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Abstract A fundamental problem in geophysical modeling is related to the identification and
approximation of causal structures among physical processes. However, resolving the bidirectional
mappings between physical parameters and model state variables (i.e., solving the forward and inverse
problems) is challenging, especially when parameter dimensionality is high. Deep learning has opened
a new door toward knowledge representation and complex pattern identification. In particular, the
recently introduced generative adversarial networks (GANs) hold strong promises in learning cross-domain
mappings for image translation. This study presents a state-parameter identification GAN (SPID-GAN) for
simultaneously learning bidirectional mappings between a high-dimensional parameter space and the
corresponding model state space. SPID-GAN is demonstrated using a series of representative problems from
subsurface flow modeling. Results show that SPID-GAN achieves satisfactory performance in identifying the
bidirectional state-parameter mappings, providing a new deep-learning-based, knowledge representation
paradigm for a wide array of complex geophysical problems.

Plain Language Summary Development of physically based models requires two steps,
mathematical abstraction (forward modeling) and parameter estimation (inverse modeling). A high-fidelity
model requires high-quality parameter support. The need for identifying forward and reverse mappings
(i.e., a function that associates element of one set to another) is thus ubiquitous in geophysical research.
A significant challenge in geosciences is that geoparameters are spatially heterogeneous and high
dimensional and yet can only be observed at limited locations. The conventional workflow, built on
minimizing the model-observation mismatch at measurement locations, does not offer an efficient
way for estimating the spatial structure of high-dimensional parameter fields. This work presents a
deep-learning-based framework for identifying the state-parameter bidirectional mappings using the
recently introduced generative adversarial networks (GANs). GANs have been shown to be adept at
associating images from one domain to another. Its potential for discovering mappings in physically based
models has not been demonstrated so far. This work shows that GAN can achieve high performance in
learning bidirectional parameter-to-state mappings in physically based models, thus providing a new way
of thinking and doing things in geosciences. The implication for additional applications in subsurface
modeling is significant.

1. Introduction

Deep learning (DL) has achieved great success in image recognition and business intelligence over the past
decade, continuously narrowing the gap between artificial intelligence and human intelligence. Tremendous
interests exist in the geophysical research community to leverage the strength of DL for solving similar image
recognition and prediction problems, such as land cover and land use classification (Castelluccio et al., 2015),
extreme weather event forecasting (Liu et al., 2016; Shi et al., 2015), estimation of particulate matter levels
(Li et al., 2017), and data imputation (Fang et al., 2017). To achieve high accuracy, many DL algorithms require a
large amount of labeled training data (i.e., coobserved predictors and predictands), which is generally hard to
acquire in geoscience domains due to the invisibility of subsurface processes and sparsity of in situ monitoring
networks.

In machine learning, semisupervised learning has been used to tackle the issue of limited labeled data
(Chapelle et al., 2006). As its name suggests, semisupervised learning sits in between the traditional unsu-
pervised learning (all training data are unlabeled) and supervised learning (all training data are labeled).
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Semisupervised learning methods use unlabeled data, together with limited labeled data, to build bet-
ter machine learning models, under the assumption that unlabeled data are more abundant and carry
information that is useful for the inference of target variables (Chapelle et al., 2006).

Semisupervised learning may help solve a fundamental problem in geosciences, namely, estimating the
underlying generative model of sampled data so that new samples can be synthesized from the learned
model. In fact, generative process modeling is at the core of all physical sciences, where mechanistic models
have long been applied to extract, abstract, and approximate the observed causal structures in order to simu-
late samples of the underlying physical processes. In geosciences in particular, parametric forward modelings
are carried out by solving partial differential equations (PDEs), governing the spatially and/or temporally vary-
ing subsurface physical processes, whereas inverse problems are formulated to identify the model parameters
by using observations of state variables (Sun & Sun, 2015). Ideally, both the forward and inverse modeling
should be done in a closed-loop manner such that new information can be continuously assimilated to reduce
uncertainty. Thus, the need for resolving the bidirectional mappings between state and parameter spaces
always exists. An outstanding challenge is that many subsurface processes are nonlinear, multiscale, and high
dimensional, making it nontrivial to establish such mappings in practice.

