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Porosity Distribution in Wolfcamp Series, Palo Duro Basin, Texas
Panhandle--Implications for Ground-Water Flow through Deep-Basin Aquifer

R. D. Conti and P. Wirojanagud

ABSTRACT

Average-porosity distributions in the Wolfcamp deep-basin aquifer are
studied to discern the geographic trends in effective porosity throughout the
Palo Duro Basin. Highly resolved, log-derived porosity data are used to im-
prove porosity resolution in computer-simulated areal ground-water modeling.
Assessing vertical distributions of lithology and porosity in each of the wells
studied involves cross-plotted neutron- and density-porosity Tog responses
which more accurately identify lithology and porosity than cross-plotted neu-
tron-porosity and acoustic (interval travel time) responses. Subsequent
analyses of log-derived porosity distributions yield information about the
total effective-pore volume (movable water) in the Wolfcamp aquifer, in addi-
tion to enhancing the accuracy of estimating deep-brine velocities and travel
times in its basin-wide traverse. Northeastward, basin-wide travel times range
between 2.5 x 10° and 2.0 x 106 years, indicating @ififérehtial frequency of
basin flushing across the basin.

This report describes research carried out by staff members of the

Bureau of Economic Geology that addresses the feasibility of the Palo Duro

Basin ‘?NTR‘ddﬂﬁJIE)N high-Ie .)n' -iL‘h';rfxi’ wastes. '..ri‘e report flescri?)eshtl;e
progress and current status ot research and ?('f?t('-li_l\«'(,‘ conclusions reached.
Interpretations and conclusions are based on available data a.nd state-of-the-

Overview,of . WalfeampeStyatigraphydilied by more information and further
application of the involved sciences.

The transition of the Palo Duro Basin from a relatively deep basin to a
shallow restricted carbonate platform is recorded within the Wolfcamp sedimen-

tary record. Precambrian uplifts, subaerially exposed at the end of the
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‘x‘Pennsylvanian, wére completely éOvered by sha}]ow-marine deposits by the end of:

 Wolfcampian time‘(Dutton and'dthers; 1982). Wolfcamp strata, which consist of

.carbonété'and terrigenous-clastic sedimentary rocks, include sediments depos-
ited in enVironments;Eanging from;deéb-marine'to shallow shelf and delta p]ét-
forms. Basically, the framework facies of the Wolfcamp series were dominated
by (1) fan-delta systems, (2) high-constructive deita‘systems;(3) carbohafé
shelf and she]f-margin systems and (4) slope and basin systems (Handford,
1980). o s .

According to Haﬁdford (1980), WOlfcémprstrata were depositéd within the
following Sediméntary'scehario, ‘Arkosic-sand and gravel tErrigenous»ciastfcs,
eroded from adjaceht high]ands,.and transported by streamskto the margins of
the Palo Duro Basin, were depdsited in progradihg'fan-de]ta systems south of
the Amafi]]o Uplift. Concbmitant]y,-high-constrUctive deltas were being bui]t
in the southeastern part of the bésin. Sediments of these dé]taélare'composed
mostly of subark051C~sands and muds shed off the Oﬁachita tectonic belt to the
east. vA]ternatihg de]ta-1dbe édvanceé and carbonate-bank‘bui1ding rééu]ted in
shelf-margin progfadatiohbin‘fhe eastern parf of the basih., Because deltaic
Sed1Mentation was absent in the western pért of the basin, western shelf mar-
~~gins did not progrddé, buf'instead were built by vertically aggraded garbonate_
sediments. | | ‘

By the end of WOlfcampian:deposition, the shelf makgins had migrated as
far Sduth as the Matador Arch. Wolfcampian Sediméntation had transformed a
once, relatively deep basin into "an éxtensive, Tow-relief back-she]f'environ-
ment" (Dutton and others, 1982); and teétonic events thaf'ihitia11y (pré-
}. Wolfcamp) dominated localized-basin development had shifted to a larger scale
of influence, manifest by "regional subsidence which resulted ih burial of the
up]ifts“ (Goldstein, 1984). ‘Later Early Permian (Wichita)sedihentation was

dominated by evaporite deposition in extensive sabkha p]ainS’andf1andWard by



' conﬁinentaT sedimenfation asfevidenced by Wichita anhydrftes‘and red beds
| overlyinglfhe Brdwn,Do]omite.‘ "Because No]fcamp‘strata were deposited auring‘a
marine regression, the top of fhe Wolfcampian Series is actually a,time-trans-
gressive boundary thét is older in the northekn part of the basin than in the

south" (Dutton and others, 1982).
Wolfcamp Corre1ation$

The baée‘of the wo1fcamp,_which is.équiva1ent to the top of the Pennsyl-
vanian,_haS»been mapped by Dutton (Dutton énd others, 1982). Parameters uSed
to define this PennSylvanian-Permian boundary include (1) lithostratigraphic
sample-Tlog corre]atibns and (2) paleontological (fusulinid) data (Dutton and
others, 1982).» | o |

“The Brown Dolomite is the oldest post;PenhsyTvanian carbonafe unit that is
correlatable across the entire basin. Fbr purposes of this paper, it is
treated as a stratigraphic group (fig. 1) a]thodgh 1tvis generally cbnéidered
~an informa]‘Strafigraphic unft. Its "top is génera]]y ﬁicked at the boundary
between a\porods, coarsely crysta]]iné buff dolomite, and the.(relative]y
nonporous)}overlying anhydritic dolomite of_the'Wichita group" (Dutton and
others, 1982). The bése of the Brbwn Dolomite is likewise defined by the

deepést extent of the Wolfcamp strata's uppermost porous dolomite.
~ 'Porosity-Distribution Studies in Geological Waste-Isolation Studies

~The wdlfcamp Series (fig. 1) which Bassett and Bentley (1983) describe as
'a‘deep-basin brine aqdifer within the Pa]o Duro Basin (fig. 2) lies beneath
' bédded:San Andres salt, a potential hOSt for isolating high-level huc]ear
~ waste. Because of its Stratigraphic prokimity’be]ow the Permian salt, thé

