516       | 1.     | . 92 | 1              | 1              | 20            | 1720         | 11             |
|               |                |     |       |        |            |       |       |           |        |      |                |                |               |              |                |

Appendix 1 (cont). Chemical composition of shallow ground water.

| 0 + 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - | Sample F<br>date t                                                                                       | Sample<br>pH date | Sample<br>pH date  | Sample<br>pH date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sample<br>No.3 pH date                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sample Sample of NO3 pH date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SO <sub>4</sub> CI NO <sub>3</sub> pH date | K HCO <sub>3</sub> SO <sub>4</sub> CI NO <sub>3</sub> pH date 3 a 218 27a 461 - 8 a8 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sample Sample $K$ HCO $_3$ SO $_4$ CI NO $_3$ pH date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sample Sample Sample Na K $^3$ HCO $^3$ SO $^4$ CI $^3$ pH date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sample<br>Mg Na K HCO, SO, CI NO, pH date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         |                                                                                                          |                   | •                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                            | 2 0 018 070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                         |                                                                                                          |                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                            | 2 Ø 918 97Ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                         |                                                                                                          | 8.06              | - 8.08 -           | o<br>I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 461 - 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 270 461 - 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .ø 218 27ø 461 – 8.                        | 3.0 210 210 401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 169 3.0 218 270 461 - 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 82 169 3.0 218 270 461 - 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 82 169 3.0 218 270 461 - 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                         | 1                                                                                                        | 7.62 -            | - 7.62 -           | . 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 980 - 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 174 980 - 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .0 228 174 980 - 7.                        | 2.0 228 174 980 - 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 334 2.0 228 174 980 - 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 128 334 2.0 228 174 980 - 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 359 128 334 2.0 228 174 980 - 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         | 1                                                                                                        | 7.98              | - 7.98 -           | 454 - 7.98 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .0 258 167                                 | 3 3.0 258 167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 143 3.0 258 167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 96 143 3.0 258 167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .8 229 96 143 3.0 258 167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ;                                       | •                                                                                                        | 8.30              | - 8.30 -           | 236 - 8.30 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 156                                        | 4 1.0 362 156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 114 1.0 362 156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 62 114 1.0 362 156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 189 62 114 1.0 362 156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                         | 1                                                                                                        | 8.12              | - 8.12 -           | 80<br>I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 205 - 8                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 474 205 - 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .Ø 288 474 2Ø5 – 8                         | 2.0 288 474 205 - 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 91 2.0 288 474 205 - 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 118 91 2.0 288 474 205 - 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 185 118 91 2.0 288 474 205 - 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ٠.                                      | 1.                                                                                                       | 8.08              | 1 80.8             | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 367 - 8                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 465 367 - 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .ø 3ø4 465 367 – 8                         | 2.0 304 465 367 - 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 192 2.0 304 465 367 - 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 115 192 2.0 304 465 367 - 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 188 115 192 2.0 304 465 367 - 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                         |                                                                                                          | 7.85              | - 7.85             | - 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 482 - 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 258 482 - 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .Ø 363 258 482 - 7.                        | 2.0 363 258 482 - 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 233 2.0 363 258 482 - 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 111 233 2.0 363 258 482 - 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .4 212 111 233 2.0 363 258 482 - 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                         | 1                                                                                                        | 8.00              | - 8.00             | 184 - 8.00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .0 321 261                                 | 3.0 321 261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 156 3.0 321 261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 64 156 3.0 321 261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .4 157 64 156 3.0 321 261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         | •                                                                                                        | 7.77              | - 7.77 -           | 639 - 7.77 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2040                                       | 12.0 438 2040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 369 12.0 438 2040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 242 369 12.0 438 2040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .Ø 669 242 369 12.Ø 438 2Ø4Ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                         |                                                                                                          | 7.72 -            | - 7.72 -           | 735 - 7.72 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 161                                        | 4.0 214 161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 243 4.0 214 161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 97 243 4.0 214 161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .5 268 97 243 4.0 214 161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         | 1                                                                                                        | 7.58 -            | - 7.58 -           | 1310 - 7.58 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 192 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 192 1                                      | 4.0 202 192 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 363 4.0 202 192 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 152 363 4.0 202 192 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ø 452 152 363 4.Ø 202 192 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                         | ı                                                                                                        | 7.85              | - 7.85             | 573 - 7.85 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 284                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 284                                        | 1.0 313 284                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 391 1.0 313 284                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5Ø 391 1.Ø 313 284                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .1 181 50 391 1.0 313 284                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         | •                                                                                                        | 7.60 -            | - 7.60 -           | - 7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1622 - 7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 402 1622 - 7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .0310 402 1622 - 7.6                       | 32 2.0 310 402 1622 - 7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 732 2.0 310 402 1622 - 7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 139 732 2.0 310 402 1622 - 7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .1 448 139 732 2.0 310 402 1622 - 7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                         | 1                                                                                                        | 7.53 -            | - 7.53 -           | - 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1970 - 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 386 1970 - 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .Ø 292 386 197Ø – 7.5                      | 44 3.0 292 386 1970 - 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 744 3.0 292 386 1970 - 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 177 744 3.0 292 386 1970 - 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .7 536 177 744 3.0 292 386 1970 - 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                         | 1                                                                                                        | 7.76 –            | - 7.76 -           | 7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1230 - 7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 131 1230 - 7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .0 192 131 1230 - 7.7                      | 86 5.0 192 131 1230 - 7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 386 5.0 192 131 1230 - 7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 124 386 5.0 192 131 1230 - 7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .9 385 124 386 5.0 192 131 1230 - 7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                         | 1                                                                                                        | 7.69              | - 7.69             | - 7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 479 - 7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 113 479 - 7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .0 461 113 479 - 7.6                       | 32 3.0 461 113 479 - 7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 232 3.0 461 113 479 - 7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 69 232 3.0 461 113 479 - 7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .8 188 69 232 3.0 461 113 479 - 7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                         | . 1                                                                                                      | 8.31              | - 8.31 -           | 211 - 8.31 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .0 379 180                                 | 59 8.0 379 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 259 8.0 379 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30 259 8.0 379 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 73 30 259 8.0 379 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                         |                                                                                                          | 8.39              | - 8.39 -           | 161 - 8.39 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .0 297 128                                 | 3.0 297 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 113 3.0 297 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 41 113 3.0 297 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .4 90 41 113 3.0 297 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                         |                                                                                                          | 8.13              | - 8.13             | <b>ம</b> ் 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 712 - 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 318 712 - 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .ø 399 318 712 – 8.                        | 4.0 399 318 712 - 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 422 4.0 399 318 712 - 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 89 422 4.0 399 318 712 - 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .1 212 89 422 4.0 399 318 712 - 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                         | •                                                                                                        |                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2650 - 8                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 462 2850 - 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 206 462 2850 - 8                         | 13.0 206 462 2850 - 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 978 13.0 206 462 2850 - 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 263 978 13.0 206 462 2650 - 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .1 560 263 978 13.0 206 462 2650 - 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                         | 1                                                                                                        | 8.03              | - 8.03             | ω<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1060 - 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 753 1060 - 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .Ø 232 753 1Ø6Ø - 8.                       | 7.0 232 753 1060 - 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 220 7.0 232 753 1060 - 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 223 220 7.0 232 753 1060 - 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .5 519 223 220 7.0 232 753 1060 - 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| •                                       | 1                                                                                                        | 8.07              | - 8.07             | 976 - 8.07 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 976 - 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 976 - 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .Ø 293 225 976 - 8.                        | 2.0 293 225 976 - 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.0 293 225 976 - 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 192 284 2.0 293 225 976 - 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 284 2.0 293 225 976 - 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                         | 1                                                                                                        | 7.92              | - 7.92             | . 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11630 - 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2070 11630 - 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .Ø 25Ø 207Ø 1163Ø - 7.                     | 86.0 250 2070 11630 - 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7185 86.0 250 2070 11630 - 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 491 7185 86.0 250 2070 11630 - 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .2 921 491 7185 86.0 250 2070 11630 - 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| '83 KCT                                 | Ø8/26/83 KCT                                                                                             |                   |                    | 23 - 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23 - 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 81 23 - 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.9 - 81 23 - 7.2                          | 2.9 - 81 23 - 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 36 2.9 - 81 23 - 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 41 36 2.9 - 81 23 - 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 71 41 36 2.9 - 81 23 - 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 83 QLe-KCT                              |                                                                                                          |                   |                    | - 7.7 08/22/83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 290 - 7.7 08/22/83                                                                                                                                                                                                                                                                                                                                                                                                                                            | 290 - 7.7 08/22/83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .6 - 120 290 - 7.7 08/22/83                | 3.6 - 120 290 - 7.7 08/22/83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 110 3.6 - 120 290 - 7.7 08/22/83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 70 110 3.6 - 120 290 - 7.7 08/22/83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .3 120 70 110 3.6 - 120 290 - 7.7 08/22/83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| · m                                     | 3 0 6                                                                                                    | 3 0 6             | 3 0 6              | - 7.2 Ø8/29/83 OLe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 550 - 7.2 Ø8/29/83 OLe                                                                                                                                                                                                                                                                                                                                                                                                                                        | 550 - 7.2 Ø8/29/83 OLe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .6 - 150 550 - 7.2 08/29/83 0Le            | 3.6 - 150 550 - 7.2 08/29/83 01-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120 3.6 - 150 550 - 7.2 08/29/83 01.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 84 120 3.6 - 150 550 - 7.2 08/29/83 01-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7 200 84 120 3.6 - 150 550 - 7.2 08/29/83 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| א<br>א<br>ה                             | א<br>א<br>ה                                                                                              | א<br>א<br>ה       | א<br>א<br>ה        | - 7 5 08/17/83 KCF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20 - 7 5 68/17/83 KCF                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20 - 7 5 68/17/83 KCF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20 - 7 5 68/17/83 KCF                      | 1.4 - 71 91 - 7.5 08/17/83 KCF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15 1.4 - 71 21 - 7.5 08/17/83 KCF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 33 15 1.4 - 71 91 - 7.5 08/17/83 KCF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 59 33 15 1.4 - 71 91 - 7.5 08/17/83 KCF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         | 200                                                                                                      | 200               | 200                | 7 7 60/11/03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11 00 00/00/00                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11 00 00/00/00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11 00 00/00/00                             | 1.2 1.3 1.1 2.1 7 43 (1.0.10.