_

ACTIVE STRESS FIELD IN THE TEXAS PANHANDLE

f

٠

· ·

.by

Roy T. Budnik

Prepared for the U. S. Department of Energy Office of Nuclear Waste Isolation under contract no. DE-AC-97-83WM46615

Bureau of Economic Geology W. L. Fisher, Director The University of Texas at Austin University Station, P. O. Box X Austin, Texas 78712

Roy T. Budnik

The south-central and southwestern United States can be divided into three distinct provinces based on the present distribution of stress: (1) Midcontinent, (2) southern Great Plains, and (3) Basin and Range (fig. 1; Zoback and Zoback, 1980). The Midcontinent province, a tectonically stable region extending from the Appalachians to the Texas Panhandle, is undergoing compressive stress in a NE-SW direction. The Basin and Range province, which includes the area from the Rio Grande Rift in central New Mexico to California and Oregon, is defined by active extension in a WNW-ESE direction. The southern Great Plains province is characterized by NE-SW extension. The Palo Duro Basin lies near the boundary between the southern Great Plains and Midcontinent provinces (fig. 1).

The present distribution of stress within the southern Great Plains province was defined by Zoback and Zoback (1980) on the bases of the NW-SE alignment of Late Cenozoic volcanic centers in northeastern New Mexico and fracture orientations in hydraulically fractured wells in the Permian Basin (fig. 2; Table 1). The orientation of stress in the southwestern part of the Midcontinent province is based on the hydraulic fracturing of a single well in the Anadarko Basin (fig. 2; Table 1). Zoback and Zoback (1980) could not define the location of the boundary between the southern Great Plains and the Midcontinent provinces because of a lack of data in the Texas Panhandle.

The Stone and Webster Engineering Corporation #1 Holtzclaw test well in southern Randall County (fig. 3) was hydraulically fractured to determine the

orientation of the present stress field in the Palo Duro Basin. The predominant fracture orientations in the well were N4OE and N6OE, suggesting that the area is undergoing northeast-southwest compression. This would indicate that the northern part of the Palo Duro Basin is within the Midcontinent stress province. The apparent proximity of the basin to the boundary between the Midcontinent and southern Great Plains provinces, however, raises the possibility that the measurements in the Holtzclaw well are not representative of the entire basin. The closest stress measurement to the southwest of the Holtzclaw well was in Cochran County (fig. 2), approximately 90 miles away. In that well (TX-1; Table 1) the least principal stress direction was N24E. Therefore, additional stress determinations should be made within the Palo Duro Basin before the active stress field is fully characterized.

REFERENCE

Zoback, M. L., and Zoback, M., 1980, State of stress in the conterminous United States: Journal of Geophysical Research, v. 85, no. B11, p. 6113-6156.

•

FIGURES

Figure 1. Generalized stress map of the conterminous United States (from Zoback and Zoback, 1980). Arrows represent direction of either least (outward directed) or greatest (inward directed) principal horizontal compression. SGP = southern Great Plains; SBR = southern Basin and Range; RGR = Rio Grand Rift; PDB = Palo Duro Basin. Boundary between the Midcontinent and southern Great Plains provinces is not well defined.

Figure 2. Map of conterminous United States, showing least compressive horizontal principal stress direcitons (from Zoback and Zoback, 1980). Physiographic province boundaries are shown for reference. Numbers refer to corresponding state numbers in Table 1.

Figure 3. Map of Texas Panhandle showing outline of the Palo Duro Basin and the location of the Stone and Webster Engineering Corporation #1 Holtzclaw test well.

TABLE

Table 1. Stress data shown in figure 2 (from Zoback and Zoback, 1980).

マン

			Least Principal			· · · · · · · · · · · · · · · · · · ·	
S	ite Locat	ion*	Horizontal Stress Orientation	Stress Regime†	Type of Indicator‡	Comments	References
AL	-1 Clarke County ~31.65°, 87.91°		N35°E	N	G-FS	Alabama average trend of several normal (growth) fault zones that offset lower Tertiary to Miocene-Quaternary beds	Copeland [1976]
AZ	2-1 San Bernardino 31.45°, 109.30°	volcanic field	N62°W	N	G-CC	Arizona basaltic cinder cones 0.2 to 3 m.y. old; best alinement on youngest cones	Luedke and Smith [1978a]
A2	-2 Pinacate volcani 32.12° 113.50°	c field	~E-W	N	G-CC	alinement of three major centers of eruption, <100,000 years old	Donnelly [1974]
AZ	$\begin{array}{c} -3 \\ \sim 33^{\circ} \\ 1117^{\circ} \end{array}$		N73°E	N	OC	depth, 480 m; $S_{\text{Hmin}} \simeq \frac{1}{2}S_{\nu}$	Bickel and Dolinar [1976]
AZ	-4 White Mountain ~34° 109 5°	s volcanic field	N25°E	N?	G-CC	alinement of basaltic cinder cones, 2-3 m.y. old	Luedke and Smith [1978a] at Merrill and Péwé [1977]
AZ	2-5 Chediski quadra	ngle	~N63°W	N?	G-CC	basalt overlies gravel, which overlies rim gravel; age <5 m.y.,	Finnell [1966]
AZ	2-6 Bagdad		N58°W	N	G-FS(G)	right-lateral oblique slip on Hawkeye fault, which cuts late(?) Tertiary	C. A. Anderson et al. [1955]
AZ	2-7 Sycamore Canyo	on primitive area	N35°E	N?	G-D, CC	average trend; actual range in strike, N45°-73°W; based on a spatter	Huff et al. [1966]
A2	2-8 San Francisco vo	olcanic field (SE)) N30°E	N	G-D, CC	basaltic cinder cones all <1 m.y. old; includes Sunset Crater rift	Moore and Wolfe [1976] and
AZ	~35.25°, 111.42°		N30°W	?	G-CC, D	numerous dikes and cinder cones; monchiquite volcanism primarily	Akers et al. [1971] and
Až	Z-10 San Francisco vo	olcanic field (N)	N55°W	N	G-CC	basaltic cinder cones less than 1 m.y. old (Dog Knobs) alined parallel	Babenroth and Strahler [1945]
A	Z-11 Lake Mead		N46°W	SS	FM(C)	T axis plunge = 20° SE; P axis azimuth = N43°E, plunge = 20° SW	R. B. Smith and A. G. Lindh
A	Z-12 Boulder Dam		N54°W	N/SS	OC	overcore at 107-m depth, $S_{Hmax} = S_v >> S_{Hmin}$	[1976] Merrill [1964]
A	Z-13 North Rim of G	rand Canyon	~E-W	N	G-CC	basaltic cinder cones 0.1-1.0 m.y. old	Koons [1945]
	36.42°, 113.17° Z-14 Prescott 34.66°, 112.58°		N39°E	N	FM(S)	primarily normal faulting based on surface wave solution, consistent with body wave data; T axis plunge = 5°NE; P axis azimuth = N73°, plunge = 84°W	Eberhart-Phillips et al. [1979]
	P. List New Madrid (S	ΨΛ.	NIOW	\$\$/T	FM(A)	Arkansas	Herrmann and Canas [1978]
			NA°W	55/1	FM(S)	strike slip components	and Herrmann and Canas [1978] Herrmann and Canas [1978]
					+ m(b)	solutions; T axis plunge = 32°S; P axis azimuth = N88°W, plunge = 9°W	and Herrmann [1979]
			NRIEW A	50	FM(A)	California	Hill (1977)
ſ	\$2.92•,115.5• A-2 Borrano Mount		-R-W	A Se	FM(A)	in left-stepping offset of San Andreas fault	Hamilton (1972)
	33°, 116°					mechanisms of aftershocks of the 1968 Borrego Mountain earth-	""""""""""""""""""""""""""""""""""""""
C.	A-3 Point Mugu 34 13° 119 04°		N72°W	T/SS	FM(A)	1973 Point Mugu earthquake; average orientation based on main	Stierman and Ellsworth [1976]
C.	A-4 Palmdale		N80°E	SS	HF	snova (infusi) and numerous anershocks (infusi and stifke slip) results from ~200-m depth in two wells adjacent to San Andreas	M. D. Zoback et al. (19806).

