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Abstract Global hydrological and land surface models are increasingly used for tracking terrestrial
total water storage (TWS) dynamics, but the utility of existing models is hampered by conceptual and/or
data uncertainties related to various underrepresented and unrepresented processes, such as groundwater
storage. The gravity recovery and climate experiment (GRACE) satellite mission provided a valuable
independent data source for tracking TWS at regional and continental scales. Strong interests exist in
fusing GRACE data into global hydrological models to improve their predictive performance. Here
we develop and apply deep convolutional neural network (CNN) models to learn the spatiotemporal
patterns of mismatch between TWS anomalies (TWSA) derived from GRACE and those simulated
by NOAH, a widely used land surface model. Once trained, our CNN models can be used to correct
the NOAH-simulated TWSA without requiring GRACE data, potentially filling the data gap between
GRACE and its follow-on mission, GRACE-FO. Our methodology is demonstrated over India, which has
experienced significant groundwater depletion in recent decades that is nevertheless not being captured by
the NOAH model. Results show that the CNN models significantly improve the match with GRACE TWSA,
achieving a country-average correlation coefficient of 0.94 and Nash-Sutcliff efficient of 0.87, or 14% and
52% improvement, respectively, over the original NOAH TWSA. At the local scale, the learned mismatch
pattern correlates well with the observed in situ groundwater storage anomaly data for most parts of India,
suggesting that deep learning models effectively compensate for the missing groundwater component in
NOAH for this study region.

Plain Language Summary Global hydrological models are increasingly being used to assess
water availability and sea level rise. Deficiencies in the conceptualization and parameterization in these
models may introduce significant uncertainty in model predictions. GRACE satellite senses total water
storage at the regional/continental scales. In this study, we applied deep learning to learn the spatial and
temporal patterns of mismatch or residual between model simulation and GRACE observations. This
hybrid learning approach leverages strengths of data science and hypothesis-driven physical modeling. We
show, through three different types of convolution neural network-based deep learning models, that deep
learning is a viable approach for improving model-GRACE match. The method can also be used to fill in
data gaps between GRACE missions.

1. Introduction
Terrestrial total water storage (TWS) is a key element of the global hydrological cycle, affecting both water
and energy budgets (Rodell & Famiglietti, 2001). Tracking the TWS on a periodic basis was historically diffi-
cult because of the lack of reliable in situ observations (Seneviratne et al., 2004), a situation that is still true in
most countries. The gravity recovery and climate experiment (GRACE) satellite mission provided unprece-
dented tracking of the global TWS dynamics during its 15-year mission (2002–2017). GRACE enabled remote
sensing of TWS anomalies (TWSA; i.e., variations from a long-term mean) at regional to continental scales
(>100,000 km2). The availability of such information has had a profound impact on the development and
validation of regional and global hydrological models, which are increasingly being used to assess changes in
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the hydrological cycle under current and future climate conditions. These physically based, semidistributed
hydrological models are built on mathematical abstractions of physical processes that govern the movement
and storage of water, as well as land surface energy partitioning in certain models, in space and time. Despite
its coarse resolution, GRACE provides a “big picture" check of model-simulated TWS variations and thus
represents a valuable independent source of information for diagnosing and improving the model perfor-
mance. So far, GRACE data has been used in model calibration and parameter estimation (Lo et al., 2010;
Milzow et al., 2011; A. Y. Sun et al., 2012; Werth & Güntner, 2010) and data assimilation (Girotto et al.,
2016; Houborg et al., 2012; Khaki et al., 2017; Li et al., 2012; Schumacher et al., 2016; van Dijk et al., 2014).
While results of these studies all indicate that the assimilation of GRACE data generally improves model
skills, the improvements may be limited by uncertainties in model parameters and structures (e.g., missing
deep groundwater storage and agricultural irrigation), as well as assumptions underlying data assimilation
schemes (e.g., a priori specified spatial and temporal error covariance structures; Girotto et al., 2016). Cal-
ibration against an imperfect model structure using inaccurate error models may lead to information loss
and greater propensity for forecast error (Gupta & Nearing, 2014). A recent study compared TWSA trends
obtained from seven global hydrological models with those derived from GRACE over 186 global river basins
(Scanlon et al., 2018). Their results indicate a large spread in model results and poor correlation between
models and GRACE, which were attributed by the authors to the lack of surface water and groundwater
storage components in most land surface models (LSMs), low storage capacity in all models, uncertainties
in climate forcing, and lack of representation of human intervention in most LSMs.

Unlike physically based models, pure data-driven methods (black box models) seek to establish a regres-
sion model between climate forcings (e.g., precipitation and temperature) and GRACE TWS (Humphrey
et al., 2017; Long et al., 2014; Seyoum & Milewski, 2017) or between TWS and its various components (Miro
& Famiglietti, 2018; A. Y. Sun, 2013; Zhang et al., 2016). Data-driven models are suitable for applications
where there are plenty of observations, but a complete understanding of the underlying physical processes
is lacking. A common criticism of black box models, however, is related to their lack of interpretability
and generalizability—a regression model trained on the premise of a strong correlation between predic-
tors and the predictand may give unreliable results whenever and wherever such correlation is weak. In
addition, pure data-driven models often do not integrate the full stack of information (e.g., soil property,
topography, and vegetation types) that is normally represented in physically based models and therefore
are limited to simulating only certain aspects (e.g., interannual variations) of a physical process. It is thus
desirable to apply knowledge gained from decades of physical-based modeling to inform the development
of data-driven models. These hybrid physical science and data science methods will help to bridge and thus
benefit hypothesis-driven and data-driven discoveries (Karpatne et al., 2017).