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 1 2 1 1 2 1 0 0 1 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00/00/00 11 7 11 00/00/00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10 10 10 10 10 10 10 10 10 10 10 10 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 83 KCT                                  |                                                                                                          |                   |                    | - 1.1 63/22,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11 - 7.7 63/22,                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11 - 7.7 63/22,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11 - 7.7 63/22,                            | 1.3 - 13 11 - 7.7 63/22/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8 1.3 - 13 11 - 7.7 63/22/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21 8 1.3 - 13 11 - 7.7 63/22/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .0 81 21 8 1.3 - 13 11 - /./ 03/22/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 83 (ILe                                 | Ø8/26/83 QLe                                                                                             | 7.2 Ø8/26/83 QLe  | - 7.2 Ø8/26/83 QLe | - 7.2 08/26,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120 - 7.2 08/26,                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120 - 7.2 08/26,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120 - 7.2 08/26,                           | 2.6 - 190 120 - 7.2 08/26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 65 2.6 - 190 120 - 7.2 08/26,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 63 65 2.6 - 190 120 - 7.2 08/26,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .4 110 63 65 2.6 - 190 120 - 7.2 08/26,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| '83 KCT                                 | Ø8/18/83 KCT                                                                                             | 7.3 Ø8/18/83 KCT  | - 7.3 Ø8/18/83 KCT | 7.3 08/18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 190 - 7.3 08/18,                                                                                                                                                                                                                                                                                                                                                                                                                                              | 190 - 7.3 08/18,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 190 - 7.3 08/18,                           | 4.5 - 110 190 - 7.3 08/18,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 74 4.5 - 110 190 - 7.3 08/18/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 70 74 4.5 - 110 190 - 7.3 08/18/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8 97 70 74 4.5 - 110 190 - 7.3 08/18/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 83 PLC                                  | Ø8/18/83 PLC                                                                                             | 7.4 Ø8/18/83 PLC  | - 7.4 Ø8/18/83 PLC | - 7.4 Ø8/18/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 61 - 7.4 Ø8/18/                                                                                                                                                                                                                                                                                                                                                                                                                                               | 61 - 7.4 Ø8/18/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 61 - 7.4 Ø8/18/                            | 61 - 7.4 Ø8/18/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.2 - 1100 61 - 7.4 08/18/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 79 100 7.2 - 1100 61 - 7.4 08/18,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 79 100 7.2 - 1100 61 - 7.4 08/18,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| , (                                     | , (                                                                                                      | , (               | , (                | , (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00/00/00 0 /                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00/00/00 0 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00/00/00 0 /                               | 1 6 - 20 00 - 7 0 00/10/03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8 7 1 8 - 90 00 - 7 8 00/00/00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18 77 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 1 | 1 18 7 1 0 0 0 7 8 86707/00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7)                                      | 7)                                                                                                       | 7)                | 7)                 | 7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8 - 7.2/80 8.7 - 8                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8 - 7.2/80 8.7 - 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8 - 7.2/80 8.7 - 8                         | 8 - 8 - 8 - 8 - 9 - 1 - 9 - 1 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 88/22/89 8.1 - 8 82 - 9.1 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8 62 - 9:1 / 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8/22/83 8.7 - 8 62 - 0.1 / 01 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| က                                       | က                                                                                                        | က                 | က                  | က                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46 - 7.2 Ø8/23/83                                                                                                                                                                                                                                                                                                                                                                                                                                             | 46 - 7.2 Ø8/23/83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 46 - 7.2 Ø8/23/83                          | 4 1.5 - 22 46 - 7.2 08/23/83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 24 1.5 - 22 48 - 7.2 08/23/83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 37 24 1.5 - 22 48 - 7.2 08/23/83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 37 24 1.5 - 22 48 - 7.2 08/23/83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         |                                                                                                          |                   |                    | 7 5 08/30/83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 160 - 7 5 08/20/82                                                                                                                                                                                                                                                                                                                                                                                                                                            | 160 - 7 5 08/20/82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 - 440 160 - 7 E 08/30/83                 | 14 0 - 440 160 - 7 5 08/20/82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 340 14 0 - 440 160 - 7 5 08/20/82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40 340 14 0 - 440 180 - 7 E 08/20/82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 48 40 340 14 0 - 440 160 - 7 E 08/30/83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         |                                                                                                          |                   |                    | - 1.5 68/36/83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100 - 1.5 08/30/63                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100 - 1.5 08/30/63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . 440 100 - 1.0 08/38/63                   | 14.0 - 440 100 - 7.0 08/30/63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 246 14.8 - 446 100 - 7.0 00/30/63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0 08/38/83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.0 88/38/63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| m                                       | Ø8/3Ø/83 PGPR                                                                                            | m                 | m                  | - 7.2 08/30/83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 800 - 7.2 08/30/83                                                                                                                                                                                                                                                                                                                                                                                                                                            | 800 - 7.2 08/30/83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 800 - 7.2 08/30/83                         | 7.6 - 150 800 - 7.2 08/30/83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 260 7.6 - 150 800 - 7.2 08/30/83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120 260 7.6 - 150 800 - 7.2 08/30/83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3 180 120 260 7.6 - 150 800 - 7.2 08/30/83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                         |                                                                                                          |                   |                    | 20/20/00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20/00/00 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20/00/00 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CO/OC/OC 7 1 207 201                       | 20/00/00 1:- 80:- 81:- 81:- 81:-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00/00/00 7 1 807 001 87 001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CO/CO/CO 1. 1 201 201 201 201 201 201 201 201 201 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20/10/06 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ന                                       | ന                                                                                                        | ന                 | ന                  | - 7.4 Ø8/29/83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 150 - 7.4 08/29/83                                                                                                                                                                                                                                                                                                                                                                                                                                            | 150 - 7.4 08/29/83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .0 - 110 150 - 7.4 08/29/83                | 4.0 - 110 150 - 7.4 08/29/83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 52 4.0 - 110 150 - 7.4 08/29/83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 62 52 4.0 - 110 150 - 7.4 08/29/83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .5 100 62 52 4.0 - 110 150 - 7.4 08/29/83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 83 QLe                                  |                                                                                                          |                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 640 - 7.1 08/29/83                                                                                                                                                                                                                                                                                                                                                                                                                                            | 640 - 7.1 08/29/83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .8 - 610 640 - 7.1 08/29/83                | 3.8 - 610 640 - 7.1 08/29/83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 270 3.8 - 610 640 - 7.1 08/29/83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120 270 3.8 - 610 640 - 7.1 08/29/83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .8 280 120 270 3.8 - 610 640 - 7.1 08/29/83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3                                       | 3                                                                                                        | 3                 | 3                  | 7 8 88/38/83 01 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2600 - 7 0 08/30/83 DI -                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2600 - 7 0 08/30/83 DI -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 - 400 2600 - 7 0 08/30/83 01 b-          | 6 0 - 400 2600 - 7 0 08/30/83 01-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 860 6 0 - 400 2600 - 7 0 08/30/83 DI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 230 860 6 0 - 400 2600 - 7 0 08/30/83 01 s-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .1 580 230 860 6.0 - 400 2600 - 7.0 08/30/83 01.5-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3                                       | 30/03 WLB-                                                                                               | 30/03 WLB-        | 30/03 WLB-         | - /.0 08/38/53 ULB-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2000 - 1.0 08/30/63 ULB-                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2000 - 1.0 08/30/63 ULB-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2000 - 1.0 08/30/63 ULB-                   | 0.0 - 400 2000 - 7.0 08/30/63 ULB-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1000 0.00 - 4500 2000 - 1.00 08(35/03) 4[6-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 200 000 0.0 - 400 2000 - 1.0 001,50,00 010-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1. 200 300 0.0 - 400 2000 - 1.0 06/30/30 4[6-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| QLe-                                    | -6                                                                                                       | 23/83 QLe-        | 23/83 QLe-         | 23/83 QLe-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 7.3 Ø8/23/83 QLe-                                                                                                                                                                                                                                                                                                                                                                                                                                           | . 59ø - 7.3 Ø8/23/83 QLe-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 59ø - 7.3 Ø8/23/83 QLe-                  | . 59ø - 7.3 Ø8/23/83 QLe-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.3 - 140 590 - 7.3 08/23/83 QLe-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 170 3.3 - 140 590 - 7.3 08/23/83 QLe-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 81 170 3.3 - 140 590 - 7.3 08/23/83 QLe-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>,</b>                                |                                                                                                          |                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                         | 08/22/83<br>08/22/83<br>08/26/83<br>08/26/83<br>08/26/83<br>08/26/83<br>08/26/83<br>08/26/83<br>08/36/83 |                   |                    | 461 - 8.06<br>980 - 7.06<br>236 - 7.98<br>236 - 8.36<br>482 - 7.98<br>482 - 7.85<br>184 - 8.06<br>639 - 7.77<br>735 - 7.75<br>230 - 7.75<br>211 - 8.31<br>161 - 8.31<br>161 - 8.31<br>162 - 7.75<br>230 - 7.75<br>230 - 7.75<br>230 - 7.75<br>230 - 7.75<br>211 - 8.31<br>120 - 7.75<br>211 - 7.55<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03 | 461 - 8.06<br>980 - 7.62<br>454 - 7.98<br>205 - 8.30<br>205 - 8.30<br>482 - 8.28<br>184 - 7.85<br>184 - 7.77<br>735 - 7.72<br>1310 - 7.75<br>1970 - 7.69<br>211 - 8.31<br>1622 - 7.69<br>211 - 8.31<br>1630 - 7.75<br>210 - 8.01<br>11630 - 7.55<br>220 - 7.55<br>23 - 7.77<br>556 - 8.01<br>11630 - 7.77<br>556 - 7.7<br>556 - 7.7<br>556 - 7.7<br>556 - 7.7<br>556 - 7.7<br>556 - 7.7<br>5600 - 7.5<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0 | 270       461       - 8.06         174       980       - 7.62         167       454       - 7.98         156       236       - 8.30         474       205       - 8.36         465       367       - 8.36         264       367       - 8.36         264       639       - 7.77         161       735       - 7.75         161       735       - 7.75         162       1310       - 7.77         163       1310       - 7.75         164       1336       - 7.55         165       1310       - 7.55         166       1330       - 7.55         167       1330       - 7.55         168       1330       - 7.55         169       1330       - 7.55         160       162       - 7.55         169       160       - 7.75         160       160       - 7.75         160       160       - 7.75         160       160       - 7.75         160       160       - 7.75         160       160       - 7.75         160       160 | 3.0         218         270         461    | 2.6       2.28       174       986       - 7.62         3.6       2.8       474       265       - 7.98         2.6       364       465       367       - 8.36         2.6       364       465       367       - 8.36         2.6       364       465       367       - 8.08         2.6       363       258       482       - 7.85         3.6       21       26       8.06       - 7.77         4.6       204       639       - 7.77         4.6       204       639       - 7.75         4.6       204       184       - 7.85         1.6       204       639       - 7.75         3.0       207       131       479       - 7.69         8.0       292       386       1970       - 7.69         8.0       292       386       1970       - 7.69         8.0       292       386       1970       - 7.69         8.0       292       386       1970       - 7.69         8.0       292       386       1970       - 7.69         8.0       293       3180       - 7.69 <t< td=""><td>169       3.0 218       270       461       - 8.06         334       2.0 228       174       980       - 7.62         143       3.0 228       167       461       - 8.06         143       3.0 288       167       484       - 7.98         191       2.0 288       474       206       - 8.08         210       2.0 304       465       367       - 8.08         233       2.0 363       258       482       - 7.78         243       4.0 202       192       1310       - 7.77         243       4.0 202       192       1310       - 7.75         363       4.0 202       192       1310       - 7.75         363       4.0 202       192       1310       - 7.75         363       4.0 202       192       1310       - 7.75         363       4.0 202       192       1310       - 7.69         374       3.0 292       386       5.0 192       17.69         386       5.0 192       131       479       - 7.63         386       5.0 192       131       479       - 7.63         378       5.0 297       131       479</td><td>82         169         3.0 218         270         461         -         8.06           128         334         2.0 228         174         980         -         7.62           96         143         3.0 258         167         464         -         7.98           62         114         1.0 362         186         236         -         7.98           118         91         2.0 288         474         205         -         8.36           111         233         2.0 384         465         482         -         8.08           111         233         2.0 364         639         -         7.77         8.08           242         369         12.0 438         2040         639         -         7.77         155           152         363         140         161         7.36         17.77         186         17.77         17.77         186         17.77         17.88         18.09         17.77         18.09         17.77         18.09         17.77         18.09         17.77         18.09         17.77         18.09         17.20         17.89         17.89         17.89         17.89         17.89         &lt;</td><td>1. 252         82         169         3.0 218         270         461         -         8.06           1. 359         128         3.4         2.0 228         174         980         -         7.08           1. 8         229         96         143         3.0 258         167         464         -         7.08           2. 18         62         114         1.0 362         156         236         -         7.08           2. 18         18         91         2.0 284         465         367         -         8.36           4         212         111         233         2.0 363         264         685         367         -         8.08           4         157         64         156         3.0 321         261         184         -         7.08           4         157         64         156         3.0 207         184         653         -         7.77           5         268         372         188         2646         639         -         7.77           6         5         36         12.0 344         465         364         673         -         7.72           6</td></t<> | 169       3.0 218       270       461       - 8.06         334       2.0 228       174       980       - 7.62         143       3.0 228       167       461       - 8.06         143       3.0 288       167       484       - 7.98         191       2.0 288       474       206       - 8.08         210       2.0 304       465       367       - 8.08         233       2.0 363       258       482       - 7.78         243       4.0 202       192       1310       - 7.77         243       4.0 202       192       1310       - 7.75         363       4.0 202       192       1310       - 7.75         363       4.0 202       192       1310       - 7.75         363       4.0 202       192       1310       - 7.75         363       4.0 202       192       1310       - 7.69         374       3.0 292       386       5.0 192       17.69         386       5.0 192       131       479       - 7.63         386       5.0 192       131       479       - 7.63         378       5.0 297       131       479 | 82         169         3.0 218         270         461         -         8.06           128         334         2.0 228         174         980         -         7.62           96         143         3.0 258         167         464         -         7.98           62         114         1.0 362         186         236         -         7.98           118         91         2.0 288         474         205         -         8.36           111         233         2.0 384         465         482         -         8.08           111         233         2.0 364         639         -         7.77         8.08           242         369         12.0 438         2040         639         -         7.77         155           152         363         140         161         7.36         17.77         186         17.77         17.77         186         17.77         17.88         18.09         17.77         18.09         17.77         18.09         17.77         18.09         17.77         18.09         17.77         18.09         17.20         17.89         17.89         17.89         17.89         17.89         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1. 252         82         169         3.0 218         270         461         -         8.06           1. 359         128         3.4         2.0 228         174         980         -         7.08           1. 8         229         96         143         3.0 258         167         464         -         7.08           2. 18         62         114         1.0 362         156         236         -         7.08           2. 18         18         91         2.0 284         465         367         -         8.36           4         212         111         233         2.0 363         264         685         367         -         8.08           4         157         64         156         3.0 321         261         184         -         7.08           4         157         64         156         3.0 207         184         653         -         7.77           5         268         372         188         2646         639         -         7.77           6         5         36         12.0 344         465         364         673         -         7.72           6 |

