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A B S T R A C T

Carbon capture and storage (CCS) is being evaluated globally as a geoengineering measure for significantly
reducing greenhouse emission. However, long-term liability associated with potential leakage from these geologic
repositories is perceived as a main barrier of entry to site operators. Risk quantification and impact assessment
help CCS operators to screen candidate sites for suitability of CO2 storage. Leakage risks are highly site dependent,
and a quantitative understanding and categorization of these risks can only be made possible through broad
participation and deliberation of stakeholders, with the use of site-specific, process-based models as the decision
basis. Online decision making, however, requires that scenarios be run in real time. In this work, a Python based,
Leakage Assessment and Cost Estimation (PyLACE) web application was developed for quantifying financial risks
associated with potential leakage from geologic carbon sequestration sites. PyLACE aims to assist a collaborative,
analytic-deliberative decision making processes by automating metamodel creation, knowledge sharing, and
online collaboration. In PyLACE, metamodeling, which is a process of developing faster-to-run surrogates of
process-level models, is enabled using a special stochastic response surface method and the Gaussian process
regression. Both methods allow consideration of model parameter uncertainties and the use of that information to
generate confidence intervals on model outputs. Training of the metamodels is delegated to a high performance
computing cluster and is orchestrated by a set of asynchronous job scheduling tools for job submission and result
retrieval. As a case study, workflow and main features of PyLACE are demonstrated using a multilayer, carbon
storage model.
1. Introduction

Fossil fuels are expected to continue to supply a large part of the
world's energy needs (86 percent in 2015) in the near future (BP, 2016).
Carbon capture and sequestration (CCS) is the process of capturing CO2
from power plants and industrial emission sources and then injecting into
a deep subsurface repository, usually a saline aquifer or depleted oil/gas
reservoir, for permanent storage and sequestration. CCS offers a potential
solution for tapping into the energy benefits of fossil energy while miti-
gating anthropogenic greenhouse gas emissions (Haszeldine, 2009).
Main technical challenges pertaining to all geologic carbon sequestration
operations are to ensure that injectivity and capacity predictions are
reliable, the fate of the injected CO2 plume is accountable, and anomalies
related to unexpected fluid migration are detectable (Harbert et al.,
dragory@gmail.com (H. Jeong).
ng, College of Engineering, Seoul Na

ember 2017; Accepted 14 January 20
2016). Over the past decade, the CCS community has significantly
advanced and enriched its knowledge base through extensive modeling,
laboratory, and field demonstration projects (Birkholzer et al., 2015;
Jenkins et al., 2015). A recent survey of 229 CCS experts showed that
most participants shared broad confidence in the readiness of CCS for
commercialization; nevertheless, surveyees also identified four major
barriers to CCS commercialization, including (1) cost and cost recovery,
(2) lack of a price signal or financial incentive, (3) lack of a compre-
hensive regulatory regime, and (4) long-term liability risks (Davies et al.,
2013). Unlike the first three barriers that are related to exogenous policy
and market drivers, the long-term liability risk is largely endogenous and
related to the fact that the probability of leakage via natural (geologic
faults and fractures) and manmade (e.g., abandoned wells) pathways in a
geologic repository is a priori nonzero (Wilson et al., 2007; Pollak and
tional University, 599 Gwanak-gu, Seoul 08826, Republic of Korea.
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Fig. 1. A decision support workflow for
CCS.
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McCoy, 2011).
Leakage risk assessment has two major components: risk quantifica-

tion and impact analysis. For the former component, extensive studies
have been conducted on process-level understanding of leakage path-
ways and mechanisms (Benson and Cole, 2008; Carroll et al., 2009;
Birkholzer et al., 2011), quantification of potential leakage risks (Vis-
wanathan et al., 2008; Sun et al., 2013b; Pawar et al., 2015), and leakage
detection technologies (Oldenburg et al., 2009; Jenkins et al., 2015; Sun
et al., 2013a; Harbert et al., 2016). Under the U.S. Department of Energy's
National Risk Assessment Partnership (NRAP) program, a suite of inte-
grated assessment models were developed using system modeling ap-
proaches to quantify risks and risk profiles for generic carbon
sequestration sites (Pawar et al., 2015). On the other hand, the CCS
impact analysis has received relatively limited attention, mainly because
impact and liability are often poorly defined, and multiple stakeholders
and the public tend to “use the terms risk, injury, damage, liability, and
financial responsibility differently than each other and sometimes
interchangeably” (Wilson et al., 2003, 2007; Trabucchi et al., 2010;
Bielicki et al., 2014). Elsewhere in environmental and natural resources
management, various decision support systems (DSS) have long been
used to engage stakeholder deliberation and to build consensus around
different management actions (Matthies et al., 2007; Rehr et al., 2012;
Sun, 2013). The democratization of environmental policy decisions is
often referred to as an analytic-deliberative process combining analysis
(input from the physical and social sciences) and deliberation (input from
stakeholders) (NRC, 1996). In many situations, such collaborative
analytic-deliberative process constitutes the key to fruitful decision
makings and can often lead to widely accepted risk policies (Arvai, 2003;
Rehr et al., 2012; Uusitalo et al., 2015). Along the same vein, the CCS
community may also benefit from DSS that link integrated assessment
modeling with participatory impact analyses, such that concrete assess-
ments of the potential costs and compensatory damages related to
site-specific CCS activities can be performed systematically, collabora-
tively, and transparently.

