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Rapid evolution of Internet-of-Things is driving the increased deployment of smart sensors in environmental
applications, contributing to many big data characteristics of environmental monitoring. Most of the current
environmental monitoring systems are not designed to handle real-time datastreams, and the best practices for
datastream processing and predictive analytics are yet to be established. This work presents a complex event
processing (CEP) engine for detecting anomalies in real time, and demonstrates it using a series of real mon-
itoring data from the geological carbon sequestration domain. We show that the service-based CEP engine is

instrumental for enabling environmental intelligent monitoring systems to ingest heterogeneous datastreams
with scalable performance. Our CEP framework requires minimal coding from the user and can be easily ex-
tended to other similar environmental monitoring applications.

1. Introduction

Intelligent monitoring is an integrative system management tech-
nology that combines real-time sensing with project-specific data pro-
cessing, event detection, predictive analytics, and collaborative tools
for data interpretation and decision making. Although the concept of
intelligent monitoring has been around since the popularization of PC
in 1990s (Bache et al., 1990; Sixsmith, 2000; Athanasiadis and Mitkas,
2004), recent years saw a surge of interests and applications, largely
because of the rapid evolution of Internet-of-Things (IoT), the more
accessible cyberinfrastructure, and advances in artificial intelligence. A
recent report predicted that there will be between 25 and 50 billion
connected devices by year 2025 (Manyika et al., 2015). Each smart
device, capable of sensing its surrounding environment and sharing
information across a network, becomes a potential data generator.
Together these devices will shape the so-called big data economy,
creating 4 V (volume, variety, velocity, veracity) information assets that
demand timely processing for enhanced insight and decision making
(Gandomi and Haider, 2015). The capability to collect, process, and
analyze big data in real-time is still lacking in many fields.

Key requirements of an environmental intelligent monitoring
system (IMS) are data wrangling (e.g., data extraction, transformation,
and loading), event detection, and visualization. Many legacy en-
vironmental IMS platforms, however, are built on relational databases,
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requiring data to be first stored and indexed before they can be pro-
cessed, creating a significant latency. The ubiquitous presence of smart
devices and sensor networks is calling for a fundamental shift in design
paradigm, from the client-server-based IMS design to cloud-based, or
even edge-based design where the bulk of computing is done at the edge
(e.g., smart monitoring devices) (Shi et al., 2016; Wong and Kerkez,
2016; Granell et al., 2016). Regardless of the platform, a fundamental
task is related to processing the information flow continuously as they
arrive, with or without data persistence.

Complex event processing (CEP) refers to data processing techni-
ques that operate according to a set of predefined rules dictating how
information flows should be processed and what new event streams
should be produced as outputs (Cugola and Margara, 2012). Events can
be thought of as single occurrences of a quantity of interest (e.g., higher
than normal pressure readings), while complex events are distilled
events corresponding to situations or patterns that comprise a parti-
cular meaning for the system (e.g., consecutive high pressure readings)
(Luckham, 2002).

A CEP engine is a software system consisting of a suite of data
processing algorithms and knowledge representation sets working in a
distributed manner. CEP engines for datastream processing typically
have state management, fault tolerance, and high performance features.
Environmental monitoring is inherently stateful, requiring the CEP
engine to keep track of the state of the system, including event arrival,
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ingestion, and processing times (Castro Fernandez et al., 2013). To
handle datastreams, a CEP engine needs to process a large amount of
continuous data with low latency (performance) and, in case of system
outrage, the engine needs be able to quickly restore (fault tolerance).