Appendix 1 (cont). Chemical composition of shallow ground water.

|             |          |          |          |              |      |      |                |          |              |      |          |                 |        | Land            |              |          |
|-------------|----------|----------|----------|--------------|------|------|----------------|----------|--------------|------|----------|-----------------|--------|-----------------|--------------|----------|
| +<br>a<br>- | רסיים    |          |          |              |      |      |                |          |              |      | Sample   | Formar          | Sample | e leva-<br>tion |              |          |
| (utm)       | (utm)    | <b>8</b> | M        | S S          | ¥    | HC03 | \$0<br>4       | 5        | %<br>9       | Ħ.   | date     | tion.           | (ft)   | (ft)            | ∢            | <b>B</b> |
|             |          |          |          |              |      |      |                |          |              |      |          |                 |        |                 |              |          |
|             | 1        |          |          | •            | (    |      |                |          |              | <br> |          | :<br>3          | ì      | 000             | ;            | . L      |
| 3470791.1   | •        | 3 20     | ο ς<br>Υ | 140          | n 0  | •    | 24.7           | 0/2      | 1            | ۰,۲  | 08/24/83 | 9 0             | 4 6    | 1996            | •            | o u      |
| 34/0936.7   | •        | 9/7      | 9 5      | 2000         |      |      | 991            | 0001     |              | 1.,  | 00/52/00 | ב<br>ב<br>ב     | 200    | 1030            | 2 5          | 0 4      |
| 3465484.7   | 442235.9 | 0.40     | 001      | 0.40<br>0.00 | 7.6  | ; ;  | 976            | 000      |              | 0 7  | 08/22/03 | 3 G             | 208    | 2053            | 1 7          | ם נכ     |
| •           | •        | 410      | 120      | 2000         | ם פ  | i (  | 120            | 1400     |              |      | 08/24/00 | 0 0             |        | 1988            | 1 7          | LC.      |
| •           | •        | 120      | 38       | 130          | ο c  |      | 03<br>05<br>05 | 210      | 1            | 10   | 08/24/83 | •               |        | 1983            | 1 4          | , ro     |
| •           | • .      | 2000     | 140      | 100          | , c  |      | 200            | 340      |              | 1 7  | 08/11/83 | )<br> <br> <br> | 100    | 1845            | 12           | 'n       |
|             |          | 100      | 10       | 36           | 6.1  | . 1  | 25             | 40       | : 1          | 7.3  | 08/11/83 | X<br>P<br>P     | 100    | 2138            | 8            | വ        |
|             | 443012.5 | 92       | 41       | 710          | 14.0 | ı    | 280            | 750      | 1,           | 7.7  | 08/24/83 | KCT-PGPR        |        | 2308            | 9            | D        |
| 3490697.5   |          | 22       | 17       | G            | 6.0  | . 1  | 13             | 12       | . <b>!</b> . | 7.9  | 08/22/83 |                 |        | 2568            | 2            | മ        |
| 502771.     |          | 83       | 39       | 24           | . 1  | 375  | 52             | 34       | 4.0          | 7.2  | 05/01/69 | KCT             | 152    | 2330            | 13           | 9        |
| •           | •        | 96       | 62       | 7            | 1    | 27   | 194            | 61       | 4.0          | 7.5  | 05/01/69 | KCT             | 159    | 2263            | 11           | 9        |
| 3503001.7   | 422537.4 | 92       | 80       | 32           | 2.0  | 326  | 179            | 68       | 7.1          | 7.8  | 06/22/19 | KCT             | 159    | 2263            | 16           | 9        |
| 3502265.2   | 424211.1 | 111      | 7.1      | 34           | 1    | 190  | 353            | 87       | 4.0          | 9.7  | 05/01/69 | KCT             | 113    | 2188            | 15           | 9        |
| 3502273.3   | 424195.0 | 143      | 67       | 35           | . 1  | 298  | 231            | 152      | 3.4          | 7.6  | 07/22/75 | KCT             | 113    | 2188            | 4            | 9        |
| 504331.     | 436965.5 | 210      | 67       | 52           | 1    | 301  | 280            | 27       |              | 7.7  | 08/22/69 | <b>a</b> .      | 1      | . 1             | ო            | 9        |
| 3504994.7   |          | 99       | 43       | 34           | 2.0  | 395  | 64             | 20       | 1            | 8    | 05/15/85 | KCA             | 100    | 2199            | 13           | 9        |
| 504986.     |          | 67       | 44       | 32           | 1    | 401  | 64             | 21       | 9.4          | 7.9  | 06/22/19 | KCA             | 100    | 2199            | 13           | ဖ        |
| 3504986.5   | •        | 75       | 43       | 38           | 1    | 382  | 82             | 27       | 4.0          | 7.8  | 08/06/14 | KCA             | 100    | 2199            | 13           | ø        |
| 504986.     | . •      | 99       | 45       | 36           | i    | 390  | 71             | 22       | 9.4          | 7.5  | 08/22/69 | KC <b>A</b>     | 100    | 2199            | 13           | ဖ        |
| 503655.     | •        | 71       | 52       | 10           | 1    | 342  | 10             | <u>თ</u> | 4.8          | 8.1  | 06/21/19 | KCT             | 80     | 2265            | -            | Φ,       |
| 503655.     | •        | 74       | 56       | တ            | 1    | 338  | 11             | 14       | 9.7          | 9.7  | 07/22/15 | KCT             | 80     | 2265            | <del>.</del> | ဖ        |
| 503663.     | 441648.8 | 89       | 58       | တ            | 1    | 325  | 10             | 13       | 7.0          | 6.7  | 08/14/69 | KCT             | 80     | 2265            | -            | ø        |
| 504515.     |          | 80       | 31       | 12           | ı    | 383  | 17             | _        | 13.0         | 7.5  | 08/14/69 | or<br>or        | 1      | 1               | -            | ø        |
|             | 451044.0 | 80       | 52       | _            |      | 350  | 11             | _        | 4.0          | 7.4  | 08/14/69 | KCT             | 1      | 1,              | Η,           | 9        |
| 499540.     | •        | 31       | 28       | 111          | 12.0 | 386  | 80             | 34       | ı            | 8.1  | 05/16/85 | KCT             | 75     | 2100            | ഗ            | φ        |
| 499540.     | •        | 22       | 45       | 36           | 1    | 432  | 114            | 49       | 9.1          | 7.7  | 06/26/19 | KCT             | 75     | 2100            | 13           | တ        |
| 499540      | •        | 25       | 45       | 93           | 1    | 405  | 124            | 47       | 4.0          | 7.8  | 09/05/69 | KCT             | 75     | 2100            | 13           | φ        |
| •           | 416824.7 | 23       | 24       | 16           | 1    | 285  | 30             | 10       | Ø            | 7.8  | 07/22/15 | KCT             | 117    | 2379            | -            | φ        |
| 490277.     | 416816.8 | 25       | 53       | 17           | •    | 287  | ဗ              | Ξ        | 4            | 7.4  | 09/14/67 | KCT             | 117    | 2379            | 13           | ဖ        |
| •           | 407405.1 | 68       | 20       | 18           | 1    | 327  | 20             | 24       | 20.4         | 7.5  | 06/22/19 | KCF-KCT         | 97     | 2445            | <b>-</b>     | 9        |
| 489817.     |          | 23       | 52       | 14           | 1    | 253  | 21             | 18       | 12.0         | 7.8  | 01/22/18 | KCF-KCT         |        | 2445            | 13           | 9        |
| •           | ٠        | 58       | 30       | ဖ            | i    | 206  | 18             | 12       | 0.0          | 7.8  | 01/25/68 | KCF-KCT         |        | 1               | თ            | 9        |
| •           | •        | 24       | 58       | 19           | 1    | 293  | 31             | 10       | 4.           | 8    | 08/22/19 | KCF             | 100    | 2381            | 13           | φ.       |
| 491857.     | •        | 40       | 33       | 12           | 1    | 268  | 32             | 19       | 13.5         | 7.8  | 69/80/60 | KCF             | 100    | 2381            | 13           | 9        |
| 494266.     | 425528.3 | 84       | 18       | ω            | 1.   | 318  | 12             | 12       | 4.0          | 7.3  | 69/88/68 | KCF             | 160    | 2449            | <b>-</b> ,   | ဖ        |
| 488909.     | •        | 25       |          | 30           | i    | 279  | 67             | 14       | 9.4          | 7.9  | 09/14/67 | KCT             | 120    | 2262            | 13           | Ø        |
| 496396.     | •        | 84       |          | 38           | 1    | 384  | 101            | 67       | 4.9          | 7.3  | 08/13/20 | QLe             | 99     | 2015            | 13           | ဖ        |
| 497988      | 36952.   | 95       | 23       | 54           | ı    | 417  | 140            | 28       | 16.8         | 1.   | 9        | ۵.              | 96     | 2020            | 13           | တ        |
| 3494030.2   | 430781.0 | 67       | 42       | 31           | ı    | 345  | 80             | 24       | 4.0          | 7.5  | 09/16/69 | KCT             | 245    | 2186            | 13           | φ        |
|             |          |          |          |              |      |      |                |          |              |      |          |                 |        |                 |              |          |