•

6116

•

and a state of the second state of the second s Second second

ZOBACK AND ZOBACK: STATE OF STRESS IN CONTERMINOUS UNITED STATES

TABLE 1. (continued)

Site	Location*	Least Principal Horizontal Stress Orientation	Stress Regime†	Type of Indicator‡	Comments	References
					California (continued)	
CA-30	Markleeville quadrangle ~38.625°, 119.875°	N81°W	SS	G-FS(G)	see CA-19	Lockwood and Moore [1979]
CA-31	Truckee 39.43°, 120.17°	N78°E	SS	FM(S)	1956 Truckee earthquake; Taxis plunge = 6°E; Paxis azimuth = N2°W, plunge = 7°N	Tsai and Aki [1966]
CA-32	Oroville 39.5°, 121.5°	N77°E	N/SS	FM(S)	1975 Oroville earthquake; predominantly normal faulting; T axis plunge = 16°SW; P axis azimuth = N53°W, plunge = 64°SE	Langston and Butler [1976]
CA-33	Geysers-Clear Lake area ~38 75° 122 75°	N70°W	SS	FM(A)	average stress orientations from 13 events, 12 strike slip and 1 dip slip	Bufe et al. [1980]
CA-34	Gabilan Range 36.69°, 121.35°	N88°E	SS	HF	average of two hydrofrac orientations at 167- and 185-m depth; accuracy, $\pm 10^{\circ}$	M. D. Zoback et al. [1980b]
			_		Canada	
CN-1	Oshawa 43.88°, 78.85°,	N65°W	Т	HF	depth 230-300 m	Haimson and Lee [1979]
CN-2	Maniwaki 46.3°, 76.22°	N40°W	T/SS	FM(S)	predominantly thrust with component of strike slip; P axis trends N50°E, plunge = 19°NE	Horner et al. [1975] and Sbar and Sykes [1977]
CN-3	St. Lawrence region 47.5°, 70.2°	N-S	T/SS	FM(A)	average of six events with mean P axis trending E-W and with T axes that alternate between horizontal and vertical	Leblanc and Buchbinder [1977]
CN-4	southern Alberta 50.1°, 113.4°	N47°W	T/SS?	G-DE	average of mean stress orientations inferred from drill hole ellipticity resulting from breakouts in three wells (N49°W, N51°W, N40°W)	Bell and Gough [1979] Babcock [1978]
CN-5	southern Alberta 50.1°, 113.0°	N35°W	T/SS?	G-DE	average of mean stress orientations inferred from drill hole ellipticity resulting from breakouts in three wells (N24°W, N44°W, N36°W)	Bell and Gough [1979] and Babcock [1978]
CN-6	southern Alberta 50.85°, 112.55°	N33°W	T/SS?	G-DE	mean orientation of stress inferred from drill hole ellipticity resulting from breakouts (single well)	Bell and Gough [1979] and Babcock [1978]
					Colorado	
CO-1	Rocky Mountain Arsenal (Denver) 39.7°, 104.7°	~N45°E	Ν	FM(A)	earthquakes induced by fluid injection at Rocky Mountain Arsenal; surface wave mechanism, seismicity trend, and pressure required to trigger earthquakes suggest normal faulting on fault striking N45°W	and R. Herrmann (written communication, 1979)
CO-2	Henderson Project 39.77°, 105.83°	N38°E	N?	OC .	overcores at different depths in three localities; only shallowest (624 m) had vertical and horizontal stress orientations; deeper two had principal stress axes with large plunge, and so horizontal azimuths not meaningful; shallow measurement, $S_1 = S_v$; in deeper measurements the axis with steepest plunge is S_3	Hooker et al. [1972]
CO-3	Piceance Basin 39.83°, 108.38°	N20°E	SS?	HF	average S_3 direction from six wells; at 0.5-km depth, $S_1 = S_v$ in one hole, $S_2 = S_v$ in three holes, and $S_3 < S_v$ in all holes	Bredehoeft et al. [1976]
CO-4	Rangely	N20°W	SS	HF	single hydrofrac measurement at depth of earthquake foci (~1.8 km);	Raleigh et al. [1972] and
	40.10°, 108.88°	NI2°E	SS	FM(C)	focal mechanism consistent with slip on preexisting fault; surface overcoring measurements somewhat scattered, least principal horizontal stress directions range between N27°W and N10°F	Haimson [1973]
CO-5	Wattenberg 40.15°, 104.82°	N45°E	?	HF	orientations from seven wells as determined with surface electrical resistivity measurements and tiltmeters; result may be influenced by rock strength anisotropy	M. B. Smith [1979]

6118

n for getallen for an and for a start of the s The start **Augustin** and the start of the

.

د. ۱۹۹۵ هوای هور در ۲۰۱۰ در محفظ و<mark>د و معاطر کرد هور در ک</mark>ار و ا

.