Wolfcamp is a possible hydrologic conduit‘for’tfansporting radionuclides if
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 they were to Teak from overlying salt beds. ACcOrding:to Davis (1980)kfai1ed
~containment of-deep]y buried radioactive waste would probably resnlt in radio-
nuclides being transported by ground water. Predicting the future of ground-
“water motion is therefore imperative, and an understanding of effective poros-
ity distributions within tne welfcamp‘(deep-basin)faquifer is significant
because the interconnected pone spaces are the permeable pathways that forma-
tion water flows threugh. Understanding the distribution of porous zones is
essential for evaluating the amount of movab]e water contained in the welfcamp,
and ultimately for estimating trave1:times of deep brine and frequency of basin
f]ushing. |
A study of porosity distributions in tne Wolfcamp strate was initiated for

the purpose of'recognizing effective-porosity distribution relative to deposi-
tional environments and ultimately its infTuence on the Palo Duro Basin's
ground-waten dynamics. Previous WO1fcamp subsukface-stratigraphy-studies have
relied almost entirely on correlations of resistivity and selfepotential
curves, gamma 1qgs and sample logs (Handford, 1980; Handford and others, 1981).
Suth studies yielded only generalized indications of porosity and ]itho]egy
distributions. | | |

~In this study, 1og-derived porosity has been recognized by simu1taneous‘
interpretation of neutron,vdensity,’gamma and ca]iper‘]ogs. The contribution
of fracturing to porosity enhancement has not been consideredvbecause intefpre-
tation of the above suite of logs does not distinguish netween pore space
1ntroduced‘through.fractuning and other types of porosity. The effects of

- fracturing are therefore not included in this paper's results.
Porosity--General Remarks

“Porosity, @, is a dimensionless parameter that is expressed as a

percentage or fraction. It is the volume of void spaces in a rock, Vy, divided



CAUTION

This report describes research carried out by staff members %of the

Bureau of Economic Geology that addresses the feasibility of the Palo Duro

Basin for isolation of high-level nuclear wastes. The report describes the

by the total unit vopumeecef sthecroek) syyssa thatich and tentative conclusions reached.
[nterpretations and conclusions are based on available data and state-of-the-

art concepts, and hegce, yhay be modified by more information and further

application of the involvagsciences.

Because Wolfcamp strata are mostly carbonate rocks, discussion of porosity
focuses on pore systems as they apply to 1imestone and dolomite. Carbonate
porosity, which is created and modified by numerous processes, is erratic and
unpredictable as compared to that of sandstones, and is generally not very
great (Wilson, 1975). It can form when organisms secrete skeletal carbonate,
creating chambers or other void spaces, or when sediments compact gravitation-
ally, shrink by desiccation, fracture by tectonic forces or dissolve by chemi-
cal reactions. Porosity can form by organisms boring or burrowing. Many
stages of development, destruction or modification may occur during the rock's
diagenesis so that "the many possible processes of porosity creation and modi-
fication, operating through a long depositional and diagenetic history, make
genetic as well as physical complexity the norm in sedimentary carbonates"

(Choquette and Pray, 1970).
Porosity Discernment in Potential Waste-Isolation Environments

Porosity values are obtained from a variety of individual geophysical
logs, either directly or through calculations (when 1ithology is known), but
for the best resolution of porosity data, plotting one Tog response against
another is generally most useful (Keys and Brown, 1973).

Cross plotting one porosity-log response against another is frequently
done to identify lithology and make accurate porosity estimates (Burke and
others, 1969). Because neutron, density and sonic logs reflect lithology,
porosity and fluid content, porosity values can be calculated in rocks of known

monomineral 1ithology when only one porosity log is available. In the Palo



Duro Basin, however, Wolfcamp strata are often lithologically complex, unpre-
dictable in extent and equivocally correlatable. Each porosity. log registers
responses to the rock's unique physica1 properties, so that simultaneous analy-
sis of two logs allows for an interpretation by which the Togs' separate
responses to different minerals yield quantitative differences in mineralogy
and porosity (Borneman and Doveton, 1983; Fertl, 1981).

Sample logs, which are records of lithology with depth, usually provide
only qualitative porosity information, derived from cuttings, for the intervals
where visual porosity is observed. Whereas sample logs often fef]ect interpre-
tive variances and possible contamination from cavings (Borneman and Doveton,
1983) porosity 1logs offér direct recordings of physical responses with depth.
The obvious advantage of making porosity determinations through cross-plotting
porosity-log reponses is that a record of quantitative porosity values with
depth can be made with much greater accuracy than that resulting from sample-

log analysis.

METHODOLOGY

Comparison of Neutron-Density and Neutron-Sonic
Cross-Plotting Methods for Identifying Lithology and Porosity
~ Two basic methods for making quantitative lithology and porosity determi-
nations are prescribed by Schlumberger (1972). Both methods employ plotting
one type of porosity-Tlog responsé against a different porosity-log response.
In one method, responses from an acoustic (interval travel time) log are plot-
ted against depth-equivalent responses from a neutron-porosity log. The appro-
priate Sch]umbefger chart (1979) is then used to quantitatively evaluate poros-
ity and Tithology. In the other method, density-porosity log responses are

plotted against neutron-porosity log responses, yielding similar quantitative
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determinatiohs of 1ithology and porosity. Examining both methods for their
reiativeraccuracy, es described below, indicates that the neutron-density
method is SUperior to the neutrdn-sonie method for fdentifying lithology end
porosfty in Wolfcamp strata. _ |

Litholegic 1ogs of_Wo]fcamp core (Bureau of Economic Geology, unpublished .
at vertical sea]e: 1inch =10 ft) from U.S. Department of Energy (DOE) test
holes documenf control intervals of 100 percent limestone and 100 percent
dolomite against which cross-plot-derived lithologies are compared. Laboratofy

analyses of core plugs provide porosity contrel, against which cross-plot-

- derived porosities are compared.