In this work we apply a hybrid approach that combines the strengths of physically based modeling and
deep learning. Specifically, we use deep convolutional neural networks (CNN), which are a special class of
artificial neural networks, to learn the spatiotemporal patterns of “mismatch” between the TWSA simulated
by an LSM and that observed by GRACE. Here the term mismatch broadly refers to the difference either
between two data sets or between model simulations and observations. The learned mismatch patterns are
then fed back to the LSM to compensate for deficiencies in the LSM. That means once trained and validated,
the CNN model may be used to predict the observed TWSA without requiring GRACE TWSA as inputs, thus
potentially filling the data gap between GRACE and its follow-on mission. In the same fashion, the trained
CNN model may also be used to reconstruct TWSA for the pre-GRACE era. The basic principle underlying
our hybrid modeling approach is similar to that behind data assimilation methods, both exploiting mismatch
patterns between predicted and observed variables. However, the assimilation part of our hybrid method is
driven by deep learning models that set the current state-of-the-art in computer vision and not limited by
the Gaussian-like unimodal error distribution commonly assumed in many data assimilation schemes. On
the other hand, the spatiotemporal propagation part of our method is driven by a physically based LSM,
mitigating the lack of spatial continuity and physical interpretation in purely data-driven statistical models.

As a case study, we demonstrate our hybrid approach over India, where irrigation-induced groundwater
depletion has been confirmed by GRACE and in situ studies (Chen et al., 2014; Long et al., 2016; MacDonald
et al., 2016; Rodell et al., 2004), but is not well resolved in many contemporary LSMs. We evaluate the per-
formance of three different types of CNN models, driven under different predictor combinations. Compared
to the original LSM, we show that all CNN models considered here significantly improve the performance
of the corrected LSM model, both at the country and grid scales. In the following, section 2 describes the
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Figure 1. Map of study area (latitude: 7.75–47.75◦, longitude: 60–100◦), where India is bounded by the dark solid line.
During training, data corresponding to the entire square area is used to reduce potential boundary effects and increase
information content for training.

study area and data used, section 3 provides details on the technical approach, and results and discussions
are given in section 4.

2. Data and Data Processing
2.1. Description of the Study Area, India
A large part of the annual rainfall budget over the Indian subcontinent can be attributed to the Indian Sum-
mer monsoon, which results from interactions of several complex atmospheric processes evolving over many
different spatiotemporal scales and is modulated by the steep topography of the Himalayas (Bookhagen &
Burbank, 2010). The entire Indian region (except for the southern part) receives maximum precipitation
during the monsoon season, which typically lasts from June to September. At the country level, the average
rainfall received during the monsoon season is 85 cm, amounting to about 78% of the annual rainfall (Mooley
& Parthasarathy, 1984). In the southern part of the country, the monsoon season extends to October,
sometimes even to November (Bhanja et al., 2016).

India depends heavily on groundwater resources. Groundwater storage is a function of climatic variables
such as precipitation and evaporation, particularly in areas with shallow groundwater tables (Bhanja et al.,
2016). The Indus-Ganges-Brahmaputra systems, which together drain the northern Indian plains, form a
regional alluvial aquifer system that is regarded as one of the most productive aquifers of the world; on the
other hand, groundwater is available in a limited extent within the weathered zone and underlying frac-
tured aquifers within the remaining two thirds of the country (Mukherjee et al., 2015). Irrigation withdrawal
accounts for over 90% of the total groundwater uses (India Central Ground Water Board, 2014). Overuse of
groundwater beyond its potential has caused pronounced groundwater depletion in northwest India, includ-
ing the states of Punjab, Haryana and Delhi, and Rajasthan (Figure 1). The country has established a dense
in situ groundwater monitoring network. Groundwater level measurements are taken on a seasonal basis in
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January, April/May, August, and November, from a network of piezometers (4,939) and nonpumping obser-
vation wells (10,714) that are typically screened in the first available aquifer below ground surface (Bhanja
et al., 2016).

The extensive in situ groundwater monitoring coverage shall provide additional information for
cross-validating patterns learned by the deep CNN models. This study uses the in situ groundwater data set
published recently by Bhanja et al. (2016), which consists of 3,989 wells that were selected to have tempo-
ral continuity (i.e., at least 3 out of 4 seasonal data should be available in all years). The authors derived
groundwater storage anomalies (GWSAs) from water level measurements by using specific yield values cor-
responding to 12 major river basins in the country. The temporal coverage of the data set is from January
2005 to November 2014. More details on the data processing and quality control can be found in Bhanja
et al. (2016).

Besides groundwater, the impact of surface water is relatively high along Indus River and Ganges River but
is generally small in the area of severe groundwater depletion in northwest India (Getirana et al., 2017).

2.2. GRACE-derived TWSA
This study uses the monthly mascon TWSA product (RL-05) released by Jet Propulsion Laboratory (JPL)
(https://grace.jpl.nasa.gov), which has a 0.5◦ × 0.5◦ grid resolution but inherently represents 3◦ × 3◦

equal-area caps (Watkins et al., 2015). The period of study covers from April 2002 to December 2016. Uncer-
tainty in GRACE data is related to both measurement and leakage errors, leading to potential signal loss
(Wiese et al., 2016). Measurement errors are related to, for example, system-noise error in the intersatel-
lite range rate and accelerometer error (Swenson et al., 2003). Leakage errors arise because boundaries of
hydrological basins generally do not conform to the boundaries of the mascon elements and because leakage
across land/ocean boundaries (i.e., from mascons that cover both land and ocean). For this work, we applied
the gain factor (scaling factor) distributed with the JPL mascon to compensate for the signal loss. The gain
factor, when combined with coastal line resolution improvement, was shown to reduce leakage errors asso-
ciated with mass balance of large river basins (>160,000 km2) by an amount of 0.6–1.5 mm equivalent water
height averaged globally (Wiese et al., 2016). We obtained the total uncertainty bound of monthly TWSA
for the study region by combining the measurement error released by JPL with the estimated leakage error.
The leakage error was estimated using the method of Wiese et al. (2016).

