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ABSTRACT

Ground waters in the deep aquifers (Nacatoch to Travis Peak) range in salinity from
20,000 to over 200,000 mg/l. Based on their isotopic compositions, they were originally
recharged as continental meteoric waters. Recharge probably occurred predominantly during
Cretaceous time; therefore, the waters are very old. Because the basin has not been uplifted,
and faulting of the northern and western sides, there are no extensive recharge or discharge
zones. The flanks of domes and radial faults associated with domes may function as localized
discharge pomts Both the water chemlstry and the hydraulic pressures for the aquifers suggest
that the basm can be subdivided into two major aquifer systems: (1) the upper Cretaceous
aquifers (Woodbine and shallower) which ‘are hydrostatie to subhydroStatie ‘and (2) the deep
lower Cretaceous and deeper formations (Glen Rose, Travis Peak, and older units), which are
slightly overpressured.

The source ofisodium and chloride in the saline waters is considered to be from salt dome
dissolution. Most of the dissolution occurred during the Cretaceous. Chlorine-36 analyses
suggest that dome solution is not presently Qccurring. Salinity cross sections across individual
domes do not indicate that ongoi‘ng solution is an important process.

The major chemical reactions in the saline aquifers are dome dissolution, albitization, and
dedolomitization. Albitization and dedolomitization are important only in the deeper
formations. The high Na concentrations in the deeper aquifers system results in the alteration
of plag‘ioclase‘to albite and the release of Ca into solution. The increase in Ca concentrations
causes a shift in the calcite/dolomite equilibrium. The increase in Mg results from dissolution
of dolomite.

The critical hydrologic factors in the utilization of salt domes for disposal of high-level
nuclear waste are whether the wastes could leak from a candidate dome and where they would
migrate. The following conclusions are applicable to the problem of waste isolation i‘n salt

domes.



(1) Salt domes in the East Texas Basin have extensively dissolved. The NaCl in the saline
aquifers is primarily from this process. Major dissolution, however, probably occurred in the
Cretaceous time. There is little evidence for ongoing salt dome dissolution in the,saline
aquifers.

(2) If there was a release to a saline aquifer, waste migration would either be along the
dome flanks or laterally away from the do‘me. [f there is a permeability conduit along the dome
flanks, then contaminants could migrate to the fresh-water aquifers .provided an upward
hydraulic gradient exists. Calculation of performance assessment scenarios must take into
account whether there is potential for upwat;d flow between saline aquifers at repository level
and the fresh water aquifers. If an upward flow potential exists, upward leakage along the

dome flanks should be used as the worst-case scenario.



INTRODUCTION

The suitability of salt domes in the East Texas Bésin, Texas, for long-tefm- isolation of
nuclear wastes is, in part, dependent on the hydrologic stability‘ of the salt domes and the
hydrogeologic conditions around the domes.. The two prime hydrogeologic issues can be defined
as follows: (1) Can salt dissolution breach a dome‘ and permit a repository leak during the life
of the repository? and (2) What is the regional aquifer hydrology which determines where
radionuclides would migrate (Kreitler, 1979; Fogg and Kreitler, 1981)?

In the studies of the Bureau of Economic Geology on the East Texas Basin much of the
emphasié on these two primary issues has been in the shallow fresh ground water aquifers that
surround the candidate domes. These shallowaquifers, the Wilcox—Carrizb and Queen City
aquifers, represent a major water supply for the region (Fogg and Kreitler, 1982; Fogg, Seni,
and Kreitler, 1983). These units have an a‘bundance of data to interpret‘ the physical hydrology
and hydrogéochemistry. | |

The-fresh-water aquifers, however, represent 6nly a thin upper layer (maximum thickness
of 2,000 ft) to a basin that contains up to 15,000 ‘ft of sedimentary rocks. These deeper
formations contain saline waters and constitute another hydrologic system that is separate from
the fresh-water aquifers. A potential nuclear\wast'e repository would be located at a depth
which would be either transitional between fresh and saline ground-water systems or completely
within the saline system. The two issues of dome dissolution and radionuclide migration that
have been addressed for'the fresh-water aquifers must similarly be addressed for the saline
aquifers. This report addresses these problems in the saline aquifers of the East Texas Basin.

This report addresses the general charaéteristics of deep-basin hydrolo@. Site-specific
studies of candidate domes are not cdnductéd, because of the lack of detailed data surrounding
any one dome. The availability of hydraulic and geochemistry data is mueh more limited than
for the fresh-water aquifers. Because the Wilcox-Carrizo, Queen City aquifers are major wﬁter

suppliers for the region, an extensive data base has been collected by state agencies over the



years. In contrast, study of the saline aquifers is dependent on data available from oil and gas
wells which are much more limited. |

Based on the data from previously analykzed oil field samples and samples collected
specifically for this study, the following approach has been taken to address these two prime
issues. One is to determine tl'ie source of the water by isotopic analyses. The hydrogen and
oxygen isotopic values can be used to indicate whether the basinal wafer originated as oceanic
waters or were meteoric waters recharged on the continent. Two is to determine whether the
domes are the source of salinity in the saline formations. Salinities in these deep formations
range from 20,000 to over 200,000 mg/l. Is the source of this salinity from salt dome
dissolution over the history of the basin? Mass-balance approaches can h’elp‘ define where and
when the salt was dissolved. Three is to determine the important geochemical reactions that
occur in the basin. The chemical composition of these waters varies from ‘Na-Cl type to Na-
Ca-Cl type. The three‘geochemical reactions of salt dissolution, albitization and dedolomit-
ization appeai‘ to control the chemical composition. By understanding the evolution of the
water chémistry it is possible to delineate majoi' hydrologic systems in the basin. Four is to
determine the major hydrologic systems from the pressure data of évailable drill-stem tests.
With the information and interpretations from fchese sections, preliminary conclusions can be
‘drawn on the hydrologic characteristics of the saline aquifers and whether dome dissolution and

radionuclide transport are critical problems in the deep saline aquifers.

REGIONAL GEOLOGIC SETTING OF EAST TEXAS BASIN

The East Texas Basin is one of three inland Mesozoic salt basins in Texas, Louisiana, and
‘Mississippi that flank the northern Gulf of Mexico (fig. ‘1). About 5,791 m (19,000 ft) of
Mesozoic and Tertiary strata are preserved in the central parts of the East Texas Bésin. These
rocks overlie metamorphosed Paleozoic Ouachit'a 'strata; which are probably a continuation of

the Appalachian foldbelt (Lyons, 1957; Wood and Walper, 1974; McGo'okey, 1975).
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The general stratigraphy (fig. 2) and structure of the East Texas Basin (fig. 3) have been
summarized in many articles (e.g., Eaton, 1956; Granata, 1963; Bushaw, 1968; Nichols and
others, 1968; Kreitler and others, 1980, 1981; Wood and Guevara, 1981; Jackson, 1980; and

Jackson and Seni, 1983).
Basin Stratigraphy

The evolution of this basin is briefly summarized by Jackson and Seni (in press, 1983). The
Jurassic Louann Salt was deposited on a planar angular unconformity across Triass‘ic rift fill and
Paleozoic basement (fig. 4). The early post-Louann history of the basin was dominated by slow
progradation of platform carbonates and minor evaporites during Smackover to Gilmer time.
After this phase of carbonate-evaporite déposition', massive progradation of Schuler-Hosston
siliciclasties took place in the Late Jurassic-Early Cretaceous. Subsequent sedimentation
comprised alternating periods of marine carbonate and siliciclastic accumulétion. By Oligocene
time subsidence in the East Texas Basin had ceased, and major depocenters shifted to the Gulf
of Mexico. Paleocene and Eocene strata crop out in most of the basin, indicating that net
erosion charcterized the last 40 million years.

Agagu and others (1980) in a more detailed discussion characterized the basin infilling as
six regional depositional sequences and is quoted below.

The Eagle Mills-Louann sequence (Upper Triassic-Middle Jurassic).--This sequence was

initiated by deposition of the undated continental Eagle Mills red beds. The Eagle Mills red
beds are composed of red-brown shales, sandstones, and unfossiliferous limestones, which are
unconformably overlain by the Werner Formation. Lower sections of the Werner consist of
conglomerates and fine- to coarse-g’raihed sandstones that grade upward into finer clasties and
evaporites in the upper part of the formation. Halite interbeds in the Werner progressively
increase volumetrically toward the top of the formation and are transitional into the conform-

ably overlying Louann Salt (Nichols and others, 1968).
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The Louann Salt consists of white, gray to blue halite with minor amounts of anhydrite.
Upper parts of the formation exhibit some red plastic shales transitional into the conformably
overlying Norphlet Formation (Nichols and others, 1968). The partially restricted nature of the
Eas'; Texas Basin during its initial stages of formation (Wood and Walper, 1974) provided an
ideal setting for large-scale evaporitic processes, thch have not been repeéted in the basin.

Norphlet-Bossier sequence (Upper Jurassic).--The Norphlet Formation consists of sand-

stones, siltstones, and red shales. The basal part contains halite, anhydrite, and dolomite
transitional into the subjacent Louann evaporites (Nichols and others, 1968). The relatively thin
Norphlet Formation is conformably overlainxby the Smackover Formafion, which documents a
regressive phase between deposition of the Louann Salt and the Smackover Limestone.

The Smackover Limestone here consists of a basal laminated micrite that grades upward
" into a pelletal ‘micrite and ultimately into a coated grainstone. The Smackover Limestone is
overlain by and is in part correlative with the Buckner Formation, which contains red
sandstones in the western and northern margins of the basin and grades basinward into
evﬁporites, shales, dolomites, and limestones (Nichols and others, 1968). The Smackover-
Buckner strata document a shoaling sequence from subtidal in thé lower Smackover Limestone
to supratidal conditions in the Buckner Formation. - The Cotton Valley Limestone and Bossier
Formation are deeper water, gray, micritic limestones and gray to black shales (Nichols and
others, 1968) that onlap the Buckner supratidal facies, an i‘ndication of a minor sequence

boundary above the Smackover Formation.

Schuler-Glen Rose sequence (Upper Jurassic-Lower Cretaceous).--The Schuler and Travis

Peak Formations attest to the high rate of terrigenous clastic influx duf‘ing Late Jurassic and
the Early Cretaceous. They compose a thick sequence (900 m, 3,000 ft) predominantly of
éandstones interbedded with dull red and green-gray shales (Nichols and others, 1968). The
Schuler-Travis Peak sequence c;nlaps the subjacent marine units déspite its strongly terrigenous

character and is probably an example of coastal onlap.

11



The Glen Rose Group consists of a thick (750 m, 2,500 ft) sequence of shallow marine,
micritie, pelletal, oolitie, and shelly limestones interbedded with dark-gray shales and anhy-
drites (Nichols and others, 1968).’ The predominantly,‘calcareo‘us units, such as the Pettet,
James, and Rodessa Members and much of the Upper Glen Rose f‘ormation, are d}eeper water
facies. Sandy shale units, such as the Pine Island'Shale_, and evaporites, such as the Massive
Anhydrite, were ldeposited during minor influxes of fine, teri-igenous sediment and deposition in
supratidal environments, respectively. Terrigenous facies dominate, especially along the north

and northwestern flanks of the basin.

Paluxy-Washita sequence (Lower Cretaceous).--The Paluxy Formation consists of inter-

~ beds of sandstones and shales, and rare conglomerates lie in the northern half of the East Texas
Basin. Basinward, toward the south, the Paluxy gradually chenges into dark;gray shales and
micritic lirhestones (Nichols and others, 1968). The volume of terrigenous clastic Sediment (up
to 135 m, 450 ft) and the high rate of deposition indicate that a major though short- llved phase
of fluvial- deltalc clastic influx occurred. Limestone and shales of the Fredericksburg and
Washita Groups in East Texas document the Early Cretaceous sea-level high that drowned the
Paluxy deltas. » ‘ \

Woodbine-Midway sequence (Upper Cretaceous-Paleocene).--Spasmodic uplift of the mar-

' giﬁal areas of the East Texas Bésin during Late Cretaceous to Paleocene times, accompanied by
possible lowering of relatlve sea level, resulted in the terrigenous clastic mflux marked by the
Woodbine -and Eagle Ford Groups. The Woodbme Group, composed mainly of fluvial and deltaic
sandstone and subordinate shales, marks the peak of clastic sedimentation during this phase.
The Eagle Ford Group, consisting ‘p.ri'marily of shelf and slope shales and minor sandstones,
~ documents the waning phase of cléstic deposition.

The Austin Group initiated the transgressive and submergent phase that terminated in the
Paleocene. During this depositional phase, up t o 244 m (800 ft) of shelf chalks, shales, and

marls were deposited with rare clastic facies that define minor variations in this sequence.
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Tertiary Clastics.--The Tertiary stratigraphic sequence in the East Texas !_Basi_n is a

complex unit mainly composed of fluvio-deltaic‘sandsfcones and shales. The Wilecox Group is a
thick (up to 900 m, 3,000 ft) unit of fluvial and cieltaic sands, clays, lignites, and marls. The
- Claiborne Group is' similar to the Wilcox Group, but it displays some shaly, giauconitic,
fossiliferous shelf/embayment units (Reklaw Formation, Weches Formation, and Cook Mountain)
that alternate regionally with more sandy fliivial—deltaic units (Carrizo, Queen City, Sparta, and
Yegua Formations). The entire Tertiary section constitutes a major regressive phase.
Thepermeabie saline formations in the East Texbasv Basin are the Nacatoch, Eagle Ford,
Woodbine, Paluxy, Glen Rose (inciuding ilodessa and Pettet), Travis Peak (Hdsston), and Cotton
Valley (Schuler) These formations are consxdered permeable and are called saline aqu1fers in
the text because they are oil-producing formations and not because aquifer tests were
conducted to determine their permeable nature. It is implied that these formations have some
permeability because they produce hydrocarbons. A more rigorous site-specific study of a
candidate dome will require hydr_ologic-testing of these deep saline aquifers to obtaiii accurate
hydrologic properties. For this reconnaissance study of the East Texas Basin hydrology, it is

sufficient to say that these formations have the potential for transmitting water.
Structural Framework -

The structural framewerk of the East Texas Basin is summarized by Jackson (1982).