Appendix 1 (cont). Chemical composition of shallow ground water.

|           |          |     |             |      |            |       |                 |      | •            |     | •        |                 | Sample | e leva |     |          |
|-----------|----------|-----|-------------|------|------------|-------|-----------------|------|--------------|-----|----------|-----------------|--------|--------|-----|----------|
| Lat.      | Long.    |     |             |      |            |       |                 |      |              |     | Samp le  | Forma           | depth  |        |     |          |
| (utm)     | (utm)    | ប៊ី | B<br>¥      | Ž    | ¥          | HCO   | \$0<br><b>4</b> | 5    | ر<br>ا<br>ا  | 揯   | date     | tion            | (ft)   | (ft)   | ∢   | <b>6</b> |
|           |          |     |             |      |            |       |                 |      |              |     |          |                 |        |        |     |          |
| 00000     | 430507 E | 96  | 60          | 20   | - 1        | 414   | 16              |      | 8            | 7.3 | 09/04/69 | KCT             | 280    | 2175   |     | ဖ        |
| 493634.3  |          | . 4 | 53          | ω    | ı          | 384   | က               | ω    | 10.0         | 7.4 | /64/     | KCT             | 100    | 2170   | ·   | စ        |
| . •       | 37405.   | 6   | 104         | 125  | i          | 414   | 133             | 266  | 4.0          | 7.6 | 09/11/60 | KCT             | 139    | 2185   | 16  | 9        |
| •         | 7189.    | 47  | 30          | 84   | 1          | 337   | 7.7             | 49   | 4.0          | 7.8 | 07/22/75 | KCT             | 113    | 2177   | 13  | 9        |
| •         | 7202.    | 40  | 56          | 82   | 1          | 296   | 83              | 46   | 4.0          | 8.1 | 09/11/60 | KCT             | 113    | 2177   | 13  | ø        |
| 90108.3   | 445444.2 | 96  | 43          | 49   | 1          | 425   | 99              | 99   | 4.0          | 7.5 | 09/11/60 | QAI             | 32     | 1938   | 13  | 9        |
| 455.5     | 461242.1 | 88  | 123         | 170  | 1          | 620   | 234             | 230  | 1.5          | 7.6 | 09/02/03 | KCT             | 100    | 2138   | 16  | 9        |
| 432.0     | 454613.4 | 91  | 37          | 28   | 1          | 364   | 47              | 101  | 23.4         | 7.7 | 06/22/19 | 9-0<br>0-0      | 82     | 1914   | 13  | 9        |
| 4         | 66051.   | 178 | 221         | 154  | 11.6       | 393   | 929             | 206  | i            | 7.8 | 05/16/85 | PLC             | 158    | 2073   | 12  | ဖ        |
| •         | •        | 172 | 196         | 145  | 1          | 388   | 612             | 422  | 0.1          | 7.8 | 06/26/19 | PLC             | 158    | 2073   | 12  | 9        |
| • .       | 478423.8 | 51  | ω           | 7    | 1          | 173   | 12              | 17   | 4.5          | 7.2 | 69/90/80 | PLC-QLe         |        | 1800   | 7   | 9        |
| 93627.7   | 478271.3 | 208 | 104         | 133  | 1          | 276   | 200             | 299  | 42.5         | 7.3 | 69/90/80 | PLC-QLe         |        | 1810   | 16  | 9        |
| 440.6     | 477220.8 | 239 | 127         | 166  | 1          | 266   | 252             | 620  | 105.0        | 7.4 | 69/90/80 | PLC-QLe         |        | 1825   | 14  | ဖ        |
| 405.7     | 440037.3 | 130 | 78          | 127  | 4.6        | 383   | 142             | 326  | ı            | 7.8 | 05/15/85 | 1               | 69     | 2080   | 16  | 9        |
| 481500.0  | 458802.8 | 422 | 195         | 239  | 1          | 371   | 1360            | 445  | 4.0          | 7.4 | 10/06/70 | gre             | 127    | 1845   | 15  | 9        |
| 3481516.0 | 58794.   | 85  | 63          | 96   | 1.         | 510   | 4               | 170  | 4.0          | 7.7 | 10/06/10 | qre             | 39     | 1845   | 13  | ဖ        |
| 'n        | 458554.2 | 260 | 189         | 283  | 1          | 398   | 1770            | 430  | 4.0          | 7.2 |          | QLe             | 79     | 1850   | က   | <b>ω</b> |
| ю         | 59180.   | 386 | 121         | 157  | 1.         | 492   | 830             | 340  | 7.5          | 7.2 |          | 0Le             | 120    | 1835   | 4   | 9        |
| •         | 59375.   | 88  | 70          | 550  | 1          | 251   | 22              | 1070 | 4.6          | 7.3 | 06/09/71 | PLC             | 20     | 1846   | φ;  | တ (      |
| •         | 59085    | 503 | ה<br>ה<br>ה | 900  | ı          | 364   | 181             | 950  | 12.0         | 7.7 | 06/10//1 | ر<br>د د<br>د د | 9 0    | 1842   | 4   | ه م      |
| 4/9/58.7  | 459938.2 | 281 | 621         | 000  |            | 979   | 332             | 1286 | איני<br>איני | n 0 | 06/09//1 | ر<br>ا<br>ا     | 87.7   | 1815   | ν,  | y c      |
| •         | 58838    | 240 | 3 8         | 441  | 1          | 1 200 | 116             | 940  | , e          | 9 0 | 98/18/71 | ر<br>ا<br>ا     | ם כ    | 1842   | י מ | υ        |
|           | 54569.   | 86  | 52          | 135  | 1          | 387   | 51              | 196  | 4.0          | 4.  | 03/30/76 | ) - VO          | 22     | 1850   | 16  | φ        |
| •         | 54762.   | 107 | 31          | 159  |            | 237   | 124             | 300  | 4.0          | 7.4 | 03/30/76 | QA I            | 20     | 1855   | 14  | 9        |
| •         | 975.     | 364 | 111         | 202  | . <b>1</b> | 222   | 583             | 660  | 119.0        | 8.0 | 03/23/83 | PLC-QLe         | 126    | 1815   | 2   | 9        |
|           | 436      | 216 | 80          | 200  | 1          | 203   | 200             | 280  | 144.4        | 7.7 | 03/21/83 | PLC-0Le         |        | 1805   | 14  | 9        |
|           | 471436.5 | 310 | 87          | 217  | 1          | 170   | 470             | 269  | 154.0        | 7.8 | 03/21/83 |                 |        | 1805   | 14  | 9        |
| •         | 471436.5 | 300 | 75          | 225  | 1          | 235   | 372             | 298  | 161.9        | 8.1 |          | - 1             |        | 1805   | 14  | 9        |
| •         |          | 272 | 82          | 221  | 1          | 221   | 332             | 208  | 165.4        | 7.8 | 03/21/83 |                 |        | 1805   | 14  | 9        |
| •         |          | 240 | 88          | 222  | 1          | 168   | 276             | 263  | 165.2        | 7.9 |          |                 | 200    | 1802   | 14  | ဖ        |
| 82605.1   | 71428.   | 257 | 92          | 219  | 1          | 244   | 254             | 289  | 162.1        | 8   | 03/21/83 | PLC-QLe         | 200    | 1805   | 14  | 9        |
| 82605.1   | 471436.5 | 245 | 92          | 215  | 1          | 234   | 213             | 289  | 163.0        | 8.1 | 03/21/83 | PLC-QLe         | 200    | 1805   | 14  | ဖ        |
| •         | 71300.   | 287 | 107         | 1580 | I.         | 920   | 92              | 2730 | 40.0         | 7.0 | 69/90/80 |                 | 66     | 1805   | 9   | 9        |
| 2. 100    | •        | 292 | 110         | 167  | 1.         | 206   | 689             | 446  | 29.5         | 8.1 |          | 1               | 127    | 1808   | 16  | 9        |
| 914.1     | 1273.    | 280 | 110         | 336  | ı          | 287   | 247             | 877  | 184.5        | 8.1 | œ        | - 1             | 99     | 1770   | 14  | 9        |
| •         | 472486.5 | 392 | 122         | 250  |            | 251   | 609             | 750  | 189.5        | 8.0 | 03/23/83 | PLC-QLe         | 62     | 1805   | 14  | 9        |
| •         | 7259     | 372 | 142         | 287  | 1          | 223   | 476             | 964  | 160.9        | 8.1 | /24/8    | - 1             | . 1    |        | 14  | ဖ        |
| 0         | 473313.9 | 4   | 108         | 194  | i,         | 182   | 266             | 541  | 77.3         | 7.9 | /23/8    | PLC-QLe         | 100    | 1800   | m   | 9        |
| 73.9      | 474017.9 | 532 | 168         | 170  | 1          | 196   | 1613            | 341  | 4.5          | 8.2 | 03/22/83 | PLC-QLe         | 1      |        | က   | 9        |
|           |          |     |             |      |            |       |                 |      |              |     |          |                 |        |        |     |          |