-

÷

						-
CA-5	San Fernando 34 41°, 118 40°	N85°E	T/SS	FM(A)	average of both main shock and aftershocks of 1971 San Fernando earthouake: includes strike slip and thrust events	Whitcomb et al. [1973]
CA-6	central Transverse Ranges 34.5°, 118°	E-W	T/SS	FM(A)	average stress orientation from 22 mechanisms for small events; predominantly thrusting on E-W planes; some strike slip on NE and NW planes	Pechmann [1980]
CA-7	Galway Lake 34.52°, 116.48°	N75°W	SS	FM, G-FS	right-lateral slip on vertical fault striking N25°W to N, on basis of first motion data, distribution of aftershocks, and ground breakage	R. L. Hill and D. J. Beeby [1977] and Kanamori and Fuis [1976]
CA-8	Parkfield 35.92°, 120.42°	N70°W	SS	FM(S)	1966 Parkfield earthquake, nearly pure strike slip event; T axis plunge = 13°E. P axis azimuth = N13°E. plunge = 14°S	McEvilly [1966]
CA-9	central coastal California ~36°, 121.5°	~N60°W	SS/T	FM(A)	average of 30 events; approximately equal number of strike slip and thrust events; range of P axes = N10°W-N60°E	Gawthrop [1977]
CA-10	San Francisco Bay area/central San Andreas fault ~37°, 121,5°	~N80°W	SS	FM(A)	average of 40 events, predominantly strike slip and some thrust; range of T axes N67°E-133°E, standard deviation ±33°	W. L. Ellsworth (written communication, 1979)
CA-11	Livermore Valley 37.83°, 121.67°	~N70°W	SS	FM(A)	average of 70 events representing seismicity from 1969-1979; predominantly strike slip with some thrust events; T axes azimuth range = N44°-96°W; P axes range = N7°W-N48°E with nearly all plunges < 15°	Ellsworth and Marks [1980] and Weaver and Hill [1979]
CA-12	Santa Rosa 38.48°, 122.68°	N77° W	SS	FM(A)	average composite solution for aftershocks of 1969 Santa Rosa earthquake; T axis plunge = 2°W; P axis azimuth = N13°E. plunge = 11°N	R. B. Smith and A. G. Lindh [1978]
CA-13	Cape Mendocino 40.30°, 124.50°	N59°E	SS	FM(S)	purely strike slip event in 1962	Bolt et al. [1968]
CA-14	offshore Cape Mendocino 40.34°, 125.84°	N63°E	SS	FM(S)	purely strike slip event on Mendocino fracture zone	Tobin and Sykes [1968]
CA-15	China Lake 35.92°, 117.80°	N66°W	SS	FM(S)	purely strike slip solution	R. B. Smith and A. G. Lindh [1978]
CA-16	Coso Hot Springs 36.0°, 117.83°	N80°W	N/SS	FM(A) G-CC, D	both strike slip and normal fault events with consistent T axes; also consistent with Quaternary volcanic feeder trends	Weaver and Hill [1979] and Duffield [1975]
CA-17	Death Valley 36.1°, 116.8°	~N45°W	N	G-FS(G)	trend of striated surfaces on 'turtlebacks'	Wright et al. [1974]
CA-18	Owens Valley 36.75°, 118.2°	N57°W	N	G-FS(H)	1872 Owens Valley earthquake; oblique slip on NNW trending fault; used maximum vertical and right-lateral offsets (which occurred very close to one another) and average fault trend	Bateman [1971]
CA-19	Mount Whitney quadrangle ~36.625°, 118.275°	N34°W	SS	G-FS(G)	strain pattern deduced from near-conjugate sets of microfaults, stress direction taken as appropriate bisector of the angle between intersecting trends of right-lateral and left-lateral faults	Lockwood and Moore [1979]
CA-20	Triple Divide Peak quadrangle ~36.625°, 118.625°	N46°W	SS	G-FS(G)	see CA-19	Lockwood and Moore [1979]
CA-21	Mount Pinchot quadrangle ~36.875°, 118.375°	N43°W	SS	G-FS(G)	see CA-19	Lockwood and Moore [1979]
CA-22	Marion Peak quadrangle ~36.875°, 118.625°	N49°W	SS	G-FS(G)	see CA-19	Lockwood and Moore [1979]
CA-23	Dinkey Creek ~37.15°, 119°	N65°W	SS	HF	hydrofrac at 160 and 320 m; at deeper interval $S_{Hmax} \approx S_{\nu} > S_{Hmin}$	Haimson [1976]
CA-24	Mount Abbott quadrangle ~37.375°, 118.875°	N68°W	SS	G-FS(G)	see CA-19	Lockwood and Moore [1979]
CA-25	Kaiser Peak quadrangle ~37.375°, 119.125°	N74°W	SS	G-FS(G)	see CA-19	Lockwood and Moore [1979]
CA-26	White Mountains 37°5°, 118.3°	N60°W	N	G-FS(G)	grooves and slickensides on fault bounding White Mountains	Russell [1977]
CA-27	Mono Lake area 37.5°, 118.5°	~E-W	SS	FM(C)	composite focal mechanism for strike slip events in Mono Lake- northern Owens Valley area	Pitt and Steeples [1975]
CA-28	Tuolumne Meadows quadrangle ~37.875°, 119.375°	N87°W	55	G-FS(G)	see CA-19	Lockwood and Moore [1979]
CA-29	Sonora Pass quadrangle ~38.375°, 119.625°	N88°W	SS	G-FS(G)	see CA-19	Lockwood and Moore [1979]

.

6117

					Connecticut	
CT-1	Colchester 41.5°, 72.25°	N32°E	T	G-FS	offset core holes indicate modern thrust motion on preexisting fault; grooves and slickenslides measured on slip surfaces	Block et al. [1979]
					Florida	
FL-I	Crystal River 28.85°, 82.53°	N47°E	N	G-FS	normal fault offsets Eocene strata ≃10 m	Vernon [1951]
					Georgia	
GA-I	Augusta 33.5°, 82.22°	N27°E	Т	G-FS	late Cenozoic (possibly Holocene) age beds offset by high-angle reverse fault in Belair fault system	Prowell et al. [1975]
					Idaho	
ID-1	Cache Valley 42.05°, 111.8°,	N77°W	N	FM(S)	1962 Cache Valley earthquake; nearly pure normal fault; T axis plunge = 13°W; P axis azimuth = N51°W, plunge = 76°SE	R. B. Smith and M. L. Sbar [1974]
ID-2	Pocatello 42.2°, 112.5°	N76°W	N	FM(S)	1975 Pocatello Valley earthquake; nearly pure normal fault	Bache and Lambert [1977] and Arabasz et al. [1979]
ID-3	Caribou Range 43.0°, 111.4°	N81°W	N	FM(C)	predominantly normal faulting, small strike slip component; T axis plunge = 10°W; P axis azimuth = N 10°W, plunge = 75°S	Sbar et al.[1972]
ID-4	central snake river Plain ~43.42°, 113.21°	~N48°E	N	G-CC	rift zone crossing plain marked by normal faults, open fissures, and cinder cones; age of associated basaltic volcanism is late Pleistocene (100.000-12.000 years B.P.)	Kuntz [1978]
ID-5	Salmon River Mountains 44,3°, 114,7°	N9°E	N	FM(S)	virtually a purely normal fault; T axis plunge = 1°N; P axis azimuth = N85°W, plunge = 83°W	R. B. Smith and M. L. Sbar [1974]
ID-6	Kellogg 47.33°, 116.06°	N15°E	N	HF	hydrofrac measurement at 2285-m depth; $S_3/S_1 = 0.42$	Haimson [1977b]
ID-7	Coeur d'Alene district	N65°W	SS	OC	depth, 1670 m; $S_{Hmax} >> S_v > S_{Hmin}$; depth, 1616 m, all stresses	Chan and Crocker [1972]
	47.47°, 116.0°	N63°E	Т	OC	approximately equal in magnitude; measurements made in separate mines only 3 km apart	and Skinner et al. [1974]
ID-8	Raft River ~42.2°, 113.3°	N61°W N18°W	N	HF	hydrofracs determined from two different wells within geothermal field; more northerly fracture orientation that corresponds to N61°W stress direction, adjacent to north trending normal fault; nearly east- west fracture orientation near northeast lineament interpreted as fau	W. S. Keys (written communication, 1980) It
					Illinois	
IL-I	southern 37.95°, 88.48°	N7°E	Т	FM(S)	well-constrained single-event solution; P axis azimuth = N83°W, plunge = 1°E; T axis plunge = 82°	Stauder and Nuttli [1970]
IL-2	central 39.3°, 89.35°	N30°W	SS/T	HF	depth, 100 m; $S_1 > S_v = S_3$	Haimson [1974a]
IL-3	northern 41.6°, 89.4°	N51°W	SS	FM(S)	based on both surface wave and body wave solutions; T axis plunge = 28°SE; P axis azimuth = N38°E, plunge = 1°NE	Herrmann [1979]
•					Kansas	
KS-1	northeastern 39.14°, 96.30°	N10°E	Т	FM(S)	microearthquake solution, P and T axes constrained to $\pm 10^{\circ}$	D. W. Steeples (written communication, 1979)
					Louisiana	
LA-I	southeastern ~29.6°, 90.75°	N	N	G-FS	active growth faults, general regional trend	Howard et al. [1978]
LA-2	southern ~30.2°, 92.8°	N8°E	N	G-FS	active growth faults, general regional trend	Howard et al. [1978]
LA-3	Caddo-Pine Island 32.67°, 94°	N	N/SS?	HF	depth, 425 m; maximum horizontal stress not measured; $S_v > S_3$	Strubhar et al. [1975]
			_		Maryland	
MR-I	Brandywine fault system 38.70°, 76.92°	~N32°E	Т	G-FS	reverse fault indicated by drill hole and geophysical data	Jacobeen [1972]
MR-2	Sunshine 39.25°, 77.17°	N55°E	Ť	HF	depth, 417 m, in gneiss; at depths below 420 m, S_{Hmax} and $S_{Hmin} > S_v$, and were found to increase with depth	H. R. Pratt (written communication, 1980)

- -----

10.16

water take with the second state of the later

-

40

• * .