The recently introduced generative adversarial networks (GANs), which may be considered a subclass of
DL for semisupervised learning, hold strong promises not only for learning the generative processes of
high-dimensional images with limited labeled data but also for translating seemingly unrelated images across
different domains (Goodfellow et al., 2014). An open question is whether these interesting features of GANs
can benefit the geophysical modeling community. Here I explore the bidirectional mapping capability of
GANs and hypothesize that GANs may provide a new workflow for inferring parameter-state mappings. Many
of the conventional parameter estimation methods are built on the minimization of certain distance measures
between observed and simulated values by running a forward model iteratively, while uncertainty quantifi-
cation is usually done a posteriori. Under the GAN framework, the model parameter space and state space
are regarded as two inherently related image domains, and DL-based functional relationships are obtained
to facilitate the cross-domain learning, namely, estimating parameters for given model states, and vice versa.

The main purpose of this study is to formulate a state-parameter identification GAN (SPID-GAN) for obtain-
ing deep bidirectional representations of geophysical models. In the following, I first introduce the proposed
SPID-GAN framework, which combines the traditional geostatistical simulation, physically based forward
modeling, and the point-based parameter estimation workflow with cross-domain DL. The framework is
demonstrated using two different examples from subsurface flow modeling, in which the model parame-
ters are spatially heterogeneous, representing high-dimensional samples obtained from single-modal and
bimodal distributions. I show that the DL-based SPID-GAN is well adept at learning the subtle spatial pat-
terns in model states and parameter fields, thus representing a powerful tool for approximating the causal
structures of physical models.

2. Methodology
2.1. SPID-GAN Framework
The original GAN introduced by Goodfellow et al. (2014) consists of a pair of discriminator and generator,
designed to compete with each other as in a two-player game, thus the word adversarial. The role of the
generator is to create fake samples that are indistinguishable from the training data, while the role of the dis-
criminator is to classify the generated samples to determine whether they are real or fake. Let  denote a
generator model that defines a mapping  ∶ X → Y ; namely, it takes x ∈ X as input and generates a fake
sample (x) that has the same support as the training data y ∈ Y . In addition, let  denote a discrimina-
tor that determines whether a sample is drawn from the empirical distribution of training data pdata(y) or
from the generator distribution pmodel((x)). The goal of the generator is thus to push its sample distribu-
tion pmodel((x)) toward the data distribution pdata(y). At optimality the discriminator is maximally confused
and cannot distinguish real samples from ones that are fake (i.e., predicting with a probability of 0.5 for all
inputs; Goodfellow, 2016). Note that similar principles are behind many Bayesian statistical inversion and
ensemble-based data assimilation algorithms, in which the common goal is updating a prior distribution to a
posterior distribution that reflects the newer information. In practice, many of the conventional methods are
either limited to low-dimensional problems (e.g., particle filter and Markov chain Monte Carlo) or to multivari-
ate Gaussian distributions (e.g., the ensemble Kalman filter). In comparison, GANs make no such assumptions
on the distributions of domain data.
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Existing GANs differ by how domains are defined and what cross-domain mappings are to be learned. The
generator in the original GAN takes a sample from a low-dimensional latent space (i.e., a random noise
vector) and turns it into a real image (e.g., a car). Such a generative process resembles the principal compo-
nent analysis-based random field simulation algorithm commonly used in geostatistics (Satija & Caers, 2015).
The main difference is that GANs train DL models to learn complex structural patterns embedded in the train-
ing data, while the eigenvector-based representation in principal component analysis is linear and restricted
to the second-order statistics. Since the work of Goodfellow et al. (2014), a large number of GAN models
have been introduced for cross-domain learning. So far, GANs have been demonstrated in a number of inspir-
ing applications, such as (a) image superresolution, where low-resolution images are used to generate their
high-resolution counterparts, examples include deep-convolution GAN (Radford et al., 2015) and superreso-
lution GAN (Ledig et al., 2017), and (b) cross-domain image-to-image translation, where labeled information
in the form of either text descriptions or images is used to generate images in another domain, examples
include the conditional GAN (Mirza & Osindero, 2014), coupled GAN (Liu & Tuzel, 2016), DiscoGAN (Kim et al.,
2017), and DualGAN (Yi et al., 2017). Newer GANs can perform direct cross-domain learning without using
low-dimensional latent space vectors as done in the original GAN.