Appendix 1 (cont). Chemical composition of shallow ground water.

|     |           |          |          | *   |      |     |     |      |      |            |     |          |                     | Samo  | - C  |               |    |
|-----|-----------|----------|----------|-----|------|-----|-----|------|------|------------|-----|----------|---------------------|-------|------|---------------|----|
|     | Lat.      | Long.    |          |     |      |     |     |      |      |            | •   | Sample   | Forma-              | depth | t:01 |               |    |
|     | (utm)     | (utm)    | <b>8</b> | Σ   | S S  | ¥   | HCO | SO   | 5    | N          | F   | date     | tion*               | (ft)  | (ft) | ₩             | mi |
|     |           |          |          |     |      |     | •   | · .  |      | <b>)</b>   |     |          |                     |       |      |               |    |
|     |           |          |          |     |      |     |     |      |      | 7 7        |     |          |                     |       |      |               |    |
|     | 3482998.1 | 4329     | 488      | 146 | 195  | 1   | 196 | 1268 | 492  | 10         | 8.1 | 03/22/83 | PLC-QLe             | 120   | 1816 | က             | •  |
|     | 327.      | 4138     | 184      | 71  | 148  | 1   | 216 | 149  | 487  | 134.7      | 8.2 | 03/23/83 |                     | 120   | 1830 | 14            | w  |
|     | 3475999.0 | 5481.    | 162      | 22  | 128  | 3.0 | 240 | 134  | 382  | •          | 7.8 | 05/14/85 | ole<br>Ole          | 86    | 1821 | 14            | w  |
| •   | 3475999.0 | 475497.1 | 228      | 20  | 173  | ı   | 228 | 182  | 499  | 98.0       | 7.4 | 06/26/19 | QLe                 | 86    | 1821 | 14            | w  |
|     |           | . •      | 323      | 78  | 237  | . 1 | 202 | 258  | 810  | 134.0      | 7.4 | 07/23/75 | QLe                 | 86    | 1821 | 14            | w  |
|     | 76015.    | 5472.    | 182      | 69  | 123  | ı   | 243 | 143  | 426  | 40.0       | 7.3 | 12/06/72 | QLe                 | 86    | 1821 | 14            | w  |
|     | 3475999.0 | •        | 202      | 99  | 141  | ì.  | 228 | 151  | 466  | 68.0       | 7.4 | 12/10/71 | QLe                 | 86    | 1821 | 14            | w  |
|     | 3482045.7 | 477766.6 | 234      | 64  | 158  | 4.0 | 235 | 377  | 390  | •          | 7.8 | 05/14/85 | OLe                 | 103   | 1810 | 16            | •  |
|     | 3482045.7 | 477758.6 | 194      | 28  | 166  | ı   | 218 | 144  | 480  | 124.8      | 9.7 | 06/26/79 | QLe-PLC             | 103   | 1810 | 14            | ~  |
|     | 3470612.9 | 451499.7 | 202      | 84  | 452  | 1   | 353 | 326  | 870  | 0.6        | 7.5 | 03/30/16 | QA.                 | 24    | 1885 | ဖ             | •  |
|     | 3457580.6 | 445259.5 | 91       | 22  | 18   | 1.0 | 377 | 23   | 18   | •          | 7.8 | 05/15/85 | KCT                 | 65    | 2080 | -             | ~  |
|     | 57612     | œ.       | 86       | 20  | 12   | ı,  | 355 | 25   | 22   | 15.0       | 7.5 | 07/23/75 | KCT                 | 92    | 2080 | -             | •  |
|     | 3457620.7 | 445243.3 | 94       | 24  | 15   | 1   | 365 | 20   | 17   | 18.5       | 7.6 | 09/22/69 | KCT                 | 65    | 2080 | 7             | •  |
|     | 3470436.2 | 'n       | 94       | 31  | 184  | 1   | 245 | 134  | 306  | 8.8        | 8.1 | 03/30/16 | OA!                 | 65    | 1882 | 9             | _  |
| - 1 | 3470613.0 | 453743.0 | 284      | 28  | 520  | 1   | 333 | 380  | 1020 | 4.4        | 7.3 | 03/30/16 | - <del>V</del>      | 7.5   | 1880 | 9             | _  |
|     | 3470612.0 | •        | 320      | 54  | 405  | 1   | 323 | 265  | 960  | 3.4        | 7.2 | 03/30/16 | OA!                 | 82    | 1885 | 14            | _  |
|     |           |          | 251      | 88  | 371  | 1   | 384 | 302  | 820  | 15.0       | 7.4 | 03/30/16 | OA!                 | 32    | 1880 | 14            | _  |
|     | •         | 55171.   | 220      | 49  | 274  | ı   | 476 | 178  | 220  | 4.0        | 7.2 | 03/30/16 | OA!                 | 25    | 1890 | 14            | _  |
|     |           | 54955.   | 361      | 93  | 1090 | 1   |     | 1280 | 1350 | 36.0       | 7.1 | 92/30/16 | PGPR                | 31    | 1880 | 8             | ~  |
|     | 3471009.5 | 69878.   | 178      | 69  | 164  | 3.0 |     | 112  | 518  |            | 7.7 | 05/14/85 | 0Le                 | 117   | 1862 | 14            | ~  |
|     | 3471020.2 | 469875.9 | 198      | 70  | 160  | i   |     | 123  | 584  | 22.0       | 8.3 | 06/26/19 | 0Le                 | 117   | 1862 | 14            | ~  |
|     | 3468881.0 | 74895.   | 226      | 78  | 116  | 4.0 | 277 | 399  | 333  | 1          | 7.8 | 05/14/85 | PLC                 | 214   | 1885 | 16            | Ψ. |
|     | 3460531.2 | 475676.1 | 92       | 39  | 48   | 1   | 379 | 69   | 87   | 9.4        | 7.8 | 10/01/69 | QA I                | 20    | 1993 | 13            | ~  |
|     | 3462533.4 | •        | 156      | 96  | 710  | i   | 372 | 1020 | 710  | 3.5        | 7.5 | 10/01/69 | 0 <b>A</b> I        | 1     | İ    | œ             | ~  |
|     |           |          | 640      | 27  | 99   | 1   | 318 | 1290 | 164  | 4.0        | 7.2 | 03/21/69 | GA-                 | 130   | 1895 | က             | ~  |
|     | 3455622.0 | 438126.4 | 81       | 56  | 58   | ı   | 386 | 14   | 27   | 2.0        | 7.4 | 08/12/69 | KCT                 | 90    | 2120 | -             | •  |
|     |           | 38391.   | 32       | 27  | 18   | ı   | 414 | 14   | 19   | 2.2        | 7.8 | 08/12/69 | KCT                 | 85    | 2120 | -             | ~  |
|     | 56027.    |          | 97       | 28  | 20   | 1.0 | 423 | 18   | 52   | •          | 6.7 | 05/15/85 | <b>K</b> C <b>A</b> | 82    | 2123 | 4             | _  |
|     | 56035.    | 439137.7 | 110      | 52  | 23   | r   | 433 | 20   | 27   | 15.0       | 9.7 | 08/25/19 | KCA<br>KCA          | 82    | 2123 | -             | _  |
|     | 56011.    | 9129.    | 104      | 53  | 18   | 1   | 399 | 12   | 43   | 10.0       | 7.6 | 08/01/14 | <b>K</b> C <b>A</b> | 82    | 2123 | -<br><b>-</b> | •  |
|     |           | 9120.    | 20       | 36  | 493  | 1   | 311 | 462  | 463  | 2.0        | 7.4 | 08/12/69 | ۵.                  | 96    | 2193 | œ             | •  |
|     | 44496.    |          | 48       | 53  | 37   | 1   | 281 | 32   | 34   | 3.5        | 7.5 | 29/90/60 | KCT                 | 360   | 2388 | 13            | ~  |
|     | 47236.    | •        | 48       | 30  | 21   | 1   | 285 | 24   | 21   | 3.0        | 9.7 | 09/02/61 |                     | 216   | 2274 | 13            | ~  |
|     | 43654.    | •        | 28       | 41  | 448  | 1   | 307 | 479  | 388  | 3.0        | 7.7 | 19/90/60 | KCF-KCT             | 450   | 2512 | ω             | •  |
|     | •         | 7692.    | 49       | 24  | 19   | 1   | 287 | 19   | 24   | 8          | 7.8 | 19/90/60 | KCF                 | 450   | 2420 | -             | ·  |
|     | 46896.    | 38258.   | 20       | 19  | 1    | ı   | 599 | 4    | 13   | 4.0        | 7.8 | 05/13/69 | KCT                 | 190   | 2335 |               | ~  |
|     | 453324.   | 4        | 20       | 27  | 443  |     | 280 | 36   | 425  | 4.0        | 8.7 | Ø5/22/69 | KCT                 | 150   | 2156 | ဖ             | •  |
|     | 6010      | 2862     | 99       | 23  | 18   | 1   | 282 | 12   | 20   | 12.0       | 8.0 | 08/25/19 | KCT                 | 177   | 2255 |               | •  |
|     | 45011     | 2862.    | 8        | 11  | 1    | 1   | 282 | 18   | 17   | 21.0       | 7.7 | /23/     | KCT                 | 177   | 2255 | ,             | •  |
|     | 3450099.1 | 442862.4 | 62       | 23  | 18   | 1   | 294 | 13   | 24   | <b>9</b> . | 7.7 | 05/22/89 | KCT                 | 177   | 2255 |               | •  |
|     |           |          |          |     |      |     |     |      |      |            |     |          |                     |       |      |               |    |

Appendix 1 (cont). Chemical composition of shallow ground water.