الحي المعرفين فتداويه كعبر بترابيت الراب الالبار

6119

10

1.4

. . **.** . . .

underliefen in eine seine eine seine verstenden seine seine verstenden der seine seine seine seine seine seine

n 4 d.)....

		-			TABLE 1. (continued)	
Site	Location*	Least Principal Horizontal Stress Orientation	Stress Regime†	Type of Indicator‡	Comments	References
MS-1	Attleboro 41.94°, 71.32°	N67°E	т	G-FS(G)	Massachusetts postglacial vertical offsets on high-angle reverse faults	Woodworth [1907] and Oliver et al. [1970]
MX-I	northern Sonora 31.08°, 109.17°	E-W	N	G-FS(H)	Mexico Sonoran earthquake ($M \sim 7.8$); generally N trending normal fault ($\pm 10^\circ$) with vertical slickensides	Natali et al. [1979]
MC-1	Ishpenning 46.50°, 87.63°	N8°E	SS	oc	Michigan depth, 976 m	Aggson [1972]
MN-I	west-central 45.7°, 96.0°	N77°W	SS	FM(S)	Minnesota strike slip event with thrust component; based on surface wave and body wave data; T axis plunge = 14°W; P axis azimuth = N17°E; plunge = 14°N	Herrmann [1979]
MI-I	west-central 33.6°, 90.9°	N25°W	SS	FM(S)	Mississippi primarily strike slip event, constrained with both surface wave and body wave data; T axis plunge = 21°SE; P axis plunge = 7°NW	Herrmann [1979]
MO-1	New Madrid area 36.5°, 89.7°	N47°W	SS/N	FM(S)	Missouri primarily strike slip with normal component; based on surface and body wave solutions; T axis plunge = 8°NW; P axis azimuth =	Herrmann [1979]
MO-2	New Madrid area 36.5°, 89.6°	N59° W	SS/T	FM(S)	N49°E, plunge = 34°NE primarily strike slip with thrust component; based on surface wave and body wave solutions; T axis plunge = 28°NW; P axis	Herrmann [1979]
MO-3	Ozark uplift 37.5°, 91.0°	N24°W	N	FM(S)	azimuth = N43°E, plunge = 19°NE primarily normal fault; based on surface wave and body wave solutions; Taxis plunge = 7°SE; Paxis azimuth = N87°W, plunge = 76°W	Herrmann [1979]
MT-I	Hegben Lake 44.75°, 111.18°	N18°E	N	FM(S+A)	Montana 1959 Hegben Lake earthquake, primarily normal faulting; T axis plunge = 19°S; P axis azimuth = N3°E, plunge = 70°N; consistent stress orientation obtained from a number of recent microsofthemaker in the area	<i>Ryall</i> [1962] and <i>Bailey</i> [1976]
MT-2	southeastern Madison Valley	N26°W	N	FM(C)	nearly purely normal faulting; T axis plunge = 8°N; P axis	Trimble and Smith [1975]
MT-3	44.8°, 111.43° Madison Valley	N2°E	SS	FM(S)	azimuth = $N24$ E, plunge = $82^{\circ}S$ predominantly strike slip event; T axis plunge = $30^{\circ}N$; P axis	R. B. Smith and M. L. Sbar
MT-4	44.0°, 111.0° southeast of Helena 46.4°, 111.3°	N21°W	SS	FM(S)	 1925 Montana earthquake (M = 6.7), predominantly strike slip; poorly constrained; from one of Byerly's first determinations of first motion patterns; T axis plunge = 8°N; P axis azimuth = = N71°E, plunge = 7°W 	[1274] Byerly [1926] and R. B. Smith and M. L. Sbar [1974]
MT-5	Helena ~46.67°, 112.17°	N45°E	N/SS	FM(A)	average of composite solutions for three swarms; two solutions were primarily normal faulting, one mostly strike slip, all have comparable T axes $(\pm 10^\circ)$	Friedline et al. [1976]
MT-6	Flathead Lake 47.8°, 114.3°	N86°W	N/SS	FM(A)	average of two composite focal mechanisms, one strike slip and one normal, with T axes trending ~N85°W and ~N87°W, respectively; $S_{ver} \approx S_{Hmax}$	Sbar et al. [1972] and Stevenson [1976]

6120

.

· · · / .