Currently, quite a few open-source and commercial CEP products
are available. Under the Apache Software Foundation, there are more
than a half dozen projects with different levels of maturity, such as
Apache Kafka, Flink, Storm, and Samza. A comprehensive review of
CEP engines (pre-2012) was provided by Cugola and Margara (2012),
and more recent surveys on big data oriented CEP engines can be found
in (Liu et al., 2014; Flouris et al., 2017; de Assuncao et al., 2018). So far,
few environmental monitoring systems have tapped into the power of
CEP (Granell et al., 2016). In this study, we focus on Apache Kafka,
which was initially created and open-sourced by the social network
company LinkedIn in 2011. Originally designed as a messaging queue
middleware (i.e., software acting as mediators between applications or
systems), Kafka has evolved into a high-performance, distributed
streaming platform that provides three main functionalities: (a) publish
and subscribe to real-time applications or topics, (b) store event streams
or data records in a fault-tolerant way, and (c) process data as they
occur (Apache Kafka, 2018). Kafka is now one of the most mature CEP
engines in the open-source world. Recently, Apache Kafka was in-
tegrated by  Confluent.io  (https://www.confluent.io/product/
confluent-open-source) into a real-time streaming processing eco-
system consisting of a large collection of infrastructure services such as
database connectors and configuration managers.

Adaptation of CEP is domain specific, especially with regard to the
notion of intelligence, which means the CEP engine needs to have a
reasonable knowledge representation of its world, understand what is
happening in terms of events, and know what reactions and processes it
should invoke. In this work, we present a CEP engine for anomaly de-
tection in geological carbon sequestration (GCS) projects. Carbon cap-
ture and storage is a geoengineering measure for reducing anthro-
pogenic greenhouse gas emission to the atmosphere (Haszeldine, 2009;
Bickle, 2009). Potential GCS repositories may include depleted oil & gas
reservoirs and deep saline aquifers, all having leakage risks. The safe
and efficient operation of GCS repositories thus requires integrated
monitoring to track the injected carbon dioxide (CO,) plume as it
moves in a storage formation. Current GCS projects are data intensive,
as a result of proliferation of digital instrumentation and smart tech-
nologies. The success of GCS thus depends in a large part on the
monitoring system's capability to access, assimilate, and analyze het-
erogeneous data in a timely manner, and to provide high-level in-
telligent information to the operators. So far few GCS studies have at-
tempted to integrate computing components in an online environment
to support intelligent monitoring (Sun et al., 2018). The major con-
tributions of this work are in (a) adapting a high-performance CEP
engine for GCS monitoring, and (b) creating a streamlined intelligent
monitoring workflow that requires minimal coding effort from domain
users. All modules of our system are loosely coupled so that the system
is flexible and expandable, and its components are replaceable when
connecting to new monitoring devices or applications. As part of the
demonstration, we showcase the system features using both scalar and
vector data collected during a GCS field campaign.

2. Data and methods
2.1. System architecture

Fig. 1 shows the overall system design for the IMS, which consists of
three layers, namely, the data layer, processing layer, and knowledge
discovery layer. In the data layer, the input data types may include time
series measurements of point values and vectors (multidimensional
data), and model outputs (multidimensional data). We use a No-SQL
(non relational) database InfluxDB (https://github.com/influxdata/
influxdb) to store the monitoring data. As opposed to the traditional
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SQL databases using predefined database schema, No-SQL databases
use dynamic schema and are best suited for applications requiring high-
performance, flexibility, and scalability. The processing layer hosts the
CEP engine. We use the Kafka ecosystem distributed by Confluent. The
discovery layer is a web portal supporting collaborative visual analy-
tics.

Kafka is designed around four key concepts: broker, topic, producer,
and consumer. A Kafka topic provides a way of organizing messages,
which in turn serves as intermediate data containers for records to be
transmitted between applications/systems. The topic data schema is
defined by the user for different sensor types. Internally, each topic is
organized in a number of partitions for faster information retrieval and
data redundancy. A Kafka producer writes to a topic, while a Kafka
consumer reads from a partition. A Kafka broker is a hardware node in a
distributed system that handles the actual reading and writing, and load
balancing.

The user is responsible for defining producer(s) and consumer(s).
Kafka provides application programming interfaces (API) for devel-
opers to create customized producers and consumers. In addition, the
Kafka connectors allow configuration of sources/sinks that connect
Kafka topics to known applications or data systems via standard in-
terfaces such as JDBC (relational SQL databases), Hadoop Distributed
File System (HDFS), and Amazon S3. Custom connectors are used to
link the CEP to the data layer and knowledge discovery layer, auto-
mating the information exchange between CEP and those layers. We
also developed producer and consumer templates for our use case such
that the workflow can be easily adapted to different types of sensor
datastreams.

