PRELIMINARY GEOLOGIC DESCRIPTION

.

MARSHALL EXPLORATION WERNER SAWMILL NO. 5

March, 1986

Prepared by

Shirley P. Dutton and Robert J. Finley

Bureau of Economic Geology W. L. Fisher, Director The University of Texas at Austin Austin, Texas 78713-7508

Prepared for

The Gas Research Institute Contract No. 5082-211-0708 Robert J. Finley - Principal Investigator

INTRODUCTION

Three intervals of the Travis Peak Formation were cored in the Marshall Exploration Werner Sawmill No. 5 well, Belle Bower field, Panola County, Texas. Core was recovered from 6,546.0 to 6.642.7 ft, 6,853.0 to 6,912.3 ft, and 7,049.0 to 7,141.1 ft. The top of the Travis Peak is at 6,478 ft so the core begins about 68 ft below the contact with the \$ligo Formation.

MACROSCOPIC CORE DESCRIPTION

The Travis Peak cores were described using a hand lens and binocular microscope, and graphic logs of the cores were made at a scale of 1 in = 5 ft (fig. 1). The following features of the cores were noted on the descriptive logs: depth, rock type, accessories such as pyrite, organic matter, and burrows; sedimentary structures; texture (sorting); induration; grain size; relative amount of carbonate cement; color; and special features such as dead oil and calcareous nodules (fig. 1). Porosity and Purmeability values reported by NL Erco are noted on the graphic logs, as are the depths from which thin sections have been made. Correction factors between core and log depths are noted for each cored interval (fig. 1).

The cores consist of fine to very fine sandstone, mudstone, and minor limestone. Each of the three cored intervals show distinctive characteristics that indicate changing environments during deposition of the upper Travis Peak interval. Each of the cored intervals is described below.

The lowest section of core, from 7,049.0 to 7,141.1 ft, consists predominantly of muddy sandstone beds that are up to 15 ft thick, interbedded with thin red mudstone beds up to 4 ft thick. The sandstones in this section of the

Travis Peak core contain evidence that they were deposited in relatively lowenergy environments, with ripple crossbedding (including climbing ripples) and interbedded horizontal laminations of sandstone and mudstone the most common sedimentary structures. Soft-sediment deformation and microfaulting occur where sandstones overlie mudstones. Vertical and horizontal burrows are common in the sandstones, and root traces were identified in one zone (fig. 1). Fluid escape structures occur near the top of this lowest cored interval. Most of the mudstones are red, and disseminated clays impart a light red color to many of the sandstones.

This lowest section of core from the Werner Sawmill No. 5 well is interpreted as having been deposited in a fluvial environment, probably in a lowenergy floodplain that was occasionally inundated by overbank deposits. The cores probably do not contain any main channel sandstones. The preservation of abundant floodplain deposits suggests that this was a mixed-load fluvial system.

The middle cored interval (6,853.0 to 6,912.3 ft) contains red mudstones up to 14 ft thick interbedded with fine to very fine grained sandstones. The main sandstone in this interval (6,889.0 to 6,998.5 ft; fig. 1) is interpreted to be 10-ft thick on the basis of the gamma log; only 9.5 ft were recovered in the core. This well-sorted sandstone contains mainly high-energy sedimentary structures - crossbedding and planar to slightly inclined laminations. The base of the sandstone consists of crossbedding in opposite directions. There are three upward-fining zones within the sandstone, each of which contains large-scale crossbedding at the base and small ripple crossbeds at the top. The other sandstones in this cored interval are thinner and contain ripples, soft-sediment deformation features, and abundant burrows (fig. 1). Calcareous nodules occur in some of the sandier intervals in the mudstones.

The middle section of core is also interpreted as having been deposited in a mixed-load fluvial environment. The thick sandstone at 6,889 to 6,898.5 ft probably was deposited in a main channel, and the rest of the core represents floodplain and crevasse-splay deposits. There is evidence from the SP log that the channel sandstone fines upwards, although the top of the sandstone was not recovered.