|                |                  | ·.        | 'n        | m         | 10        | 9         | í.        | 'n        | 'n        | 'n       | 60       | ന         | sc.      | 60        | ເ         | S        | S         | S        | S        | έĊ       | ŝ        | ŝ        | ເດ        | ŝ         | ŝ        | ec<br>C   | EC.       | sco .    | ŝ             | ഗ        | ဟ         | ŝ        | EC.       | 9         | ľΩ       | m                                       | 9        | 'n       | ιĊ       | CC       | m         |
|----------------|------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|----------|-----------|----------|-----------|-----------|----------|-----------|----------|----------|----------|----------|----------|-----------|-----------|----------|-----------|-----------|----------|---------------|----------|-----------|----------|-----------|-----------|----------|-----------------------------------------|----------|----------|----------|----------|-----------|
|                |                  | ŭ         | •         | _         |           | •         | _         | •         |           | _        |          |           |          | Ţ.,       | •         | Ĭ        | Ī         | •        | ,        | _        | Ī        | _        | Ĭ         | Ĭ         | _        |           | _         | Ĭ        | _             | _        | _         | _        | •         | •         | •        | _                                       | Ĭ        | ŭ        | •        | •        | •         |
|                | <b>⋖</b> .       | -         | Н         | ω         | -         | -         | -         | -         | -         | -        | _        | -         | -        | _         | 7         | -        | -         |          | -        | _        | -        | -        | 13        | -         | -        | 7         | -         | -        | -             |          | 13        | -        | 13        | 7         | -        | -                                       | 7        | _        | 1        | 13       | 13        |
| Land<br>eleva- | tion<br>(ft)     | 2358      | 2147      | 2147      | 2148      | 2083      | 2083      | 2172      | 2076      | 2189     | 2268     | 1         | 2070     | 2087      | 2069      | 2292     | 2292      | 1        | 2188     | 2188     | 2188     | 2145     | 2252      | 2231      | 2272     | 2127      | 2087      | 2070     | 2148          | 2184     | 2275      | 2254     | 2570      | 2175      | 2096     | 2163                                    | 2163     | i        | i.       | 2334     | 2238      |
| Sample         | depth<br>(ft)    |           |           | 120       | 28        | 80        | 80        | 150       | 60        | 180      | 220      | 1         | 35       | 45        | 30        | 200      | 200       |          | 110      | 110      | 110      | 124      | 120       | 190       | 175      | 66        | 114       | 100      | 201           | 225      | 201       | 210      | 430       | 68        | 60       | 80                                      | 80       | 1        | ı        | 225      | 235       |
|                | Forma-<br>tion * | KCT       | KCF-KCF   | KCF-KCF   | KCF-KCF   | KCF-KCF   | KCF-KCF   | KCF       | KCF       | KCF      | KCF      | KCF       | KCF      | KCF       | KCF       | KCA      | ¥0X       | KCF-KCF  | KCT      | KCT      | KCT      | KCF      | KCF       | KCF       | KCF      | KCF.      | KCF       | KCF      | KCF           | KCF      | KCF       | 1        | KCF       |           | KCF-KCF  | KCF                                     | KCF      | KCF      | KCF      | KCF      | KCF       |
|                | Sample<br>date   | 05/13/69  | 07/23/75  | 69/90/80  | 69/90/80  | 07/24/75  | 08/25/69  | 05/22/69  | 05/26/69  | 08/22/69 | 08/25/69 | 07/02/10  | 69/90/80 | 69/90/80  | 07/02/10  | 05/15/85 | 06/25/19  | 69/11/60 | 05/15/85 | 06/26/19 | 08/08/14 | 12/11/67 | 09/12/69  | 05/14/69  | 09/12/69 | 09/23/69  | 09/53/69  | 09/23/69 | 04/59/69      | 04/29/69 | 12/11/67  | 05/15/85 | 19/90/60  | 12/11/67  | 69/90/80 | 07/23/75                                | 69/90/80 | 01/22/65 | 99/10/80 | 04/28/69 | 05/14/69  |
|                | Ŧ                | 7.6       | 7.7       | 7.6       | 9.7       | 7.5       | 7.8       | 7.9       | 7.5       | 7.8      | 7.5      | 7.5       | 7.4      | 7.4       | 7.4       | 8        | 6.7       | 7.4      | 8.0      | 7.8      | 9.7      | 7.6      | 7.6       | 7.5       | 9.7      | 7.6       | 7.6       | 7.3      | 7.8           | 8        | 7.8       | 7.9      | 9.7       | 9.7       | 7.3      | 9.7                                     | 7.5      | 7.8      | 7.2      | 7.7      | 8.1       |
|                | 80<br>80         | <br>10.0  | 24.0      | 9.4       | 20.2      | 17.0      | 15.5      | 19.0      | 15.0      | 9.6      | 11.5     |           | 7.0      | 6.5       | 8.5       | •        | 11.0      | 12.0     | 1        | 26.0     | 12.0     | 11.0     | 6.4       | LO.       | 13.0     | 19.5      | 28.2      |          | <b>4</b><br>0 | 2.5      | 4.        | •        | က         | •         | 9        | •                                       | •        | •        | 1.5      | 2.5      | 1.5       |
|                | 5                | 12        | 22        | 259       | 7         | 26        | 53        | 22        | 121       | 33       | 52       | 99        | 89       | 49        | 82        | 16       | 15        | 28       | 43       | 48       | 56       | 23       | 36        | 16        | 22       | 24        | 7         | 20       | 30            | 12       | 17        | 10       | 18        | 36        | 20       | 37                                      | 32       | 12       | 14       | 19       | 19        |
|                | S0.              | 12        | 16        | 181       | 12        | 14        | 19        | 18        | 42        | 16       | 17       | 12        | 12       | 13        | 12        | 11       | 19        | 25       | 36       | 38       | 20       | 15       | 24        | 20        | 12       | ω.        | Ξ.        | 53       | 108           | 13       | 24        | œ        | 18        | 56        | 12       | 13                                      | 15       | 10       | 11       | 17       | 17        |
|                | HCO <sub>3</sub> | 249       | 353       | 353       | 283       | 305       | 423       | 229       | 412       | 285      | 588      | 316       | 3Ø3      | 306       | 315       | 812      | 285       | 253      | 244      | 256      | 244      | 306      | 533       | 270       | 203      | 287       | 268       | 328      | 264           | 234      | 232       | 290      | 260       | 295       | 310      | 283                                     | 299      | 222      | 246      | 256      | 282       |
|                | ×                | 1         | 1         | ı         | . 1       | t.        | ı         | ı         | 1         | 1        | 1        | 1.7       | 1        | 1         | 1         | 1.6      | F,        | ţ        | 1.6      | 1        | ı        | 1        | ı         | . 1       | 1        | 1         | 1         | 1.       | ı             | 1        | L         | 1.6      | 1         | 1         | !        | .1                                      | 1        | ı        | •        | ı        | 1.        |
|                | S<br>S           | 9         | 12        | 287       | 9         | 17        | 23        | 11        | 40        | 22       | 20       | 32        | 37       | 32        | 32        | 10       | 10        | 17       | 21       | 56       | 14       | 16       | 52        | 10        | 12       | တ         | ဖ         | 14       | 13            | 10       | 13        | ∞        | 10        | 56        | 37       | 17                                      | 22       | o        | 10       | 14       | o         |
|                | <b>5</b> 0       | 11        | 14        | 23        | 12        | 14        | 52        | 17        | 31        | 56       | 22       | 18        | 19       | 19        | 19        | 11       | 17        | 14       | 21       | 23       | 20       | 19       | 27        | 17        | 14       | 19        | 21        | 27       | 32            | 30       | 28        | 56       | 30        | 19        | 20       | ======================================= | 20       | 22       | 20       | 27       | 31        |
|                | <b>.</b>         | <br>75    | 108       | 49        | 82        | 68        | 108       | 63        | 146       | 64       | 67       | 88        | 98       | 88        | 88        | 85       | 92        | 75       | 70       | 75       | 63       | 78       | 92        | 70        | 22       | 81        | 89        | 89 I     |               | 61       | 89        | 28       | 47        | 81        | 88       | 83                                      | 17       | 44       | 23       | 8        | 25        |
|                | Long.<br>(utm)   | 441078.7  | 450047.5  | 450039.4  | 450766.9  | 460429.8  | 460437.9  | 454942.9  | 453190.6  | 459991.0 | 461012.3 | 452470.5  | 452520.7 | 453448.0  | 452620.9  | 458800.8 | 458800.8  | 466452.7 | •        | •        | •        | 464336.9 | 468738.7  | 475250.9  |          | 482898.9  | 84044.    | 485109.9 | 2931          | 483343.0 | 4/8/36.5  | 481311.4 | 436028.8  | 451059.7  | 453454.8 | 459069.8                                | 459045.4 | 472743.0 |          | 476922.2 | 480580.8  |
|                | Lat.<br>(utm)    | 3446575.6 | 3444485.7 | 3444501.7 | 3443922.0 | 3453478.2 | 3453470.2 | 3451158.9 | 3451424.7 | •        | •        | 3444643.2 | 344410.8 | 3444374.6 | 3445406.1 | •        | 3445982.3 | •        | •        | 455657.  |          | •        | 3449357.9 | 3449455.6 | •        | 3454614.8 | 3454986.3 | •        | •             | •        | 3445800.2 | 45236    | 3442098.2 | 3441524.2 | •        | 3442409.9                               | •        | •        | 439701.  | 42082.   | 3442483.7 |

Appendix 14 (cont). Chemical composition of shallow ground water.

| <b>6</b>                       | ω         | 9              | ဖ         | 9         | ဖ         | 8         | ဖ         | ဖ         | 9         | ဖ         | 9         | ဖ         | ω         | 9         | 9         |
|--------------------------------|-----------|----------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| < <                            | တ         | <del>, -</del> | 133       | 13        | -         | 13        | 13        | 13        | 113       | 13        | 13        | 13        | 13        | 13        | 13        |
| Land<br>eleva-<br>tion<br>(ft) | 2238      | 2238           | 1         | 1         | 2474      | 2446      | 2446      | 2446      | 2481      |           | 1         | 1,        | į         | 2480      | 2588      |
| Sample<br>depth<br>(ft)        | 235       | 235            | 1         | i         | 127       | 105       | 105       | 105       | 122       | ı.        | 1         |           | 1         | 128       | 244       |
| tion #a                        | KCF       | KCF            | KCT       | KCT       | KCT       | KCF-KCT   | KCF-KCT   | KCF-KCT   | KCF-KCT   | KCF-KCT   | KCT       | KCT       | KCT       | KCT       | KCF       |
| Sample<br>date                 | 06/26/19  | 07/24/75       | 99/80/60  | 99/80/60  | 09/28/67  | 01/23/68  | 06/21/79  | 07/22/75  | 01/23/68  | 03/13/69  | 06/21/79  | 07/22/75  | 09/28/67  | 09/22/67  | 89/90/80  |
| 풉                              | 8.<br>8.  | 7.8            | 7.8       | 7.7       | 7.1       | 9.7       | 7.7       | 9.7       | 7.9       | 7.6       | 7.8       | 7.7       | 7.4       | 7.7       | 7.6       |
| 8<br>8                         | 4.0       | 2.0            | 17.0      | 5.0       | 4.0       | 5.5       | 8         | 8.0       | 11.5      | 13.0      | 8.<br>8.  | 9.6       | 5.5       | 10.5      | 4.0       |
| 5                              | 20        | 18             | 25        | 21        | 30        | 17        | 17        | 17        | 20        | 21        | 25        | 52        | 52        | 31        | 33        |
| \$0<br>4                       | 23        | 23             | 105       | 40        | 33        | 19        | 19        | 17        | 37        | 25        | 36        | 37        | 44        | 24        | 30        |
| нсоз                           | 259       | 278            | 218       | 287       | 300       | 224       | 228       | 232       | 248       | 224       | 267       | 268       | 275       | 242       | 283       |
| ×                              | 1         | 1              | ŀ         | :         |           | ı         | J         | ı         | 1         |           | 1         | 1         | 1         | Į.        | 1         |
| - <b></b><br>Z                 | 12        | 11             | 28        | 22        | 19        | 13        | 14        | 13        | 17        | 17        | 20        | 17        | 18        | 21        | 13        |
| 8                              | 32        | 28             | 34        | 30        | 27        | 24        | 24        | 24        | 58        | 53        | 31        | 31        | 32        | 27        | 31        |
|                                | 9         | 22             | 54        | 54        | 69        | 43        | 44        | 46        | 49        | 42        | 25        | 24        | 20        | 49        | 23        |
| Long.<br>(utm)                 | 480580.7  | 480628.6       | 380359.8  | 381019.5  | 380697.9  | 392002.8  | 392019.0  | 392002.8  | 386213.1  | 386746.1  | 396489.7  | 396489.7  | 396489.6  | 398923.0  | 402666.6  |
| Lat.<br>(utm)                  | 3442491.7 | 3442519.3      | 3490917.5 | 3489853.8 | 3488878.6 | 3491389.5 | 3491381.6 | 3491389.5 | 3488722.3 | 3489401.8 | 3489191.3 | 3489191.3 | 3489199.4 | 3489452.2 | 3489699.5 |