Building on the existing cross-domain learning GANs, SPID-GAN approaches the state-parameter bidirectional
mapping problem by using two pairs of generators and discriminators:

Forward mapping PS ∶ RP → RS, S ∶ RS → [0, 1],
Reverse mapping SP ∶ RS → RP, P ∶ RP → [0, 1], (1)

where PS defines a forward mapping from the parameter space P to the model state space S while SP pro-
vides a reverse mapping from S to P. The two discriminatorsS andP are used to determine the authenticity
of samples generated for the respective domains in terms of probability. A practical working assumption on
PS and SP is that they are bijective, meaning each element of the domain P is mapped by exactly one ele-
ment of the domain S. This helps prevent the many-to-one mappings during training, which is also known as
the mode collapse problem (Zhu et al., 2017). Another assumption is the continuity of mappings; namely, if
two elements in domain P are close, then also should be the corresponding elements in domain S. The same
assumption is also implied by the stability requirement of inverse solutions (Sun & Sun, 2015). Thus, to arrive at
meaningful solutions, one needs not only a proper algorithm design (detailed below), but also an appropriate
experimental design (next section).

The loss function used for training PS consists of three terms (Kim et al., 2017; Zhu et al., 2017):

JPS
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where x ∈ P, y ∈ S, and 𝜃(⋅) denote the unknown parameters of the respective generators/discriminators.
Before training, a standard practice in DL is to scale all training data to the same range (e.g., [0, 1]) so the
objective functions are addable. The first term on the right-hand side of equation (2) defines the discriminator
loss in the sense of the original GAN:

JS
PS

(
𝜃s , 𝜃PS

)
= 1

2
Ex∼pdata(x)

‖‖‖S

(
PS

(
x, 𝜃PS

)
, 𝜃s

)‖‖‖
2

2
+

1
2
Ey∼pdata(y)

‖‖‖S

(
y, 𝜃S

)
− 1‖‖‖

2

2
, (3)

for which the goal is to minimize the error rate of the discriminator on the fake sample (toward 0) and on the
real sample (toward 1). In equation (3), the expectation (E) is taken over all training samples. Note that the
mean square error (MSE) is used here, instead of the binary entropy loss used by Goodfellow et al. (2014).

The second term on the right-hand side of equation (2) measures the translation loss in terms of mean
absolute error:

dtran

(
PS(x, 𝜃PS ), y

)
= Ey∼pdata(y)

|||PS

(
x, 𝜃PS

)
− y||| , (4)
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where expectation is calculated based on all pairs of generated and training images. The last term on the
right-hand side of equation (2) quantifies the cycle consistency (or reconstruction loss) between the two
generators using mean absolute error:

dcyc

(
SP

(
PS(x, 𝜃PS ), 𝜃SP

)
, x
)
= Ex∼pdata(x)

|||SP

(
PS(x, 𝜃PS ), 𝜃SP

)
− x||| . (5)

By minimizing the reconstruction loss, the cycle consistency term helps to mitigate the mode collapse prob-
lem (Kim et al., 2017; Zhu et al., 2017). The loss function of the generator SP can be defined similarly to
equation (2) by switching P and S. The total generator loss function J for SPID-GAN is the average of the two
generator losses. Each discriminator uses a loss function in the same form as equation (3), but with the oppo-
site sign. The generator and discriminator loss functions are highly coupled and need to be solved from the
following minimax optimization problem:

�̂�PS , �̂�S , �̂�SP , �̂�P = arg min
𝜃PS ,𝜃SP

max
𝜃S ,𝜃P

J
(
𝜃PS , 𝜃S , 𝜃SP , 𝜃P

)
. (6)

In practice, the optimization problem in equation (6) is solved by using alternating-gradient updating steps
for generators and discriminators, with parameters of one group fixed when parameters of the other are being
updated in each iteration.

Figure 1a illustrates the workflow of SPID-GAN. The first step shown on the left is related to data preparation,
which may be facilitated by a rich set of tools available from the geostatistics literature (Deutsch & Journel,
1998). For example, if parameter measurements are available, they may be integrated to generate the
so-called conditional realizations of the parameter field to honor prior information. If measurements of state
variables are available, they may be used to generate plausible images of the state field via kriging. Model
state measurements may also be used to select the most probable parameter fields by choosing the param-
eter sets that minimize the differences between GAN-predicted state values and the actual observed values.
Assuming point measurements of parameter and state variables are available, the SPID-GAN workflow implies
an additional loss term on the generators that is enforced through preprocessing and postprocessing,

dobs = ES
‖‖PS(x)(uS) − y(uS)‖‖2

2 + EP
‖‖SP(y)(uP) − x(uP)‖‖2

2 , (7)

where uP and uS are locations of P and S measurements, respectively. These different use cases will be
illustrated in section 3.

In this work, SPID-GAN is implemented by using convolutional neural networks (CNNs), a class of deep
feed-forward neural networks specially designed for image pattern recognition (LeCun et al., 2015). A brief
introduction of common CNN terminologies is given in supporting information (SI) S1. The two generators
share a DL neural network design that is similar to DiscoGAN (Kim et al., 2017), which includes a series of con-
volutional and deconvolutional layers to help uncover features at multiple scales (Figure 1b). The input images
have dimensions 128 × 128. The convolutional layers (the downsampling path) use 4 × 4 kernels and a uni-
form stride size of two, while the deconvolutional layers (the upsampling path) all use a stride size of one. The
number of filters increases from 64 to 512 for the convolutional layer stack, while the deconvolutional layers
reverse the number of filters to generate an output image of the same size as the input. The leaky rectified
linear unit function is used as the activation function for all hidden CNN layers, and the hyperbolic tangent
function (tanh) is used as the activation function for the output layer. Instance normalization is applied to hid-
den layers to improve the training speed (Ulyanov et al., 2016). The two discriminators use the same design
as shown in Figure 1c. For the hidden layers, the layer configuration is repeated twice using alternating stride
sizes 1 and 2. All codes are written in Python using the open-source DL package, Keras (Chollet, 2015). The
Adam optimization solver (Ba, 2014) is used for training, with a learning rate 0.0002 and a forgetting factor
0.5. Unless otherwise noted, the number of epochs used in training is 125, and the batch size is 10. The com-
puting time taken for each epoch is about 23 s on a cloud-based Ubuntu instance running on an Intel Xeon
E5-2580 CPU node with GPU acceleration (NVIDIA Tesla K40).

To quantify the skill of trained generators, the structural similarity index (SSIM) commonly used in image anal-
ysis (Wang et al., 2004) is adopted as a metric. For two sliding windows u and v of dimensions np × np, SSIM is
defined as