2.3. NOAH LSM
The NOAH LSM from NASA's global land data assimilation system (Rodell et al., 2004) has been exten-
sively used in previous GRACE studies. Like many other LSMs, NOAH maintains surface energy and
water balances and simulates the exchange of water and energy fluxes at soil-atmosphere interface (Ek
et al., 2003). NOAH does not simulate surface water storage (SWS; e.g., in rivers, lakes, and wetlands) and
surface runoff routing, nor does it account for deep groundwater storage and human intervention. The
roles of SWS and GWS can be significant in various parts of the study area, as mentioned previously. For
this study, the monthly forcing (total precipitation and average air temperature at 2 m) and outputs of
NOAH V2.1 (0.25◦ × 0.25◦) were downloaded from NASA's EarthData site (http://earthdata.nasa.gov). The
NOAH-simulated TWS was calculated by summing soil moisture in all four soil layers (spanning from 0- to
200-cm depth), accumulative snow water, and total canopy water storage (the contribution of canopy water
is typically negligible but is included for completeness). To be consistent with the GRACE TWSA process-
ing, the long-term mean from January 2004 to December 2009 was subtracted from NOAH TWS to obtain
the simulated TWSA.

3. Methodology
3.1. Model and GRACE TWSA Mismatch
TWS is the sum of the following components (Scanlon et al., 2018):

TWS = SnWS + CWS + SWS + SMS + GWS, (1)

where SnWS represents snow water storage, CWS is canopy water storage, SWS is surface water storage, SMS
is soil moisture storage, and GWS is groundwater storage. We define the difference or mismatch between
NOAH-simulated TWSA and GRACE TWSA at time t as

S(t) = TWSANOAH(t) − TWSAGRACE(t), (2)
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Figure 2. Illustration of the flow of information from GLDAS-NOAH and
GRACE to the deep learning model. Here the observed mismatch S(t) (blue
solid line) is only used to train the convolutional neural networks deep
learning model and is no longer required after the model is trained. NOAH
TWSA is the base predictor (red solid line). Other predictors may include
precipitation and temperature. The dashed arrow line indicates that the
same S(t) is also used for GRACE data assimilation studies.
GLDAS = global land data assimilation system; TWSA = total water storage
anomalies; GRACE = gravity recovery and climate experiment.

where the mismatch S(t), which varies in both space and time, may be
related to two types of errors: (a) systematic error or bias caused by either
missing processes or uncertain conceptualization in NOAH (e.g., omis-
sion of GWS) and (b) random error related to uncertain data and model
parameters. For the purpose of this work, we use CNN models to learn
a functional relationship between S(t) and its predictors X by solving a
regression problem

𝑓 ∶ X → S, (3)

where f = f(X,w) is a CNN model; w denotes the network parame-
ters to be solved by using {Xi, Si}N

i=1 as training data, where i = 1…N
is the index of training samples, Xi = {x𝑗}M

𝑗=1 is a set of input samples
from M different predictors xj(j = 1, …M), and Si are samples of S(t)
obtained by using equation (2). After training and validation, the CNN
model can be used to predict and, thus, give corrected TWSA without
requiring GRACE data.

Figure 2 further illustrates the relations among NOAH, GRACE, the
deep learning model, and the proposed workflow. The deep learning
workflow (solid line) is similar to that used in the traditional data assim-
ilation (dashed line), both exploiting the residual between model and
observations. The main difference is that in deep learning, the GRACE
TWSA data are not used to correct the model states but to train a
regression model for predicting the mismatch, circumventing challenges
related to calibrating a conceptually uncertain physical model. Details
on the design and architecture of the CNN models are provided in the
subsection below.
3.2. Design and Architectures of CNN Deep Learning Models
CNN, originally introduced by LeCun (LeCun, 1989; LeCun & Bengio,
1995), is symbolic of the modern deep learning era that began around
2006 (Schmidhuber, 2015). CNNs and their variants have been exten-

sively used in image classification and are behind several high-profile deep learning model architectures
that have won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in recent years (He et al.,
2016; LeCun et al., 2015; Simonyan & Zisserman, 2014; Szegedy et al., 2015). The design of CNN was inspired
by the human visual cortex, aiming to extract subtle features embedded in the inputs. As its name suggests,
CNN applies discrete convolution operations to project an input image (or a stack of images) onto a hierar-
chy of feature maps, which may be thought of as nonlinear transformations of the input. In practice, a CNN
deep learning model architecture includes the input, output, and a series of hidden convolutional layers in
between to extract spatial features (e.g., edges and corners) from each layer's input. Thus, by design, CNN
models are highly suitable for learning multiscale spatial patterns from multisource gridded data, which is
a challenging problem to solve using the traditional multilayer perception neural network models that do
not scale well on images.

In a convolution operation, a moving window, commonly referred to as a filter or kernel, is used to scan
along each dimension of the input image, with possible strides between the moves (a stride defines the
number of rows/columns to skip). For each move, a dot product is taken between the filter parameters and
the underlying input image patch, leading to a feature map at the end of scanning. The dimensions (width
W and height H) of a feature map are related to its input as

W = Win − DF + 2DP∕DS + 1, H = Hin − DF + 2DP∕DS + 1, (4)

where Win and Hin are dimensions of the input image, W and H are dimensions of the feature map, DF is the
filter dimension, DS is the stride size, and DP is padding size. Filter dimensions and stride sizes are commonly
kept the same for both dimensions. Equation (4) suggests that the dimensions of a feature map become
progressively smaller after each convolution operation. Zero padding may be used to add zeros around the
edges of the output feature map (i.e., DP in equation (4)) to preserve the input dimensions.
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CNN naturally achieves sparsity because each pixel in a feature map only connects to a small region in its
input layer. Also, by applying the same filter to scan the entire input image, the filter parameters are shared
and the resulting feature map is equivariant to shifts in inputs. Specifically, the units of a convolutional layer
l, Al