The upper section of core (6,642.7 to 6,546.0) appears distinctly different than the lower zones (fig. 1). Most of the sandstones and mudstones are gray, although a few red mudstones persist up to a depth of 6,584 ft. The sandstones commonly contain reservoir bitumen, and calcareous nodules are abundant in both sandstones and mudstones. Pyrite and coalified wood fragments are common in intervals of interbedded mudstone and sandstone that have been contorted by soft-sediment deformation. Two well-sorted sandstones occur in this interval, at 6,626.5 to 6,633.5 ft and 6,597 to 6,605 ft (fig. 1). Both sandstones contain several cycles of upward-decreasing scale of sedimentary structures, generally crossbeds or planar laminae to ripples, and some cycles are capped by thin mudstone drapes. Soft-sediment deformation and microfaulting of interbedded sandstone and mudstone are present at the top of both sandstones.

At the top of the upper cored interval are several limestones interbedded with terrigenous mudstones. These mollusk biosparites are evidence that the upper Travis Peak sediments were increasingly influenced by the marine transgression that finally resulted in deposition of the Sligo carbonate section. The sandstones in the upper cored interval also appear to have been deposited in a marine-influenced environment and may represent progradation into a marine embayment. The presence of red mudstones above the 6,600-ft sandstone suggests that continued clastic progradation filled the shallow embayment, and the

mudstones were deposited in a subaerially exposed environment such as a tidal flat.

PETROGRAPHIC DESCRIPTION

Detailed study of the core is being conducted with a scanning electron microscope (SEM) and petrographic microscope.

Grain Size

Analysis of grain size was accomplished by making grain-size point counts of thin sections. Fifty grains per slide were measured along their long dimension, excluding cement overgrowths in order to determine the size of the detrital grains. Mean diameter of sand- and silt-sized grains was calculated for each sample (Table 1); detrital and authigenic clays were not included in the calculation of mean grain diameter.

Most sand grains are fine or very fine, between .063 and .25 mm. Most silt is coarse silt, between .031 and .062 mm. Clay particles are smaller than .004 mm. The four deepest samples (Table 1) are well-sorted, matrix-free sandstones, but the shallowest sample contains abundant silt and detrital clay and is classified as a sandy mudstone. The presence of detrital clay in the sample from 6,565.6 ft is probably a result of burrowing and clay settling out of suspension on ripple faces.

Mineral Composition

Five thin sections have been point counted for a preliminary description of mineral composition (Table 2). The sandstones are mineralogically mature and are classified as quartz arenites and subarkoses, with quartz comprising

Depth (ft)	Mean (mm)	Sand (%)	Silt (%)	Detrital Clay (%)	Authigenic Clay (%)	Textural Class*
6,565.6	.062	34.1	43.4	22.5	0	Sandy mudstone
6,600.7	.169	98.5	0	0	1.5	Sandstone
6,632.7	.111	94.1	1.9	0	4.0	Sandstone
6,893.2	.149	96.5	0	0	3.5	Sandstone
7,068.7	.121	94.6	1.9	0	3.5	Sandstone

.

Table 1. Grain-size distribution in Marshall Werner Sawmill No. 5 core

*Textural class determined only by detrital grains.

90% to 98% of the essential framework constituents (quartz, feldspar, rock fragments). Plagioclase feldspar is more abundant than orthoclase, and total feldspar volume varies from 2.3% to 7.6%. Rock fragments, mainly chert and low-rank metamorphic rock fragments, constitute between 0% and 4.3% of the framework grains.

Authigenic cements constitute between 11% and 29% of the sandstone volume in these five samples (Table 2). Illite occurs as rims of tangentiallyoriented crystals around detrital grains, and illite and chlorite both occur as pore-filling cements in secondary pores that formed by the dissolution of feldspars. Authigenic illite and chlorite have a combined volume of 0% to 4%.

Quartz cement is the most abundant authigenic mineral in the Marshall Werner Sawmill No. 5 cores. Quartz overgrowths fill 3% to 18% of the volume, and precipitation of authigenic quartz occluded much of the primary porosity (fig. 2). The sample from 6,565.6 ft has the lowest amount of quartz cement because of the abundant detrital matrix (Table 2).