A map of the tectonic setting of the East Texas Basin (fig. 3) reveals that the western and
northern margins of the basin coincide with other geologic structures varying from
Peniisylvanian to Tertiary age. The Pennsylvanian Quachita fold and thrust belt crops out in
Arkansas and Oklahoma and extendé to southwest ’i‘exas beneath Mesozoic cover (Thomas,
1976). Stratal shortening of Ouachita marine deposits generated northwest-converging folds
- and thrusts‘. Early Mesozoic continental rifting of this Paleozoic terrane can be inferred from
the confinement of the Triassic Eagle Mills rift clastics to grabens and half grabens parallel to

the Ouachita trends (Salvador and Green, 1980). Further subsidence allowed marine incursions
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that deposited the evaporitic Louann Salt on an eroded post-rift, pre-breakup terrane. The
updip limit of the Louann Salt (fig. 4) is also parallel to the Ouachita trends, which indicates
that during the Jurassic the Ouachita area was still elevated with respect to the subsiding East
Texas Basin. A poorly defined monoclinal hinge line is present updip of the Louann Salt (fig. 3),
but is too weak to delineate the western and northern margins of the basin. This part of the
basin margin is therefore defined by the Mexia-Talco Fault Zone, a periphéral graben system
active from the Jurassic to the Eocene that coincides with the updip limit of the Louann Salt
(Jackson, 1982).

The Sabine Arch, a broad structural dome, forms the eastern margin of the basin. The
southern margin of the basin is defined by the Angelina Flexure, a hinge line that is generally
monoclinal at its ends and anticlinal in the middle. The Elkhart-Mount Enterprise Fault Zone
extends from just north of the western end of the Angelina Flexure to the center of the Sabine

Arch (fig. 3) (Jackson, 1982).
History of Salt Movement

Seni and Jackson (1983) described the evolution of salt structures in the East Texas Basin
and is summarized as following.

The present distribution and morphology of salt structures in the East Texas Basin are
shown in Figure 5. A broad amphitheater of undeformed salt, 2.7 to 4.6 km deep and 225 km
long, encircles a heterogenous array of salt structures. In much of the basin center the Louann
Salt is absent or so thin as to be seismically unresolvable. The salt masses can be resolved into
geometric groups, each of which defines a province (fig. 5) (Jackson and Seni, 1983). (1) An
outermost salt wedge consists of apparently undeformed salt ranging from 0 to 340-640 m thick.
Its updip pinchout coincides with the Mexia-Talco fault zone, a symmetrical peripheral graben
appareritly formed by basinward creep of the Louann Salt and the post-Louann section over a
decollement zone of salt (Cloos, 1968; Jackson, 1982). (2) Periclinal salt structures with low

amplitude/wavelength ratios are called low amplitude salt pillows. These pillows are flanked by

14
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synclines of Louann Salt. The Louann Salt was originally at least 550 to 625 m thick before
deformation; 600 m ‘is therefore suggested as the approximate minimum thickness of mother
salt required to allow formation of salt structure’s-in the East Texas Basin. Overburden
thickness was about 500 m throughout provinces 1 through 3 at the start of salt moverﬁent.

(3) Intermediate-amplitude salt pillows are commonly separated by syneclines evacuated of salt

and are larger than pillows of province 2. Original thickness of the salt source layer here is
estimated as 550 to > 760 meters. (4) The salt diapirs of the diapir province in the basin center
are the most mature salt structures. They have all partially "pierced" their ‘overburden and
have risen to within 23 m (Steen Dome) to about 2,000 m (Girlie Caldwell Dome) of the presént
surface. |

The earliest record of movement iﬁ the Louann Salt is in the overlying shallow-marine
interval below the top of the Upper Jurassic Gilmer Limestone. This seismic unit thins over
salt anticlines of province 2, indicating the growth of low-arﬁplitude salt piilows in pre-Gilmer
time (Jackson and Harris, 1981). The overlying Upper Jurassic marine strata formed ah
aggrading, slowly prograding, carbonate wedge (Bishop, 1968) that loaded the salt fairly
uniformly (fig. 4b).

In Late Jurassic and Early Cretaceoﬁs time the Schuler-Travis Peak clasties prograded
rapidly across the carbonate platform as coalescing sand-rich deltas. Progradation slowed on
crossing the shelf break, but the thick deltas continued to advance as a linear front into the
previously starved basn (fig. 4b). Loading of the pre-Schuler substrate by the advancing linear
depocenters would have squeezed salt ahead as a frontal bulge to form a salt antieline (cf.
Ramberg,'1981, p. 282-286). Increaée in sediment supply for progradational rate would bury the
frontal anticline, thereby initiating a parallel, but more distal, salt anticline. These anticlines,
which may have been formed partly by gravity gliding as well as differential loading, were
ridges of source rock from which the salt diapirs grew by budding upward.

The evolution of many of the salt pillows to salt diapirs started by niid—Early Cretaceous

time when salt diapirs were growing in three areas around the periphery of the diapir province,
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starting at about 130 m.y. ago (Seni and Jackson, 1983). At least two areas coincide with the
clastic depocenters described above. These early diapirs thus appear to have been localized by
loading on the salt-cored anticlines in front of the prograding Schuler-Travis Peak deltas.
| By the mid-Cretaceous when maximum sedimentation was taking place in the basin

center, a second generation of diapirs evolved, via a pillow stage, from the thick salt layer
there. Sites of diapir initiation migrated from the basin center northward along the basin axis.

The diapirs on the northern and western margin of the diapir province had an entirely
different origin. In Late Cretaceous time, subsidence of the East Texas Basin had declined
exponentially to relatively low rates. Tilting of the basin margins by loading of the basin center
would have encouraged basin-edge erosion. Local unconformities exist over Hainesville Dome
(Loocke, 1978), and 150 to 200 km3 of salt are calculated to be missing. The precursor salt
pillow was breached by erosion; salt withdrawal through extrusion formed an enormous
secondary peripheral sink, the largest in the East Texas Basin. Erosional breaching of the
faulted crests of salt pillows might also have initiated diapirism of the first and second
generations of diapirs, but we have no unequivocal evidenc'e for this hypothesis.

All the east Texas domes have risen very slowly since the end of the Mesozoic (mean net
rate = 35 m/m.y.). No effects of salt withdrawal have been transmitted to the surface since the

Paleocene; the diapirs are thus inferred to have risen by basal necking in the Tertiary.
ORIGIN OF WATERS IN THE SALINE AQUIFERS, EAST TEXAS BASIN

Introduction--Summary

Based on hydrogen and oxygen isotopic data, the saline waters in the East Texas Basin
appear to have a continental meteoric origin. If there were oceanic waters originally present,
they have been flushed by meteoric water. The presence of ‘meteoric water does not, however,
imply that these waters are geologically young. The addition of meteoric water has probably

been ongoing since early Cretaceous time.
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Procedures

Fifty water samples were collected and analyzed for §180 and §2H (fig. 6 and table 1).
Analyses were performed by Global Geochemlstry Corporation. For §180 measurements brine
samples were distilled before equ1hbrat10n w1th carbon dioxide. Table 1 shows the error based
on replication of samples.

7 Fourteen samples are not included in further analysis of‘data because these samples were
not considered as representative of natural subsurface conditions. This is based on the

extremely low Na, Cl, Ca, Br concentrations for their respectlve depths (table 2) (See p. 89

and tables 2 and 2a for more comple-te discussion.)
Definition of Terms

Several terms are used in this paper that are used in various ways in the scxentlflc

literature. It is therefore appropmate to define these terms to avoxd ambiguity.

Meteoric water: Meteoric waters are surface waters or shallow ground waters. They
‘have not ﬁndergone signifiéant isotopic changes of the §2H or §180 values because
of rock-water geochemical' reactions. The ratio 6f §2H and §180 compositions ofv
waters world-wide plots .on a straight line with the equaﬁon §2H = 88180 + 10
(Craig, 1961').

Marine water: Oceanic waters are the ultimate source for nearly all the waters of the
hydrosphere. - Marine water haé a 62H and §180 gomposition of _approximately
09/00, 09/00, respectively.  The isotopic.corhposition of an average ocean water
‘(SMOW--standard mean ocean anter) does not plot on the me"ceoriic water line
becauée of a small isotopic fraction that results from the evaporation of sea water.

- Marine waters with th‘is 0, 0 isotopic composition are expected to be trapped with

marine sediments during deposition and burial.
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Sample

No. Sr

van N 2.3
QEF 224
B.C. 550
B.C.2 550
C.w.l 510
N.W.1 620
N.W.2 620
CAY W.1 300
CAY W.2 300
BAR.W. 340
L.L.W.1 510
L.L.w.2 510
P.W.| 13
P.W.2 15
V.W 280
"N.W.S.W. 660
N.E.S.W. 54

HAW.W. 430

17.6
25.7
3.5
3.6
5.8
4.3
4.3
2.7
2.5
1.7
3.4
5.0
9.2
8.8
4.3
8.8
6.8

2.6

Ti
0.055
<0.05
<0.05
<0.03
<0.05
<0.05
<0.05
<0.05
<0.05
<0.05
<0.05
<0.05
<0.03
<0.03
<0.05
<0.05
<0.05

- <0.05

<0.01
0.022
<0.02
<0.01

1.6
<0.02
<0.02
0.02
<0.02
<0.02
<0.02
<0.02
<0.01
<0.01
<0.02
<0.02
<0.02
<0.02

0.281
0.913
2.4
2.3
3.9
1.8
1.8
0.71
0.39
0.74
1.6
1.1
0.06
0.06
0.77
2.0
0.08
1.4

0.022
<0.02

<0.02
<0.02
<0.02
<0.02
<0.02

0.02
<0.01
<0.02
Q.02
<0.02
<0.02

Table 1. (cont.)

Pb

<0.1
<0.2
<0.2
<0.1
<0.2
<0.2
<0.2
<0.2
<0.2
<0.2
<0.2
<0.2
<0.1
<0.1
<0.2
<0.2
<0.2
<0.2

Li

0.675

1.08
3.0
2.5
3.4
3.7
3.9
2.4
2.4
2.6
3.4
3.9

0.54

0.56
2.1
5.5
1.0
3.4

0.4
0.6
0.8
0.6
1.3
0.8
0.9
0.9
0.9
1.1
0.9
i.0
1.2
1.0
0.7
0.7
1.2
1.0

9.89
1.6
25
21
30
34
35
19
19
21
19
19
22
23
18
29
23
20

Br/Cl
x1074
50.22
64.9
21.4
23
24.5
24.2
27 .4
15.1
13.2
16.8
17.7
15.2
49

49

58
48.2
14
20.2

82y

-30
-27
-33
-31
-33,-31
-31,-29
-31,-30
-3
-29
-22
-33
-29
-28
-29
-32
-30
-29
-29

§1%0

-3.83
-1.75
0.03
0.00
-1.57
0.87
0.63
0.10
0.29
-0.56
0.70
0.78
-3.81
-3.70
-1.30
1.16
-2.03
0.17
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L

Sample
No.

H.W.1
T.Pal.
Van GR
CAY.R
OP.R.
T.R.
F.R.
VAN.R.
B.Pet.
B.D.Pet.
CAY.P.
OP.P.
CH.P.
CH.T.P

3.2
63.4
13
0.26
19.6
188
29.2
306

2,100

47
0.7¢6
0.7
2.47
945

.0.30
0.727
9.2
0.04%
3.8
2.39
4.98
39

33

45
0.105
0.081
0.282
8.78

<0.025

<0.025
<0.03
0.056
0.038
<0.05
0.04
0.127
<0.05
<0.03
0.05
0.054%
<0.025
0.101

<0.01
0.020
<0.01
<0.01
<0.01
0.030
0.026
<0.02
<0.02
<0.01
<0.01
<0.01

0.01
0.059

1.1
2.39
0.06

0.270
1.45
1.78
25.8
5.71

9.0

1.7

0.357

0.198

0.511
13.3

Zn

0.027

0.02
0.014
0.024
0.034
0.066
0.040

0.0l6
0.01%
<0.01

4.19

Table 2. (cont.)

Pb

0.1
0.1
D.1
<0.1
0.1
<0.2
0.105
<0.2
0.2
0.1
<0.1
Q.1
<0.1
<0.2

Li

<0.01
0.539
0.54
0.019
0.327
2.01
1.55
4.04
32
0.88
0.0l
0.024
0.042
15.2

0.1
0.4
1.2
0.2
<0.2
1.0
1.7
0.4
4.5
0.2
0.2
<0.2

<0.2

1.6

1.4
5.86
22

1.25°

<l
14.2
3.15
29.2
58
7.8
<l
<l
1.15
33.2

Br/Cl)
x10-%

595.2
14.7
49
583
112
35.8
21.5
120
90.9
102
271
70
70
99.2

624

-30,-32
-32
-36
-26
-24
-34
-31
-35
-34
-43
-15
-24,-25
-17
-14

§18o

0.38
0.05
1.43
2.48
-0.30
0.22
4.30
-2.04
4.48
0.10
-0.09
1.98
1.54
-3.72



Table 2a. Type of Well and Collection Points for Deleted Data

‘Name
HWI

T. Pal
Van GR
Cay, R
Op. R
T.R
F.R
B.D Det
Cay, P
OP.P

CH.P

CH.T.D.