Stratigraphic unit: P - undifferentiated Permian; PLC - Clear Fork; PGPR - Pease River; TrD - Dockum; KCT - Trinity; KCF - Fredericksburg; QLe - Leona Formation; QAI - Quaternary alluvium

Hydrochemical facies: 1 - Ca-HC0 $_3$ ; 2 - Ca-Cl; 3 - Ca-S0 $_4$ ; 4 - Ca-mixed-anion; 5 - Na-HC0 $_3$ ; 6 - Na-Cl; 13 - mixed-cation-HCO $_3$ ; 14 - mixed-cation-Cl; 15 - mixed-cation-SO $_4$ ; 16 - mixed-cation-mixed-anion 7 - Na-SO4; 8 - Na-mixed-anion; 9 - Mg-HCO3; 10 - Mg-Cl; 11 - Mg-SO4; 12 - Mg-mixed-anion;

Data source: 1 - Work Projects Administration (1941); 2 - Willis (1954); 3 - Pool (1972); 4 - Richter and Kreitler (1985); 5 - Lee (1986); 6 - Texas Natural Resources Information System computerized and open-file data 1 8

Appendix 2. Conversion factors from mg/L to meq/L.

| Constituent |                     | Multiply | Ву                      | To obtain |
|-------------|---------------------|----------|-------------------------|-----------|
| <br>Calcium | Ca <sup>+2</sup>    | mg/L     | 4.99 X 10 <sup>-2</sup> | meq/L     |
| Magnesium   | Mg <sup>+2</sup>    | mg/L     | 8.23 X 10 <sup>-2</sup> | meq/L     |
| Sodium      | Na <sup>+1</sup>    | mg/L     | 4.35 X 10 <sup>-2</sup> | meq/L     |
| Potassium   | K <sup>+1</sup>     | mg/L     | 2.55 X 10 <sup>-2</sup> | meq/L     |
| Sulfate     | SO <sub>4</sub> -2  | mg/L     | 2.08 X 10 <sup>-2</sup> | meq/L     |
| Chloride    | CI <sup>-1</sup>    | mg/L     | 2.82 X 10 <sup>-2</sup> | meq/L     |
| Bicarbonate | HCO <sub>3</sub> -1 | mg/L     | 1.64 X 10 <sup>-2</sup> | meq/L     |

Appendix 3 Depths to surface casing, to cement plugs, and to base of fresh water in 113 exploration holes that were abandoned longer than 25 years ago. Data were compiled from records at the Railroad Commission of Texas for identification of test site.

|      |           | Surface  |          | Depth to Plug   | gs                                                                                                                                                                                                                              |         |                  |
|------|-----------|----------|----------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------|
|      |           | Casing/  |          | ks of Cemen     |                                                                                                                                                                                                                                 | Depth t | 0                |
|      |           | Well     |          |                 |                                                                                                                                                                                                                                 | Base of |                  |
|      | Year      | Depth    | First    | Second          | Third                                                                                                                                                                                                                           | Fresh   |                  |
| ID   | Abandoned | (ft)     | Plug     | Plug            | Plug                                                                                                                                                                                                                            | Water*  | Lease            |
|      |           |          | J        |                 |                                                                                                                                                                                                                                 |         |                  |
|      |           |          |          |                 |                                                                                                                                                                                                                                 |         |                  |
| 1    | 1952      | 457/7011 | 10@top   | 50@465          | 100@ 900                                                                                                                                                                                                                        | 250     | W.F. Williams    |
| 2    | 1954      | 254/3504 | 35@top   |                 | and the second second                                                                                                                                                                                                           | 200     | J.F. Kennemer    |
| . 3  | 1956      | 252/6610 | ?@100    | ?@ 640          | ?@5240                                                                                                                                                                                                                          | 250     | Llano Cty S.L.   |
| 4    | 1955      | 596/6875 | 5@top    | 25@ 620         | 25@6600                                                                                                                                                                                                                         | 250-300 | Llano Cty S.L.   |
| 5    | 1951      | 294/6580 | 15@top   | 50@ 290         | 50@ 350                                                                                                                                                                                                                         | 250-300 | Llano Cty S.L.   |
| 6    | 1958      | 302/6503 | 15@sc    |                 |                                                                                                                                                                                                                                 | 250-300 | E.M. Baker       |
| 7.   | 1950      | 167/5792 | 5@ 10    | 30@1050         | 35@5670                                                                                                                                                                                                                         | 150     | J.W. Johnson     |
| 8    | 1957      | 315/3460 | 3@top    | 12@3103?        | 30@3440                                                                                                                                                                                                                         | 150     | J.W. Johnson     |
| 9    | 1957      | 327/3486 | 3@top    | 12@ 310?        | 30@3440                                                                                                                                                                                                                         | 150-200 | Johnson "A"      |
| 10   | 1952      | 218/5505 | Cement i | n surface cas   | sing                                                                                                                                                                                                                            | 150-250 | J.W. Johnson     |
| 11   | 1955      | 163/5410 | 5@top    | 10@ 163         | 20@2000                                                                                                                                                                                                                         | 275     | Meadow Est.      |
| 12   | 1951      | 288/5402 | 10@top   | 20@2000         | 20@3000                                                                                                                                                                                                                         | 200     | J.E. Kaparik     |
| 13   | 1956      | 215/5537 | 2@top    | 20@ 225         |                                                                                                                                                                                                                                 | 200-300 | J.W. Johnson     |
| 14   | 1959      | 350/5278 | 5@top    | 50@ 360         | 25@1800                                                                                                                                                                                                                         | 200-350 | J.W. Johnson     |
| 15   |           | 164/5430 | 5@top    | 10@ 160         | 15@1800                                                                                                                                                                                                                         | 200     | J.W. Johnson     |
| 16   |           | 217/5948 | Cement a | at 217          |                                                                                                                                                                                                                                 | 175-300 | E. Straach       |
| 17   | 1958      | ?/5729   | 10@top   | 25@bsc          | 25@5729                                                                                                                                                                                                                         | 150-478 | Llano Cty S.L.   |
| 18   | 1954      | 421/6220 | 15@top   | 20@3825         | 40@6284                                                                                                                                                                                                                         | 150-175 | Llano Cty S.L.   |
| 19   | 1952      | 712/7015 | 5@top    | 10@ 698         | 25@7015                                                                                                                                                                                                                         | 200-350 | M.M. Compton     |
| 20   | 1954      | 213/7060 | 3@top    | 23@ 254         | 20@7015                                                                                                                                                                                                                         | 250-300 | A. Mayer Est.    |
| 21   | 1957      | 218/5610 | 25@sc    | 25@ 600         | 25@5200                                                                                                                                                                                                                         | 150-200 | P.H. Demere      |
| 22   | 1934      | 0/ 714   | 10@?     |                 |                                                                                                                                                                                                                                 | 150-200 | J. Willeke       |
| 23   | 1952      | 486/5802 | 10@top   | 50@ 50 <b>0</b> | 25@5250                                                                                                                                                                                                                         | 200     | Blaylock         |
| 24   | 1954      | 496/5515 | ?@110    | 7@3636          | ?@5500                                                                                                                                                                                                                          | 200     | O.J. Bubenik     |
| 25   | 1959      | 623/5563 | 125@750  |                 |                                                                                                                                                                                                                                 | 200     | H. Byrd          |
| 26   | 1961      | 163/5801 | 5@top    | 120@?           |                                                                                                                                                                                                                                 | 200     | Boys Ranch       |
| 27   | 1953      | 215/5860 | 15@top   | 25@1200         | 35@5200                                                                                                                                                                                                                         | 200     | E.H. Jones       |
| 28   | 1950      | 514/5770 | 100@top  | 25@1940         | 50@2550                                                                                                                                                                                                                         | 200     | E.H. Jones "A"   |
| 29   | 1960      | 112/5785 | 5@top    | 50@ 132         | 25@5785                                                                                                                                                                                                                         | 200-250 | M.D. Bryant      |
| 30   |           | 103/5612 | 190@500  | 60@5600         |                                                                                                                                                                                                                                 | 250     | W.E. Schulkey    |
| 31   | 1952      | 235/3566 | 10@top   | 25@3566         |                                                                                                                                                                                                                                 | 150-200 | Wash. Cty. S.L.  |
| - 32 | 1955      | 473/6245 | 10@top   | ?@ 540          | ?@5421                                                                                                                                                                                                                          | 300-400 | C.D. Atkins      |
| 33   | 1957      | 454/6855 | 10@25    | 35@ 504         | 35@5319                                                                                                                                                                                                                         | 400     | C.D. Atkins      |
| 34   | 1954      | 490/7010 | 20@520   | 15@6500         |                                                                                                                                                                                                                                 | 300-400 | C.D. Atkins      |
| 35   | 1950      | 224/7015 | 25@250   | 25@4990         |                                                                                                                                                                                                                                 | 350-450 | C.D.&C.L. Atkins |
| 36   | 1948      | 479/7329 | 20@top   | 10@ 485         | 65@6710                                                                                                                                                                                                                         | 450     | C.D. Atkins      |
| 37   | 1951      | 278/5758 | 10@top   | 25@ 270         | 25@920                                                                                                                                                                                                                          | 400-500 | Jacobs           |
| 38   | 1958      | 500/5574 | 25@525   |                 | n de de la companya br>La companya de la co | 300-500 | L. Anson         |
| 39   | 1951      | 422/5850 | 5@top    | 25@ 445         | 30@5850                                                                                                                                                                                                                         | 300-500 | K. Harris        |
| 40   | 1961      | 420/4842 | 10@top   | 15@ 450         | 25@4840                                                                                                                                                                                                                         | 300-500 | M.H. Griffith    |
|      |           |          |          |                 |                                                                                                                                                                                                                                 |         |                  |

Appendix 3 (cont).