Visualization is instrumental for assisting knowledge discovery and
decision support, especially in environmental sciences (Laniak et al.,
2013). A number of open-source data portals have appeared in business
intelligence in recent years. After preliminary evaluation of several
products, we choose the Apache Superset (https://superset.incubator.
apache.org) because of its rich collection of data visualization tools
(including maps), easy-to-use interface for uploading and transforming
data, and seamless integration with commonly used data stores. We
emphasize that the role of the event database shown in Fig. 1 is only for
storing processed results, while all datastream processing is done in the
CEP.

The service-oriented architecture presented in Fig. 1 is general. For
demonstration, we deploy both Kafka (Confluent v4.0) and Superset
(v0.24) on the same Ubuntu Linux system (v16.04) running on a Cloud-
based virtual machine instance, which is hosted on a cluster node with
Intel Xeon Haswell processor and 128 GB RAM. The Superset is served
using the nginx (https://www.nginx.com) web server. All programming
is done in Python.

2.2. Data and event processing

For the purpose of this work, event processing is related to detecting
anomalies in sensor data. Algorithms for anomaly detection have long
been studied in statistics and computer science. Surveys of general and
conventional event detection algorithms are provided in (Chandola
et al., 2009; Aggarwal, 2015). Surveys of machine learning algorithms
for anomaly detection are provided in (Zohrevand et al., 2017). Chal-
lenges specific to geosciences are (a) data tends to vary both spatially
and temporally, representing disparate scales and storage formats
(Chen et al., 2014), (b) no single anomaly detection algorithm fits all
purposes, (c) the “nominal model” or baseline is elusive in many si-
tuations, (d) anomalies may be shadowed by noise, (e) labeled anomaly
data is rare, creating imbalance in the training data, and finally (f)
establishing the causal mechanism (i.e., event attribution) can be
challenging for subsurface processes.

2.2.1. Data
Data used in this study was collected from a series of field
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experiments conducted in January 2015 at Cranfield, an active oil field
located in Natchez, Mississippi, U.S. The original purpose of the ex-
periments was to demonstrate a time-lapse, pressure-based leakage
detection technique using modulated injection patterns. Three wells are
located at the experimental site, a CO, injector (denoted as F1) and two
monitoring wells (denoted as F2 and F3). The experiments consisted of
two phases. In the first phase, the bottom-hole pressure and well casing
temperature were monitored in the monitoring well (F2) to establish
the base case. The raw pressure data was recorded every 2s using a
high-resolution downhole gauge (Ranger Gauge Systems, Sugar Land,
Texas, USA). The raw distributed temperature sensing (DTS) data was
collected using a fiber optic sensing device (Silixa Ltd, Houston, USA) in
10-min intervals. In the second phase, controlled CO, release tests were
conducted in the adjacent well F3 to create leakage events while
monitoring data was continuously acquired from F2. The bottom-hole
distance between F1 and F2 is 60 m, between F1 and F3 it is 93 m, and
between F2 and F3 it is 33.5 m. More details on the experimental setup
and data collection methods are provided in Sun et al. (2016).
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2.2.2. Event processing methods

The Cranfield data set provides a unique opportunity to demonstrate
geospatial intelligent monitoring in real time. In particular, pressure
data are analyzed using the IsolationForest (IFO) algorithm (Liu et al.,
2008). Anomalies in time series may manifest as abrupt changes in
signals or as shifts in the temporal trend. Traditional anomaly detection
methods include both regression-based (e.g., Autoregressive Integrated
Moving Average Model (ARIMA)) and classification-based methods
(e.g., support vector machine (SVM)) (Aggarwal, 2015). Many of these
traditional methods, however, are optimized to capture the normal data
patterns, but not anomalies.