SSIM (u, v) =
2𝜇u𝜇v + c12𝜎uv + c2

𝜇2
u + 𝜇2

v + c1𝜎
2
u + 𝜎2

v + c2
, (8)

where u and v represent two patches from the simulated image (using GAN) and testing image (from numer-
ical model), respectively, 𝜇 represents the mean, 𝜎2 represents the variance, and c1 (0.01) and c2 (0.03) are
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Figure 1. (a) State-parameter identification generative adversarial network (SPID-GAN) consists of two pairs of
generators and discriminators trained together, one pair for identifying the forward parameter-to-state mapping
(PS,S ; first row) and the other for identifying the reverse state-to-parameter mapping (SP,P ; second row); cycle
consistency is enforced by minimizing the reconstruction loss (third column); observations of parameter and state
variables can be fused through preprocessing and postprocessing steps (e.g., kriging and geostatistical simulation);
(b) the design of generator model follows a downsampling-upsampling pattern using convolutional and
deconvolutional layers to learn features at multiple scales; (c) the discriminator uses repeating convolutional layers to
improve learning of fine-scale features.

small constants used to stabilize the denominator. The mean value of SSIM, averaged over all sliding windows,
ranges from −1 to 1, with 1 being attainable when two images are identical. The size of the sliding window
used in this study is np = 7.

2.2. Groundwater Flow
To demonstrate the usefulness of SPID-GAN for learning the bidirectional mappings, I consider groundwater
flow in a spatially heterogeneous aquifer, which is a representative geoscience problem and has been studied
extensively. The governing equation is given by the following PDE:

Ss(z)
𝜕h(z, t)

𝜕t
= ∇ ⋅ (K(z)∇h(z, t)) + qw(z, t), (9)

where h (L) is hydraulic head, Ss (1/L) is specific storage, K (L/T) is hydraulic conductivity, z denotes spatial
coordinates, t is time, and qw (L3/T) is the source/sink term. For the purpose of illustration, the state variable is h,
and the parameter is K ; both are spatially distributed variables. All other quantities are assumed deterministic.
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Figure 2. State-parameter identification generative adversarial network (SPID-GAN) results for two random realizations
(a–d and e–h): (a) and (e) are original log K realizations generated using sgsim, (c) and (d) are original head images
simulated using MODFLOW, head fields (b) and (f ) are generated using the trained forward generator PS, and
parameter fields (d) and (h) are generated by the trained reverse generator SP . All contours are normalized for
visualization purposes. Subplots (i) and (j) show histograms of structural similarity indices (SSIMs) calculated on 1,000
test samples not used during training. The mean SSIM of PS is 0.98, and the mean SSIM of SP is 0.78.

The lateral dimensions of the aquifer are 1, 280m × 1, 280m, and the domain is uniformly discretized into
10-m× 10-m grid blocks. The thickness of the aquifer is 20 m. The goal of SPID-GAN is to train two generators
simultaneously to approximate the physical model specified in equation (9). Two different problem settings
are considered, single-modal and multimodal parameter distributions.

3. Results
3.1. Single-Modal Parameter Distribution
In the first problem, K is assumed to be a random field following log-normal distribution. The mean and stan-
dard deviation of log K are 2 × 10−4 and 1.0. The variogram model of log K is Gaussian with max and min
ranges of 500 and 100 m, respectively. Ss is deterministic with a value of 2.5 × 10−6 m−1. In the baseline case,
constant-head (Dirichlet) boundary conditions are imposed on both the west (21 m) and east (10 m) sides of
the aquifer. Four pumping wells are put in grid blocks (25, 25), (25,106), (106, 106), and (106,25), with pump-
ing rates of 10, 10, 50, and 20 m3/day, respectively. Stochastic realizations of log K are generated by using the
sequential Gaussian simulator (sgsim), available from the open-source geostatistical package SGeMS (Remy
et al., 2009). The flow field is first run to the steady state, followed by a transient simulation period of 3,600 s. For
training and validation, the corresponding head distributions are obtained by using the open-source ground-
water flow solver MODFLOW via its Python wrapper, flopy (Bakker et al., 2016). The computing time for each
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Figure 3. Illustration of the use of prior information in state-parameter
identification generative adversarial network (SPID-GAN): (a) and (b) show
the true log K and head fields, which are sampled only at monitoring
locations (open circles); (c), (e), and (g) show the top three log K realizations
identified as the closest to the true head field, as measured using MSE
between simulated and observed head values; and (d), (f ), and (h) show the
corresponding head fields, which resemble the true head field.