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Conford              |            |                         |                      |                 |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------|-------------------------|----------------------|-----------------|-----------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Surface<br>Casing/   |            | Pepth to Pluks of Cemei |                      | Daneli e        |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Well                 | (Saci      | ks of Ceillei           | nt e n)              | Depth t         |                 |
| Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Depth                | First      | Second                  | Third                | Base of         |                 |
| ID Abandoned                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (ft)                 | Plug       | Plug                    | Plug                 | Fresh<br>Water* | Lease           |
| 1D Abandoned                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (10)                 | i iug      | 1 lug                   | i iug                | water           | Lease           |
| 41 1953                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 300/6003             | 50@450     | 38@4885                 | 25@5400              | 300-500         | W.A. West       |
| 42 1950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 330/6000             | 15@top     | 10@ 330                 |                      | 300-500         | W.A. West       |
| 43 1954                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 400/5975             | 5@top      | 25@ 400                 |                      | 400-450         | P.E. Jemeyson   |
| 44 1954                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 315/6257             | not        | reported                |                      | -400            | J.W. Johnson    |
| 45 1960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 431/5725             | 10@top     | 10@ 415                 | 15@4950              | -400            | Johnson         |
| 46 1956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 352/5522             | 10@top     | 40@ 400                 |                      | -400            | H. Holiman      |
| 47 1954                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 265/5405             | 10@top     | 25@ 265                 | 25@4770              | -400            | J.W. Johnson    |
| 48 1954                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 274/6350             | 25@296     |                         | the said of the said | -400            | J.W. Johnson    |
| 49 1957                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 180/6066             | 25@240     | 25@3420                 |                      | 150-400         | Johnson Est.    |
| 50 1949                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 270/6524             | 10@top     | 25@ 300                 |                      | 150-400         | J. Scherz       |
| 51 1954                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 224/6402             | 25@top     | 25@ 245                 | 80@6250              | 150             | Johnson         |
| 52 1958                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 323/5500             | 10@top     | 50@ 325                 | 100@2400             | 150             | Wash. Cty. S.L. |
| 53** 1955                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100/6212             | 5@top      | 5@ 100                  | 20@4880              | 150             | Wash. Cty. S.L. |
| 54 1952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 208/6105             | 10@top     | 20@ 220                 | 20@2100              | 150             | Wash. Cty. S.L. |
| 55 1958                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 102/5241             | 10@top     | 25@ 102                 | 10@4800              | 150-328         | J.D. Eaton      |
| 56 1956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 97/6462              | unknown    |                         |                      | 150             | N. McGowan      |
| 57 1957                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 243/6302             | 10@top     | 25@ 320                 | 25@2250              | 150-328         | F.R. Butler     |
| 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 456/                 | Halliburto | n ret. @ 59             | 28                   | 150-200         | Nasworthy       |
| 59 1954                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 180/5110             | not        | reported                |                      | 150-200         | T. Nasworthy    |
| 60 1950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 397/6225             | 50@390     | 35@5279                 |                      | 200             | J.N. Brannan    |
| 61 1953                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 370/7169             | 15@top     | 50@ 385                 | 50@1600              | 200             | W.R. Schwartz   |
| 62 1956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 349/5307             | 55@top     | 15@ 400                 | 20@3350              | 200             | W.R. Schwartz   |
| 63 1954                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 175/3400             | ?@175      | ?@2675                  | ?@3350               | 200             | D.W. Hair       |
| 64 1954                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 129/6500             | 10@150     | 15@2048                 | 15@5000              | 200-328         | Parsons         |
| 65 1954                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 143/7152             | 5@top      | 25@ 150                 | 25@2300              | 150             | Stanford        |
| 66 1955                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 240/5950             | 10@ 12     | 50@ 310                 | 50@5020              | 150             | R. Walling      |
| 67 1959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 233/5825             | ?@ 48      | ?@ 141                  | ?@1700               | 150-350         | A.W. McGowan    |
| 68 1961                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 224/5048             | 5@top      | 30@ 280                 | 40@1000              | 150-350         | J. Simcik       |
| 69 1960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 156/4994             | 25@top     | 25@ 150                 |                      | 150-350         | A. Hennig       |
| 70 1949                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 273/6149             | 5@top      | 20@ 320                 | 25@ ?                | 150             | R.C. Jones      |
| 71 1956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 189/5649             | 3@top      | 25@ 22 <b>9</b>         |                      | 350             | A.J. Schniers   |
| 72 1961                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 157/4740             | 10@top     | 20@ 200                 | 20@4410              | 250-375         | J.D. Robertson  |
| 73 1952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 230/4799             | ?@top      | ?@ 250                  | ?@4799               | 250-375         | J.W. Green      |
| 74 1961                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 303/4780             | 10@top     | 15@ 303                 | 25@4400              | 300-350         | J.W. Green      |
| 75 1950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 121/4844             | 20@top     | 30@ 800                 |                      | 200-350         | M. Kent         |
| 76 1953                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 333/5442             | 25@top     | 75@ 400                 | 100@1950             | 200             | Malone "209"    |
| 77 1961                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 136/4665             | 10@top     | 25@ 136                 | 25@3990              | 150-200         | Rust            |
| 78 1953                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 150/5010             | 10@150     | 15@1500                 |                      | 150-200         | Rust            |
| 79 1957                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 253/4992             | 5@top      | 25@ 425                 | 3                    | 150             | C. Malone Est.  |
| 80 1955                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 175/5914             | 7          | ?                       | ?                    | 150             | G.F. Rust       |
| 81 1948                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 280/5821             | 10@top     | ?@ 280                  | 1504015              | 150             | G.F. Rust       |
| 82 1953                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 203/4565             | 5@top      | 15@ 115                 | 15@4015              | 150             | G.F. Rust       |
| 83 1953                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 210/4700             | 10@210     | 35@2000                 | 2502000              | 200-250         | S.V. Holik      |
| 84 1960<br>85 1953                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 204/4230             | 10@top     | 25@ 240                 | 25@2000              | 200-250         | O.B. Sparks     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 216/4677             | 10@top     | 25@ 216                 | 56@1800              | 200-250         | J.H. Halfman    |
| 86 1949<br>87 1954                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 240/5330             | 25@248     | 25@4600                 | 25/0/1924            | 200-325         | F.J. Holik      |
| and the second s | 249/4866<br>170/4640 | 10@top     | 25@ 260                 | 25@4821              | 250-375         | Wood            |
| 88 1959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 170/4640             | 25@195     |                         |                      | 250-325         | F.J. Holik      |

Appendix 3 (cont).

|       |           | Surface  | D            | epth to Plug | ţs .            |                         |                |
|-------|-----------|----------|--------------|--------------|-----------------|-------------------------|----------------|
|       |           | Casing/  | (Sack        | cs of Cement | . (2 ft)        | Depth to                |                |
|       | 4         | Well     |              |              |                 | Base of                 |                |
| 1     | Year      | Depth    | First        | Second       | Third           | Fresh                   |                |
| , ID  | Abandoned | (ft)     | Plug         | Plug         | Plug            | Water*                  | Lease          |
| 89    | 1959      | 247/4400 | ?@top        | 15@ 240      | 50@4400         | 325                     | Hohensee       |
| 90    | 1956      | 247/5255 | 15@top       | ?@ 275       | 35@4400         | 225-325                 | P. Hohensee    |
| 91    |           |          | 10@187       | 20@4682      |                 | 225                     | M.E. Davis     |
| 92    | 1951      | 205/4769 | 25@top       | and          | bottom          | 225                     | M.E. Davis     |
| 93    | 1954      | 216/4875 | Cement       |              |                 | 200-225                 | G.O. Davis     |
| 94    | 1956      | 259/5254 | 5@top        | 10@ 259      | 25@4500         | 200                     | Davis          |
| 95    | 1959      | 137/4609 | 20@180       | 80@2240      | 50@363 <b>0</b> | 150                     | J.D. York      |
| 96    | 1959      | 170/4590 | 25@195       |              |                 | 200                     | C.S. Callahan  |
| 97    | 1961      | 172/4796 | 10@top       | 15@1500      | 10@2800         | 200-225                 | J.J. Schiller  |
| 98    | 1949      | 216@5775 | not          | reported     |                 | 325                     | T.C. Wood      |
| 99    | 1961      | 167/4836 | 30@240       | 50@1920      | 30@4275         | 350                     | M. Lock        |
| 100   | 1961      | 260/4805 | 10@top       | 15@ 275      | 25@1983         | 350                     | N.W. Little    |
| 101   | 1960      | 300/5357 | 5@top        | 10@ 315      | 20@1850         | 200-350                 | F.A. Braden    |
| 102a  | 1957      | 184/4352 | ?@ <b>50</b> |              | and the         | 150-200                 | J. Dusek       |
| 102b  | 1959      | 168/5028 | 10@top       | 40@ 168      | Table 1         | 150-200                 | J. Dusek       |
| 103   | 1957      | 117/3910 | 15@top       | 35@ 135      | 75@3900         | 100-375                 | R.G. Fuessel   |
| 104   | 1949      | 100/4780 | not          | reported     |                 | 150                     | J. Molde       |
| 105   | 1954      | 192/5292 | Cement       |              |                 | 150-200                 | L.V. Braden    |
| 106   | 1957      | 203/4889 | 10@top       | 25@ 237      | 75@1600         | 150-250                 | O.M. Garvin    |
| 107   | 1954      | 148/4930 | 5@top        | 10@ 140      | 50@1700         | 150                     | E.L. Ford      |
| 108   | 1955      | 206/5110 | 5@top        | 10@ 220      | 28@1665         | 150-325                 | F.G. Rogers    |
| . 109 | 1961      | 302/5183 | ?@top        | ?@ 330       | ?@1820          | <b>250</b> -325         | K.L. Morrison  |
| 110   | 1955      | 264/5315 | 5@top        | 10@ 217      | 20@1850         | <b>200</b> -32 <b>5</b> | K.L. Morrison  |
| 111   | 1957      | 175/4600 | 10@top       | 25@ 246      | 25@1800         | 417                     | T.H. Williams  |
| 112   | 1960      | 105/4300 | 3@top        | 25@ 120      | 50@1500         | 150                     | S.D. Childress |

<sup>\*</sup> As established by Texas Department of Water Resources; depth values approximated from data reported by Richter and Kreitler, 1985.

<sup>\*\*</sup> Test well 22.