𝑗
, is related to feature maps of its preceding layer l − 1, Al−1

i i = 1, … ,Ml−1, by (Goodfellow et al., 2016)

Al
𝑗
= g

⎛⎜⎜⎝
Ml−1∑
i=1

Al−1
i ⊕ kl

i𝑗 + bl
𝑗

⎞⎟⎟⎠ , (5)

where M(l− 1) is the number of feature maps in layer l − 1, ⊕ denotes the convolution operator, k(l)
i𝑗 are the

filter parameters, b(i)
𝑗

are the bias parameters, and g(·) is the activation function. Equation (5) shows that
CNN involves a hierarchy of feature maps, with each layer learning from its preceding layer. When l = 1
(i.e., the first hidden layer), its input layer simply becomes the actual input image(s). The Rectified Linear
Unit (ReLU) function,

gx = max(0, x), (6)

is commonly used as the activation function for hidden CNN layers, which is less costly to compute than
other nonlinear functions (e.g., sigmoid) and is shown to improve the CNN training speed significantly
(Goodfellow et al., 2016). In regression problems, the linear function or hyperbolic tangent function (tanh)
is often used as the activation functions for the output layer to generate solution in the real domain. The total
number of CNN parameters (weights and biases) is determined by the number of filters, filter dimensions,
and stride dimensions, which are considered hyperparameters of the CNN model design and may be tuned
during training.

In addition to convolution operation, other commonly used CNN layer operations include pooling, dropout,
and batch normalization. Pooling aggregates information in each moving window to further reduce the size
of feature maps. For example, max pooling selects the maximum element in a pooling window. Dropout
operation randomly leaves out certain number of hidden neurons during training so that the net effect is
to prevent the network from overfitting; thus, it is regarded as a regularization technique. Batch normaliza-
tion performs normalization on hidden layers to improve network training speed and stability (Goodfellow
et al., 2016).

Figure 3 shows a high-level, architectural diagram of CNN deep learning models considered in this
work. Because the number of training samples (labeled data) is limited for many geoscience problems
including the one at hand, we tested several techniques to improve the performance of CNN models, includ-
ing (a) augmenting the NOAH TWSA training samples with additional predictors, such as precipitation
(P) and temperature (T), (b) including regions outside the study area (i.e., spanning 60–100◦ longitude,
7.75–47.75◦ latitude, as shown in Figure 1) in training to reduce potential boundary effects and increase
training information, and (c) transfer learning, which “borrows" the weights from a CNN model trained
using many other images. Precipitation and temperature are already part of the NOAH forcing. The logic
behind including them as additional predictors is that not all the information in the forcing is fully utilized
by the LSM. For example, precipitation contributes to surface water and groundwater recharge that are not
simulated by NOAH. Similarly, temperature is a proxy of evapotranspiration, which may not be simulated
accurately by the model. Humphrey et al. (2017) suggested that at least 40% of the total variance of GRACE
anomalies can be reconstructed from precipitation and temperature variability alone. Thus, in this study
precipitation and temperature are explored as additional predictors to help improve the model prediction.

As part of data preparation, all input data are formatted or resampled into 2-D images of equal dimen-
sions. Specifically, the 40◦ × 40◦ square region used in this study is represented by 128 × 128 pixel images
(0.3125◦ per pixel). The input and target images are normalized before training. Hydroclimatic variables
typically exhibit certain temporal correlation. To enable the CNN to explore temporal correlation between
each input variable and its antecedent conditions, we stack the input image at time t on top of its antecedent
conditions to form a 3-D volume (see Figure 3). We set the number of lags to 2 (i.e., t − 1, t − 2) after prelim-
inary experiments; thus, each input volume has dimensions 128 × 128 × 3. Figure 3 shows that our model
design includes two learning stages. In stage I, each input volume goes through a separate stack of convo-
lutional layers. In stage II, feature maps resulting from stage I are merged, and the results are fed to a deep
learning model to arrive at the final outputs. The first stage aims to extract unique features from each input,
while the second stage aims to perform deep learning of the spatial and temporal patterns within each input,
as well as covariation patterns across the inputs. Putting in a different way, the role of stage I is to prepare
inputs for use with the problem-independent, established CNN model architectures employed in stage II.
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Figure 3. General convolutional neural networks model architecture used in this study. The input layer consists of the
NOAH TWSA as the base input stack. Auxiliary predictors include precipitation and temperature. Each stack of input
images include data from multiple time steps, t, t − 1, … , t − n. The operations include two stages for shallow and
deep learning. The output is the predicted S(t) having the same dimensions as the input. TWSA = total water storage
anomalies.

In this work, we consider three CNN-based model architectures, VGG16, Unet, and Segnet, commonly used
in image semantic segmentation problems (i.e., associating each pixel of an image with a class label). VGG16
is a CNN-based model architecture consisting of 16 layers of 3 × 3 convolutional layers, 2 × 2 max pooling
layers, and then a fully connected layer at the end (Appendix A1). The number of filters used in each VGG16
convolutional layers monotonically increases. A VGG16 model pretrained using 1.3 million images from the
ILSVRC-2012 data set (Simonyan & Zisserman, 2014) is adopted in this work to implement transfer learning.
In Keras, this is equivalent to freezing all the hidden layers in VGG16, except for the last fully connected
layer, during training. This way, the CNN model will be able to adjust itself to the user-specific inputs while
transferring most of the weights learned from the ILSVRC-2012, which includes labeled images of 1,000
object classes (Russakovsky et al., 2015). Previously, Jean et al. (2016) used transfer learning models to predict
poverty based on satellite imagery. They showed that transfer learning “can be productively employed even
when data on key outcomes of interest are scarce.” Questions remain about the general applicability of
transfer learning to satellite images, which are very different from the images used in the ILSVRC data set.