Type
oil
oil
oil
gas
oil

gas

oil

gas
gas
gas
oil

gas

28

Collection Point

separator
storage tank
well head
storage tank
storage tank
separator

separator

'~ separator

storage
storage
storage

storage’



Continentgl meteoric water: Continental meteoric waters are those waters that résult
- from atmospheric precipitation on the continents. Generally they are on the
meteoric water line but are isotopically depieted in §2H and §180 relati?e to sea
water and follow the meteoric 'water line, as defined by the equation

§2H = 85180 + 10. -/

[sotopic Trends

Three isotopic trends are observed: §180 vs. §2H (fig. 7), §180 vs. depth (fig. 8), §180
vs. Cl (fig. 9).

8180 versus §2H (fig. 7) _

§180 and 62H values range from -69/00 (§180) and -20°/00 (§2H) to +69/00(5180) and
-15%/00 (§2H). The trend approaches the meteoric water line at the same §180 value expected
for meteoric water in East Texas. 8180 of ground water samples from the Wilcox around

Oakwood dome was -4.9.

§180 versus depth (fig. 8)
The §180 values increase with depth. The 6180 values from shallow waters are
approximately the same as the §180 values of meteoric water in the region (§180 = -/5--°/oo).

The 6180 values increase to +39/0o. This trend is consistent for all formations sampled.

§180 versus chlorinity (fig. 9)

The §180 values increase with increasing chlorinity.
Discussion of Isotopic Values

The saline waters in the Nacatoch, Eagle Ford, Woodbine, Paluxy, Glen Rose, Rodessa,
Pettet, and Travis Peak Formations all appear to have a continental meteoric water origin. The

basin has been flushed of any original oceanic waters and has been replaced by meteoric water.
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Figure 7. Hydrogen and oxygen isotopic composition of saline waters, East Texas Basin. Table
1 includes isotopic values.
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Figure 8. 8180 values of saline waters, East Texas Basin versus depth (temperature). Note
enrichment in §180 with increased depth (temperature). (Temperature based on average
geothermal gradient of 0.9°C per 100 ft.) Isotopic analyses in Table 1.
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The presence of meteoric water does not, however, imply that these waters are geologically
young. The flushing process was probably predominant in Cretaceous time.

These conclusions are based on the following lines of evidence. The scattergram of §180
versus 82H (fig. 7) trends back to the original isotopic composition of the meteoric water
before the waters ecjuilibrated with the sediments in the basin. With increasing depths (and
temperatures) the waters reequilibrate with the oxygen in the carbonate minerals causing an
enrichment of 180 in the waters (a reaction‘ documented by Clayton, 1959, 1961). The 82y
values range between -20 to -30°00, the approxim’ater hydrogen isotope composition of
meteoric water for this region. Land and Prezbindowski (1981) found that the SZH of meteoric
waters in Central Texas ranged from -20 to -30°/00. Knauth and others (1980) found meteoric
water in northern Louisiana (= 150 km east of East Texas Basin) with a §2H value of -309/oo0.
A slight enrichment of §2H with increased §180 could be intevrpreted for the East Texas Basin
data. Because of the minimal isotopic variation in the 82H values, regardless of enrichment of
the 6180, the initial §2H composition of the basinal waters was approximately -209/o0 to
-309/00. In contrast marine waters have a § value of approximately 09/0o. The hydrogen data,
therefore, suggest that the deep basin water originated as a continental meteoric water rather
than an oceanic water entrapped during sedimentation and burial.

Clayton and others (1966) observed similar relationships for the Illinois, Michigan, and
Alberta sedimentary basins. Isotopic data for each basin trended back to the isotopic
composition of surface water and shallow ground water of the area. An enrichment of §180
with dépth (temperature) was also observed for each basin, as was observed in the East Texas
Basin (fig. 8). They attributed this elnrichment with increased temperature to a shift in isotopic
equilibria for the temperature dependent isotopic reaction between calcite and water. Clayton
(1959, 1961) presents the experimental data that documents this isotopic reaction.

Salinity increases as §180 values bec‘omevenriched. This relationship appears coincidental
rather than resulting from any mutual dependent geochemical reactions. Clayton and others

(1966) also observed an increase in §180 with salinity but offered no explanation for this
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relationship. This increased salinity with depth and oxygen isotope composition wiil be
discussed under Source of NaCl.

Degen and others (1964) suggested that the oxygen isotope shift resulted from miking of
meteoric waters with marine waters. The isotopic data for the East Texas Basin do not agree
with this interpretation. The §2H remains constant over the range of §180 values. If mixing
was the mechanism, then there should be an isotopic shift in §2H as well as §180,

| The isotopic shift observed by Clayton and others (1965) for the Alberta, Illinois, and
Michigan basins is apppoximately 0.2 %/00 (§180)/°C. The isotopic shift for the waters in the
East Texas Basin is 0.16%/00 (618O/°C, similar to the range observed by Clayton (table 3). For
the §180 values for the different basins, the initial meteoric waters for the East Texas Basin
are isotopically heavier than the other basins and have §180 values in the deep basin for similar
temperature ‘ranges which are also more enriched. This enriched isotopie range is consistent
with the proximal position of the East Texas Basin to the coast in comparison to the other
“basins. If Degen and others' (1964) mixing model is correct, then the slope of the isotopie shift
per temperature rise would not remain constant for all the basins. In contrast the §180 of the
deep basin waters (the initial sea water end members) should remain constant for all basins,
which it doesn't.‘ A model requiring mixing of continental meteoric and original oceanic waters
is not considered realistic for the East Texas Basin.

The presence ‘cv)f meteoric’ water through the basin does not infer_ that the flushing is
recent or is occurring at a rapid hydrologic rate. The timing of fluid movement in the basin is
interesting but not resolvable at this point. A brief review of geologic history of the basin
points to hydrogeologic complexity. During Travis Peak time (Early Cretaceous) thick alluvial
fan delta sediments were deposited. These rocks may have been flushed by continental
meteoric waters and never contained oceanic Qaters. From Glen Rose to Nacatoch time
(Cretaéeous) the major rock units were marine and therefore contained marine waters. During
this. time the continental waters in the underlying Travis Peak may have been replaced by

waters with a marine origin. From the Tertiary to present the basin was being infilled by
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Table 3. Oxygen Isofope and Temperature Ranges of Waters from Four

Interior Sedimentary Basins

Basin Temperature Range (°C) § 180 Range (0/00) § 180 (0/00)/0C
Albertal 30-95 (65°) -8, +4 (12) 0.18
Ilinois1 10-60 (50°) -8, +2(10) 0.2
Michigan!l 10-60 (50°) -9, +3(12) 0.24
‘East Texas? 45-108 (63°) -5, +5(10) 0.16

lfrom Clayton and others (1965)

2from this study

35



primarily continental terrigenous sediments that were subaerially exposed. Minof marine
sandstones and shaleé were deposited during Tertiary time but are considered /insignificant in

" the overall character of the basin.
Incorporation of meteoric water into the different formations of the East Texas Basin
may have occurred at different times in the geologic history of the basin. The isotopic data

does not indicate when the water was added, just that it had a continental meteoric origin.

SOURCE OF NaCl IN THE DEEP-BASIN BRINE AQUIFERS, EAST TEXAS BASIN
Ihtroduction——Summary

The source of dissolved sodium and chlorides in saline to brine concentrations in‘deep-
basinal formations is enigmatic, primarily because of (1) the high solubility of halite, (2) the
multiple sources (evaporites, ocean water) or methods in which brines can be concentrated
(ultra-filtration), (3) the lack of a distinguishing tracer that could separate different chloride
sources, and (4) our generally poor understanding of hydrologic and éeochemical processes in thé
deep subsurface. Researchers have suggested that‘ the elevated NaCl co‘ncentrations have
resulted from at least 5 sources or mechanisméz (1) "connate waters" (original sea ‘water)
(White, 1965), (2) ultra-filtration (reverse osmosis, e.g., the trapping of dissolved species on the
high pressure side of a semipermeable membrane (Graf et al., 1965; Hanshaw and Cdplen, 1973),
(3) drainage of bittern brine pockets entrapped in the original bedded Louann salt (Carpenter,
1978), (4) brine leaking up from an unknown or eiternal source (Land and Prezbindowski, 1981),
or (5) dissolution of halite as either bedded or domal salt (Bassett and Bentley, 1982).

This study Has concluded that vthe source of dissolved. NaCl in the saline aquifefs of the
East Texas Basin is the result of (5) dissolution of halite as domal salt. ‘vThis conclusion is based
on two different approaches: (1) a comparison of the halite that has been lost (original Qolume
of Louann Salt minus present volume in basin)k with the dissolved NaCl in tﬁe aquifers and (2) a

\comparison of the amount of halite that was dissolved to accumulate the 'v_olume. of cap rock in
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salt domes with the dissolved NaCl in the deep-basin aquifers. Both approaches indicate that
more halite is missing than can be accounted for by present dissolved NaCl. All the NaCl that
is presently in solution can, therefore, result from dissolution of halite.

This approach does not prove that dome dissolution is the major contributor of NaCl, but
does demonstrate that dome salt is a feasible source for the basin's salinity. Previous studies on
the 'origin of saline waters have not been able to document a salt source (occult salt) or

mechanism for concentrating NaCl to brine concentrations.
Dissolved NaCl in Deep-Basin Aquifers

The total volume of dissolved salt in the saline part of the East Texas Basin is estimated
at 298 km3 (table 4). This estimate is based on the sum of the average salinity times the
average porosity of individual volumes of the Woodbine, Paluxy, Glen Rose, and Travis Peak

formations, the units considered as the important saline aquifers in the basin.
Salt Loss

1. Approach 1. Original salt volume versus present salt volume

Comparison of the halite still in the basin (domal, anticlinal, and wedge halite) with
estimated original Louann salt indicates that approximately 40 percent of the original halite is
missing (6000 km3). Salt loss is predominantly from the diapirs. Approximately 70 percent of
the salt originélly in the diapir province is calculated to be missing. Salt was lost by both
surface extrusion and subaerial erosion, and subsurface dissolution of salt at diapir crests and
flanks.

A. Present Volume of Salt

Present volume of salt in the East Texas Basin (table 5) was calculated by
planimetry of a hand-drawn salt isopach map. Four sources of data were used to
construct the isopach map.

(1) 740 km of regional and local depth-converted seismic lines;
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Table 4

Saline Average Volume of Average
Aquifer Salinity Formation Porosity
(mg/L)! (km3)2 (%)3
WOODBINE 67,500 4,600 25.0
PALUXY 70,000 3,300 12.0
GLEN ROSE 165,000 15,000 8.5
TRAVIS PEAK 200,000 24,500 7.0

Volume
Dissolved

Salt (km3)4

35‘2

12.7

IDetermined from resistivity curves and Schlumberger charts.
2Determined from isopach maps for individual formations.
3Determined from sonic and density logs.

4Density of halite = 2.1 gm/cm3 |

1 km3 halite = 2.16 x 1015gm
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(2) Basinwide residual-gravity map;

(3)  Salt structure maps of all 15 shallow diapirs from gravity models; and

(4) 4,600 geophysical logs.

There are four salt provinces in the East Texas Basin: (1) salt wedge; (2) low—axﬁplitude

salt pillow; (3) intermediate-amplitude salt pillow; and (4) salt diapir (Jackson and Seni, 1983).
For fhe present study, provinces 2 and 3 are combined. Present salt volume, original salt
volume, ‘and original maximum salt thickness were calculated for each pfévince. The
distribution of regional seismic coverage restricted calculations of salt volume. and thickness to
the western half of the basin in the wedge and pillow provinces. Therefore, to facilitate
comparisons, the area and volume of the diapir province were reduced by one-half. In areas of
the diapir province where the salt is too thin for its upper and lower contaects to be resolved it
is likely to have a finite thickness of up t‘o one-quarter wavelength of thé seismic impulse; at
about 6 km depth this is approximately 80 m thickness. Using this upper estimate of present
thickness conservative estimates of salt loss can be determined. Volumes and areas in table 5
should be doubled to obtain values for the entire basin.

B. Original Volume of Salt (table 5)

The five techniques employed for calculation of the original maximum thickness and

original volume of Louann Salt in different‘provinces of the East Texas Basin are:

(1) Centripetal rate of salt> thicknéss increase

(2) Original volume of salt pillow determined by sediment thickening during
diapi;ism;

(3) Original volume of salt pillow determined by sediment thinning during pillow
growth;

(4) Wavelength of present and Juraésic salt ridges; and

(5) Dome diameter.

Centripetal Rate of Thickness Increase--This technique was applied to salt wedge, salt

pillow, and salt diapir provinces. Present salt thickness and geometry were calculated from
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regional seismic control (Jackson and Seni, 1983). Original maximum salt thickness was
determined by a straight-line extrapolation of present average rate of increase of the salt
thicknéss in the wedge province to the axis of the diapir province (table 5). Seismic data shows
no evidence of post-depositional’thickness changes in the wedge province. But if the wedge had
thinned uniformly by dissolution or flow, the processes would leave little trace. The
extrapolation technique, therefore, yields conservative' thickness esfimates. Using the
centripetal method of calculation, calculated original volumes of salt for the west\ern salt
wedge, western salt pillow and western half of the salt diapir province were 2,360 km3,
2,200 km3, and 3,200‘km3, resp’ectively. This technique is advantageoué because it is applicable
to all provinces and"c‘an be used in conjunction with ot’her techniques that are appropriate only
for the pillow or diapir provinces.

Hainesville Pillow Reconstruction--This technique is applicable to the original salt volume

and thickness in the Hainesville dome region. Hainesville Dome was selected for analysis
because seismic data are available down to Louann Salt. Present g_eome.try of Hainesville stock
and surrounding strata was determined from a 2‘5‘km—1ong Exxon seismic line (Loocke, 1978) and
from 153 logs for thrée—dimensional control. All thickness variations in strata surrounding the
dome are inferred to be salt-induced and syn-sedimentary because of the absence of basement
structure and the inability of struct.ural distorfion to account for the magnitude of observed
thickness variations (Seni and Jackson, in press).