Pure-carbonate Wolfcamp core was recovered from U.S. Department of Energy
(DOE‘test holes in Donley County, Stone and Webster Engineering Corporation
Sawyer No. 1 (3082-3924 ft; 939-1196 m), Oldham County; Stone and webster Engi-
‘neering Corporation; Mansfield No. 1 (4502-4990 ft; 1372-1520 m); and Swisher
Cbunty, Stone end Webster Engineerfng Corporatien, Zeeck No. 1 (5472-5618 ft;
1668-1712 m). After depths of pure-cafbonate intervals were recorded at 2- to
10-foot (0.61-3.05 m) increments (depending on the extent of vertical continui-
ty of the pure limestone and dolomite) correlatable neutron-porosity and den-
sity-porosity values were read from Schlumberger's Simultaneous Compensated
Neutrqn-Formation Density Log'(Schlumberger‘trademark) (for the Stone and
Webster Engineefihg Corperation Sawyer No. 1 and Mansfield No. 1 wells) and
frbm the Simultaneous Compensated Neutron-Litho Density Log (Schlumberger
trademark) (for the Stone and Webster Engineering CorporationvZeeck No. 1 well)
and then recofded. Interva]-fransit-time vaiues were read from Schlumberger's
Borehole Compehsated Sdnic}Log (Schlumberger trademark) for all three DOE fest
holes and recorded. ‘

‘After depth-equivalent neutron-porosity,_densify—porosity, and interval-

transit-time values were all recorded, they were plotted onto Schlumberger



chart'CP-ld(Sch1umbergér,1979) fdr heutron-dénéity cross-p]otting‘ana]yéis
(figs. 3 énd 4)~and‘Sch1umbergér chart CP-2b (Schlumberger, 1979) for neutron-
vsonic croSs-p]otting ana]ySis,(figs. 5 and 6).

A,compariSon'of the neutron-density_cross-p]otting'method (fig. 3) with =
the neutrbn-sonfc method (fig.'S) for pure-dolomite intervals reveals thét the
data cluster more closely to the do]dmite Tine in neutron—density p1otting
(fig. 3) than they‘do in neutron-sonic p]otting (fig. 5),‘indicating the neu-
tron-dehsity method yie]dslmore.accurate identification of dolomite. Neutron-
density plotting (fig. 3) also shows‘higheh_maximum-poroéity Va]ues than those
in neutronQSOnic plotting (fig. 5). 1In neUtronjdénsity plotting (fig. 3) the
.maximum poroéity identified in the Stone and-Webstér Engineering Corporation
| Sawyer No. 1 well equals 27%. In neutron-sonic plotting (fig. 5) the maximum
do]omite porosity in the same well equals 21%. Neutron-density maximum doio;
mite poroSity in the Stone and Webster Engineéring Corporation Mansfield No. i
;and Zeeck No. 1 wells equals 21% (fig.‘3L Neutron-sonic maximum dolomite
pokosity in the same wells, respectively, equé]s 19% and 17%’(fig.5).. Lowef
maximum porosity and‘inferior 11thologic’identification resulting from neutron-
sonic cross plotting (fig;AS) are probably due to the sonic log's inabi]ityrto
detect secondary porosity (Burke énd'others, 1969; Schlumberger, 1972; Fertl,
1981; MacCary, 1983). | |

"A comparison of the neutron-density (fig. 4) and neutron-sonic (fig. 6)
cross-p]otting methods for pure limestone indicates that the limestone data
cluster more closely to the limestone line in the former methdd than in the
Iatter.* Agajn, this indicates a more accurate discernment of carbonate 1ithol-
0gy through neUtron-déhsity»cross p]otting. Aé fn the above dolomite eXamp]e,
heutkon-denéity plotting consistent1y yields higher maximum porosities than the

neqtrbh-Sonic method. ~Maximum porosity identified by neutron-density plotting



| jﬁ Stone ahd Webster Engineering Corporation Sawyer No. l_pure 11mestohe (ffg.
4) équa]s 30%. The maximuml1imésfone?pbr05fty identified by neutron-sonic
plotting in the $éme well (fig. 6) equals 25%. Maximum limestone pokositiés
identified by‘neutroh-density plotting in Stone and Webster Engineering Corpo-
"rétion Mansfieid No(l and Zeeék No. 1 we]]s‘edua] 28% and 22%, respéctive]y
(fig. 4),.wheréas the maximum limestone porosities identified by neutron-sonic
plotting in the same wells, respectively, equal 19% and 17% (fig;6). ‘Again,
“the lower méximum porosities indicated by the neutron-sonic method are probably
~due to the sonic log's inability to detect secondary porosity (Burke and
others, 1969; Schlumberger, 1972; Fertl, 1981;-MacCary, 1983).

Comparison of 1ithologic determinations derived from the two prescribed
cross-plotting methods in (Wolfcamp) pure dolomite and pure iimestone-revea]s
gréater variation in 1ithoTogic identity is consistently found‘by employing the
neutron-sonic cross-plotting method. This is especiai]y true for the pure
limestone intervals studied.. Neutron-sonic responses in pure-limestone inter-
vals (ffg.»6)’y1e1d 1dentifications'6f silica, anhydrite and sa]t, in addition -
to greatly differing katios-of limestone/dolomite. The pure-limestone neutron-
density reSponseé (fig. 4), however, 1ndicafe only limestone/do1om1te and
1ihestone/silicé ]1tho1ogybratio$. Silica identified by neutron-densfty plot-
tihg (fig. 4) almost always coincidesiwfth chalcedony rep1a¢ement of fossil
frégments, or‘chert contamination, as indicated in core logs.

Determining Vertical and Lateral (Geographic) Distributions
of Porosity and Lithology e

To undersfand the vertical and 1atera1‘distr1but10ns of pordsity and
lithology, twenty-seven néutron-densityvlogs (Table 1) of Wolfcamp strata were
ana]yied;vusing SchTumberger's‘(1979)-neutroﬁ;densfty croSs-p]otting charts.