and a second and the second and the second second

					Nevada	
NV-I	Lake Mead area 36.08°, 114.74°	N38°W	N/SS	FM(A)	average of two composite mechanisms, one is a strike slip and one normal, with similar T axes	A. M. Rogers and W. H. K. Lee [1976]
NV-2	northwest of Las Vegas 36.60°, 116.27°	N6°W	N	FM(S)	predominantly normal event with a small strike slip component; T axis plunge = 3° N: P axis azimuth = N77°E, plunge = 66° SE	R. B. Smith and A. G. Lindh [1978]
NV-3	Nevada Test Site (NTS) 37°, 116°	N50°W	N/SS	G, HF, OC, FM	based on trends of Quaternary faulting, strain measurements, tectonic cracking, focal mechanisms (including both strike slip and normal events), overcoring, and hydrofrac measurements	Carr [1974], Fischer et al. [1972], and Haimson et al. [1974]
NV-4	northwest of NTS 37.2°, 116.5°	N45°W	N/SS	FM(A)	consistent T axis orientation from two composite events, one pure strike slip, the other normal	Hamilton and Healy [1969]
NV-5	California-Nevada border 37.13°, 117.32°	N50°W	N	FM(S)	predominantly normal event with strike slip component; T axis plunge = 30°NW; P axis azimuth = N85°W, plunge = 45°E	R. B. Smith and A. G. Lindh [1978]
NV-6	southern Utah-Nevada border 37.4°, 114.2°	N30°W	SS	FM(S)	nearly purely strike slip mechanism; T axis plunge = 16°SE; P axis azimuth = N59°E, plunge = 0°	R. B. Smith and M. L. Sbar [1974]
NV-7	Silver Peak Range 37.47°, 117.87°	N88°W	N	FM(S)	predominantly normal event with small strike slip component; T axis plunge = 3°W; P axis azimuth = N15°E, plunge = 63°N	R. B. Smith and A. G. Lindh [1978]
NV-8	Northern Pahroc Range 37.73°, 115.05°	N51°W	N	FM(S)	predominantly normal event with strike slip component; T axis plunge = 30°SE; P axis azimuth = N16°W, plunge = 81°N	R. B. Smith and A. G. Lindh [1978]
NV-9	Southern Quinn Canyon Range 37.75°, 116.0°	N6°W	SS	FM(C)	predominantly strike slip, T axis plunge = 15°S; P axis azimuth = N87°E, plunge = 2°W	R. B. Smith and A. G. Lindh [1978]
NV-10	Lunar Crater volcanic field 38.25°, 116.0°	N60°W	N	G-CC	average trend of alinements of basaltic craters, cones, mounds, and fissure vents; basalts tentatively Quaternary, possibly Holocene	Scott and Trask [1971]
NV-11	Candelaria Hills 38.2°, 118.15°	N82°W	N/SS	G-FS(G)	large component of left-lateral slip on an \sim E-W trending fault	Speed and Cogbill [1979]
NV-12	Excelsior Mountains 38.3°, 118.4°	N75°W	N	FM(C)	predominantly normal event with strike slip component; T axis plunge $\approx 0^{\circ}$; P axis azimuth $\approx N10^{\circ}E$, plunge $\approx 60^{\circ}S$	Ryall and Priestley [1975]
NV-13	Cedar Valley 38.5°, 117.8°	~N80°E	N	FM(C)	predominantly normal event with strike slip component; T axis plunge = 21°W; P axis azimuth = N33°E, plunge = 59°N	Gumper and Scholz [1971]
NV-14	Genoa 39.0°, 119.8°	~E-W	N	G-FS(G)	well-exposed bedrock scarp	Thompson and Burke [1973]
NV-15	Comstock–Virginia City 39.3°, 119.6°	N60°W	N	G-FS(G)	based on surface and subsurface observations	Thompson and Burke [1973]
NV-16	Fairview Peak, south zone 39.2°, 118.0°	~N44°W	N	_ FM(C)	pure normal faulting; T axis plunge = 5°NW; P axis azimuth = N44°W, plunge = 85°SE	Ryall and Malone [1971]
NV-17	Fairview Peak, central zone 39.2°, 18.1°	N65°W	N/SS	FM(A)	average of similar composite mechanisms and single mechanism for 1954 earthquake, combination normal and strike slip component; T axes plunge 2°-3°, P axes plunge 40°-45°	Romney [1957] and Ryall and Malone [1971]
NV-18	Dixie Valley 39.7°, 118.0°	N55°W	N	G-FS(G)	mean extension direction based on 55 measurements along fault zone on west side of Dixie Valley	Thompson and Burke [1973]
NV-19	Rainbow Mountain 39.7°, 118.4°	N56°W	N	FM(C)	purely normal faulting; T axis plunge = 5°NW; P axis azimuth = N56°W, plunge = 85°SE	Ryall and Malone [1971]
NV-20	Fairview Peak, north zone 39.8°, 118.0°	~N14°W	N	FM(C)	predominantly normal with strike slip component; T axis plunge = 1°N; P axis azimuth = N53°E, plunge = 59°SW	Ryall and Malone [1971]
NV-21	Cortez 40.2°, 116.5°	N55°W	N	G-FS(G)	well-exposed Holocene bedrock scarp; mean extension direction based on 56 measurements along 8-km length of fault	M. L. Zoback [1978] and Muffler [1964]
NV-22	Pleasant Valley 40.3°, 117.6°	N50°-70°W	N	G-FS(H)	based on offsets on scarps formed during 1915 Pleasant Valley earthquakes	Wallace [1979]
NV-23	Buffalo Valley 40.37°, 117.33°	N60°W	N	G-CC	trend of zone of basaltic cinder cones 1.35 ± 0.15 m.y. old	Trexler et al. [1978]
NV-24	Argenta Rim 40.6°, 116.75°	N77°W	N	G-FS(G)	average of five directions measured in one locality	M. L. Zoback [1978]
NV-25	Black Rock Desert 40.75°, 119.25°	N75°W	N	FM(A), G-FS	average of several microcarthquake focal mechanisms, also based on trends of "tectonic" cracks and Quaternary faulting	Grose [1978] and Kumamoto [1978]
NV-26	Denio 41.83°, 118.48°	~N8U°W	м	FM(C)	normal faulting event with strike slip component; T axis plunge = 0° ; P axis azimuth = ~N45°E, plunge ~ 45°SW	and A. G. Lindh [1978]
NV-27	Wassuk Range ~38.5°, 118.75°	N70°₩	N	G-FS(G)	slip in shear zones along range front fault; average direction from 58 measurements	R. C. Bucknam (written communication, 1979)

and the second second

.....

a to be a first and a start should be a straight the

e Postera

and the second second

TABLE 1.	(continued)
TUDEL I.	(commucu)

Site	Location*	Least Principal Horizontal Stress Orientation	Stress Regime†	Type of Indicator‡	Comments	References
NJ-I	Ramapo fault 41.0°, 74.25°	~N10°E	T(SS)	FM(A)	New Jersey modern slip on reactivated Triassic normal fault (Ramapo fault); predominantly thrust events, some strike slip; average P axis trends N80°W \pm 20°	Aggarwal and Sykes [1978]
NM. I	Tres Hermanas Mountains	~.F.W	N	GDCC	New Mexico	Balk (1962)
1 4 141 - 1	31.83°, 107.80°		IN .	0- <i>D</i> ,CC	basanic volcanishi, latest Ternary-Quaternary	<i>baik</i> [1902]
NM-2	Potrillo volcanic field ~32°, 107°	~N80°W	N	G-CC	basaltic volcanism about 100,000 years old	Luedke and Smith [1978a] and Hoffer [1976]
NM-3	north of Carrizozo 33.8°, 105.83°	~N5°E	N?	G-D,CC	Broken Back Carter and Little Black Peak, Pleistocene and Holocene in age	C. T. Smith [1964] and Weber [1964]
NM-4	Socorro 34.12°, 106.92°	N80°E	N	FM(A)	average T direction taken from three composite solutions; all normal events	Sanford et al. [1979]
NM-5	Belen 34.5°, 106.85°	N81°W	N/SS	FM(A)	average T direction taken from four composite solutions, two events nearly pure normal faulting and two strike slip	Sanford et al. [1979]
NM-6	northern Socorro County 34.55°, 107.33°	~N50°W	N	G-FS(G)	normal faults striking N10°W with consistent right-lateral components of motion	Jicha [1958]
NM-7	Valencia, Socorro, and Catron Counties 34.62° 107.53°	N80°W	N	G-CC	basaltic volcanism 1–5 m.y. B.P.	Luedke and Smith [1978a] and Winchester [1920]
NM-8	west of Los Lunas 34.80°, 107.35°	N61°W	N	G-D	trend of single basaltic dike, Quaternary in age	Wright [1946]
NM-9	Cat Hills 34 88° 106 87°	N79°W	N	G-CC	basaltic volcanism 140,000 years old	Luedke and Smith [1978a]
NM-10	Grants 35°, 48.81°	N67° W	N	G-D	basaltic dike (latest Pliocene or Quaternary) adjacent to Mal Pais volcanic field, which is marked by a prominent NNE trending gravity high	Thaden et al. [1967] and L. Cordell (written communication, 1979)
NM-11	Albuquerque 35.15°, 106.77°	N87°W	N	G-CC	spectacular alinement of 18 basaltic cones, 190,000 years old	Kelley [1969]
NM-12	Mount Taylor volcanic field 35.33°, 107.63°	N70°−75°₩	N	G-CC, D	basaltic volcanism, Pliocene to Holocene	Hunt [1938] and Moench and Schlee [1967]
NM-13	southeastern McKinley County 35.37°, 107.48°	N60°W	N	G-CC	based on several cinder cone alinements and trends of numerous parallel faults. 2-3 m.v. old	Cooper and John [1968]
NM-14	northwest of Mount Taylor 35.7°, 107.73°	N63°E	SS	FM(S)	predominantly strike slip event, no information on plunge of P and T axes	Sanford et al. [1979]
NM-15	northwest of Mount Taylor 35.7°, 107.98°	N7°E	SS	FM(S)	predominantly strike slip event, no information on plunge of P and T axes	Sanford et al. [1979]
NM-16	Bernillo 35.83°, 106.83°	N55°W	N	G-FS(G)	normal fault striking N5°W with a component of right-lateral slip in addition to dip slip	Woodward [1977]
NM-17	Jemez Mountains	N55° W	N	HF	Hydrofrac measurements to depths of 2.93 km; average trend of	Haimson [1977b] and
	35.92°, 106.83°	N80°W	N?	G-D, CC	Quaternary dikes and cinder cones, also Vallez caldera elongation	R. L. Smith et al. [1970]
NM-18	Naciemento uplift 36.0°, 106.88°	N62°W	N	FM(C)	predominantly normal with strike slip component; no information given on plunge of P or T axes	Sanford et al. [1979]
NM-19	Espanola 36.14°, 106.27°	N75°W	N	FM(C)	predominantly normal event; no information on plunge of P or Taxes	Sanford et al. [1979]
NM-21	Western Raton volcanic field 36.42°, 104.92°	N48°E	N?	G-D	basaltic dikes generally 3–5 km long, late Tertiary or Quaternary in age	Griggs [1948]