IFO is specially designed to detect anomalies. It is based on the
premises that anomalies have attribute values that are very different
from the rest of the data instances and that anomaly instances are re-
latively few. To isolate anomalies from a data set, I[FO partitions data
samples recursively using an ensemble of random trees. When a sample
has anomalous attributes, the number of partitions required to isolate
the data sample is smaller than that for a “normal” sample. In other
words, anomalies are more susceptible to isolation under random par-
titioning. IFO calculates an anomaly score by averaging path lengths
(equivalent to number of partitions) over all random trees. To help
understanding, these main concepts of IFO are illustrated in the sche-
matic plot in Fig. 2. The algorithm only requires two user parameters,
namely, the number of trees to build and the subsample size. Sub-
sampling is devised to alleviate the effect of masking (too many
anomalies concealing their own presence) and swamping (normal in-
stances located too close to anomalies), thus helping to build better
trees more efficiently (Liu et al., 2008). Computational wise, IFO has a
linear time complexity and a low memory requirement, and has the
capacity to scale up to handle extremely large data size (Liu et al.,
2008). We use the IFO function from the Python machine learning li-
brary, scikit-learn (Pedregosa et al., 2011).

DTS data were sampled every 12 cm along the well casing, resulting
in a large number of data points per sampling time along the 3227 m
total sampling depth. Visual inspection of the DTS data, shown in the

Knowledge Discovery Layer
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Fig. 1. System design of the IMS includes a data
layer, a processing layer, and a knowledge discovery
layer. Complex event processing engine is located in
the processing layer. All layers are loosely coupled
through Kafka connectors and web services. InfluxDB
is used as a temporary datastream store, Confluent

Superset Kafka is used for event processing, and Apache
Superset is used for data visualization.
Dashboard
IsolationForest
) ! 1
o pathlength
Anomaly AA
Normal . °

Fig. 2. The main idea behind the IsolationForest (IFO) algorithm is that
anomalies are more susceptible to isolation under random partitioning.

Supporting Information (SI) Fig. S1, reveals that the data is highly
correlated, both spatially and temporally. Thus, it makes sense to re-
duce the data dimension first. For this purpose, 50 sampling points in
the 1000-2000 m interval are selected, with an average distance of
about 20 m between consecutive points (see SI Section S1 for locations
of selected points). Then a subspace anomaly detection method is ap-
plied on the 50 sampling points, for which the general idea is to de-
termine a small set of latent variables in which the most important
anomalies are revealed as quickly as possible (Aggarwal, 2015). IFO is
mainly designed for processing single time series. Here we need to use a
subspace anomaly detection algorithm that can operate on all selected
time series, but in a reduced data space. The anomaly detector we
adopted is based on the algorithm described in (Yin et al., 2012) and
summarized in Algorithm S1 in SI. Briefly, the algorithm uses principal
component analysis (PCA) to reduce the dimension of training data
matrix, assuming that the nominal temperature profile can be effec-
tively represented by using only a few principal components. The re-
sulting principal components are used to calculate a test statistic, T2,
derived from the F-distribution. The threshold of T? defined for a cer-
tain significance level (e.g., 95%) is then applied online to detect
anomalies on new data instances. The singular value decomposition
(SVD) function from the NumPy library (http://www.numpy.org) is
used to perform PCA, and the number of principal components retained
is 3.

The trained pressure and DTS anomaly detectors are embedded in
respective Kafka consumers to process monitoring data in real time. The
resulting events are sent to the event database through Kafka producers.
We comment that online anomaly detection in high-dimensional data-
streams is still a challenging research topic, due to the fact that
anomalies may often be buried in “small combinations of dimensions in
a high dimensional data set” (Aggarwal, 2015). The most appropriate
algorithm needs to be determined on a case-by-case basis, by in-
corporating domain insights.

3. Results

The base case pressure data are aggregated into 1-min intervals
using InfluxDB web queries, which are then used to train and test the
IFO model. Each row of the data matrix is a sliding window that in-
cludes information of pressure data and injection rate in a 90-min in-
terval, corresponding to the duration of a full pulsing cycle used in the
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Fig. 3. Anomaly detection on pressure data using IsolationForest: (a) results on training and testing data using the base case data (Jan 19, 2015, 11:00-15:30), where
the vertical gray line indicates the separation of training and testing periods; (b) results on controlled release data (Jan 30, 2015, 8:30-11:30). Anomalies are labeled

with filled circles.