Each log's density;pokosity and}neutroh-porosity values, reso]ved'from two to
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ten feet were recorded by depth. Log-header data regarding type of neutron-1log
response (i.e., sidewall-neutron porosity or compensated-neutron porosity) and
drilling-fluid density dictates which Schlumberger (1979) Log Interpretation
Chart is applicable.

Plotting neutron-porosity against density-porosity responses yields rela-
tive percents of dolomite, limestone and silica (i.e., sandstone, granite wash
or chert), the presence of anhydrite (where overlying the Brown Dolomite), and
porosity. Porosity is shown to be effective in all lithologies identifiable by
cross plotting (Senger and others, 1984). Shales, although not directly iden-
tified by cross plotting, are characterized by intervals with anomalously high
neutron and density porosities, greater than 30%, enlarged borehole (indicated
by caliper response), and relatively high gamma values of greater than 100 API
units. Intervals with porosities greater than 25%, enlarged borehole and gamma
values less than 100 API units were interpreted as sandy shale. Although the
shale and sandy-shale intervals are characterized by anomalously high porosity
values, presumably due to the presence of flocculated clay minerals, their
effective porosities are interpreted to equal 0%.

Empirical justification exists for claiming effective-porosity determina-
tions can be made from cross-plotted neutron- and density-log responses. Gen-
erally, porosity determinations made by laboratory analyses of core plugs
correlate well (r = 0.68) with the porosity values determined from cross plot-
ting neutron-porosity against density-porosity responses. If probable footage
slips that can occur during core recovery are accounted for, r = 0.93. Addiﬁqm
tionally, data generated from laboratory anaf;?égrg%Ncore plugs suggest thafii
permeability increases w??ﬁsinpoaadéngﬁnsrﬁsibﬁ'inAawlagmnogmq}uneﬁgggggn;§gqhe

Bureau of Economic Geolo bili
res gy that addresses the f 1sibility of the P
ger and others, 1984K..n for isolat ‘ e e i

ation of high-leve! nuclear wastes. The report describes the
progress and current status of research and tent ‘:i”e conclusions reached.
: : ey
interpretations and conclusions are based on available data and state-of-the-

} anraikte et | . v e
art concepts, and hence, may be modified b_y more information and further
application of the involved sciences.
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Cfoss-p]ot-derived parameters include 1itholdgic identificatiohs consist-
ing of anhydrite, dolomite/limestone, limestone/silica and their respective
porosities. Lithology and porosity data are assimilated graphi;a]]y into
1itho-porosity columns (vertita] scale: 1 inch = 50 ft) for each of the

twenty~seven wells studied, but are not included in this paper.
Weighted-Average-Porosity Calculations

Weighted-average porosity was determined for each well for the Brown
Dolomite and for the entire Wolfcamp Series to discern their geographic distri-
butions of effective porosity within the Palo Duro Basin. Weighted averages
were calculated by the following general equation using the data in Table 2 for

each well, in the stratigraphic intervals described above.

Weighted-Average Porosity =

>30% : '
ZE: (net thickness of each 5% @ range) (mean @ of each 5% @ range)

p = 0-5%

>30%
:EZ: (net thickness of each 5% @ range)
P = 0-5% |

Derived weighted-average-porosity values are mapped in figures 7 and 8.
This study of average;porosity geographic distributions, although lacking the
necessary well control to establish detailed porosity distributions and cbrre-
lations, is a first .attempt to quantify Wolfcamp porosity diétributions in the

Palo Duro Basin, and provides a quantitative means of assessing porosity values

'and their relation to the depositional environments interpreted by Handford

(1980).
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Determining Total Effective-Pore Volume

Initial conc]usiohs which show that log-derived porosity in nonshaly
Tithofacies is equivalent to effective porosity (Senger and others, 1984) make
it possible to estimate the total effective-pore volume of the Wolfcamp deep-
basin aquifer. In order to understand the relative porosity distributions of
the BrownrDolomite and the entireIWOlfcampian Series strata, porosity distribu-
tions were studied collectively in figures 7 and 8 and separately in figures 9-
21. The relatively high porosity that characterizes the Brown Do]omfte'is
readily recognized by its porosity-log signaturé and typified in Titho-porosity
columns by predominantly dolomite lithology and high porosity.

The technique used to assess Wolfcamp total-effective pore volume in the
Palo Duro Basin is similar to those described by Dahlberg (1979) and Seni and
Jackson (1983). From theylitho-porosity columns, net thicknesses of seven
(integer) porosity ranges (0-5%, >5-10%, >10-15%, >15-20%, >20-25%, >25—30%,
and >30%), shown in figures 9-21, were evaluated as shown in Table 2. Net
thickness of each porosity range for each well was mapped and contoured so that‘
three-dimensional representations of each porosity-range's net thickness re-
sulted (figs..9-21). Through planimetry-based calculations, volumes of slices
between contour lines aré indi?idua]]y estimated, then summed to yield the
total volume of sediments hosting each porosity range in the WOlfcampjan
Series; as summarized in Table 3. The mean-porosity value of each porosity
range (i.e., 2.5% for the 0-5% porosity range) were multiplied by the total
volumes (of sediments hosting each porosity range) and summed to compute‘the
total effective porosity within theVWOlfcamp strata as shown in Table 3. For
the >30% porosity range, an aséigned mean-porosity value of 32.5% was used to

compute pore volume in the very-high-porosity sediments. Tota] effective pore
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volume for the entire Wolfcampian Series equals 2.91 x 1013 f¢3 (8.24 x 1011
m3).
RESULTS

Average-Porosity Distributions: Wolfcamp Series

Effective pokosity within the Lower Permian Wolfcamp strata of the Palo
Duro Basin is distributed throughout 1limestone, nonstratal-dolomite, arkosic-
sands and granite-wash sediments. Of these, there are more carbonate rocks
than coarse-grain clastic sediments in the Wolfcamp strata. Large volumes of
Lower Wolfcamp shales and sandy shales have assumed noneffective porosity.