6122

.

.

NM-22	southeast of Raton 36.53°, 103.25°	NI4°E	N?	G-CC	based on several basaltic cinder cone alinements, (>5 m.y. old); longest alinement Don Carlos Hills, contains 16 cones within 22 km	Baldwin and Muehlberger [1959]
NM-23	Raton volcanic field	N23°E	N?	G-D	well-exposed basaltic dike swarm with average trend of N67°W; probably 2-3 m v old on basis of nearby flows	Wood et al. [1953]
NM-24	Raton volcanic field	N20°E	N?	G-D	several well-exposed basaltic dike swarms with average trend ~N70°W late Tertiary or Ousternary in age	Griggs [1948]
NM-25	Mora County 36.87° 104.5°	N36°E	N?	G-D	basaltic dike ~8 km long; probably 3-4 m.y. old on basis of	Wanek [1962]
NM-26	Sangre de Cristo Mountains	N74°W	N?	G-D	basaltic dike which intrudes Quaternary fan gravels	McKinlay [1956]
NM-27	Taos plateau 36.84°, 105.95°	N73°W	N	G-CC, FS	basaltic volcanism 3-4 m.y. B.P.; Lambert mentions transform-style near-vertical faults that trend nearly E-W and have horizontal slickensides	Luedke and Smith [1978a] and Lambert [1966]
NM-28	Dulce 37.0°, 107.0°	N73°E	N	FM(S)	normal fault solution well constrained by surface wave data and by body wave waveforms; T axis plunge = 1°E; P axis plunge = 83°; focal depth = 3 km	R. B. Herrmann (written communication, 1980)
					New York	
NY-I	Alma Township 42.08°, 78°	N15°W	SS/T	HF	depth, 510 m; $S_{Hmax} > S_v = S_{Hmin}$	Haimson [1974a]
NY-2	Allegany County 42.08°, 78°	N30°W	?	HF	only orientation given, no information on magnitudes or depth	Overbey and Rough [1968]
NY-3	Attica 42.8°, 78.2°	N29°W	SS/T	FM(S)	based on surface wave and body wave solutions; T axis plunge = 28°W; P axis azimuth = N62°E, plunge = 1°NE	Herrmann [1979]
NY-4	Blue Mountain Lake 43.88°, 74.33°	N19°W	Т	FM(A)	average of numerous thrust events	Sbar et al. [1972]
NY-5	Altona 44.90°, 73.67°	N17°W	Т	FM(S)	predominantly thrust event; P axis azimuth = N73°E, plunge = 8°E: T axis plunge = 84°	Aggarwal et al. [1977]
NY-6	Pumpkin Hollow 42.83°, 73.66°	~N40°E	Т	G-FS	reverse faults cutting Pleistocene gravels; average strike and dip of faults is N40°E, 65°SE	Oliver et al. [1970]
NY-7	Oswego 43.45°, 76.52°	N23°W	Т	OC	depth, 810 m	N. Tillman (oral communication, 1980)
					North Carolina	
NC-1	Flowers 35.66°, 78.27°	~N7°E	Т	G-FS	reverse fault offsetting Pleistocene or Pliocene deposits; significant lateral offsets may have occurred	Daniels and Gamble [1972]
NC-2	Stancils Chapel 35.57°, 78.18°	~N35°E	Т	G-FS	reverse fault offsetting Tertiary deposits	Prowell [1980]
NC-3	Mount Gilead 35.17°, 80.08°	~N39°E	Т	G-FS	reverse fault offsetting lower Tertiary deposits	White [1952]
					Ohio	1
OH-1	Hocking County/Falls Township 39.5°, 82.5°	N25°W	SS	HF	depth, 810 m	Haimson [1974a]
OH-2	Barberton 41.01°, 81.64°	N-S	SS/T	OC	depth, 701 m; $S_{Hmax} >> S_v \simeq S_{Hmin}$	Obert [1962]
					Oklahoma	
OK-I	Kingsfisher County 35.9°, 97.9°	N25°W	• ?	HF	depth and magnitudes of stresses not given	von Schonfeldt et al. [1973]

· · · · · · ·

4

.