Sediment Thickening During Diapirism at Hainesville Dome--The shallower seismic-

stratigraphic units thicken progressively toward Hainesville Dome. The’volume of strata
thicker than regional’norms defines the salt withdrawal basin. This volume, termed the coliapse
volume, is the volume of salt evacuated from the collapsing pillow during deposition of the
overlying units. If the collapse volume equals the present diapif volume, salt loss was zero.
The collapse volume minus the volume of salt in the present diapir indicates the amount of salt

lost from the Hainesville structure. In the case of Hainesville Dome, 67 percent of the original

volume has been lost. Next Hainesville dome is assumed to be representative of other domes in
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the basin in terms of its salt budget. The original volume of salt in the whole diapir province
can be calculated by analogy (1):\

(1) Original volume of salt = .. Present salt volume"
in diapir province 1-fractional volume loss

This approach estimates that the original volume of salt in the entire diapir province was

5,840 km3 and the original maximum thickness was 1,570 m (table 5).

Sediment Thinning During Pillow Growth at Hainesville Dome--The deeper units
surrounding Hainesville dome thin 'progressively toward the dome as a result of syndepositional
uplift of the original Hainesville pillow below them. The amount of thinning along each
seismic~stratigraphic unit defines the vertical component of growth of the pillow during
deposition of that unit. This thinning can‘be quantified in the vertical section as the rise area,
which is the area lost due to thinning. The area of the pillow in thé vertical section is
iequivalenf to the rise area of units deposited during pillow growth. Assuming axial symmetry,
the volume of the pillow is derived from the geome‘try of a right circular cone and frustum of a
cone. Subtracting the present volume of Hainesville salt stock from the volume of the
reconstructed Hainesville salt pillow yields volume of salt lost. Using equation (1‘), the obiginal
salt volume in the entire diapir proyince is estimated at 7,120 km3 with a maximum original
thickness of 2,070 m (table 5).

Wavelength of Present and Jurassic Salt Ridges--Ramberg (1981) showed experimentally

and theoretically that the wavelength of buoyant salt ridges (salt pillows) is a funection of the
thickness of the initial buoyant source layer and the density contrast and the viscosity contrast
betwen source layer and overburden (Ramberg, 1981, Table 7.5). In the pillow province these
Jurassic ridges evolved into salt pillows by segment‘ation of ’salt ridges. In the diapir province
Jurassic ridgés' evolved into diapirs. The mean wavelength between 10 salt pillows in the
westerh half of the East Texas Basin is 7 km (standard deviation = 2 km). Using Ramberg's
table 7.5, for systems with a buoyant source layer and overburden, a density difference

(Po~Pg/Py) of 0.1, and viscosity contrast of 3,800 yields original salt thickness of 640 to 750 ma.
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The location and orientation of ancestral Jurassic salt ridges on the diapir proviﬁce was ihferréd
from linear dome families, structural mapping of salt-withdrawal basins, and distribution of salt
pillows. The mean wavelength of the seven mapped Jurass’ic salt ridges within the diapir
provinece is 18 km (standard deviation = 4 km). Using Ramberg's table 7.5, this wavelength
yields original maximum salt volumes and thickness of 9,320 km3 and 1,850 m in the entire

diapir province.

Dome Diameter--Parker and McDowell (1955) showed empirically with model domes and
Ramberg (1981) confirmed theoretically that dome diameter equals the thickness of the salt
"source layer. Sa}t structure contours from twelve East Texas diapirs were used to define the
minimum dome diameter. The maximum diameter of the dome is controlled by liateral
spreading at the level of the salt overhang. As overhang diameter is dependent on other
variables as well as source layer thickness, it was ignored. Diameters of coniéal diapirs were
also not éaiculated, for such structures are immature. Mean dome diameter yields original salt
thickness of 1,930 m and original volurhe of 6,760 km3 in the entire diapir province.

The different techniques for calculating original salt thickness all indicate salt loss in the
salt wedge, salt pillow, and salt diapir province with the greatest loss in the diapir province.
More than 6,000 km3 of salt in the total basin are calculated to have been lost. This is
approximately 20 times more NaCl than presently is in solution. This mass balance calculation
indicates that all NaCl in solution in the saline aquifers can easily be accommodated by dome
dissolution.

Salt loss from the original Louann Salt can occur, however, by two different mechanisms,
(1) subsurface salt dissolution and (2) salt dome extrusion and subaerial erosion. For example,
Loocke (1978) and Seni and Jaéksoh (1983) deduced that the majority of the salt loss on
Hainesville salt dome occurred by surface extrusion. This surface dissolution and erosion would
not contfibute’to the ‘NaCl load in the subsurface waters. Another technique forv caleculating
salt loss by ground-water dissolution is by calculating the volume of salt that had‘ to be

dissolved to leave the anhydrite cap rock residuum present on many East Texas domes.
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2. Approach 2. Cap Rock

The volume of halite dissolved by subsurface ground water can be estimated by
calculating the amount of diapir halite th§t had \to be dissolved to account for the anhydrite and
calcite cap rock that presently occurs on top and on the flanks of the diapirs. Using this
approach, a minimum of 790 km3 of salt has been dissolved (table 6). Approximately 2.5 times
more salt has been dissovlved than presently occurs in solution.

Cap rocks on top and on the flanks of salt domes result from the diss_olution of salt
diapirs, leaving a residuum of anhydrite. Later diagenesis of anhydrite (or gypsum) by sulfate-
reducing bacteria and oxidation of organies yield caleite and pyrite (Kréitler and Dutton, 1983).
By knowing the total volume of cap rock and the original CaSOy4 percent in the diapir salt, the
amount of salt that had to be dissolved can be calculated. The following assumptions were
used. |
(1) The Louann Salt in the East Texas Basin originally contained 98% NaCl and 2%

CaSOg4. (This figure represents a mean from Balk, 1944; Kreitler and Muehlberger,

1981; and bix and Jackson, 1982). |
(2) That all anhydrite in the cap rocks formed by residual accumulation during

dissolution of dome salt. |
(3)  There was no removal of cap rock by dissolution or erosion.

(4) No significant volume changes occurred in cap rock during diagenesis from pure
anhydrite to the present mixture of anhydrite, calecite, and gypsum.

Cap-rock volumes were calculated for 15 shallow domes in the East Texas Basin (table 6)

using gravity models (Explofation Techniques, 1979) and geophysical logs. The total cap-rock

volume is approximately 16 km3. If the original diapir salt contained 2% CaSOyq, then 774 km3

of halite have beeﬁ dissolved. This estimate is considered a minimum because the cap rock on

the dome flanks (which is also a dissolution residuum) was not accounted for.

Approach 2 also indicates that all NaCl presently in solution c‘an be aécounted for by salt

dome dissolution.
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Table 6

Salt Cap Rock

Domes Volume
(km3)
BETHEL _ 1.2
BOGGY CREEK 3.4
BROOKS | ‘ 1.4
BRUSHY CREEK | 0.1
BULLARD 0.2

BUTLER 0.0%
EAST TYLER 1.8
GRAND SALINE 0.3
HAINESVILLE 0.6
KEECHI 2.1
MOUNT SYLVAN 0.5
PALESTINE | 0.1
OAKWOOD 2.4
STEEN 1.0
WHITEHOUSE 0.7

15.8 km3 = 774 m3 halite

* True cap-rock material is absent. "Fake caprock" over Butler Dome consists of calcite cemente«

sandstone.
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Timing of Salt Dissolution

Evidence presented in the previous section of this report suggests that the dissolved NaCl
in the saline aquifers of the East Texas Basin is the result of salt dome dissolution. This is an
important conclusion in the context of the suitability of salt domes for nuclear waste isolation
because it indicates that there has been extensive salt loss over the geologic history of the
domes. The next critical question is a question of timing. Is dome dissoiution presently
occurring and, if not, when did it occur? Interpretation of available data suggests that large-
scale dome dissolution by deep basin waters is not presently occurring and much of the
dissolution occurred early in the history of the basin. This conclusion is based on three
different lines of investigation: (1) salinity (NaCl) distribution around salt domes in the

Woodbine Formation, (2) C136 age dating and (3) timing of rim syneline and cap-rock formation.

Salinity of Woodbine Waters Around Salt Domes, East Texas Basin

Water salinities were calculated for the Woodbine Formation in local eross sections across
salt domes (fig. 10) and in regional cross sections through the East Texas Basin (figs. 11-18) to
determine if there were consistently higher salinities around the domes. The Woodbine was
chosen because its relatively high transmissivity and shallow depth would presumably cause the
highest dissolution rates of the saliné aquifers. No consistent pattern of increased salinity was
found near the domes. High salinities were evident near seven domes--Bethel, Brushy Creek,
Bullard, Grand Saline, Hainesville, La Rue, and Palestine, but not seven others--Boggy Creek,
Butler, Keechi, Steen, Whitehouse, Oakwood, and Mt. Sylvan. Often salinities increased away
from the dome. Areas where no domes are present also exhibit high, erratic salinities
(fig. 11-18). Variability in calculated salinity may stem from errors in method. Figure 20

indicates errors of approximately +20,000 ppm.
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Technique for Calculating Water Salinrity of Woodbine Formation
Water salinities for the Woodbine Formation along the cross sections (figs. 10-18).wei'e
calculated using‘ spontaneous potential ldgs based on Dresser Atlas (1975, p. 3-4). Twenty-eight
chemical analyses of Woodbine Formation waters wére then compared to the calculated salinity
values from the geophysical logs to correct the calculated values to "true" salinity values.
Figure 20 shows measured and calculated salinities and a linear regression lineiof best fit. The
~correlation coefficlient is .88. The corrected values were used in thé Cross séctio‘ns

(figs. 10-18).

Chlorine-36 Age Dating of Salt Dome Dissolution in the East Texas Basin

Based on 36C1 age dating techniques, the chloride in two brine samples from the East
Texas Basin resulted from salt dome dissolution more than approximately 1 million years ago.

Chlorine-36 (35C1) is a radioéctive isotope of chlorine with a half-life of: 3.01 x 109 years
(Davis and Bentley, 1982). Because of its long half-life, it offers a promising potential for
absolute dating of old waters. Measurement of chlorine-36 was made by Harold Bentley
(Hydrogeochem, Inc.) on a tandem Van de Graff accelerator at the Univerﬁity of Rochester
Nuclear Structure Laboratory, Rochester, New York. Analyses are given as fhe ratio of 36C]
nuclei to the total number of chlorine nuclei x 10-15,

Chlorine-36 has two sources‘in a ground-water system, (1) an atmospheric and soil surface
source and a subsurface production by natural subsurface neutron flux (Bentley, 1978). Because
of the interaction of these two sources of 36Cl, the 36Cl dating technique has both advantages
and disadvantages for dating saline waters in deep sedimentary basins. If atmospherie chloride
is the only sourcé of chloride in aquifers, the maximum age a water can be dated at is 1,000,000
years old (Davis and Bentley, 1982). As the activity of 36Cl of groundwater: chloride declines
because of radioactive decay, there is also an increase in 36Cl by subsurface neutron
bombardment. The two sources reach equal concentrations in the age range of 800,000 to 1.2

million years old (fig. 21). Waters with low 36C1/Cl ratios can only be assigned ages of 1 million
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years or greater. 36C] dating of saline waters is further complic\ated because the atmospheric
chloride is swamped by dead chloride from a nonatmospheric source making absolute dating of
the water even more tenuous.» | |

Because of the buildup of 36c) by §ubsurface neutron flux’and the massive addition of
dome salt by salt dissolution, the ages of the waters in the saline aquifers of the East Texas
Basin cannot be determined. However, minimum ages of dome dissolution can be estimated.
Louann salt (i.e., dome salt) should have no 36Cl because of its Juréssic age. There also should
be no buildup of 36C1 ih hélite by subsurface neutron bombardment, because the dome shields
itself from neutron bombardment (Davis and'Bentley, 1982). Two halite samples, one from the
Kleer Mine, Grand Saline salt dome, East Texas Basin and the other from Permian Clear Fork
Formation, Palo Duro B\asin, West Texas, have 36Cl/gm Cl ratios  of 0: + 2 and 1 + 2,
respecti&ely. In contraSt, two‘ brine water samples from the Pettet Formation flanking the
Bethel salt dome and from the Woodbine Formation flanking the Boggy Creek salt dome have
36Cl/g‘m Cl ratios of 22 and 6, respectively (table 17); these values are considered to be in the
range expected for a secular equilibrium ?aused by neutron bombardment (Bentley, personal
communication, 1982). Based on Table 7 and Figure 21 the salt dome disselution that resul}ied
in these brines occurred at least one million years ago.

in contrast two samples were analyzed for 36"(:1 from a shallow fresh-water C‘arrizo
aquifer flanking the Oakwood Dome. The 36Cl was measured to determine if the Cl in the
shallow low TDS grouﬁd water was from dome dissolution. The 36Cl values were 230 36Cl/Cl
and 280 36cl/cl, typical of young waters with an atmospheric source and not of Jurassie halite.

No salt dome dissolution was evident from these specific wells sampled for this study.