Dolomite and ankerite are present in all the samples and have a combined volume of 2% to 12%. Both dolomite and ankerite occur mainly as rhombs, and it is common for the crystals to be dolomite in the center and ankerite around the edges. Ankerite is particularly abundant in the samples from 6,632.7 and 6,893.2 ft (fig. 3) and could cause completion problems (formation of an iron hydroxide gel) if it is treated with acid.

Solid organic matter (also known as reservoir bitumen or "dead oil"), which is common in the sandstones in the upper cored interval, has a volume of 5.5% in the thin section from 6,565.6 ft (Table 2). It fills primary porosity and entered the sandstones after the precipitation quartz overgrowths. Preliminary studies of the reservoir bitumen suggest it occurs mainly in the upper

	Depth = 6,565.6 ft	6,600.7 ft	6,632.7 ft	6,893.2 ft	7,068.7 ft
Framework Grains					
Ouartz	63.5	69.0	67.0	60.5	63.5
Plagioclase	1.5	2.5	2.0	4.0	2.0
Orthoclase	0	0	0	1.0	2.0
MRF*	0	0	0.5	0	2.0
Chert	0	0	0	0.5	1.0
Clay clasts	1.5	1.5	3.5	0	1.0
Heavy minerals	0	0	0	0	0
Other	0.5	0	0	0	0
Matrix					
Clay-sized fines	22.5	0	0	0	0
Cements					
Quartz	3.0	12.5	10.5	11.0	18.0
Dolomite	0.5	0	1.0	3.5	1.5
Ankerite	1.5	1.5	10.5	8.0	5.5
Authigenic clay	0	1.5	4.0	3.5	3.5
Pyrite	0	0.5	1.0	0	0
Solid organic matter	5.5	0	0	0	0
Porosity					
Primary porosity	0	2.0	0	0	0
Secondary porosity	0	9.0	0	8.0	0
Porosimeter porosity	no data	11.7	2.9	7.9	4.8

Table 2. Petrographic analyses of Marshall Werner Sawmill No. 5 core, measured in percent.

*Metamorphic rock fragments

Travis Peak (Dutton, 1985). It appears to have formed by deasphalting of pooled oil after solution of gas into the oil (Rogers and others, 1974).

Porosity

Porosity observed in thin section in the five samples varies from 0% to 11% (fig. 3). Both primary and secondary pores are present, but secondary pores are much more abundant, particularly in the samples from 6,600.7 and 6,893.2 ft (Table 2). Secondary pores are formed by the dissolution of framework grains, so they are approximately the same size as detrital grains (fig. 4). However, they commonly contain authigenic clays and fragments of dissolved framework grains, particularly feldspar. Primary pores are elongated slits that remain open between quartz overgrowths and other authigenic cements. Finally, microporosity occurs in detrital and authigenic clays; such porosity generally cannot be seen in thin section, but it can be observed by SEM and is measured by a porosimeter.

REFERENCES

- Dutton, S. P., 1985, Petrography and diagenes is of the Travis Peak (Hosston) Formation, East Texas: The University of Texas at Austin, Bureau of Economic Geology, topical report prepared for the Gas Research Institute under contract no. 5082-211-0708.
- Rogers, M. A., McAlary, J. D., and Bailey, N. J. L., 1974, Significance of reservoir bitumens to thermal-maturation studies, western Canada Basin: American Association of Petroleum Geologists Bulletin: v. 58, no. 9, p. 1806-1824.

FIGURE CAPTION

Figure 1. Descriptive log of core of the Travis Peak Formation from the Marshall Werner Sawmill No. 5 well, Panola County, Texas. Core depths are from 6,546.0 to 6,642.7 ft, 6,853.0 to 6,912.3 ft, and 7,049.0 to 7,141 ft.