forward simulation is 0.04 s. Such geostatistical processing steps have
been broadly used in previous studies, such as ensemble-based data
assimilation(Chen & Zhang, 2006; Franssen et al., 2009; Sun et al., 2009a),
hydraulic tomography (Lee & Kitanidis, 2014), and surrogate modeling and
uncertainty quantification (Li & Zhang, 2007; Nowak et al., 2010). Training
of the SPID-GAN is done using 400 pairs of logK (parameter domain) and
h (state domain) fields, each having dimensions of 128 × 128.

Figures 2a–2d and 2e–2h show examples resulting from two test real-
izations not included in training. The left two images of each row show
the input log K field and the corresponding head field generated using
the trained forward generator PS, while the right two images of each
row show the input state (head) and corresponding log K field predicted
using the trained reverse generator SP . For this base case, SPID-GAN cap-
tures the spatial patterns in head distributions well, on the basis of visual
comparisons between Figures 2b and 2c and between Figures 2f and 2g.
Results of testing using 1,000 test realizations of log K give an ensemble
mean SSIM value of about 0.98 (Figure 2i). In comparison, by visual exami-
nations of Figures 2a and 2d and Figures 2e and 2h, it can be seen that the
trained reverse mapping SP captures the dominant spatial patterns in the
original log K images but tends to underestimate some local maxima or
minima. The ensemble mean SSIM obtained from testing on 1,000 h field
samples (not used in training) is 0.78.

In general, learning a high-dimensional reverse mapping is a significantly
more challenging problem to solve, depending on not only the design
of the GAN algorithm but also the experimental design and quality of
training samples. In this case, the learning of reverse mapping would
benefit from any conditions (e.g., boundary conditions and forcings) that
can help improve the information content of head fields and the unique-
ness of cross mappings. In an experimental design, if the head field is
not sensitive to certain parts of the parameter field, SPID-GAN may give
ambiguous inverse solutions in those areas. To elaborate this latter point,
in SI Text S2 the number of pumping wells is reduced from four to two
(Figure S2) and then to none (Figure S3). As a result, the parameter fields
in those cases become less identifiable—More artifacts start to appear in
reversely mapped log K fields in those cases, especially in the central part
of the domain that is less stimulated than the parts near the west and
east boundaries. Nevertheless, the overall SPID-GAN performance stays
relatively robust, as can be seen by the SSIM statistics in the respective
plots.

In addition to different boundary/forcing conditions, the effect of train-
ing sample quantity on SPID-GAN performance is also investigated. The

results, shown in SI Text S3, suggest that the GAN is relatively robust when the number of training samples
varies, indicating the capability of GAN to learn dominant cross-domain patterns.

GANs operate with images, while the traditional workflow in hydrogeology typically involves point measure-
ments. This next example demonstrates that the two workflows are actually complementary under the new
SPID-GAN workflow proposed in Figure 1a. Figures 3a and 3b show the true log K and head fields, which are
sampled only at limited locations. For simplicity, it is assumed that point observations of K and h are col-
lected from the same monitoring network (open circles in Figures 3a and 3b, a total of 36 conditioning points),
although they may well be different. First, 1,000 log K conditional realizations are generated using sgsim that
honor the prior information on K . For each conditional log K realization, the trained forward generator PS

from the base case is used to predict a head field, which is then sampled at monitoring locations to calcu-
late the MSE between the simulated and actual head observations. The resulting MSE values are sorted in the
ascending order. Figures 3c, 3e, and 3g show the top three head fields that have the minimal MSE, while the
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Figure 4. Illustration of the use of state-parameter identification generative adversarial network to identify bidirectional
mappings for a bimodal parameter distribution: Subplots (a)–(d) show results from a test realization; subplots (e)–(h)
show results from another test realization. The structural similarity index (SSIM) histograms obtained using 1,000 test
realizations are shown in subplots (i)–(j). The mean SSIM of the forward generator is 0.8, and the mean SSIM of the
reverse generator is 0.71.