Vertical distributions of rock type and void-space syétems are éharac-
terized in Tlitho-porosity columns distussed above. From these columns, net-
thickness of each of seven porosity ranges were summed (Table 2) and mapped as
shown in figures 9-15. -

Weighted-averagefporosity values, mapped for each well, yield average-
effective-porosity trends in Wolfcamp sediments, as shown in figure 7. Essen-
tially, the highest averége porosities are found in the northern paft‘of the
basin; lower average porosities are found in the eastern and western parts of
the basin; the lowest average porosities are found in the central and southern
parté of the basin. Average porosities were not determined for specific lith-
ologies, but rather for the entire stratigraphic interval, between the top of
the Brown Dolomite (equivalent to the top of the Wolfcamp) and the top of the
Pennsylvanian strata. The highest-average-porosity trend is found in the
northern part of the basin, with the axis of highest'porosity approximately
oriented south-southeast, and passing through Oldham, Deaf Smith, and Castro
Counties. The highest-average-porosity trend, in the northern part of the

basin, is generally associated with alternating, high-porosity clastic and
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The 1owest average- ;orog}t;;;‘are along the eastern, western and southern
shelf margins, and are due mostly to the presence of shales and sandy shales,
which have assumed effective-porosity values of 0% and, consequently, greatly
reduced average-porosity values. The shales and sandy shales found near or

landward of the shelf margins are probably associated with prodelta or inter-

deltaic, fine-grained clastic sedimentation.
Average-Porosity Distributions: Brown Dolomite

The Brown Dolomite, generally regarded as the top of the Wolfcamp (Dutton
and others, 1982) in the Palo Duro Basin, is characterized by its predominantly
do]bmite lithology and relatively high porosity. Distinctive lithologic and
porous character allow for picking a unique interval in litho-porosity columns,
thus facilitating porosity-distribution analyses shown in figures 16-21.

Estimating weighted-average porosities yields average-porosity trends for
the Brown Dolomite interval, as shown in figure 8. Generally, the highest
average porosities in the Brown Dolomite are found in the southeastern and
northern areas of the basin, basinward of the Lower Wolfcampian shelf margin
interpreted by Handford (1980). In the southeastern part of the basin, the
axis of highest porosity is oriented north-northwest along the Middle Wolf-
campian shelf margin, passing through Motley, Floyd, and Briscoe Counties. In
the northwestern part of the basin, Brown Dolomite axes of high porosity pass
through Swisher and central Deaf Smith and Randall Counties. The lowest aver-
age-porosity trend in the Brown Dolomite is found in the southern part of the
basin, just north of the Matador Arch, in south-central Hale and southeastern

Lamb Counties.
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Considering the time-transgressive nature of the Brown Dolomite (Dutton
and others, 1982), the above trends indicate that the uppermost unit of the
wo]ftamp strata deve]oped progressively Tower-porosity systems in younger

basinward and southward prograded carbonates.
Porosity-Range Distributions: Wolfcamp Series

In génera], as shown by figures 9 and 10, lTow-porosity sediments in the
Wolfcamp strata are thickest along the central-basin axis, which is oriented
north-south through eastern Hale and centraT Swisher Counties, and north-
northwest through eastern Randall County. This suggests the basin axis' func-
tion as a depocenter for shales and fine-grain clastic sediments, which‘ulti-
mately develop Tlittle effective borosity. The basin axis described here dif-
fers from the axis mapped by Budnik and Smith (1982) in that south of the
Randall/Swisher County boundary, it is oriented north-south. By comparison,
Budnik and Smith's axis, which is determined by interpreting isopachus trends,
is oriented south-southeast south of the Randa]]/Swisher County boundary, and
passes through Swisher, Briscoe, Floyd, and Motley Counties. The axis of
thickest >5-10% porosity (fig. 10), passing through Motley and Briscoe Counties
in the southeastern part of the basin is oriented similarly as the Lower
Wolfcampian eastern shelf margin.

The axis of greatest thickness for medium-pofosity sediments (figs. 11 and
12) is oriented north-south, passing through eastern Oldham and Deaf Smith
Counties, where it is basinward of the Lower Wolfcampian western shelf margin.
In the eastern part of the basin, most axes of greatest thickness are oriented
northwest-southeast, parallel to and just basinward of the Lower WO1fcampian
eastern shelf margin. In the southeastern part of the basin, the axes Qf
greatest thickness coincide with the high-constructive delta systems described

by-Handford (1980).
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Generally, axes .of greatest thickness for'high-pordsity sediments (figs.
‘13, 14, and 15) are related to 1oca11y significant geo]ogic features such as
prograding‘de1ta systems. qut high;porosity sediments are of clastic origin,
| and were shed off of subaerially exposed, structurally positive basement rocks
during ear]y-to-middTe Wolfcampian deposition. In southeastern Oldham County
high-porosity arkosic sediments were shed off the Precambrian granite of the
Bravo Dome (Nicholson's, 1960; "01dham Ndse" in fig.1). In Randall, Armstrong
and Donley Counties, the high-porosity sediments coincide with arkosic sands
being shed off the Precambrian highlands of the Amarillo Uplift in the north-
eastern part of the basin. Just north of the Matador Arch, in the southeastern
area of the basin, high-porosity sediments coincide well with Handford's (1980)
high-constructive delta systems.