AND CONTRACT

					TABLE 1. (continued)	
Site	Location*	Least Principal Horizontal Stress Orientation	Stress Regime†	Type of Indicator‡	Commente	
					Comments	References
OR-1	Adel 42.17°, 119.92° Deschutes Valley	N60°W	N/SS	FM(S)	1968 Adel (Warner Valley) earthquake; combination normal and strike slip faulting; P axis azimuth = N65°E, plunge = 35°NE; T axis plunge = 13°SE	Schaff [1976]
	45.15°, 120.86°	N/2*W	T	FM(C)	1976 Deschutes Valley earthquake; composite mechanism using foreshocks, mainshock, and aftershocks; P axis azimuth = N18°E, plunge = 13°S; T axis plunge = 77°	Couch et al. [1976]
PA-I	Port Matilda	N509E	Ŧ	0.000	Pennsylvania	
	40.78°, 78.07°		1	G-FS(C)	modern offset of core holes exposed in road cut, motion on	Schäfer [1979]
PA-2	Millerstown 40.55°, 77.58°	N10°E	Т	G-FS(C)	modern offset of core holes exposed in road cut, motion on	Schäfer [1979]
PA-3	McKean County	N20°W	?	HF	preexisting reverse fault	Sendjer [1979]
	41.8°, 78.6°				depin and stress magnitudes not reported	Overbey and Rough [1968]
SC-1	Summerville				South Carolina	
JC-1	32.60°, 80.32°	N65°E	N?	HF	average of two impression orientations in depth range 100-340 m;	M. D. Zoback et al (1978)
SC-2	Langley 33.53°, 81.85°	N55°E	N	G-FS	estimated accuracy of orientation, ±20° post-Eocene motion on normal faults with average trend of N35°W	Index and Zur or (1076)
SC-3	west of Columbia	N23°E	?	G-D	±5° Orientation of post Forema(2) classic differ	Inden and Zupan [1975]
C-4	34.00°, 81.00° Cheraw	Maan	_		orientation of post-cocene(?) clastic dikes	Zupan and Abbot [1975]
	34.75°, 80.0°	N/8°E	Т	G-FS	post-Eccene motion on reverse faults with average trend of N78°E	Howell and Zupan [1974]
iC-5	Lake Jocassee 35.0°, 82.87°	N30°W	Т	HF	depth, 185-255 m; stress orientation subparallel to topography:	Haimson 1976
C-6	Trenton	N55°E	Т	FM(S)	$S_{\rm Hmax} > S_{\rm Hmin} > S_{\rm v}$	11 anison, 1970
	33.74°, 81.71°				striking N18°E also allowable; in either case, P axes plunge $<10^\circ$; T axes plunge $\approx 85^\circ$	A. Tarr and P. Talwani (written communication, 1980)
D-1	Lead	N40°W	N	00	South Dakota	
	44.35°, 103.80°		N	00	depth, 1890 m; $S_v > S_{Hmax} > S_{Hmin}$	Aggson and Hooker [1980]
'N-1	Rockwood Harrimon	NUMB	_		Tennessee	Ť,
	35.90°, 84.67°	NIUE	Т	G-FS(C)	modern offset of core holes exposed in road cut, motion on	Schäfer [1979]
'N-2	Rockwood-Harriman	N20°E	Т	G-FS(C)	average horizontal component of shortening on core hole offsets:	Set # ((1070)
'N-3	Knoxville	~N32°W	т	00	N70°W; range in values E-W to N50°W	Schajer [1979]
	36.0°, 83.95°		-	00	overcore at 282-m depth	Aggson and Hooker [1980]
X-1	Morton	10.05			Texas	
v .	~33.65°, 102.7°	N24*E	?	HF	average of fracture orientations in three wells, 5° range in values; depth range, 1.52–1.55 km; no information on relative magnitude of stresses	Zemanek et al. [1970]
N- 2	22.92°, 103.05°	N29°E	?	HF	average of fracture orientations in three wells, 4° range in values:	Zemanek at al 110701
X-3	Andrews	N6°E	?	HF	depth, 2.32 km; no information on relative magnitude of stresses	
	~32.3°, 102.75°				depth range, 1.3-1.4 km; no information on relative magnitude of stresses	Zemanek et al. [1970]

422 ** ***

- -

•

.

TX-4	west of Snyder ~32.5°, 101.12°	NI2°W	?	HF	average of fracture orientations in two wells, 18° range in values; depth, 915 m; no information on relative magnitude of stresses.	Zemanek et al. [1970]
TX-5	Big Spring ~32.3°, 101.2°	N6°W	?	HF	average of fracture orientations in three wells, 22° range in values; depth range, 820–915 m; no information on relative magnitude of stresses	Zemanek et al. [1970]
TX-6	southeast of Midland ~31.87°, 101.85°	N17°E	?	HF	one well; depth, 2.13 km; no information on relative magnitude of stresses	Zemanek et al. [1970]
TX-7	southeast of Midland ~31.7°, 101.9°	N3°E	?	HF	one well; depth, 2.59 km; no information on relative magnitude of stresses	Zemanek et al. [1970]
TX-8	southwest of Odessa ~31.62°, 102.15°	N4°E	?	HF	average of fracture orientations in two wells, 3° range in values; depth, 2.38 km; no information on relative magnitude of stresses	Zemanek et al. [1970]
TX-9	Monahans ~31.62°, 102.6°	N5°E	?	HF	average of fracture orientations in four wells, 29° range in values; depth 1.04 km; no information on relative magnitude of stresses	Zemanek et al. [1970]
TX-10	south of Monahans ~31.5°, 102.67°	N29°E	?	HF	one well; depth, 1.43 km; no information on relative magnitude of stresses	Zemanek et al. [1970]
TX-11	southeast of Monahans ~31.42°, 102.45°	N9°E	?	HF	one well; depth, 975 m; no information on relative magnitude of stresses	Zemanek et al. [1970]
TX-12	Marble Falls 30.57°, 98.27°	N23°E	SS(T)	HF	depth, 346 m; $S_{Hmax} >> S_v \ge S_{Hmin}$	Roegiers and Fairhurst [1973]
TX-13	southeastern 28.9°, 96.30°	N26°W	N	G-FS	active growth faults, general regional trend	Howard et al. [1978]
TX-14	southern 26.75°, 97.72°	N81°W	N	G-FS	active growth faults, general regional trend	Howard et al. [1978]
TX-15	Snyder 33.0°, 100.7°	N31°W	N	FM(S)	predominantly normal with strike slip component; based on surface wave and body wave solutions; T axis plunge = 9°NW; P axis azimuth = N36°E, plunge = 60°S; depth ~ 3 km	Voss and Herrmann [1980]
TX-16	Valentine 30.69°, 104.57°	N74°E	SS	FM(S)	1931 Valentine earthquake, nearly purely strike slip event; T axis plunge = 12°W; P axis azimuth = N16°W, plunge = 12°S	Dumas et al. [1980]
					Utah	
UT-I	Cedar City 37.8°, 113.03°	N60°E	N	FM(S)	normal fault event, T axis plunge = 10° E; P axis plunge = 76°	R. B. Smith and M. L. Sbar [1978]
UT-2	Cove Fort 38.58°, 112.83°	N75°W	N	FM(C)	predominantly normal with strike slip component; T axis plunge = 34°W; P axis azimuth = N54°W, plunge = 54°SE	R. B. Smith and A. G. Lindh [1978]
UT-3	west of San Rafael swell 38.75°, 111.0°	E-W	N?	G-D	basaltic dikes, latest Pliocene in age	P. T. Delaney (oral communication, 1979)
UT-4	Price 39.5°, 110.5°	N15°E	Т	FM(C)	predominantly thrust event; T axis plunge = 65°; P axis azimuth = N75°W, plunge = 25°W	R. B. Smith et al. [1974a]
UT-5	Nephi 39.6°, 111.9°	N74°W	N/SS	FM(S)	approximately equal components of strike slip and normal faulting; Taxis plunge = 20°E; P axis azimuth = N40°E, plunge = 48°S	R. B. Smith and M. L. Sbar [1974]
UT-6	Uinta basin 39.83°, 109.25°	N25°E	?	G-D	Gilsonite dikes, post-Eccene in age; mapped as cutting Quaternary alluvium	Untermann and Untermann [1964]
UT-8	Heber City (south) 40.4°, 111.4°	N27°E	Т	FM(C)	motion on very high-angle reverse fault (dip = 80°) or low-angle thrust; Taxis plunge = 55° , least horizontal stress taken as null axis: N27°E, plunge = 0°	Arabasz et al. [1979]
UT-9	Heber City (central) 40.52°, 111.31°	N41°E	N	FM(C)	predominantly normal event; T axis plunge = $17^{\circ}NE$; P axis plunge = 67°	Langer et al. [1979]
UT-10	Heber City (north) 40.6°, 111.2°	N3°E	Т	FM(C)	motion on very high angle reverse fault (dip = 80°) or low-angle thrust (dip = 10°); T axis plunge = 55° , least horizontal stress direction taken as null axis: N3°E, plunge = $2^{\circ}N$	Arabasz et al. [1979]
UT-11	Salt Lake City 40.72°, 112.04°	N98°W	N	FM(C)	predominantly normal fault event; T axis plunge = 14°SW; P axis plunge = 72°	Arabasz et al. [1979]
UT-12	Salt Lake City 40.78°, 111.88°	N72°W, N125°W	N	G-FS(G)	two consistent groove sets found on two faults whose strike varied by nearly 90°	Pavlis and Smith [1980]

and the same of the same section of the

-			
the part	4 149, ⁹⁴		

_	 			And in case		the state of the second	and an and a little of the lit
-	 -						
-	 	_			 		
					 	-	
	 		- 10 CO 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10		 		