corresponding log K fields are plotted in Figures 3d, 3f, and 3h. The identified fields show strong resemblance
to the synthetic truth, especially where conditional information is available (i.e., comparing SPID-GAN results
to the synthetic truth at the monitoring locations). Similarly, the workflow presented here can be used to form
an ensemble of models to perform the DL-based, uncertainty quantification in the sense of the recently intro-
duced data space inversion, in which the goal of modeling is not calibration in the traditional sense but to
establish a data-driven statistical relationship between the observed and forecast variables and to quantify
the predictive uncertainty of the forecast variables, by using an ensemble of uncalibrated prior models (Jeong
et al., 2018; Satija & Caers, 2015; Sun et al., 2017).

3.2. Bimodal Parameter Distribution
In the second problem setting, the feasibility of using SPID-GAN for learning multimodal distributions is inves-
tigated. The aquifer is assumed to consist of two hydrofacies, a permeable channel facies and a background
matrix, making the distribution of K bimodal. Identification of facies shapes is a representative and yet chal-
lenging inversion problem that has also been studied extensively in the literature (Liu & Oliver, 2005; Sun et al.,
2009b; Zhou et al., 2011). In this example, the channel facies has a K value of 2 × 10−4 m/s and an Ss value
of 1 × 10−6 m−1, while the matrix has a K value of 1 × 10−8 m/s and an Ss value of 1 × 10−7 m−1. The facies
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realizations are generated using snesim, which is a multipoint geostatistical simulator also available from
SGeMS (Remy et al., 2009). Constant heads of 11 and 10 m are imposed on the west and east boundaries, and
the transient simulation period is 5,400 s. All other settings are the same as used in the previous two examples.

Figures 4a–4d and 4e–4h show example results from two test realizations. The forward generator predicts
the connected flow paths well, including the fading color pattern in head distribution from the west bound-
ary to the east boundary (comparing Figures 4b and 4c and Figures 4f and 4g). The reverse mapping from the
head distribution identifies the well-connected backbone of the flow network (comparing Figure 4a with 4d
and Figure 4e with 4h) but tends to omit small channel segments that are not connected to the main flow
pathways. This is because the information of disconnected segments is not discoverable from head distribu-
tions. In other words, the head measurements are not sensitive to the parameter information in disconnected
channel segments. From a practical standpoint, the connected features are more important to identify for risk
assessment purposes. Finally, Figures 4i and 4j show the SSIM statistics on running 1,000 pairs of randomly
generated test samples. Again, SPID-GAN gives a reasonable performance in this bimodal distribution case,
with an ensemble mean SSIM value of 0.8 for forward mapping (K to h) and 0.71 for reverse mapping (h to K).

4. Summary and Conclusions

The recently introduced GANs have shown strong performance in image-to-image translation. Questions
remain about whether GANs can be used to learn the deep causal structures embedded in physical models.
In this study, I show that the usefulness of GANs goes beyond the simple picture mapping and demonstrate
the feasibility of using a SPID-GAN to approximate bidirectional mappings between the parameter space
and state space of PDEs. Through a series of representative problems selected from groundwater modeling,
I show that SPID-GAN does a satisfactory job (with a reasonable amount of computing time) in linking phys-
ical parameters to model states and is able to capture the complex spatial patterns in parameter and state
distributions that are otherwise challenging to obtain. The need for identifying forward and reverse map-
pings is ubiquitous in geophysical research. Thus, findings of this study may have important implications for
many similar tasks, such as geostatistical simulation, history matching, uncertainty quantification, surrogate
modeling, optimal design of experiments, or any problem that requires sampling from a high-dimensional
distribution in a computationally efficient manner.
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