The highest-porosity sediments, those with >30% porosity (fig. 15), are
~thickest in Deaf Smith and O1dham Counties,‘in the northWeStern part of the
-basin, where most of the high-porosity intervals consist of several individual
- beds of sand, less than 5 ft thick, in the basal Wolfcamp strata. Of notable
exception is a limestone interval with predominantly oomoldic porosity observed
in core from the 0ldham County Mansfield No. 1 well (4820-4830 ft) and detected
in porosity-Tog analysis and verified by core examination. This particular
interval shows abnormally Tow permeability for its correspondingly high poros-
ity in core-plug analysis, indicating the noneffectiveness, or lack of inter-

connectedness between oomoldic pore spaces.
Porosjty—Range Distributions: Brown Dolomite

Genefa]]y, axes of thickness for the low-, medium-, and high-porosity
ranges are not so closely related to shelf margin systems interpreted by Hand-
ford (1980) as are the axes of greatest thickness for the entire Wolfcampian

Series strata.
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This re,Jmt describes research carried out by staff members of the
Bureau of Economic Geology that addresses the {easibility of the Palo Duro 17
Basin for isolation of hig :«fl niclear wastes. The report describes the

Low-pdf 641ty BFEH’ D‘o:lqnfﬁ’te (ﬁgs, 16 “ahd 17)' 16 6 gredease Hhtckness in
the easterm part of-the ba31n;. Thé\ax1s of greatest thicknessndf onitDe5% poros-
ity Brown Do]om1te (f1g 16) is 1andward of and parallel to the Lower Wolfcamp-
ian eastern shelf margin. The axis of greatest thickeness for >5-10% porosity
Brown Dolomite is oriented north-south, passing through central Floyd and
Briscoe, and eastern Armstrong Counties, oblique to the northwest-oriented
Lower Wolfcampian eastern shelf margin.

Medium-porosity Brown Dolomite (figs. 18 and 19) are not well-defined
relative to Wolfcampian shelf margins, but generally the thickest occurrence is
in the southeastern part of the basin in Floyd, Motley and Hall Counties. In
the north-central part of the basin, three axes of maximum thickness radiate
from central Randall County. Clockwise, the three axes are oriented north-
northwest, east-southeast, and southwest, as shown in figures 18 and 19. The
north-northwest axis is basinward and parallel to the Lower Wolfcampian eastern
shelf margin. The east-southeast axis is subparallel to and intersects the
Lower Wolfcampian eastern shelf margin. The southwest axis is subnormal to the
Lower and Middle Wolfcampian western shelf margins. An axis of overthickened,
medium-porosity Brown Dolomite is also found in eastern Hall County, where it
is oriented north-south. This easternmost occurrence of medium-porosity dolo-
mite overlies the Hale Positive (Birsa, 1977), is landward of Handford's (1980)
Lower Wolfcampian eastern shelf margin, and consequently may have resulted from
early, supratidal dolomitization associated with a structural high.

High-porosity Brown Dolomite (figs. 20 and 21) is found in three separate
lTocations in Oldham, Deaf Smith and Randall Counties, where they all occur
basinward of Handford's (1980) Lower Wolfcampian shelf margins, in the northern
part of the basin. In the eastern part of the basin (eastern Hall County), a

net thickness of 5 feet is reached for high-porosity Brown Dolomite, and is
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probably associated with the southern 1imit of the Hall PoSitive'discussed by
“Birsa (1977). | |

The proximity of Brown Dolomite (with >20% porosity) to the Lower Wolf-
cémpian shelf margins is an enigmatic feature. Because consensus (Dutton and
others, 1982; Handford, 1980) indicates Brown Dolomite is the youngest Wolf-
campian stratigraphic unit (informal) and axes of porosity deve]opment coincide
‘with the Lower wolfbampian shale mafgins, which are some of the oldest basinal
features, the following initial conclusions are reached: (1) the Wolfcampian
shelf margins were more temporally and geogfaphica]]y stable than Handford
(1980) suggesfs, so as to influence porosity development and dolomitization
along sheTf margins or (2) thé Lower Wolfcampian shelf-margin systéms influ-
ehced post-depositional hydrologic phenomena to the extent that dolomitization

of shelf-margin carbonates was most extensive proximal to paleoshelf margins.

APPLICATION OF POROSITY DATA

Hydrologic Implications of Using Average-Effective-Porosity
- Distributions in Areal Ground-Water Flow Simulation

Because of its relation to ground-water flow velocity, effeétive porosity
is an important parameter in studying ground-water flow. A better knowledge of
the effective-porosity distribution therefore improves the accuracy of flow-
rate and travel-time estimates. "The present hydrologic setting was put into
motion by the tilting of (the Palo Duro Basin's stratigraphic) units to the
east during the Laramide orogeny. Higher elevations west of the Palo Duro
Basin in the Sacramento‘and‘Sierra Grande Uplifts provide recharge to the flow
systems. Lower elevations east of the Palo Duro Basin .in the Hardeman Basﬁn,
where deep-basin ground-water potentials rise to near land surface, provide

potential discharge from the flow systems" (Smith, in preparation).
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This section of fhe'report illustrates the comparative results of using
some typicel-borosity values versus distribution of Tog-derived porosity (for
Wolfcamp Series) in a two-dimensional areal flow model of the Wolfcamp aquifer.
Detailed description of the numerical model is available in a report by Wiro-
Jjanagud and others (1984).
| The result of using typical-porosity values, 8% for carbohates, 14% for
granite‘wash, and 5% for shéTe, is shown in figure 22. Almost all flow in the
Wolfcamp aquifer is northeastward. ‘The travel time between two marks on each
of the flow lines represents 100,000 years, so that the smaller the disfance
between two marks, the smaller the ve]ocity.; Employing the typica]-borosity
values for the different lithologies yields a variety of basin-Wide traverse
times for the deep-aquifer waters. The southeasternmost flow lines indicate
that the basin-wide traverse time for water equals about 3.8 million years. In
 the central part of the basin, a northeastward traverse of deep bfines in;the
WOlfcamp takes about 2.0 million years. In the northwestern part of the basin,
basin-wide traverses range between 0.25 and 0.5 million years. Such lTarge
differences in basin-wide traverse times result from petentiometric surface
~ (i.e., flow direction) cbnsiderations and the geometry of the basin.