EXPLANATION OF SYMBOLS

STRUCTURES

- Trough crossbedding
- Planar crossbedding

Crossbeds with oversteepened foresets

- Indistinct cross-stratification
- Gently inclined lamination =:GI

Gently inclined lamination: separated by low-angle discordances

Horizontal lamination

Ripple trough lamination

Planar ripple lamination

ឋៃ

Ψ

Ŵ

000

Climbing-ripple lamination

Heavily bioturbated sandstone

"Massive" sandstone = M

Contorted bedding

Graded bedding

ACCESSORIES

- v v v v · Vertical and horizontal burrows
 - Organic fragments
- 入入 Rootlets
- c n Shells
- Mica flakes 0
- Ρ Pyrite
- -C- Callianassa burrews

TEXTURE

Sorting	Rounding				
vp-s Very poor	a Angular				
p-s Poor	s-a Subangular				
m-s Moderately well	s-r Subrounded				
w-s Well	r-Rounded				

INDURATION

- WI Well indurated
- I Indurated
- IF Indurated but friable
- IS Indurated but shaly

RELATIVE CALCITE CONTENT

- I Slight effervescence
- 3 Moderate effervescence
- 5 Strong effervescence
- 10 Very strong effervescence

COLOR

Abbreviations from Rock-Color Chart, Geological Society of America

		2:មាក និកកាក់ ស្រែង		• •
Norge Us	1. 18 E. 19 Z I. J. J.	ा, ए इ. न र ्ष, १,	$egin{array}{c} J \in \mathbb{R} \ L \setminus \mathbb{R} \ L \setminus \mathbb{R} \end{array}$	
	an <mark>t</mark> na Sara	ter p	j	

ing the state of the state of

ે છે. પ્રાથમિક પ્રાપ્ત કરે છે. આ ગામમાં આવ્યું છે. આ ગામમાં આવ્યું છે. આ ગામમાં આવ્યું છે.

Abbreviations from Geological Society of America Rock-Color Chart used on core descriptions

*** *** *

5R 6/2	Pale red
5R 4/2	Grayish red
10YR 6/2	Pale yellowish brown
5yr 6/1	Light brownish gray
5Y 6/1	Light olive gray
5G 6/1	Greenish gray
N7	Light gray
N6	Medium light gray
N5	Medium gray
N4	Medium dark gray

.

F.1,6;UKE Z.	F ³ I CG ⁴ U [−] R E 3 .
Photomicrograph of abundant quantz	Photomicrograph of ankerite cement
cement that occludes primary poros-	replacing framework grains and fill-
ity. Depth is 7,068.7 fft. Long	ing pore space. Depth is 6,632.7 ft.
dimension of photo is 0.65 mm;	Long dimension of photo is 0.65 mm;
crossed-polarized light.	plane~polarized light.
FIGURE 4.	FIGURE 5.
Photomic rograph of euhedral quartz	SEM photograph of euhedral quartz
overgrowths and primary and secondary	overgrowths and large secondary pore
porosity. Depth is 6,600.7 ft. Long	that contains a crystal of barite (B).
dimension of photo is 0.65 mm; plane-	Bar length is 100 μm ; magnification
polarized light.	is 150x.

and a second A

ORMATIC	NC_	Travis Pe	-1<				_ COUNTY Pano	(- la	•)	LOGGED B	Y_S. Dutton DATE 2/86
DEPTH	CONTACT	ROCK TYPE	ACCESS.	STRUCTURE	TEXTURE	INDURA- TION	GRAIN SIZE -1 0 1 2 3 4 8 G VC C M F VF S M	CO3 CMT	COLOR	STRATIFICATION	COMMENTS
										Reservoir Bitumen Carbonate Porosity Permeability	
o,540											
,550			CC CCC CCC CCCC		Mollusk biosparite PS Mollusk biozparite Mollusk				N4 N5 N4 N4 N4 N4 N6	4.2 1.18 1.4 7.6 2.5 0.777 2.1 0.16	Core 1: Core depth - 2.5 ff GR log depth it 6602 ft some silt layers in mud Interbidded silt + mud Gastropod, pelicypod shellst shell hash
,560			<pre>(<) <) <) <) < / ></pre>	400 4 0 4 0 4 0	biosparite PS PS			A	N5 N5	2.7 0.04 2.7 7.4 6.7 2.10 4.9 2.10 6.6 0.04 7.3 0.50 7.2 2.70	Very large carb. nodules
570					ps Ps ms			0	7 + 7 7 + 7 7 + 7 7 + 7 7 + 7 7 + 7	$ \begin{array}{c} 7.0\\ 6.9\\ 0.81\\ 7.5\\ 8.6\\ 5.1\\ 0.43\\ 4.8\\ 4.8\\ 4.70\\ 7.2\\ 8.2\\ 8.4\\ 8.6\\ 6.8\\ 0.70\\ \end{array} $	Most red. structures destroyed b burrowing. Some ripples, lamin
,580					ps ms ps ta			0	N5 N7 N5 5 Rula	7.3 8.10 8.3 1.80 9.a 10.0 0.11 10.9 8.2 2.4 1.55 5.1 4.8	some red mud mixed in. Root traces? Most sed. structures destroyed by burrowing
,590				ν , , , , , , , , , , , , , , , , , , ,	ps				N5	4.8 1.01	
						$\label{eq:product} \left\{ \begin{array}{cccc} e^{i \theta_{1}} & e^{-i \theta_{2}} & e^{-i$					