TABLE I. (continued)

Site	Location*	Least Principal Horizontal Stress Orientation	Stress Regime†	Type of Indicator‡	Comments	References
					Utah (continued)	· · · · · · · · · · · · · · · · · · ·
UT-13	east of Salt Lake City 40.8°, 111.5°	N60°W	N	FM(C)	predominantly normal fault event; T axis plunge P axis plunge = 64°	Arabasz et al. [1979]
UT-14	Logan ~41.7°, 111.7°	N84°W	N	FM(C)	nearly purely normal fault event; T axis plunge = 15° E; P axis plunge = 75°	Arabasz et al. [1979]
UT-15	near Idaho-Utah border 41.8°, 112.9°	N105°W	N	FM(S)	1934 Hansel Valley earthquake, predominantly normal event; Taxis plunge = 30°NE; Paxis azimuth = N60W, plunge = 50°W	Dewey et al. [1972]
UT-16	Idaho-Utah border 41.9°, 112.66°	N103°W	N	FM(C)	predominantly normal with strike slip component; T axis plunge = 2°W; P axis azimuth = N19°W, plunge = 57°S	Richins [1979]
UT-17	Sunnyside 39 57° 110 40°	N59°E	Т	OC	depth, 323 m; $S_{Hmax} > S_{Hmin} >> S_v$	Aggson and Hooker [1980]
UT-18	St. George	~N65°W	N	G-CC	basaltic cinder cone <5 m.y. old	Luedke and Smith [1978b]
UT-19	Roosevelt Hot Springs 38.51°, 112.85°	~N55°W	N	HF	drilling induced hydrofrac in geothermal area	Keys [1979]
VA-I	North Anna 38 03° 77 73°	N10°E	T	FM(A)	Virginia average of composite predominantly thrust mechanisms; Paxes range from N80° to 120°F.	Dames and Moore [1976]
VA-2	Stafford fault zone	N33°E	Т	G-FS	latest Tertiary, possibly Quaternary reverse slip on fault trending N33°E	Mixon and Newell [1977]
VA-3	Falls Church	~N35°E	Т	G-FS	reverse fault offsetting Miocene(?) alluvial deposits	Prowell [1980]
VA-4	Dutch Gap	~N10°E	Т	G-FS	reverse fault offsetting Paleocene age sediments	Prowell [1980]
VA-5	Waynesboro 37.03°, 78.78°	~N20°E	Т	G-FS	reverse fault offsetting Miocene (or younger) sediments	Nelson [1962]
					Washington	
WA-I	Mount Rainier National Park 46.76°, 121.52°	N70°E	SS	FM(S)	nearly purely strike slip event	Crosson and Lin [1975]
WA-2	Columbia River basin 46.75°, 119.58°	N85°E	Т	FM(A)	based on composites from three separate swarm events and from a nearby single event solution; predominantly thrust mechanisms with T ares scattered about vertical	Malone et al. [1975] and R. B. Smith and A. G. Lindh [1978]
WA-3	Puget Sound 47.5°, 122.5°	~N70°W	SS/T	FM(A)	three composite mechanisms with P axis azimuths N36°W, N14°E, N22°E, all plunges \leq 15°; all show combination reverse and strike slip movement; T axes plunge between 12° and 70°; stress orientation consistent with best constrained mechanism	Crossor [1972]
		NOOR	66 /T	UE	West Virginia	Mainer (1077a) and
w v-1	wayne 38.14°, 82.00°	W DUCK	33/ I T		ucput, oss III, $S_{Hmax} \sim S_v = S_{Hmin}$	Abou-Sayed et al. [1978]
₩V-2	атапкип 38.65°, 79.35°	W D - W	1	U-13(U)	on preexisting reverse faults	Schajer [1979]
WV-3	Berkeley County 39.55°, 78.75°	N65°W	Т	HF	depth, 25 and 135 m; $S_{Hmax} >> S_{Hmin} \approx S_v$; depth of orientation measurement not given	Haimson [1977b]
WV-4	northwestern 39.75°, 80.42°	N6°E	Т	HF	average stress orientation from four localities several miles apart	Parsons and Dahl [1972]

					Wisconsin		
WS-1	Waterloo 43.18°, 89.00°	N33°W	T	HF	average of deeper measurements in two wells; measurements at $17-238$ m in one well and $2-74$ m in another well; found decoupling between surface stresses and tectonic stresses at depth; accuracy of orientations $\pm 15^{\circ}$	Haimson [1978a]	
WS-2	Montello 43.78°, 89.33°	N25°W	SS	HF	measurements at 75 and 190 m; $S_{timax} > S_v >> S_{timin}$ at 190 m	Haimson (1976)	
WS-3	Valders 44.07°, 87.85°	N30°W	Т	HF	depth, 300 m; stress orientations consistent with depth, vertical stress is minimum stress at all depths	Haimson [1978b]	
					Wyoming		
WY-1	Green River basin ~42.5°, 109°	N65°W	SS	HF	depth, 2775 m	Power et al [1976]	
WY-2	Yellowstone caldera 44.47°, 110.65°	wsw	N	FM(C)	based on alinement of rhyolite domes, thermal zones, trend of young faults, and a composite normal fault focal mechanism for Yellowstone Lake.	R. L. Christiansen (manuscript in preparation, 1980) R. B. Smith et al. [1977] and Weaver et al. [1979]	
WY-3	north rim Yellowstone caldera 44.68°, 110.62°	N40°E	N/SS	FM(A)	average of several single-event solutions and foreshock/ main event composites; predominantly normal faulting, some strike slip events	Pitt et al. [1979]	
WY-4	Green River 41.55°, 109.45°	N60°E	SS	OC	average of two overcore measurements at separate localities, both in Green River, one measurement depth 259 m, S _{Hmin} = N52°E; the other 488 m, S _{Hmin} = N67°E	Aggson and Hooker [1980]	
WY-5	Leucite Hills ~41.75°, 109°	N60°E	N?	G-D, CC	high-potash leucite volcanic assemblage ~1 m.y. old	Schultz and Cross [1912], Kemp and Knight [1903], and McDowell [1971]	

Data arranged by state (within each state, data are generally numbered from south to north).

* Site locations given in °N latitude, °W longitude.

 \dagger Stress regimes indicated are N, normal faulting (S₁ vertical), SS, strike slip faulting (S₂ vertical), and T, thrust or reverse faulting (S₃ vertical).

‡ For a mixed mode of deformation or for data in which one stress magnitude is unknown, a slant separates the two possible stress states. The types of indicators are (1) Geologic: G-CC, cinder cone alinement; G-D, dike trends; G-DE, drill hole ellipticity; G-FS, fault slip on basis of trend of fault and primary type of offset; G-FS(G), fault slip indicated by grooves and slickensides; G-FS(H), fault slip on basis of measured offsets in historic earthquakes; and G-FS(C), fault slip determined from offset core holes, (2) focal mechanisms: FM(S), single-event mechanism; FM(C), composite mechanism; and FM(A), average stress direction from several mechanisms, and (3) in situ stress: HF, hydrofrac, and OC, overcore.