As discussed above, average porosity values for Wolfcamp Series sediments
were determined for each of the wells studied. Plotting and contouring the
data yields a map showing the geographic distribution of averageVWOlfcamp
porosity (fig. 7). This log-derived data base, used in the areal ground-water
flow mode1; resulted in figure 23. A1l ground-water f]ow‘parameters, except
porosity, are the same in both simulations. Therefore, simuletion reéu]ts, in
terms of head distribution and stream Tines, are the same. Only resulting flow

velocities, and, hence, basin-wide travel times differ.
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greater than thé veiqﬁa&je;lderaved frgﬁ1&5355({Jp1égf1;é;3;1%} values. In the
log-derived-porosity model (fig. 23) the southeasternmost flow line indicates
that the basin-wide traverse time for water equals about 2.1 million years. In
the centrally located flow lines, a northeastward traverse of fluid through the
basin takes about 1.0 million years. In the northwesternmost area of the basin
deep-brine basin-wide traverses occur on the order of about once every 0.25 to
0.5 million years. Generally, basin-wide travel times are less in figure 23
than they are in figure 22, implying greater fluid velocities in the model that
incorporates log-derived average-porosity data. This initial conclusion about
travel time and fluid velocity is essentially valid for the entire basin.

Total effective-pore volume, calculated for the Wolfcamp aquifer, equals
the quantity of water flushed through the deep-basin porous strata in a given
amount of time. The flush rates derived from the typical-porosity flow model
(fig. 22) can be compared with the flush rates estimated from using the log-
derived-porosity model (fig. 23). The average frequency of basin flushing

equals once every 2.0 million years and 1.2 million years, from figures 22 and

23, respectively.
Porosity-Distribution Surveys: Implications for Waste-Isolation Studies

The implications of porosity-distribution studies for waste-isolation
programs include (1) defining potential favorable fairways for hydrocarbon-
resource exploration and (2) resolving deep-brine velocities in order to esti-
mate transport times for radionuclides which would have potential for leaking
into the deep-brine aquifers from a repository in the overlying San Andres

bedded salt.
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Potentially favorable fairways for_Hydrocarbon exploration can be-identi-
fied by evaluating net-thickness trends in medium- and high-porosity sediments.
Combined with 1ithology-distribution, source-rock maturation and structural
considerations, porosity quantifications can be used to designate drilling
targets in and around preferred sites for high-level nuclear-waste isolation in
the Texas Panhandle. o

Generally, the axes of highest average porosity for WOlfcambian Series and
Brown Dolomite strata coincide with the northern parts of the Lower WOlfcémpian
kshe]f margins}interprefed by Handford (1980) as shown in figures 7 and 8. The
greatest net‘thickneés of medium- and high-porosity carbonate ahd clastic
sediments are also geographically correlatable With.northern reaches of Hand-
ford's (1980) Lower WO1fcampian shelf margins, as shown in figures 11-15 for
Wolfcampian Series strata.

Although the high-average-porosity trends coincide with the shelf margins
for the Brown Dolomite (fig. 8),-the net thickness trends of medium- and high-
porosity are not so correlatable for the Brown Dolomite as they are for the
Wolfcampian Series porous intervals. In figures 18 and 19 the axes of thic-
kening medium-porosity Brown Dolomite are oriented subparallel to the shelf
margins, except in Randall and Armstrong Counties, where the axes of greatest
thickness coincide with the northern part of the Lower Wolfcampian eastern
shelf margin. The high-porosity Brown Dolomite net thicknesses, shown in
figures 20 and 21, are a]]lproximal to and basinward of Handford's (1980) Lower _
Wolfcampian shelf margins. The only high-porosity Brown Dolomite that may not
be related to the shelf-margin system is in Hall County. Its possible associa—
tion with a’strucfurally positive basement feature is discussed above.

Deep-basin travel times for brines traveling through porous Wolfcamp
~strata are indicated in figures 22 and 23. Velocities can be ca]cu1atedvfor

brine traverses between the western model boundary and the northern basin
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- boundary. To ddte, no conclusions can be made with regard to the length of

time required for Wolfcamp brines to travel between preferred sites (for high-
level nuclear-waste containment) and the biosphere, because no zones of surface

discharge (from the deep basin) have as yet been positively identified.

CONCLUSIONS

Neutron-density cross-plotting methods are superior to neutron?sonic
methods for making quantitative carbonate-1ithology and porosity determinations
invthe Wolfcamp deep-basin aquifer. The former method was used to diséern
average-porosity distributions within the predominant]y carbonate Wolfcamp
Series. Avérage-porosity data, all calculated from (high-vertica]-resoTution)
1itho]ogy/porosity columns were plotted and contoured. The fesulting mapped
trends éompared favorably with those generated throqgh analyses of denser-well-
controlled, more qualitative data (see Dutton and others, 1982). This is
especially apparent in comparing proximity, linearity and parallelness of thé
different porosity-range trends with the shelf Margins and basin axis. Such
trends indicate (1) the WO1fcémpian shelf margins were more temporally and
geographically stable than Handford (1980) suggests, so as to influence poros-
ity development and do]omitization along shelf margins or (2) the Lower Wolf-
campian she]f—margin systems influenced postdepositional hydrologic phenomena
to the extent that dolomitization of shelf-margin carbonates was most extensive
proximal to paleoshelf margins.

Generally, the map of average-porosity distribution within Wolfcamp strata
indicates that the highest average porosities are in the northern part of the
basin. Lower average porosities are found in the eastern and western parts of

the bésin, and the Towest average-porosities are in the southern part of the
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basin. The thickest occurrences of high-porosity sediments are related to
shelf-margin carbonate and clastic deposition.

The distribution of log-derived average porosity has been incorporated
into a ground-water modeling simulation for purposes of refining travel times
and velocities of brines flowing through porous Wolfcamp strata. Additionally,
quantitative porosity estimates yield information about the total volume of
movable water. Estimating the frequency of basin flushing from basin-wide
brine traverse times and knowing the total volume of movable water within the
Wolfcamp strata allows for approximating the frequency with which one pore

volume flows through the deep brine aquifer.
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FIGURE CAPTIONS

Figure 1. Generalized stratigraphic column and depositional facies, Palo Duro
Basin (in Handford, 1980).

Figure 2. Structural elements and general index map of the Texas Panhandle
(from Nicholson, 1960, in Dutton and others, 1979).