T

WELL	Marshall	Ex	oloration	Werner	Sawmill	#5	C
		and the second second					

5 CORE DEPTH (-) 2.5 ft = <u>GR</u> LOG DEPTH @ <u>6602</u> ft COUNTY <u>Panola</u> LOGGED BY <u>5</u>. Dutton DATE <u>2</u>/86

06771 90 0000 TVE 1000 TUEL TEXTURE 90 0000 NOZ	186
	4 4 -
$ \begin{array}{c} c_{1} \leq 90 \\ \hline \\ c_{1} \leq 90 \\ \hline \\ c_{1} \leq 1 \\ c_{2} \leq 1 \\ c_{3} \leq 1 \\ c_{4} \leq 1 \\ $	
$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	g s - like ple =
$\begin{array}{c} \mathbf{G} \\ \mathbf{G}, \mathbf{G} = \mathbf{I} \\ \mathbf{G} = I$	2 ft = .30 ft
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	mud
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	destroy structures carb.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	beds
	d fragments d fragments ippled ss diff. to
	el lamina
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

DEPTH	CONTACT	ROCK TYPE	ACCESS.	STRUCTURE	TEXTURE	INDURA- TION	-1 G	GRAIN 0 1 2 VC C M	I SIZE 2 3 4 8 F VF S M	CO3 CMT	COLOR	STRATIFI		COMMENTS
												Calcareous Porosing	Permeability	
6,850		6,853.0		-22 ₩	ps ps						5 R 6/2	139 7.5 9.4 5.1 8.6 4.6	0.50 0.10 0.10 0.03 0.10 1.60	Core 3: Core depth - 1.5ft GR log depth at 6,864 f Reduction spots
5,860 *	Δ		~		ps ms ps					0	5 R 4/2 5 R 6/2 5 R 4/2	5.6 7.0 7.5 6.1 5.1 5.1 7.9 5.1 7.9 5.1 7.9	0. 40 0. 02 0. 02 0. 10 0. 10 0. 03 12. 40 5. 70 5. 80 6. 10	Slightly conforted, soft sediment Faults Reduction spots
5,870				d d	es es						5 R 4/2 5 R 4/2	5.8 4.9 2.4 3.3 4.6 6.0 8.6 7.4 6.0	0. 50 0. 70 0. 02 0. 11 3. 4 1 4, 67	Slightly randjer Reduction spots
,880 ,880	Δ	6,884:7	\	الا لا	5					and the second sec	5 R 6/1 5 R 6/1 5 R 1/2	5.3 5.1 7.2 6.9 1.4 4.9 4.9 1.4 4.9	1. 93 0. 10 0. 10 0. 04 2. 55	Contains red mud clasts Plenar laminated Core 4: Core depth - 1.5
890		6,889.0		<u>vu vu</u> M								6, 5 2. 1 4, 5	0. 12 0. 06	Abundant mud drapes