Geologic Evidence for Early Dissolution

Salinity typically increases with depth in many sedimentary basins. This is true for the
Michigan, Illinois, Alberta (Graf and others, 1966), Palo Duro (Bassett and Bentley, 1983), and
San Juan Basins (Berry, 1968) as well as the East Texgs Basin (fig. 22). »The cause for the
continual increase is as enigmatic as is the original source of 'chlorid:e. The following

)
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Table 7. 36C| in Halite and Water Samples

Sample Name  Location Cl (mg/L) 36cl/Cl (X 1015)

halite Clear Fork Formation ; - 1 +2
Palo Duro Basin, '
West Texas

halite Kleer Mine, Grand Saline - 0+ 2
Salt Dome, East Texas Basin

Bethel Pettit Formation 154,000 : 22
Bethel Dome

Boggy Creek Woodbine Formation 65,000 6
Boggy Creek Dome

OK-102 Carrizo Formation 39 230
Qakwood Dome

TOH-5 Carrizo Formation 130 280
Qakwood Dome
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hypotheses have been offered as mechanisms to explain this phenomenon. (1) Mixing of sﬁallow,
lower salinity waters with a deeper saline source (Carpenter, 1978; Land and Prezbindowski,
1981), (2) As water moves deeper it increases salinity by dissolving evaporites or other Cl
sources, (3) If there is a general upward flow component, salinities in the deep basin are
increased by ultra;filtration through shale membranes (Graf and others, 1965; Hitchon and
Freedman, 1969).

The hypothesis that best explai‘ns the increased salinity with depth in the East Texas Basin
is that most of the dissolution of salt in the basin occurred early in the history of the basin and
fhose Jurasic or Cretaceous waters are still present in the formations. Jurassic formations
contain Jurassic and Cretaceous waters and Cretaceous formations contain Cretaceous waters. _
If we accept the previous argument that the NaCl ‘in solution in the East Texas Basin results
frorh dome dissolution, we may be able to determine when in the histofy of the basin the NaCl
was added to the ground water by understanding when the domes were dissolved.

Kreitler and Dutton (1983) concluded that the formation of the 600 ft thick cap rock on
Oakwood Dome in the East Texas Basin occurred during Late Jurassic and Early Cretaceous
time. They argued that the evidence for large-scale salt dissolution was evident in the rim
synelines surrounding a dome. At Oakwood Dome the only significant rim syneclines are in
Upper Juraséic and Lower Cretac}eous ‘formations; therefore, major doiﬁe dissolution and
subsequent initial cap rock shouid have formed in this time period.

At Oakwood Dome 50 km3 of salt was dissolved to form the cap rock. The dissolution of
50 km3 of salt represents a major geologic event.  The Oakwood salt stoeck contains
approximately 5 km3 of halite. Ten diapir volumes of halite had to pass through Oakwood dome
to be able to accumulate the present volume of caprock. This volume of lost salt should be
evident in the salt withdrawal basins surrounding a dome. In Cretaceous (dlen R‘ose and later)
and Tertiary times only 13 km3 of salt withdrawal from rim synclines occurred. Therefore a

majority of the dome dissolution probably occurred pre-Glen Rose time (table 8a,b).
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Table 8a. Volume of salt dissolved from Oakwood dome to form its cap rock

Cap-rock thickness (anhydrite and calcite) 140 m
Cap-rock radius ' 1,500 m.
Cap-rock volume 9.9 x 1018 m3
Anhydrite content of Oakwood salt dome 2%

Amount of salt dissolved 50 km3
; (11.7 miles3)

Table 8b. Timing and volumes of rim synclines surrounding Oakwood dome.
Volume of rim syncline is considered as equivalent to the
volume of salt that flowed into the dome and was lost by .

dissolution.

Stratigraphic Interval | ' Rim Syncline Volume (km3)
Top Cotton Valley to Top of Travis Peak! , : significant

Top James to Top Glen Rose? - no closure

Paluxy2 | | ' no closure

Top Kiamichi to Top Buda? 9.7

Woodbine2 | no closure

Base Austin Chalk to Top Pecan Gap2 3.5

Top Pecan Gap to Top Midway? no closure

lfrom seismic data
: \

2from electric log data
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A similar approach is applicable for the other dorﬁes in the East ETexas Basin. The
occurrence of a rim syncline (peripheral sink) in a formation indicates that there was salt flow
either 1) intrusion of the diapir into overlying formations, 2) flow of salt \bav‘itbhin the diapir and
salt loss by extrusion out of the diapir crest, or 3) flow of vsalt into the do’me and salt loss by
dissolution of the diapir by ground water. Conversely, if there are no rim synelines, then there
was no major salt loss--either by dome dissolution or dome extrusion. Seni and Jackson (in
press) determined that most East Texas salt domes grew fastest during Early Cretaceous

_(fig. 23). Their conclusions are based on the presencé and rate of sediment accumulation in rim
synclines. Therefore, most dome dissolution also occurred during that time. In confrast to
most of the domes, Hainesville and Bethel salt domes did most .of their growing in late
Cretaceous. The dissolved NaCl in the Woodbine and younger formations may result from the
dissolution of these domes in this later time period. Based on this line of reasoning much of the
salt dome dissolution and addition of NaCl to the ground waters may have ocecurred early in the
history of the basin. The waters in the deeper formations therefore are also very old (Jurassic
and Cretaceous) and may be static. This hypothesis of greater growth and greater diapir
dissolution early in the infilling of the basin explains the relationship of increasing salinity with
depth that is observed in the East Texas Basin (fig. 22).

The trend of enrichment of §180 with increasing salinity (fig. 9) may be circumstantial.
The §180 enrichment of the waters is more logically éxplained by increased burial and greater
temperatures. These waters that have become enriched in 180 were also emplaced in an earlier
time where greater amounts of dome dissolution were occurring. This would explain a

correlation of enrichment of §180 with increased salinities.

WATER CHEMISTRY
Intfoduction——éummary
The waters in the saline deep basin aquifers appear to have a meteoric continental origin.

They were recharged predominantly during Cretaceous times. The dissolved NaCl in the
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aquifers is predominantly from salt dome solution. The presence of caleium, magnesium,
potassium, stroﬁtium, and bromide in the basinal waters appears to resultfprimarily from the
interaction-of the NaCl waters with the rock matrix. The high calcium concentrations may
result “from albitization of plagioclase. The potassium may result from either albitization or
dissolution of potassic feldspars. High'mag'nesium concentrations result from dedolomitization.
The bromide may result from Br depletion of halite.

Based on the water chemistry there appear to be two major aqu‘ifer systemﬁ. The
Woodbine and shallower Cretaceous formations are dominated by Na-Cl type waters. Glen Rose
and deeper formations are dominated by Na-Ca-Cl type waters. The Na-Ca-Cl type waters

have evolved from Na-Cl waters.

Chemical Analysis of Deep-Basin Brines

New Data

Fifty water samples were collected and analyzed for ‘HCO3, SO4, F, Cl, Br, I, H9S, Na, K,
Mg, Ca, Sr, Ba, Fe, B, SiO9, Al, Ti, Cu, Mn, Zn, Pb, Li (table 1). These samples were collected
and analyzed to verify the trends observed in the data base containing the 813 analyses
(Appendix A) and to collect data on species not analyzed in the earlier data set. The earlier

data set only includes analyses for Na, Ca, Mg, Cl, SOg4, pH, and alkalinity;

Sample Collection and Methods of Analysis

Samples were collected as close to the well head as possible. For Wéodbine samples the
oil-water ratio was sufficiently high to allow sample collection at the well head for all but two
samples. Deeper samples were generally collect"ed from a separator or stor:ﬁge tank since water
production was low. Oil wells were sampled in preference to gas wells to avoid condensate
water contamination from pr'od‘uced gas, but, generally, even gas wejlis' yielded reliéble

formation water samples. o
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Samples were initially filtered through a funnel t"illed with pyrex glass wool to remove oil
and large particulafe matter. The water was then filtered through a 0.45 micron filter using
nitrogen pressure to minimiz’e atmospheric contamination. At each sampling site the following
samples were collected in éequence from oné gallon of sample water: (1) 125 ml preserved with
5 ml CdAec for HoS analysis; (2) one liter, unacidified, for individually analyzed ions; (3) one
liter, unacidified, for storage at the Mineral Studies Lab; (4) 500 ml, unacidified, for isotopic
analysis; (5) 250 ml, acidified with 10 ml 6>N HCl for ICP analysis of cations; and (6) 25 ml,
diluted with 100 ml distilled water, for SiOg analysis.
| Ail chemical analyses were performed by Mineral Studies Lab, Bureau of Economic
Geology, University of Texas at Austin. Bicarbonate analyses were done in the laboratory
rather than at the well head or on pressurizéd samples collected downhole and their

concentration should only be considered approximate.

Delefed Data

Twelve analyses have not been included in the data base of brine water chemistry because
the analyses (except CH.T.P.) indicated abnormally low cqncentrations of ﬁa, Cl, Ca, Mg, Br, I,
Sr, and B (table 2). Sample (CH.T.P.) had a hydrogen and oxygen composition that' was
unrealistie in thaf it plotted above the meteoric water line (table 2). Eleven of these twelve
samples were not cbollected at the well hea-d‘ but from storage tanks of separators where water

from another source may have been mixed with the formation water (table 2a).

Previously Published Data

Eight hundred thirteen previously published chemical ‘analyses were collected from
Hawkins and others (1964) 'and University of Oklahoma (1980) and are listed in Appendix A.
Most samples were collected before 1964. One-hundred-eighteen analyées had cation/anjon
balances greater than + 5% and were ‘therefore considered inaccurate and therefore excluded.
Bicarbonate and pH analyses should also be considered as approximate bécause the alkalinity
and pH measurements were probably made in the laboratory (and not in the field) at an unknown

time after collection.
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Comparison of New Analyses to Previously Published Analyses

‘A comparison of the chemical composition of the recently collected waters (tablé 1) to
chemical composition of previously published analyses (Appendix A) for fhe same field and
similar depths shows that the analyses are similar (table 9). Two conclusions can be drawn from
this observation: (1) the old analyses are correct and (2) secondary recov'ery oéerations (such a§

water flooding) have not altered the water chemistry of the recently collected samples.
Geochemical Trends

Several geochemical trends are evident from both the re¢ent13} collected sample§ and
from the previously published analyses. The trends observed on individual plots are similar for
both data sets; therefore, only those plots with the recent data are shown in this section. A t‘ew
identical plots using the older, larger data set are included to show the agreement. ﬁ

The following scattergram plots of the water samples collected for this study also include
20 samples from the older data base from the Paluxy Formatioh. Only two wells in the Paluxy
were sampled for this study. The water chemistry in the Paluxy éppears critical in
understanding the geochemical evolution of water types‘between the shallower saline Nacatoch,
Eagle Ford, and Woodbine Formafions and the deeper Glen Rose and Travis Peak Formations.
Twenty Paluxy analyses from the older data set are included in some of the scattergrams
(figs. 24, 26, 28, 33, 36, 39, 40) to provide a more complete data base.

Each scattergram includes data for the formations studied. The geochemical trends are
not as evident if the data are plotted solely by formation. The different sampled formations
are indicated by different symbols so that ioniec concentrations for eéch formation are
identified.

In the scattergrams concentrations (either as mbles (or millimoles) ;per liter or milli-
grams/liter) are used instead of activities because of the problem of calculating correct

activity coefficients for varying ionie strengths (up to 250,000 ppm).
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Table 9. Comparison of previously published analyses to chemical analyses from this study.

70

Sa:o?le Formation Depth Sample Type‘ Temp. pH Na Ca Mg HCO3 SOy Cl NO3 F
Quitman Eagle Ford old 4,25‘0 31,415 1,474 205 137 21 51,287
new 4,210 23,800 1,0 203 187 <4 40,600
. Boggy Creek  Woodbine  old 3,634 37,615 3,451 582 329 184 65,499 -
new 3,600 37,900 3,250 465 160 120 65,500
Neches Woodbine ~ old 4,742 35,582 3,520 586 274 180 62,520
new 4,704 35»,‘700 3,200 - 545 150 90 62,100
Cayuga Woodbine old 4,049 29,833 1,620 350 348 118 49,600
new 4,030 29,600 1,200 210 160 - 120 48,500
Long Lake Woodbine old 5,250 36,432 2,806 474 376 119 62,232
new 5,272 36,400 2,400 280 170 110 62,200
Powell Woodbine  old 3,000 ' 3,964 62 26 1,393 --- 5,462
new 3,000 4,400 74.5 27 i350 60 6,500
Van‘ Woodbine  old 2,912 27,49i 825 368 536 11 44,600
new 2,900 25,100 1,160 290 120 60 43,100
Slocum-NW - Woodbine  old 5,686 32,910 3,000 430 260 190 57,000
new 5,400 32,500 2,700" . 460 98 73 58,100
Hawkins Woodbine  old 4,650 35,668 2,8501 530 406 206 61,200 ;
new 4,531 35,200 - 2;300 290 170 250 59,500
Mexia, Woodbine  old 3,065 11,818 561 179 290 4 19,573
new 3,100 12,270 570 142 ;263 <6 20,300
Richlahd Woodbine  old 2,985 5,654 124 37 683 0 8,652
new 3,300 5,285 9% 29 350 <6 8,280
Quitman Paluxy old 6,211 39,627 9,731 1,388 i 96 460 - 82,009
new 6,230 39,000 9,540 936 54 389 81,300



Na*’ versus Cl~ (figs. 24 and 25)

Na* increases directly with Cl for all samples analyzed. Based on the slope of the line,
there are two subsets of data. Up to Cl concentrations of 2 m/l, the slope of Na/Cl is = 1.
These data included Nacatoch, Eagle Ford and Woodbine Formations. Above a Cl concentration
of 2 m/l, the slope drops to 0.6. These data include Paluxy, Glen Rose, Pettet and Travis Peak

Formations.

Ca++ versus Cl~ (figs. 26 and 27)

Ca++ concentrations remain low up to Cl concentrations of approximétely 2 m/1 Cl, then
Ca concentration increases up to 0.8 m/1 in figure 26-—to 1;1 m/1 in Figure 27. Different trends
for Ca versus Cl occur in the same formations as for Na versus Cl. High Ca concentrations

begin in the Paluxy Formation.