Unet has demonstrated superb performance on semantic segmentation problems, especially on relatively
small training data sets (Ronneberger et al., 2015). Unet belongs to a class of encoder-decoder (also known
as end-to-end) model architectures. It consists of an encoding path (downsampling steps) to capture image
context, followed by a symmetric decoding path (upsampling steps) to enable precise localization (Appendix
A2). The Unet model architecture used in this study is shown in Appendix A2. It consists of repeated appli-
cations of two 3 × 3 convolution operations, each followed by a 2 × 2 max pooling layer. The number of
filters used is doubled after each downsampling step and then halved after each upsampling step. In the
final step, a 1 × 1 convolutional layer is used to generate the output. Unet models are characterized by the
copy and concatenation operations (known as skip connections) that combine the higher-resolution fea-
tures from the downsampling path with the upsampled features at the same level to better localize and learn
representations (dashed line with arrow in Figure A2). This is also the part of Unet that enables multiscale
learning.

Segnet is also a class of encoder-decoder architecture that was originally introduced to solve image seg-
mentation problems (Badrinarayanan et al., 2015). Similar to the Unet architecture, it includes an encoding
path and a decoding path. The main difference between the design of the original Segnet and Unet is that
the decoder in Segnet uses pooling indices computed in the max pooling step of the corresponding encoder
to perform nonlinear upsampling, while in Unet, the concatenation step is done before the pooling step.
Thus, the number of parameters of Segnet is smaller than that in the Unet. In this work, we use a variant of
the Segnet architecture, in which the pooling layers are removed and the upsampling layers in the decoder
are replaced by transposed convolution layers, which may be regarded as performing the reverse of con-
volutional operations (Zeiler et al., 2010). Different from upsampling, transposed convolution layers have
trainable parameters. The model design is shown in Appendix A3, which we shall refer to as the SegnetLite
in the rest of this discussion. Similar to Unet, SegnetLite also uses skip connections to combine feature maps
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from encoding and decoding steps. The SegnetLite model has a significantly smaller number of trainable
parameters (∼700 thousand) than Unet (7.8 million) and VGG16 (∼134 million ) and can be trained more
efficiently.

For Unet and SegnetLite models, stage I shallow learning (Figure 3) includes a single convolutional layer
with 16 filters for each type of predictors, the outputs of which are then merged and provided as inputs to
the respective deep learning model. In the case of VGG16, the maximum number of filters that can be used
in stage I is 3. This is because the trained VGG16 is designed to process images, which only have three color
channels.
3.3. Training and Testing of CNN Models
The open-source Python package Keras with the Tensorflow backend (Chollet et al., 2015) is used to
develop all CNN models presented in this work. Unless otherwise specified, the stochastic gradient descent
optimizer is used to train the CNN models with a learning rate of 0.01, decay rate of 1 × 10−6, and momentum
of 0.9. Out of a total of 177 monthly data available for the study period, 125 months or 70% is used for training
and the rest for testing. The loss or objective function used for network training is the weighted sum of two
fitting criteria

Criterion 1: 1
NgN

∑N

i=1

∑Ng

𝑗=1
(𝑓i,𝑗 − Si,𝑗)2,

Criterion 2:

∑N

i=1

∑Ng

𝑗=1
|||𝑓i,𝑗 − Si,𝑗

|||∑N

i=1

∑Ng

𝑗=1
|||Si,𝑗 − S̄𝑗

|||
,

(7)

in which fi,j and Si,j are the predicted and observed mismatch at grid cell j and month i, S̄𝑗 denotes temporal
average at cell j, Ng is the number of grid cells in the study area, N is the number of training samples in
the training period, and the summation is taken both spatially and temporally. Criterion 1 is the commonly
used mean square error (MSE), and criterion 2 is a modified form of the Nash-Sutcliff efficiency (NSE) that
is more sensitive to overprediction or underprediction than the L2 forms used in NSE (Krause et al., 2005;
N.-Z. Sun & Sun, 2015). The weight between two criteria is a hyperparameter and is set to 0.5 in this work.

The performance of trained models is evaluated against the observed GRACE TWSA using correlation
coefficient and NSE. For spatially averaged time series, the NSE is defined as

NSE = 1 −

∑Nv
i

(
TWSA◦

GRACE,i −
(

TWSA◦
NOAH,i − 𝑓 ◦

i

))2

∑Nv
i

(
TWSA◦

GRACE,i − ⟨TWSA◦
GRACE,i⟩

)2 , (8)

in which (◦) denotes spatially averaged quantities and ⟨⟩ denotes the temporal mean of observed values, and
Nv is the number of samples used for evaluation. The range of NSE is ( −∞,1].

All experiments are carried out on a Linux machine (Dell PowerEdge R730 server) running with GPU
(NVIDIA Tesla K80 GPU, 24Gb RAM total). Training typically takes 4, 3, and <1 s per epoch for VGG16,
Unet, and SegnetLite, respectively. Epoch is a deep learning term that refers to a full pass through a given
training data set, and each epoch may include several iterations as determined by the batch size (i.e., the
number of samples passed to the neural network during each training iteration).