DEPTH	CONTACT	ROCK TYPE	ACCESS.	STRUCTURE	TEXTURE	INDURA- TION	GRAIN SIZE -1 0 1 2 3 4 8 G VC C M F VF S	S CO3 CMT	COLOR	STRATIFIC	ATION	COMMENTS
										Calcareeus nodeles Porosity	Brmeability	
050		7,049.6	~ ~	ب ج ال					5 R 6/2 5 R 4/2 5 R 6/2	6.2 7,5 4.9	Core 5 = GR 0.41 1.61 Abundan 0.03	: Core depth - log depth _t 7, t mud clasts
				É	ms ms			1	5 R.4/2 5 R G/2 N4 N4 N4 54R G/1	5.7 6.3 5.5 7.3 7.1 7.6	0.04 0.02 0.03 Water 2.90 0.03 Clay dr	escape structur
,060					ps hix ms			3	N4 N4 N4 N6 N4	-147 5.3 5.1 5.3 4.7 4.5	0,05 0, 03 1, 63 0, 40 6, 63 Some m 0, 62	m: scalë "s.s." lagi
070					κης 			3	NG NG N5	8.3 4.5 4.8 ■ 4.7 4.7 4.3	1.37 Hor. lamin 0.03 Abundant 0.02 0.03 Zone of c 0.03	ae of SS + mud mud drapes on alcareous nodule
					ms				5.R L/2	54 6.4 6.2 10.5 10.7 14.2	0, 03 0, 04 0, 77	
08.0				ל' ^ע ל ע ל' ע לי לי לי לי לי לי לי לי לי לי לי לי לי	ms				5 R 6 2	11.9 3.4 2.3 3.9 7.7 4.8 8.2	0. 92 0. 0.3 Reduced 0. 25 Reduction 0. 06 0. 03 0. 03	area.
				\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Ms			0	58612 N5	8.8 4,4 5.7	0. 24 0. 43 Laminated 3. 40	l ss + mud, no

ORMATIC	DN _	Travis P	eak		_ COUNT	Y Pan	ola		LOGO	GED BY	S. Dutton DATE 2/86
DEPTH	CONTACT	ROCK TYPE	STRUCTURE		GRAIN -1 0 1 2 G VC C M	SIZE 3 4 8 F VF S M	CO3 CMT	COLOR	STRATIFIC	ATION	COMMENTS
									Reservoir bitumen Calcareous Acrosily	Permeability	ca. 212025
7,090	<u>х</u> , <u>Д</u>		× ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	ps ms				5 R 4/Z 5 R 6/Z 5 R 6/Z 5 R 6/Z 15 R 6/Z	4.6 9 7.2 6.2 6.2 4.6 5.4 1.6 5.4	2.87 0.0999554 0.00000 	Reduction "spots" (22, E Bandy mudstoner: 11,5- kong vertical "burrow Root traces
7, 100 ج	$= \left\{ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $			m's ms			(J)	10 YR 16 YR 16 /2 28 0 \- 5 R 4/2	5.7 9.1 15.6 14.5 14.5 14.1 13.6 14.1 13.6 14.1 13.6	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	Rippled below, then X-beddee Cantorted 35 it mudeo processory
7,1 10 - 9 2007				ms ms ps			(<u>;</u> + - + - 0 + 0 + -	N6 5 K 4/2 5 R 4/2	7.7 5.0 5.1 12.2 10.8 3.8 8.3 5.2	0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02	Core 6: Core depth -3. Of = GR log depth at 712 Wingit
7,120			2 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	ps ms ms			0 f.	5 R 412 5 R 6/2 W(7) 5 R 6/2	M 10 8 8 10 13 10 10 10 10 10 10 10 10 10 10 10 10 10	0. 03 0. 12 0. 05 0. 07 0. 05 0. 07 0.	Sandy mudstone Muddy sandstone Low angle ripples Abundant clay dropes
7,130				ps ps ms			0	5 R 4/2 5 R 6/2	6.5 8.7 5.4 7.6	0. 14 0. 55 0. 08 6. 05	Low angle ripples to horizont laminated so + mud Abundant clay trapes = n Sipples. Microfaulting

WELL Marshall Exploration Werner Sawmill #5 CORE DEPTH (-) 3.0 = GR LOG DEPTH @ 7124.0 ft