(Na* + 2 ca®™) versus CI (fig. 28)

A scattergram of (Na+ + ZCa++) versus Cl_ shows a slope of 1. Two Ca are added to the
Na to determine whether the 0.6 slope observed for Na/Cl plot (figs. 24 and 25) was caused by
~an exchange of Na for Ca. The Ca concentrations are multiplied by 2 to maintain charge
balance. If Ca is exchanging for Na, then 2 Na will be lost from the brine. The addition of Ca

and depletion of Na relative to Cl appear to be related to the same geochemical reaction.

K" versus Cl (fig. 29)
The scattergram of K versus Cl shows two different trends. For Cl concentrations less
“than 2 m/], Cl increases independently of K. For Cl concentrations greater than 2 m/l, K

concentrations increase significantly. This is a similar pattern as observed for Ca versus Cl.

Br versus Cl (fig. 30)
The scattergram of Br versus Cl shows two different trends: For Cl concentrations less
than 2 m/1 Cl and in Nacatoch, Eagle Ford or Woodbine Formations Cl increases independently

of Br. For Cl concentrations greater than 2 m/l, Br increases proportionally with Cl at a slope
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Figure 24. Sodium concentrations (m/L) versus chloride (m/L). Data from Table 1 (new data)
plus additional Paluxy data from Appendix A.
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Figure 26. Calcium concentrations (m/L) versus chloride (m/L). Data from Table 1 (new data)
plus additional Paluxy data from Appendix A.
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Figure 27. Caleium concentrations (m/L) versus chloride (m/L). Data from Appendix A.
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Figure 28. (Na‘t + 2 Ca*™) concentrations (m/L) versus chloride (m/L). Data from Table 1 plus
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Figure 29. Potassium concentrations (mm/L) versus chloride (m/L). Data from Table 1.
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Figure 30. Bromide concentrations (mm/L) versus chloride (m/L). Data from Table 1.
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of .606. The Br concentration increases at approximately the chlorinity value where Ca and K

also increase significantly.

se™t versus C1” (fig. 31)
The scattergram of Sr versus Cl shows a continual increase of Sr with greater
Cl concentrations. In contrast to the scattergrams of Ca versus Cl, K versus Cl, and Br versus

Cl (figs. 26, 29, 30), Sr is increasing proportionately to Cl in the shallower formations.

Mgﬂ’ versus Ca++ (fig. 32)

The scattergram of Mg versus Ca shows a continual increase of Mg with increasing
Ca concentrations. The slope of calcium versus magnesium for the Woodbine, Nacatoch, and
Eagle Ford Formations appears greater than for Paluxy, Glen Rose, Rodessa, Pettet, and Travis

Peak Formations.

Br versus [ (fig. 33)
The scattergram of Br versus I shows no correlation between species. Br concentrations

increase independent of I concentrations.

Li" versus CI” (fig. 34)

For Cl concentrations less than approximately 50,000, Cl increases independent of Li. For
Cl concentrations greater than 50,000, Li concentrations increase significantly. The Li
concentrations increase at approximately the chlorinity value where Ca, K, and Br increase

significantly.

Cl™ versus Depth (fig. 22)
The scattergram of Cl versus Depth shows a continual increase of Cl with increasing
depth. There is a greater scatter of data for the deeper formations (Paluxy, Glen Rose, Pettet,

and Travis Peak).
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Ca’™ versus Depth (figs. 35 and 36)

The scattergram of Ca versus Depth shows two different trends. For samples shallower
than 6,000 ft, Ca concentration stays relatively low. In contrast to the shallow sampling
depths, the Ca concentrations for the deeper sample are significantly higher and show a wide
scatter. This change in trends at approximately 6,000 ft is also coincident with the 0.2 molar
Cl concentrations observed to be important on the Ca versus Cl (fig. 26), K versus Cl (fig. 29),

and Br versus Cl (fig. 30) graphs.

Br versus Depth (fig. 37)

The scattergram of Br versus Depth shows two different geochemical trends which are
similar to the trends observed for Ca versus Depth. At shallow depths Br concentrations are
low and consistent. At depths greater than 6,000 ft, Br concentrations are greater and have a

wider scatter.
Discussion of Water Chemistry

The ionic solutes in the deep-basin brines result initially from the dissolution of salt
domes by meteoric ground water. The previous discussion on the hydrogren and oxygen isotopic
' composition of the waters indicates that all waters sampled are of a meteoric origin. The mass
balance calculations of original Louann Salt versus the amount of remaining domal salt indicate
that dome dissolution through the geological history of the basin can easily accommodate for all
the Na and Cl presently in solution. Additional geochemical reactions between the water and
the rock matrix result in the addition or loss of ionic species in the water.

If dome dissolution appears to be the only important reaction affecting the Na concentra-
tions in the basi‘n, then the Na/Cl molar ratio should be approximately 1. This appears to be
true for the shallower formations, Woodbine, Eagle Ford, and Nacatoch (figs. 24, 25). The
concentrations of Ca, K, and Br conversely are small indicating minimal water-rock inter-

actions (figs. 26, 29, and 30).
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Figure 37. Bromide concentration (m/L) versus depth.
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The chemical composition of waters in the deeper fo’rmations,‘ in ;contrast, indicatés:
several geochemical reactions have 6ccurred or are presently occurring. The slope of Na to Cl
for the deep brines is approximately 0.7 (figs. 24 and 25). Eithér halite dissqlutioﬁ was not the
mechanism contributing to the Na-Cl load or Na has been lost from the brines. The first
hypothesis is‘not considered realistic since a lower concentration brine frorﬁ which the deeper
~ waters have appeared to evolve, have approximately a 1:1 Na-Cl ratio. Secondly, the waters
are continental meteoric in origin and not marine. o

The increase in calcium (figs. 26, 27) and loss of Na (figs. 24, 25}. are at_tr'ibuted,to‘
albitization. In this reaction sodiqm in solution is exchanged for caleium in the plagioclase.
Land and Prezbindowski (1982) defined the equation (1) as follows. |

Equation (1) plagioclase + halite + water = Na-Ca-Cl brine + albite

By adding the caleium (2 Ca, fér charge balance purposes) to the Na concer’itrations, there is a
close 1:1 molar ratio betwen Na + Ca/Cl (fig. 28). This 1:1 slope argues that there has been an
exchange process that has caused the depletion of Na and the increase of Ca. This 1:1 slope
also argues against the solution of anhydrite and subsequent reduction of the sulfate. If sulfate
reduction was a dominant reaction, then the Na:Cl molar ratio should remain constant at 1 and
not decrease to the observed 0.7 value. The lack of HgS in the deep-basin brines (table 1) may
also argue against sulfate reduction. Wescott (1983) observed that the most common secondary
porosity in the Schuler Sandstone (the major sandstone directly beneath the Travis Peak)
resulted from feldspar dissolution. Many of the feldsﬁars had been albitized (Dunay, 1981).
Garbarini (1979) also observed extensive albitization in the Hosston (Travis Peak) in Mississippi.

Potassium concentrations also incréasé significantly in the deeper formations. This
increase in K could be attributed ‘to either the dissolution of K-feldspars or jthe alteration of K-
feldspars to albite (equation 2), a similar reaction to the albit';zation of plagi:oclase.

Equation (2) K-feldspar + halite + water = Na-K-Cl brine + albite
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In Dunay's study of the Cotton Valley, minimal dissolution of K-feldspar was cébserved.

The mechanism which initiates the albitization of potassic and calcic fe:ldspax;sl may be the
ionic strength of the brine and/or temperature. The sharp increase in both Ca and K starts at 2
molar Cl solutions. The approximate temperature is 70°C (based on a depth' of 6,000 ft and an
average geothermal gradient of 1.6°F (.9°C)/100 ft for the region. This temperature is lower
than the 120°C suggested by Boles (1979) and Milliken and others (1981) for the albitization
threshold temperature. Though the sharp increase in concentrations occurs at 2 molar solution
and 70°C, the albitization ‘reaction may be occurring at shallower depths and in less
concentrated solu‘tions. Plo‘ts of Na/Cl versus depth (fig. 38) and Na/Cl versus Cl (fig. 39) show
that the shift of the Na/Cl ratio toward lower values starts in the shallower aquifers ‘with the
lower TDS values. This shift may also result from lexchange reactions other than albitization
such as cation exchange on clays. ‘

Magnegium concentrations increase linearly with caleium (fig. 32). - The Mg probably
results from dedolorﬁitization. With the increase in calcium in solution from the albitization
reaction, the waters become undersaturated with respect to dolomite and dolomite solution
should occur until equilibrium is reestablished, by the following equation.

Equation (3) Ca + CaMg(CO3)q = Mg + 2CaCOj3
These waters are considered to be in equilibrium concurrently with caleite and dolomite, as
evidenced by the relationship between the Ca/Mg ratio’anvd temperature j(t‘ig'. 40). With an
increase' in temperature, the calcite/dolomite equilibrium shifts towardfdolomite, that s,
dolomite becomes more stable (Land and Prezbindowski, 198i; Stoessel and :Mdore,' 1983; Land,
1981). This shift in equilibrium should be observed in the Ca/Mg rat.io with increasing
temperatures. A linear increase in the ratio with increasing temperature is observ;d (fig. 40).
Molar concentfations of caleium and'magnésium are used in‘Figure 40 instéead of the activity
values, based on the arguments of Land and Prezbindowski (1981) that the ratio of econcentra-
tions is comparable to the activity ratios. The Ca/Mg ratio follows thé calcite/doiomite
equilibrium curve of Stoessel and Moore (1983) based on Robie et al. (1979) indicati.ng that the

~ waters are in equilibrium with calcite and dolomite.
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,
" The Br composition of the deep basinal éaline;waters (figs. 30, 37) also appears to
subdivide into two groups: low Br concentfations for Nacatoch, Eagle Ford and Woodbine
Formations and sié’nificantly higher concentrations for the deeperi units. The source of Br in
saline deep-basinal water has been enigmatic. Carpenter (1978) suggested that the bromide
results from residual brine squeezed'outrof'the Louann Salt. Land and Prezbindowski (1981)
suggest that the high Br concentrations result from a solution- reprempltatlon of the halite
- which depletes the hallte in Br and conversely enriches the solution in Br If there is total
solution of halite, then the Br/Cl ratio in the water will be the same in the origi'nal salt, If
there has been solution/reprecipitation, then the Br content will be greater than in the original
halite. This second hypothesis is considered a reasonable explanation for the Br in the East
Texas brmes |
Carpenter's residual Louann brine concept is cohsidered unacceptable for the fol}owing
reason. The amount of residual brine;pocket fluid needed for the observed Br concentrations
through the Glen Rose and Travis Peak Foirmations is too large. If the Br in solution in the deep
formation came from brine pockets squeezed out of the Louann Salt during deep buriél, then the
- volume of the bittern brine can be estimated by (1) knowing the Br in the Glen Rose and Travis
Peak Formations and by estimating the Br content in a late stage evaporite fluid. The brine
content in the deep formations (Glen Rose and below) is estimated at 3 x 1019 g of Br.
Assuming the Br concentration in a late-stage evapo‘ration brine is 5,000 mg/l based on
_ approximate Br contént during K-salt precipitation (Carpenter, 1978), then ttle estimated
volume of the residual brines is 600 km3. This 600 km3 constitutes 10 percent of the volume of
the original salt dome province or a porosity of 10 percent. The salt thickness is estimated at
1,500 m. ‘Maintaining this 10 percent porosity during the accumulation of 1,500 m of halite is
considered unrealistie.
The soluti‘on-reprecipitation mechaniém is preferred for the following reasons. The Br
concentration of the halite from Oakwood salt dome (East Texas) average:s 45 ppm, which is

slightly depleted from 65 to 75 ppm Br expected for "first eycle" halite: (Hol'ser, 1979). Dix and
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Jackson (1981) interpret this depletion as the result of solution and reprecipitation. The Br in
the original Louannn Salt may have been much higher. Kreitler and Muehlberger (1981) noted
that Grand Saline salt dome had undergone very little dissolution and the geochemistry of these
salts might approximate the chemical composition of the original Louann Salt. In Grand Saline,
Br concentrations ranged from 100 to 300. If the bromide in the halite at Grand Saline
represents original Br concentrations of the Louann Salt, then the halite in Oakwood Dome, and
possibly the halite in other domes have undergone a significant depletion of bromide.

Kumar and Hoda (1978) observed Br concentrations in brine pools and bri‘ne springs in the
Weeks Island and Belle Island salt domes mines that ranged from 1,100 to 13,500 mg/l with a
mean of 6,200. Chioride concentrations ranged from 194,000 to 276,000 mg/l. These waters.
should represent brines that have equilibrated with the mineralogy of the salt .stock and may
therefore be analogous to formation waters that have equilibrated with the salt stock on its
exterior. Their data indicate that high B>r concentrations can result from basinal water reacting
with a salt dome. Kumar and Hoda's (1978) Br/Cl molar ratio of .09 is higher than Br/Cl molar
ratio (.007) observed in the Glen Rose and Travis Peak brines from this study. East Texas deep-
basin brines, however, would be the product of both halite dissolution as well as equilibrating
with a Br-enriched halite and therefore have Br/Cl ratios lower than observed in pools and
springs observed in the mines.

Carpenter and Trout (1978) suggested that Br and I in saline ground water may result from
the decomposition of organic material. Figure 33 shows no correlation between Br and [. If
iodine is coming ffom organic decomposition (a reasonable idea), then the Br is not.