Cranfield experiments. The data matrix consists of a total of 360 sliding
windows, (i.e., each sliding window is a shift of 1 min from the previous
window), of which the first 70% are used for training and the rest for
testing. The use of the full pulsing cycle duration as the width for
sliding windows is critical for the machine learning algorithms to learn
normal patterns that are related to injection rate changes only, so that
pressure changes unrelated to injection rate changes (e.g., due to
leakage) can be identified. The number of trees and subsample size are
both set to 200 for the pressure data set.

Fig. 3 (a) shows the IFO training and testing results on the 90-min
base case. The training period shows a single anomaly right at the be-
ginning of the base case experiment, probably because of the initial
perturbations. When the trained IFO model is applied to the controlled
release data sequentially, the model correctly labels almost every data
instance as anomaly (Fig. 3(b)). In comparison, Fig. S3 in SI shows the
results of an SVM classifier, which has an overwhelmingly large false
detection rate in this case. The main challenge in this case is that the
base case and controlled release data have very similar sinusoidal
temporal patterns, making it hard for SVM to distinguish normal data
and anomalies.

The DTS results are given in Fig. 4. The entire DTS period has two
major anomalies associated with controlled release events, as can be
seen on the raw data plot in Fig. S1. During each release event, the
warm CO,, at reservoir temperature quickly rose along the wellbore and
then started to absorb heat due to the Joule-Thompson expansion effect
(Pruess, 2008). As a result, an abrupt disruption in the temperature
profile can be observed. For training, an “eventless” period on Jan 24,
2015 is chosen, from which the T2 threshold (see Algorithm S1 for
definitions) is determined to be 8.4. After training the detector is ap-
plied in a sequential manner on each test sample and then compared to
the threshold value. Fig. 4(b) shows that the T? statistic correctly
identifies the temperature anomalies associated with the two controlled
release events, as shown by the two spikes in T? values.

The two examples here illuminate the aforementioned challenges
associated with anomaly detection in geosciences, namely, no single
algorithm fits all purposes and a significant amount of prior knowledge
and insight is required to develop customized event processors. Thus,
the modular service-oriented design adopted in our case has a sig-
nificant advantage.

The Apache Superset visualization platform offers highly custo-
mizable dashboards for decision makers. It can be set up to provide a
holistic view of the project under monitoring. The Cranfield dashboard

is shown in Fig. 5, which shows a map of site location, the raw pressure
and DTS time series (from 5 different depths), and the event status
reported by the CEP.

4. Conclusion

The need for real-time analysis will continue to push the develop-
ment of low-latency, real-time complex event processing (CEP) engines
in the IoT era (Gartner, 2017). Recent advances in big data analytics
and distributed computing provide new abstractions to deal with
complex data, and simplify programming of scalable and parallel sys-
tems. Intelligent environment monitoring, as a subdiscipline of En-
vironmental Data Science (Gibert et al., 2018), needs to adapt to the
ever-increasing speed of new data generation, and leverage the data in
time to create new services and intelligent information to maximize the
value of information.

In this work, we develop and demonstrate a CEP workflow for de-
tecting anomalies in real GCS monitoring data. We show that (a) pro-
blem-specific online machine learning algorithms need to be carefully
selected and trained to achieve robust performance in real time; (b) the
microservice-oriented, distributed architecture is instrumental for
scaling up computing systems to deal with syntactic and semantic
heterogeneity, and (3) the use of highly interactive, easy-to-use web
interfaces should be an integral component of intelligent monitoring
system (IMS) development because they enable non-programmer do-
main users to stay in the loop, as well as to have easy access of the
information and knowledge generated by the CEP.

Our case study is limited to a single site with high temporal fre-
quency, structured data. CEP involving many monitoring sites and/or
unstructured data is still a challenge for environmental IMS. While large
volumes of data can be handled by horizontal scaling (i.e., adding more
nodes), processing of large arrays may still be required (e.g., in the case
of PCA) (Wu et al., 2018). Future IMS may require combining both
distributed computing and edge computing to further improve system
performance.

Software availability

The web system created in this work is hosted at http://129.114.
110.45/login. Please contact the corresponding author for login au-
thorization.

Programming language: Python.
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