4. Results
Figure 4 shows the seasonal patterns of S(t), obtained by averaging the grid values over sea-
sons December-January-February (DJF), March-April-May (MAM), June-July-August (JJA), and
September-October-November (SON). Recall that S(t) represents the mismatch between NOAH and
GRACE TWSA which, according to its definition in equation (2), tends to be negative in wet seasons and
positive in dry seasons because of the missing SWS and GWS components in NOAH. Significant spatial and
temporal variability can be observed in Figure 4. In particular, the histograms plotted on the right panel
of Figure 4 suggest that in MAM (premonsoon dry season) and JJA (first part of monsoon season), S(t) is
dominated by positive values with a mean value of 5.1 and 6.3 cm, respectively. The distribution in MAM
is positively skewed, while it is negatively skewed in JJA, suggesting a transition from dry to wet season.
In SON (late in monsoon season) and DJF (postmonsoon wet season), the pattern of S(t) is dominated by
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Figure 4. Spatial distribution (left panel) and histogram (right panel) of NOAH and gravity recovery and climate
experiment total water storage anomalies mismatch, S(t), averaged over four seasons: (a and b) DJF; (c and d) MAM;
(e and f) JJA; and (g and h) SON. Solid lines on histograms correspond to fitted PDFs. Map colors are scaled between
(−25cm, 25cm) for visualization. DJF = December-January-February; MAM = March-April-May;
JJA = June-July-August; SON = September-October-November.

negative values with a mean of −6.0 and −2.3 cm. The negative values cover most of the regions in central
and southern India. The distribution of S(t) in SON is also distinctively bimodal.

In the base case, we test the performance of VGG16, Unet, and SegnetLite models using only NOAH TWSA
as the predictor (Table 1). The CNN-corrected TWSA is obtained by subtracting the predicted S(t) time series
from the NOAH-simulated TWSA using equation (2). For comparison purposes, all models are trained over
60 epochs with a batch size of 5. Increasing the number of epochs further did not improve the results in
our experiments. For each of the three CNN models, the correlation coefficient and NSE between the pre-
dicted and GRACE TWSA at both the country level and grid level are compared. This is because the GRACE
research community is mostly interested on large-scale averaged results. Note that the actual training is
done at the grid or pixel level, while the country-level statistics are calculated using grid-averaged TWSA
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Table 1
Model Performance Metrics

Performance metrics
Training Testing

Model Corr NSE Corr NSE
TWSANOAH 0.776 0.600 0.825 0.568

Base case, TWSANOAH only
VGG16 0.986 0.925 0.944 0.862
Unet 1.0 0.948 0.938 0.868
Segnet 1.0 0.952 0.946 0.875

TWSANOAH and P
VGG16-2 0.986 0.909 0.928 0.861
Unet-2 1.0 0.969 0.941 0.880
Segnet-2 1.0 0.961 0.943 0.880

TWSANOAH, P, and T
VGG16-3 0.985 0.906 0.936 0.864
Unet-3 1.0 0.961 0.939 0.876
Segnet-3 1.0 0.977 0.945 0.889

Note. Corr = correlation; NSE = Nash-Sutcliff efficiency; TWSA = total water storage
anomalies; P = precipitation; T = temperature.

time series. The country-level results are summarized in Table 1. For comparison, the metrics between the
original NOAH TWSA and GRACE TWSA are reported in the first row.

At the country level, all CNN models achieved high correlation (>0.98) during training, which are all sig-
nificantly higher than the correlation between the original NOAH TWSA and GRACE TWSA (0.78). For
the testing period, the correlation values decrease slightly to about 0.94 on average but are still higher than
the correlation between the original NOAH and GRACE (0.83) or a 14% improvement on average. Because
NOAH TWSA, GRACE TWSA, and S(t) are correlated, we applied Williams (1959) significance test to test
the improvement in correlation due to deep learning. The p value of the Williams test is <0.002 for all
three models (see Supporting Information S1), suggesting statistically significant improvement. It is worth
noting that the correlation results obtained in this study are comparable to that obtained by Girotto et al.
(2017), who reported that data assimilation increased the correlation between their model-simulated TWSA
and GRACE to a country average of 0.96. Correlation coefficient measures the degree to which model and
observations are related in phase, while NSE, a measure of predictive power, is sensitive to matches (or mis-
matches) of both magnitude and phase between the predicted and observed time series. In this case, the
NSE value of the original NOAH TWSA is relatively low (0.6) for the training period. Figure 5a plots the base
case results (solid lines in color), the GRACE TWSA (dark solid line with filled circles) and its error bound
(shaded area), and the uncorrected NOAH TWSA (gray-dashed line). For the training period, the plot sug-
gests that the uncorrected NOAH TWSA underestimates most of the wet and dry events. In contrast, both
Unet (orange line) and SegnetLite (green line) fit the wet and dry events well and are within the extent of
the GRACE data uncertainty. The VGG16 model (dark blue solid line) underestimates the magnitudes of
some wet events in 2002, 2003, and 2007.

During the testing period, we see several dry events, for example, the severe droughts in 2013 and 2016. In
the literature, the dry events in 2014 and 2015 were attributed to monsoon rainfall deficits (Mishra et al.,
2016). Again, the uncorrected NOAH underestimates the dry and wet events, especially the dry events. The
SegnetLite model captures all dry events in 2013–2016 well but slightly underestimates the 2014 and 2015
wet peaks. On the other hand, the VGG16 model captures most of the wet events but underestimates dry
events. The performance of Unet is in between. The average NSE improvement in the testing period is 0.87
or 52% improvement over the uncorrected NOAH TWSA. Figure 5a also suggests that even though the CNN
models are trained at the grid level, they conserve mass at the country level. This is encouraging and may
be attributed to the strong ability of CNN to learn multiscale spatial features and, therefore, preserve spatial
continuity inherent in the input.
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Figure 5. Comparison of (a) GRACE (dark solid line with filled circles), NOAH (gray-dashed line), and convolutional
neural networks-corrected TWSA time series by VGG16 (blue), Unet (orange), and SegnetLite (green) for training and
testing periods (separated by the thin vertical bar) at the country level; (b and c) CDFs of correlation coefficient and
NSE between modeled TWSA (including both NOAH and convolutional neural networks-corrected results) and
GRACE at the grid level. Shaded area in (a) represents the total error bound estimated for GRACE TWSA (see section
2). CDF = cumulative distribution function; TWSA = total water storage anomalies; NSE = Nash-Sutcliff efficiency;
GRACE = gravity recovery and climate experiment.