The deep-basinal brines also are high in Sr. There are at least two possible sources for the
Sr in solution. (1) Disseminated anhydrite in salt dome halite has a strontium content of
approximately 1,500 mg/kg (Kreitler and Dutton, 1983). The dissolution of salt dome halite
should n;esult in the dissolution of some anhydrite and release of strontium. (2) Albitization of
plagioclase may release Sr as well as Ca. Smith (1975) measured Sr concentrations in feldspars

up to 5,000 ppm.
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A plot of Sr versus Cl (fig. 31) shox&s a continual increase of Sr with Cl whicﬁ is in
contrast to the Ca versus Cl, K versus Cl and Br versus Cl plots (figs. 26; 29, and 30). This
indicates that a geochemical feaction envisioned for brines aibitizing Sr-bejaring plagioclase in
the Paluxy, Glen Rosé and Travis Peak is not the sole cause of Sr in solution.

The chemical composition of the saline waters in the Glen Rose (Pettet and Rodessa are
part of Glen Rose) and Travis Peak is significantly different than the chemical composition of
the Qaters in the Nacatoch, Eagle Ford and Woodbine Formations. Chemical composition of
waters in the Paluxy appears transitional between these deeper and shfallower formations.
'Figures 35, 36, and‘ 37 show an abrupt increase in Ca and Br concentrations at a depth of
approximately 6,000 feet. This depth is the general depth of the Paluxy an:d top of Glen Rose.
This deptﬁ is also coincident with 2 molar Cl conce‘ntration (figure 26) whi:ch appears to be an
important concentration for initiating albitization and other rock-water reactions.

This break in chemical composition at = 6,000 feet also coincides with the fluid
pressure/depth relationships. Shallower than 6,000 ft, the basin pressures are hydrostatic to
subhydrostatic. Beliow 6,000 ft, the pore fluid pressures are slightly overpressured. (A more
detailed discussion of basin pressure is in a latef section.) ‘

The Na-Ca-Cl waters initially were Na-Cl waters. The addition of CQ, Mg, Sr, and other
trace elements had to have occurred after the addition of 2 moles of NaCl. If these waters
started as a Na-Ca-Cl water, they should trend to a 0,0 position rather than the 2 mole position
(fig. 26).

The transition of a Na-Cl water tp a Na-Ca-Cl water implies Eut does not prove
hydrologie continuity between the Na-Cl waters and the Na-Ca-Cl waters.‘ Kreitler and others
(1978) in a study of Gulf Coast aquifers and Fogg ‘and Kreitler (1982) in a s;tudy of the Carrizo-
Wilecox a_q‘uifer in East Texas used the continual change in water cherﬁistry as a tool for
identifying flow paths. This probably is not a continuous flow system frofn the shallow saline
aquifers to the deeper aquifers in the East Texas basin. The fact that the Na-Ca-Cl waters

evolved from a Na-Cl water only indicates that the deeper waters and the shallower saline
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waters are following the same geochemical evolution and the deeper waters have evolvéd
significantly further. -

The chemical composition of the Paluxy waters appears transitional between the
shallower Na-Cl waters and the deeper Na-Ca-Cl waters (figs. 24 and 26). This may result from
two processes. (1) The Paluxy waters may be in the appropriate temperature and salinity
environment such that a Na-Ca-Cl water results, or (2) the chemical composition of these
waters may result from the mixing of the two different water types. LeakageE may be occurring
from the slightly oVerpnéssureId Glen Rose into the Paluxy.

This subdivision of chemical composition into Na-Cl waters and Na-Ca—:Cl waters appears
to be independent of lithology within each major group.r The Na-Ca-Cl wafers occur in both
sandstones (Travis Peak) and limestones (Glen Rose Group). The change in éhemical composi-
tions may be related to three factors. (1) The two molar NaCl concentration ‘may be a
threshold value to cause major rock water reactions; (2) The temperatures at;6,'000 feet may be
sufficient to initiate the rock-water reéctions; (3) The waters in the deeper formations may be
much older and nave thus permitted g‘réater rock-water interaction.

The interpretation of rock/watef geochemical reactions is based onl§' on the chemical
analysis of the waters. Minimal petrographic analyses of the different formaﬁions are available.
This represents a major limitation of the study. If reacfions such as albitization of feldspars or

dedolomitization have occurred, then they should be evident in the rock record.
Water Chemistry Proximal to Salt Structures

The previous discussion identified the major chemical composition trfends in the saline
aquifers. Study of the water chemistry from oil and g‘as‘ fields close to:salt ‘domes nlight
indicate anomalous hydrologic 61' geochemical processes because of the prééence of the dome.
Anomalous chemical composition might indicate ongoing dome dissolution or leakage from

deeper or shallower formations.
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Sixteen water samples of the 38 samples listed in table 1 are near or o_lverlying salt domés
or salt pillows (table 10). Seven of these 16 samples were collected from for}mations that either
laterally abutted a salt structure or were less than 1,000 ft overlying a salt structure. There
are only a few producing oil fields on the flanks of the salt domes; therefore, samples from
dome flanks are very limited. Most of the oil associated with salt structures are fields
overlying salt anticlines. The salt anticlines offen are very deep and the fields overlyinglthem
are shallow in comparison.

Neither the total 16 samples associated with salt structureé nor the 7 samples in closer
continuity with the salt dome show consisténtly anomalous water chemistrfy in comparison to
the general trends observed for all the water chemistry analyses (fig. 41‘and 42). The salt
domes are presently not affecting the chemiéal composition of the brines. ’i‘hé conclusion is in

agreement with the electric log SP interpretation of the Woodbine.

HYDRAULIC POTENTIAL DISTRIBUTION, EAST TEXAS BASIN
[ntroduction--Summary

The hydraulic potential distribution of the saline aquifers in the East Texas Basin has been
evaluated by analysis of drill-stem test data. Based on these data, theré appear to be two
major hydrologic systems: the Upper Cretaceous aquifers and the Lower Cretaceous-Upper
Jurassic Formations. The Lower Cretaceous-Upper Jurassic system may befa closed hydrologic
system with some leakage into the overlying Paluxy Formation. In the uppé;; aquifer system the
Woodbine Formation has been depressurized because of extensive hydrocarbjon production. It is
doubtful whether fluid pressures in the Woodbine would return to natural: levels in the near

future.
Methods of Analysis

Approximately 300 drill-stem pressure measurements were obtained from the files of

Petroleum Information Corporation and scout cards (Appendix B). Final shut-in pressures have
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Table 10. Water Samples from Fields Near Salt Domes and Salt Pillows

VAN N
V. W
VAN GR
VAN R
B.C.1
B.C.2
N.W.1
N.W.2
H.W.
C.w.
CAY. W1
CAY.W2
CAY.R
CAY.P
NWSW
HAW.W
HAW.R

B.D.ROD

B.D.PET
OP.R
OP.P
OP.TP
G.S.R.

Depth (ft)

1,200
2,900
7,230
5,220
3,600
3,600
4,704
4,704
9,776
4,404
4,030
4,030
7,460
7,550
5,400
4,531
8,300
10,100
10,300
8,630
8,900
10,000
8,200
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Depth to top
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been plotted against depth (fig. 43). The quality of drill-stem test data is always\suspéct
because of the normal difficulties in obtaining good tests. Optimally the test déta should
include the trace of the test, including an initial shut-in pressure (ISIP) and a final shut-in
pressure (FSIP) (Bredehoeft, 1964). Too often, however, only the FSIP is recorded. This is true
for the East Texas data. Only 11 out of 300 have both FSIP and ISIP. Fifty-five percent of
these tests had FSIP within 10% of the ISIP. No traces of the actual test were available.
Without this additional information the accuracy of the FSIP cannot be evaluated. Considering
these constraints, it is recognized that the following discussion is based on a less than

satisfactory data base.
Results and Discussion

Two pressure-depth regimes are observed in the East Texas Basin. The Woodbine and
shallower formations approach hydrostatic or ar-e subhydrostatic (fig. 43). The lower pressures
are the result of hydrocarbon production (Bell and Shepherd, 1951). In contrast, the deeper
formations (Glen Rose, Travis Peak, Cotton Valley, Sligo, Bucknef, and Smackover) are slightly
overpressured (fig. 43) (gradient = .6 psi/ft). Several tests in these deepex; zones indicate under-
pressured conditions that probably have resulted from hydrocarbon production or represent
faulty test data.

These two diffex;ent pressure/depth regimes represent two major aquifer systems: (1) the
hydrostatic Upper Cretaceous sandstones and limestones and (2) the slightly overpressured
Lower Cretaceous and Upper Jurassic sandstone and limestone formations. The Upper
Cretaceous hydrostatic system has better porosity, better permeability and is well intercon-
nected through the basin, in comparison to the deeper formations. Average porosities for
Woodbine and Paluxy are 25% and 12%, respectively (table 4). Hydrocarbon production from
the Woodbine Formation in the East Texas Field has caused pressure declines in the Woodbine

across the entire basin (Bell and Shepherd, 1951% fig. 44).
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Figure 43. Pressure (psi) versus depth for saline aquifers, East Texas Basin. Data from
Appendix B. .
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Figure 44. Estimated pressure declines in the Woodbine formation from oil production in East

Texas field and the Mexia fold along the Mexia-Talco fault system (from Bell and Shepherd,
1951).
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Presumed reasons for such widespread pressure declines are (1) highly pe:{meable, laterally
continuous sands; (2) low coefficient of ‘specific storage, approximately 6 x 16‘6 m-1 baéed on
values of compressibility for Woodbine core samples (Hall, 1953); (3) lack of; lateral recharge
owiﬁg to barrier boundaries caused by the Mexia-Talco fault zone along the‘ west and north.
The Mount Enterprise - Elkhart Graben fault zone along the south, and stratigraphie pinch-out
of the Woodbine sand along the east baéin margin; and (4) lack of vertical récharge owing to
deep burial beneath low-permeability aquitard/aquiclude strata of the Midway and Navarro.
The high permeability and low specific Storage coefficients give a low diffusivity coefficient
(Freeze and Cherry, 1979) which would allow pressure declines to spread a greater distance in a
relatively short period of time.

With final depletion and abandonment of oil and gas production in thé Woodbine it is
doubtful whether fluid pressures would rapidly return to their preproduc;tion levels. A
downward vertical hydraulic gradient should remain between overlying fresh-wéter aquifers and
the Woodbine for a long, but undetermined time.

The Lower Cretaceous-Upper Jurassic hydroétratigraphic system has lower porosities,
probably lower pemeabilities and less interconnectedness. Average porosities in Glen Rose and
- Travis Peak are 8.5% and 7.0%, respectivel‘y. The overpressuring may result from continued
compaction and a minimal leakage of waters into overlying formations. Overpressuring in deep
Cretaceous carbonates (Sligo) has been observed in other localities of the Gulfjof Mexico (Land
and Prezbindowski, 1981). Its origin probably cannot be attributed to shale conﬁpaction or shale
‘diagenesis as is the mechanism for the overpressured Tertiary section in the Gulf of Mexico, but .
may be related to continued compaction and reerystallization of carbbnates‘ and sandstones.
The process is not understood. This lower hydrostratigraphic system may be a relatively closed
system. If this system is an active hydrodynamic system, fluid pressur;'es should have
' equilibrafed to hydrostatie conditions. This interpretation is in 'ag'reement with the observation
that there is a significantly different water chemistry between deep Lower Cretaceous

formations and the Upper Cretaceous formations.
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The Paluxy sandstone.may be a mixing zone for the Upper Cretaceous hydrologic sys\tem
and the deeper saline system. “The Paluxy Formation was expected to have similar hydrology
and geochen{istry as the younger Woodbine Formation, because of its similar depositional
characfer (terrigenous sandétone with reasonable interconnectedness) and its similar strati-
graphic position (i.e., above the thick Glen Rose carbonates). The depth of the Paluxy pressure
data (Appendix B) is where the pressure/depth slope starts rising above brine hydrostatic
-(fig. 43). The chemical composition of the Paluxy water is variable. Some of the waters are
NaCl water, similar to Woodbine, whereas others are Na-Ca-Cl waters and appear intermediary
between the chemical composition of Woodbine waters and Travis Peak or Glen Rose waters.
'The chemistry and hydrology suggest that waters from the Glen Rose and iTravis Peak
Formations are leaking into the Paluxy. |

The data base is inadequate to construct potentiometric surfaces for any of the
formations. Bell and Shepherd's (1950) surface is outdatéd since it was constructed in 1950 and
there has been extensive production since then. Without potentiometric surfaces for individual
formations or the majdr aquifer groupings, and without a better understanding of the hydrology,

prediction of flow directions or flow velocities is not possible at this time.