Figure 3. Neutron-porosity values are plotted against the density-porosity
values for "pure" Wolfcamp dolomite. The data cluster more closely to the
dolomite Tine than they do in the neutron-sonic plot for the same intervals
(fig. 5). Maximum porosities in the Stone and Webster Engineering Corporation
Sawyer No. 1, Mansfield No. 1, and Zeeck No. 1 wells equal 27%, 21%, and 21%.
respectively. Generally, the maximum porosities shown in figure 5 are lower
for each of the three wells.

Figure 4. Neutron-porosity values are plotted against the density-porosity
values for "pure" Wolfcamp Timestone. The data cluster more closely to the
Timestone 1line than they do in the neutron-sonic plot for the same intervals
(fig. 6). Maximum porosities in the Stone and Webster Engineering Corporation
Sawyer No. 1, Mansfield No. 1, and Zeeck No. 1 wells equal 30%, 28%, and 22%,
respectively. The maximum porosities shown in figure 6 are lower for each of
the three wells.

Figure 5. Neutron-porosity values are plotted against the sonic-transit-time
values for "pure" Wolfcamp dolomite. The data cluster more closely to the
dolomite line in figure 3 than they do in this plot for the same intervals,
indicating inferior Tithology resolution by neutron-sonic cross plotting. Max-
imum porosities in the Stone and Webster Engineering Corporation Sawyer No. 1,
Mansfield No. 1, and Zeeck No. 1 wells equal 21%, 19%, and 17%, respectively,

which are all Tower than the maximum porosities shown in figure 3. Lower
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maximum porosities are probably due to the sonic log's inability to see secpnd-
ary and vuggy pdrosity.

Figufe 6. Néutron-porosity values are plotted against the sonic transit fime
values for "pure" Wolfcamp limestone. The data cluster more closely to the
limestone line in figure 4 than they do in this plot for the same intervals,
indicating inferior lithology resolution by the neutron-sonic cross plotting
method. Maximum porosities in the Stone and Webster Enginéering Corporation
Sawyer No. 1, Mansfield No. 1 and Zeeck No. 1 wells equal 25%, 19%, and 17%,
respectively, which are all lower than the maximum porosities‘shown-in figure
4. Lower porosities are probably dué to the sonic log's inability to‘see
'secondary énd vuggy pordsity.

Figure 7. Weighted-average porosity values for the entire Wolfcamp interval.
Figure 8. Neighted-average porosity values for the Brown Dolomite.

Figure 9. Net thickness of the 0-5% porosity range for the Wolfcamp.

Figure 10. Net thickness of the >5-10%»porosity range for the Wolfcamp.

Figure 11. Net thickness of the >10-15% pdrosity range for the Wolfcamp.
Figure 12. Net thickness of the >15-20% porosity range for the Wolfcamp.
Figure 13. Net thickness of the >20-25%‘porosity range for the Wolfcamp.
Figure 14. Net thickness of the >25-30% porosity range for the.Wolfcamp.
Figure 15. Net thickness of >30% porosity range for the Wolfcamp.

Figure 16. Net thickness of the 0-5% porosity range for the Brown Dolomite.
Figure 17. Net thickness of the >5-10% porosity range for the Brown Dolomite.
Figure 18. Net fhickness of the >10-15% porosity range for the Brown Dolomite.
Figure 19. Net thickness of the >15-20% porosity range for the Brown Dolomite.
Figure 20. Net thickness of the >20-25% pordsity range for the Brown Dolomite.
Figdre 21. ‘Net thickness of the 525-30% porosity range for the Brown'Dolomité.
Figure 22. Areal model of northeastward grbund-witér flow in the Wolfcamp
deép-basin.aquifer,‘using fypica1 bdrosity values, as deécribed in the'teX£.‘

T A . . N .
£
:



29

Figure 23. Areal model of northeastward ground-water flow in the Wolfcamp
deép-basin aquifer, using averageéporosity values derived from plotted and
contoured porosity-log analyses, as described in the text and shown in

figure 7.
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TABLE CAPTIONS

Table 1. List of wells for which neutron-density logs were run to obtain
Wolfcamp lithology and porosity determinations.

Table 2. Summary of net thickness of seven porosity ranges in Wolfcamp strata.
Table 3. Summary of volumetric calculations for Wolfcamp strata, based on

twenty-seven Tithology-porosity columns constructed from neutron-density poros-

ity data.
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Figure 1. Generalized stratigraphic column and depos1t1ona1 facies, Pa]o Duro
Basin (in Handford, 1980).
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Figure 23. Areal model of northeastward ground-water flow in the Wolfcamp
deep-basin aquifer,

using average-porosity values derived from plotted and
contoured porosity-log analyses, as described in the text and shown in
. figure 7.
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Table 3.

Summary of volumetric calculations for Wolfcamp strata, based on

twenty-seven lithology-porosity columns constructed from neutron-density
porosity data.

CAUTION

POROSITY MEAN
RANGE POROSITY SEDIMENT VOLUME PORE VOLUME
(£23) (m3) (£23) (m3) .
0.00-0.05  0.025 2359 x 1014 6.679 x 1012 .398 x 1012 .
>0.05-3.10 0.075 1.137 x 1014 3.361 § iolz §,§3§ % i812 5.%? § igﬂ
>0.10-0.15 0.125 6.583 x 1013 1.364 x 1012 8.229x 1012 2,330 x 10l!
>0.15-0.20 0.175 2.335 x 1013 8.027 x 10l! 8961 x 1012 1.305x 10l!
>0.20-0.25 0.225 3.8377x 1012 . 1098 x 10l g723x10ll 2,470 x 1010
>0.25-0.30 0.275 8.161 x 10l! 2.311 x 1010 2,244 x 10ll 6.353 x 109
>0.30 0.325 5.317 x 1010 1.647 x 109 1.391 x 1010 5.354 x 108
Total 8.535x 101% 1233 x1013  2911x10l13  g242x 10!l

This report describes research carried out by stafl members of the
Bureau of Economic Geology that addresses the feasibility of the Palo Duro

Basin for isolation of high-leve! nuclear wastes, The report describes the
' entative conclusions reached.
Interpretations and conclusions are based an available data and state-of-the-
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