Figures 5b and 5c show the cumulative distribution function (CDF) of the pixel-wise or grid-scale correlation
coefficient and NSE between modeled TWSA and GRACE TWSA. The CDFs of all CNN-corrected results
(solid lines in color) show a clear improvement over the original NOAH model (dashed line). Both Unet and
SegnetLite give better performance than VGG16 and, in particular, the performance of SegnetLite is slightly
better in the upper range of the correlation coefficient and NSE CDFs. The results thus far suggest that the
mismatch pattern learned using NOAH TWSA as the base predictor can already help to correct the NOAH
results significantly, both in magnitude and phase. On the basis of Table 1 and Figure 5, the SegnetLite model
shows the best performance for the base case. The VGG16 model gives slightly worse results than the other
two, probably because of the limited number of input feature maps it allows.

To help interpret the learned spatial patterns further, in Figure 6, we plot correlation and NSE maps cor-
responding to the uncorrected NOAH TWSA (Figures 6a and 6d), the SegnetLite model (Figures 6b and
6e), and improvements due to CNN correction, for the period 2002/2004–2016/2012 (Figures 6c and 6f). In
general, higher correlation and NSE values are observed in southcentral and central India. The correlation
improvement is the greatest in northwest and south India. The drier northwest India has been significantly
affected by anthropogenic activities related to irrigation, whereas the wetter southmost part of the country
is subject to bimodal precipitation pattern (Girotto et al., 2017), both are not resolved well in the current
NOAH model. On the other hand, regional groundwater impact related to water withdrawal in northwest
India has been confirmed by a number of previous GRACE studies (e.g., Chen et al., 2014; Rodell et al.,
2009). Thus, the TWSA correction benefits the most in those areas. Nevertheless, isolated weak spots, espe-
cially on NSE maps, are found near the India-Nepal border (part of Ganges River Basin) and also in the
Brahmaputra River Basin, where NOAH already gives good performance and the improvements by CNN are
either insignificant or even deteriorated. The Himalayas region outside India's north border may have neg-
ative impact on the learning because of sharp discontinuity in patterns. Similarly, the isolated weak spots
along the Indian coast may also be related to the lack of continuity in patterns. Additional data may be
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Figure 6. Grid-scale correlation coefficient maps between (a) NOAH-simulated total water storage anomalies and gravity recovery and climate experiment,
(b) SegnetLite corrected total water storage anomalies and gravity recovery and climate experiment, and (c) the difference between (a) and (c); (d–f) the same
maps but for Nash-Sutcliff efficiency. For plotting purposes, all maps are scaled to [−1, 1].

necessary to constrain the CNN learning in those isolated spots. To give a sense of fitting quality, we show
grid-level time series of NOAH TWSA, GRACE TWSA, and SegnetLite corrected TWSA at four selected pixel
locations in Supporting information S2. Two examples correspond to locations of significant NSE improve-
ment (northwest India and southcentral India), and the other two examples show locations of performance
deterioration (India-Nepal border and southern coastal area). Supporting information S2 suggests that at
the northwest India location, deep learning helps to improve the match of a downward trend observed by
GRACE. Supporting information S3 plots the same maps as shown in Figure 6 but for the testing period
2012/2009–2016/2012 only. In general, the same improvement patterns (i.e., Δ𝜌 and ΔNSE) are observed
over most of the region, except for north India where the effect due to correlation correction is little or none.
The absolute NSE over northwest India is lower than that in Figure 6, although the NSE correction is still
significant over most of the study region.

We performed additional tests for each type of CNN models by adding precipitation (P) and temperature (T)
as predictors (Table 1). Results show that the additional predictors have little improvement over the base
case (supporting information S4). Although P and T may include additional information (e.g., on SWS) not
already included in the model, their effect may be limited by the resolutions of CNN models and GRACE
observations and by the strong seasonality of the study area. Nevertheless, P and T forcing may still be useful
for reconstructing the TWS for other basins in the world.

To further corroborate the learned patterns, we now compare S(t) to in situ GWSAs. As mentioned before,
NOAH does not include SWS and GWS, while GRACE observes the total water column in space. Thus,
the mismatch pattern should reflect the missing components and is expected to correlate well with in situ
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Figure 7. Correlation map between in situ groundwater storage anomalies and S(t) learned by SegnetLite model. Inset
shows the CDF of correlation coefficient. The map coordinates are grid cell indices (from 0 to 127). CDF = cumulative
distribution function.

GWSA wherever the TWSA is dominated by GWS. We assign groundwater wells to the nearest CNN model
grid cells and then calculate the correlation coefficient between S(t) estimated by SegnetLite and in situ
GWSA. Results are shown in Figure 7. Spatially, positive correlations are observed for most parts of India.
The 50th percentile of correlation is about 0.4 (inset of Figure 7). The correlation is weaker in northwest
India, the India-Nepal border, and along the southern coastal areas. The weaker correlation in northwest
India is intriguing, given the dominance of groundwater in that region and strong correlation between the
corrected NOAH and GRACE TWSA obtained for the same area, as shown in Figure 6b. One possible expla-
nation is given by Girotto et al. (2017), who pointed out that groundwater used for irrigation in northwest
India is “extracted primarily from deep aquifers, which are observed by GRACE, but not by the shallow
in situ groundwater measurements.” Thus, the limitation of the in situ data set needs to be kept in mind
when interpreting the comparison results in Figure 7. For areas along the Indus River and Ganges River,

Figure 8. Country-averaged TWSA (blue solid line) predicted for 2016–2017 by using the trained base SegnetLite
model. Dashed line (orange) is the NOAH TWSA output and also the input to the SegnetLite model. Filled circles
(green) represent GRACE monthly data, and shaded area corresponds to 95% prediction intervals. The vertical line
marks the beginning of “unseen” data during previous training and testing. GRACE = gravity recovery and climate
experiment; TWSA = total water storage anomalies.
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the impact of surface water is relatively high (Getirana et al., 2017), which limits the proportion of GWSA
in S(t) and weakens the correlation between S(t) and in situ GWSA. Note in this comparison with the in
situ GWSA, we mainly focus on analyzing the phase agreement because of the uncertainty of in situ GWSA
magnitudes related to the uncertain specific yield.