GENERAL HYDRODYNAMICS OF THE SALINE AQUIFERS, EAST TEXAS BASIN
Introduction

A conclusion of the water chemistry and the pressure-depth discussions of this paper is
that the basin has been relatively stagnant over long geologic time. This lack of an active
hydrodynamic system is probably controlled by the general hydrologic conditions of the basin.
No major tectonic event has uplifted and tilted the basin to establish effective recharge and
dicharge zones or steep hydraulic gradients across the basin to facilitate flushing. The East

Texas Basin is still largely below sea level. Sedimentary basins such as the Palo Duro, the San
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Juan, the Paradox, and the Alberta Basins have all been uplifted by postdepositional tectonie

events which have permitted continued flushing of earlier formation waters.
Recharge to the East Texas Basin

Recharge to the saline formations in the East Texas Basin could be expected where these
formations (e.g., Woodbine, Paluxy, Travis Peak (Hosston)) érop out. All the a;;ﬁifers, however,
crop out to the west of both the Balcones and the Mexia-Talco Fault Zones. These faults
probably limit the recharge into thé Ibasin (Plummer and Sargent, 1931; Parker, 1969;
Macpherson, 1982). The hydraulic gradient is either low or reversed, 1:'1either éitua_tion
conducive for basin flushing. The hydraulic_heads in the Glen Rose and deeper formétions are
significantly above land surface because of the slight overpressuring. Ground-water flow Jfrom
outerop downdip into the deep basin is not expected because of these hig'hgpressures m the
saline formation. The Mexig-Talco fault system exhibits]greater throw with depth because the
faults were active through a broad range of time (Jackson, 1982). Because of the inereased
displacement with depth, the faults may function as more efficient imperméable barriers at

greater depths. The Travis Peak and Glen Rose Formations may be more hydrologically isolated

than the shallower Woodbine.
Dischai'ge from the East Texas Basin

A deep basin must have discharge zones as well as recharge zones for fluid movement to
occur. The deep saline formations of the East Texas Basin do not have obvious regional
discharge zones. There are no outcrops of Woodbine; Paluxy, Glen Roseior Travis Peak
Formations on the eastern or southern sides of the basin, where discharge m}ght occur. The
only available avenues for discharge may be along faults or dome flanks located in topo-
graphically low areas (Fogg and Kreitler, 1982). The depressurihg of the Woodb‘ine formation by
oil production has reduced or eliminatéd the discharge from the Woodbiné into shallower

aquifers. |
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False Cap Rock at Butler Dome, An Example of Deep-Basin Dlscharge

Deep-basm ground-water discharge may have occurred along the flanks or associated
radial faults of Butler Dome, Freestone County, East Texas. A calclte—cemented sandstone
identified as "false cap rock" is being quanried from the flanks of Butler Dome. This false cap
rock appears to have resulted from the oxidation of hydrocarbons in hot saljine waters being
discharged up the dome flanks. Saline springs Were present over the dome before the
depressuring of the Woodpine Formation occurred (DeGolyer, 1919; and Po‘wfers, 1920). . The
springs no longer exist.

Rocks exposed in the East Texas Stone Company's Blue Mountain Quarry on the NNE 51de '
of Butler Dome comprise the Eocene Clalborne Carrizo and Reklaw Formatlons (fig. 45).
Claiborne sediments dip away from the dome's center at a maximum of %25°NE, and are
unconformably overlain by Quaternary terraﬁc‘e deposits. The Quaternary deposits reveal no
evidence of warping due to dome uplift. A normal fault strikes N10° - 30°E, lateral to the
western quarry wall, and dips 70°SE (fig. 46). Claiborne sediments are displaced about 1.5 m.
In the quérry on the downthronm side of the fault, Carrizo sandstone is cemented with CeCO3.
Typically the Carrizo sandstone in the East Texas Basin is friable. This Hell—ringing hard,
calcite-cemented Carrizo represents an anomalous case. Sands on'the upthnown side of the
fault to the west are not cemented with CaCOg. Large ellipsoid calcitie, pyritic concretions
are scattered randomly fhrough outcrop (fig. 47). Along the fault plane calcite: has precipitated
as fracture-filled veins (fig. 48). The fault appears to have been the primary path for fluid
movement. At the eastern quarry‘ wall, the caleareous sandstone gradually g'rades into an
uncemented friable sand with only a few patches of CaCO3 cemented sandstone. Some of the
sand lenses within the shales and mudstone of the Reklaw Formation are alse cemented with
CaCOg, but none of the Quaternary sands and gravels have CaCOg cement. This observation
suggests that precipitation of the CaCOg cement occurred before Quaternary :,time or that the

deeper discharging fluids could not rise any closer to land surface.
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Figure 46. Cross section and map view of fault in Blue Mountain quarry on flank of Butler
dome.
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Petrographic analyses of these calcareous sandstone samples 1nd1cate that the quartz sand
grains are cemented with some pyrite and more commonly sparry to prismatic calclte. Little of
the -original sandstone porosity exists and the cement is ‘commonly pmkdotopw (fig. 49).
Replacement of the clastic grains by calecite and pyrite is common. |

The calcite cement appears to result from oxidation of hydrocarbons by tne reaction:

CaSO4 + CH4 # HpS + CaCO3 + H90
The §13C values of the cements fange from -20 to -32 (table 11‘and fig. 505, indicative ‘of a
hydrocarbon source for the carbon (Feely and Kulp, 1957; Kreitler and Dutton, 1983) ‘The §180
values of calcite cements ranged from -8.2 to -9.4%, which is considered to be 1nd1cat1ve of
calclte precipitation from a hot water. Kreltler and Dutton (1983) observed, 6180 values for
Oakwood Dome cap rock in the range of -9 to -119/00. Slmllar depleted 6180 values (-8.6 to
-=109/00) were measured for the calite cap rock at Vacherie Dome (Smith and’ Kolb, 1981). In
contrast, the calcite concretions on the uncemented northern side of the fault t'anged from ;3.4
to -4.19/00, which is considered to be indicative of caleite precipitation frorn shallow ground
- water. |

Both DeGolyer (1919) and Powers (1920) observed brine and sulfunous springs over the -
dome and attributed them to waters rising from great depths. The spi‘ings were - used
intermittently for salt since the Civil War. The springs could not be found in 1980, and it is
assumed that depressuring of the Woodbine has stopped spring flow The combmed ev1dence of
saline sprmgs and the presence of the false cap rock at the dome mdlcate that faults
' surrounding the dome have functioned as recently as the early 1900's as conduits for deep-basin
discharge. | |

Palestine salt dome, 5 miles to ‘the north of ‘Butler dome, may also»havje false cap roc!k
associated with its outerops of Carrizo sandstone which surround the domei and are highly
cemented. Petrographic analysxs identified a poikilotopic calcite cement; similar to the

cementation observed at Butler dome.
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Table 11. Isotopic composition of calcite-cemented Carrizo Sandstone,

Butler Salt Dome.

Calcite-cemented Carrizo sandstone from southern side of fault.

Sample No. §13c% §180%
1 -29.2 -8.4
2 -22.1 -8.2
3 -28.8 -8.5
4 -25.8 -8.2
5 -26.6 -8.0
6 -30.5 -8.7
7 -24.9 -8.9
8 -31.5 -8.5
9 -32.2 -8.5

10 -25.4 . -9.4
11 -21.9 -8.9
12 -27.2 -8.8
13 -25.6 -8.3
14 -31.1 -8.6
15 -20.1 -8.7
16 -23.6 -8.3

Calcite-cemented concretion from northern side of fault.

Sample No. §13c% §180%
Cl -23.4 . -3.4
C2 -24.7 -3.5
C3 -19.1 -4l
Cl -19.0 ' -4l

114



-50 — TEXAS 0O

M Butler Dome false cap rock 8
OBuﬂer Dome concretions

O Oadkwood Dome cap rock @)
(Kreitler and Dutton, 1981) o

-40 - O
@)
[@0)
@
@)
@D O
a ‘30 - é O
o e A
9_; . Ba
K | s
-~ O
S 8 oF
32 )F - .
© -20 A Xm a
00 LOUISIANA
X - X A Vacherie 'Dome cap rock
X (Smith and Kolb, 1981)
X X Rayburn Dome "calcareous
Xy boulder zone (Smith and
-10 X Kolb, 1981)
’ X
X
0 T | l
0 -5 -10 -15

5'80 (%.) PDB

Figure 50. Oxygen (8§180) and carbon (8§13C) isotopic composition of calcite cements from
cemented Carrizo sandstones and calcite concretions from Blue Mountain Quarry (Butler Dome)
and other calcites associated with salt domes. Data in Table 11. Loecation of samples from
cemented Carrizo sandstone shown in Figure 51.
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Figure 51. Location of cemented Carrizo Sandstone sampled in Blue Mountain Quarry for
carbon and oxygen isotopic analyses.
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T‘hese' are the only dbmes in the East Texas Basin whére false cap ;'ocks have been
observed. It is interesting to note that théy are located in a low of thé VICarrizo-Wilcox
potent_iometric’surface. The incision of the Trinity River into the Carrizoiﬁhas caused this
| depression in the potentiometric surface (Fqg'g andkKreitler, 1982)‘. Areas of logw hydraulic head
in the shallow aquifers could be regional discharge points for the saline aquifef)rs. Only in such
areas would the potentials in the shallow fresh-water aquifers be low enough for deep basinal

.discharge.

SUMMARY--WASTE ISOLATION IMP‘LICATIONS

Ground waters in the deep aqu1fers (Nacatoch to Travis Peak) range ‘m salmlty from
20,000 to over 200 000 mg/l. Based on their isotopic compositions, they were originally
recharged as continental meteoric waters. Recharge probably occurred predéminantly during
Cretaceous time; therefore, the waters are very 6ld. The Mexia-Talco fault system on the
northern and western sides of the basin probably limit recharge to the basin; Bjecause the basin
has not been uplifted and erodeyd, there are no major discharge zones. The flaﬁks of domes and
radial faults assbciated with domes may function as localized discharge points.? Both the water
chemistry and the' hydraulic pressures for the aquifers ihdicate two major iaquifei‘ systems:
(1) the upper Cretaceous aquifers (Woodbine and shallower) which are hydros’éatic and (2) the
- deep lower Cretaceous and deeper formations (Glen Rose, Tra\}is Peak,‘ and oléer units), which
are slightly overpressuréd.

The source of sodium and chloride in the saline waters is considered to bé from s‘alt dome
 dissolution. Mass-balance equations indicate there has been extensive dissolution of the domes
and the amount of »dissolution is greater than presently ‘exists ‘in the formatiohs. : Most of the
dissolution probably occurred durmg the Cretaceous. The timing of major dlssolutlon has been
estimated by determmmg when salt withdrawal basins surrounding the domes were formed
Chlorine-36 analyses suggest that dome solution is not presently occurring.. Salinity cross

sections across individual domes do not indicate that ongoing solution is an important process. .
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The major chemical reactions in the saline aquifers are dome dissolution,;albitization, and
dedolomitization. Albiti/zation and dedolomitization are important 6n1y in the deeper forma-
tions. The high Na cor{éentrations in the deeper aquifers system results in fhe alteration of
plagioclase to albite and the release of Ca into solution. The increase in Ca concentrations
causes a shift in the calcite/dolomite equilibrium. Dolomite should dissolve resulting in the
observed increase in Mg. These conclusions on the dominant chemical reacti:ons are based on
the analysis of the water chemistry. Petrographic and geochemical studies of the mineral
assemblages are needed to confirm these observations.

The critical factors in the utilization of salt domes for disposallof high-level nuclear
waste is whether the wastes could leak from a ‘candidate dome and where they would migrate.
Salt domes under investigation in the Eas.t Texas, Louisiana, and Mississippi basins are in
contact with both fresh and saline aquifers. The potential for dome dissolutiori and radionuclide
migration needs to be considered for both systems. The saline aquifers néed to be studied
because a potential rz"epository would be located at a depth adjacent to saline rather than fresh-
water formations. This study has addressed the problems of dome dissolution in the saline
aquifers and the general hydrologic characteristics of the saline formationé. The following
conelusions are applicable to the problem of waste isolation in salt domes.

(1) Salt domes in the East Texas Basin have extensively dissolved. The NaCl in the saline
aquifers is primarily from this process. Major dissolution, however, probably occurred in the
Cretaceous time. There is little evidence for ongoing salt dome dissolut;ion in the saline
aquifers. |

(2) If there was a release to a saline aquifer, waste migration would either be along the
dome flanks or laterally away from the dome. If there is a permeability conddit along the dome
flanks, then contaminants could migrate to the fresh-water aquifers. The rﬁigration of saline
fluids to the surface is dependent on two factors: (a) Is the hydraulic head in saline aquifer high
enough to cause flow at the surface or into shallow aqgifers? A potential r‘épository in a salt

dome would probably be located at a depth adjacent to the hydrostatic-subhydrostatic aquifer'

118 !



system. The present depressuring of the Woodbine Formation would probably% prevent flow to
the surfgce. (b) Is the hydraulic head in the shallow fresh-water aquifers depreésed in the domal
-area? Upward fluid migration is dependent on the potential in the shallow aduifers as well as
the potential in the saline systems. Potentiometric levels in the shallow Eas“t Texas aquifers
are controlled primarily by topog’rephy. The lower the elevation of land surfaée, thev lower will
be the level of the potentiometric surface. Salt domes located in regionally tobog’raphically low
areas (e.g., river valleys)'probably hav‘e a greater chance for fluid flow up their dome flanks
than salt domes located in areas with higher topography. If contaminants @igrated laterally
into the deep-basin aquifers, they brobably would not reach the biosphere. The deep-basinal
fluids appear relativel‘y stagnaﬁt. The waters are probably very old, and there are no major
discharge points from the basin. - There is, however, no way to predict flow paths or travel
times because there are insufficient data to construct potentiometric maps. = Calculation of
performance assessment scenarios should use the worst-case scenario of leakage along the
flanks of the candidate dome. From this perspective then, a critical unknown is the direction
and potential for vertical flow between the Woodbine and shallow Tertiary aquifers, and, in
turn, whether cessation of oil and gas production from the Woodbine will reverse the vertical
hydraulic gradient from downward to upward within the life of a nuclear waste_repository.

(3) The observations and conclusions in this paper are based on information obtained for
the East Texas Basin. It is expected that the research approaeh and general eonclusions would
be similar for the North Louisiana and Mississippi Basin. Detailed investigations would be

 needed to confirm the applicability of East Texas Besin results to other basins.’
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Appendix A. Chemical composition of saline waters, East Texas Basin, from préviously’

published data (Hawkins and others, University of Oklahoma, 1980).

East Texas Waste Isolation

Deép Basin Hydrology
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Appendix B. Pressure/Depth Data from saline formations, East Texas Basin.

Raw data from Petroleum Information, Inc.

East Texas Waste Isolation

Deep Basin Hydrology

The raw data displayed in Appendix B were purchased as Proprietary Data under

agreement with Petroleum Information Corporation and cannot be shown in the final report.

However, interpretations of these data are included in the body of this report. For further

information contact the Bureau of Economic Geology.
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