Finally, we apply the trained SegnetLite model to predict TWSA. Figure 8 shows the country-averaged TWSA
for the period 2016–2017. The GRACE data (green-filled circles) become unavailable after June 2017. Also,
the GRACE data from 2017 are not part of the previous model training and testing. The 95% prediction
interval is estimated using 1.96 RMSE, where the RMSE (∼2.20 cm) is calculated by using the misfit of
SegnetLite model on the training data. The plot suggests that the SegnetLite model captures the GRACE data
well during the 2017 months that are not part of Figure 5a, demonstrating the potential use of this method
for filling data gaps between GRACE and its follow-on mission.

5. Conclusion
In this study, we present a hybrid approach that combines physically based modeling and deep learning
to predict the spatial and temporal variations of TWSA. This is done by training CNN-based deep learning
models (VGG16, Unet, and SegnetLite) to learn the spatial and temporal mismatch patterns between the
TWSA simulated by a LSM, NOAH, and that observed by GRACE, using which the NOAH-simulated TWSA
is then corrected. The hybrid modeling approach is systematically demonstrated over India by using various
performance metrics. In general, all deep learning models considered in this study are able to improve the
NOAH TWSA significantly at both the country and grid levels, which is encouraging because we deal with
a much smaller training sample size than those typically used in image classification problems. A correla-
tion analysis between the learned patterns and the in situ GWSA shows good correlation between the two,
suggesting the learned patterns effectively compensate for the missing groundwater storage in NOAH for
many parts of the study area.

Our method presents an alternative for extrapolating TWSA time series outside the GRACE period. Our
results also indicate the feasibility of using deep learning to perform spatial and temporal interpolation,
which has long been a challenging problem in the geoscience literature. Compared to the conventional 4-D
variational or ensemble-based data assimilation techniques for fusing hydroclimatic data, major strengths
of our hybrid approach include (1) the relatively few assumptions involved, especially with regard to param-
eterization of the spatial and temporal error distributions; (2) the capability to extract useful features at
multiple scales; and (3) the capability to handle multiple data types with relative ease.

Deep learning algorithms evolve rapidly. In this study, we mainly considered three variants of CNN. In
the literature, long short-term memory and recurrent neural networks have been combined with CNN for
spatiotemporal prediction problems (Fang et al., 2017; Shi et al., 2015). In addition, the grid resolution of
our networks is relatively coarse. Finer resolution grids may be tested in the future to improve model fits.

Appendix A
A1. VGG-16
The pretrained VGG16 model (i.e., weights) is obtained from the Keras package (Chollet et al., 2015). The
VGG16 model design consists of a series of downsampling convolutional layers (3 × 3 filter, ReLU activation
function), interlaced with max pooling layers (2 × 2; Figure A1). The number of filters increases gradually
from 64 to 512, while the size of the feature map decreases from 128 to 8 (in pixels). At the end, the convo-
lutional layers are flattened and connected to a fully connected layer before reshaped to the dimensions of
the output layer (i.e., 128 × 128). Linear activation function is used for the output layer.

A2. Unet Model
The Unet model used in this work is adapted from the original design of Ronneberger et al. (2015), with
modifications in the number of filters used. The model design belongs to a class of encoder-decoder archi-
tectures. The encoder part includes five consecutive downsampling steps, and the decoder part includes an
equal number of upsampling steps. Each downsampling step involves two convolutional layers (using 3 × 3
filter and ReLU activation function), followed by a max pooling layer (2 × 2). For the encoder part, the num-
ber of filters in the convolutional layers increases from 32 to 512, while the dimensions of the feature maps

SUN ET AL. 14



Water Resources Research 10.1029/2018WR023333

Figure A1. VGG16 model architecture. ReLU = Rectified Linear Unit.

decrease from 128 × 128 to 8 × 8. Each upsampling step involves (a) an upsampling step (2 × 2), (b) a con-
catenation step in which the feature maps from the same level of downsampling and upsampling paths are
combined (dashed line in Figure A2), and (c) two convolutional layers (using 3× 3 filter and ReLU activation
function). In its simplest form, upsampling repeats rows and columns to create a larger image (no trainable
parameters). The inputs to the model include image stacks corresponding to one or more predictors, and
the output of the model is the predicted mismatch, S(t). A 1 × 1 convolutional layer with linear activation
function is used to generate the output.

A3. SegnetLite model
Segnet is a deep CNN architecture introduced to perform semantic segmentation (Badrinarayanan et al.,
2015). SegnetLite used in this work is a variant of the original Segnet, which uses a smaller number of
encoding and decoding steps. In addition, no max pooling is used, and the upsampling layers in the original
design are replaced by transposed convolution layers, which can be regarded as the reverse of convolutional
operations and which increase the input dimensions like the upsampling does. However, transpose convo-
lution layers introduce trainable parameters to learn the optimal upsampling parameters. The encoder part
of SegnetLite consists of six convolution layers, with the number of filters increasing from 16 to 128, while
the decoding part is symmetric and includes alternating concatenation and transpose convolution layers
(Figure A3). Similar to Unet, SegnetLite uses concatenation steps to combine feature maps from encoding
and decoding steps at the same level. To generate the output layer, an upsampling layer is used to increase
the decoder outputs to the output dimensions (128 × 128) and is then passed through a 1 × 1 convolutional
layer as in the other two models.

Figure A2. Unet model architecture. ReLU = Rectified Linear Unit.
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Figure A3. SegnetLite model architecture. ReLU = Rectified Linear Unit.
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