We envision that a CCS-oriented decisionmaking process may include
three key stages: analysis, deliberation, and synthesis (Fig. 1). During the
analysis stage, the first step is to characterize site-specific risk pathways
or damage categories that may incur financial and economic conse-
quences, including, but not limited to, groundwater contamination,
induced seismicity, surface/subsurface mineral right infringement and
asset damage, and property damage resulting from leakage or ground
deformation (Trabucchi et al., 2010). Outcomes from the first step shall
provide inputs to the second step, in which a probabilistic impact
assessment of different risk scenarios will be conducted.

In the deliberation stage, outputs from the analysis stage are assessed,
and damage costs, including environmental remediation and legal costs,
are derived. Cost attribution is arguably the most challenging step
because of the lack of leakage cost databases in the literature. Although
knowledge gained from oil and gas industry may be used as proxies for
appraising costs associated with leakage (Wilson et al., 2003; Jordan and
Benson, 2009), a more constructive approach is to solicit inputs from
stakeholders and domain experts that are directly involved in a particular
CCS project. A recent application of the latter approach is presented in
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Bielicki et al. (2014), in which low- and high-cost story lines (i.e., nar-
ratives of leakage outcomes) are formed by surveying stakeholders who
may be potentially affected by leakage events. Thus, similar to many
other environmental decision making problems, the deliberation process
is implicitly participatory and iterative, calling for an effective commu-
nication platform that may help to build trust and transparency among
decision actors.

In the synthesis stage, outputs from the first two stages are combined
to assess potential losses expected at a CCS site. For planning purposes,
common tasks include estimation of the maximum potential loss (e.g.,
worst-case scenario), and identification of the most significant system
parameters that could affect the expected losses. The synthesis process is
similar to design of experiments in the sense that it is also iterative,
requiring exploration of the decision space to find suitable design pa-
rameters and then estimating the range of expected losses. Such a task
can be computationally demanding if process-level models are used
directly and the dimension of decision space is relatively large. Meta-
modeling, which is concerned with developing a faster-to-run surrogate
of the process-level model(s), offers a potential solution for accom-
plishing the aforementioned risk assessment tasks online, reducing a
significant gap between decision analysis and deliberation processes.
Metamodeling has been a subject of intensive studies in recent years
(Sudret, 2008; Villa-Vialaneix et al., 2012; Razavi et al., 2012; Maier
et al., 2014; Sun and Sun, 2015; Sun et al., 2015), however, few have
addressed the use and deployment of metamodels in an online environ-
ment for supporting decision making.

The main objective of this work is thus to develop and demonstrate a
Python-based, Leakage Assessment and Cost Estimation (PyLACE) web
application, with an emphasis on facilitating the transformation of
process-level analysis models to support online probabilistic impact an-
alyses. Web-based platforms are highly desirable for integrated assess-
ment and decision making, providing a common base for team
interactions and deliberation, as suggested by many recent studies
(Buytaert et al., 2012; Castronova et al., 2013; Laniak et al., 2013; Sun,
2013; Vitolo et al., 2015; Swain et al., 2016). In particular, the way
through which an individual or a group of people receive a particular
type of information can radically influence whether the information
sticks and gets passed on (Gladwell, 2006). The fast evolution of cyber-
infrastructure and social media in recent years have dramatically
changed the landscape of scientific computing and team collaboration,
making it more feasible and affordable than ever to perform distributed
modeling in the Cloud (i.e., software as a service) and to develop and
deploy web solutions by using user-defined computing technologies and
operating systems (i.e., infrastructure as a service) (Goodall et al., 2011;
Sun, 2013; Rajib et al., 2016).

For the purpose of this work, we assume that the user has already
developed a process-level model and identified a set of most important
uncertain system parameters through, for example, global sensitivity
analysis (Saltelli et al., 2008). Further, we assume that the process-level
model has already been approved by the stakeholders involved with the
project. Thus, main functionalities of PyLACE are to (1) orchestrate the
creation of metamodels from a user-provided process-level model, (2)
perform probabilistic impact analysis using the generated metamodel,



Fig. 2. Architectural diagram of PyLACE,
which consists two main functional blocks,
metamodel development (left box with
dashed line border) and metamodel-based
decision support (right box shaded in
green). PyLACE provides functions to facili-
tate interactions among the user, the meta-
modeling creation process, and high-
performance computing (HPC). (For inter-
pretation of the references to colour in this
figure legend, the reader is referred to the
web version of this article.)
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and (3) enable multi-stakeholder deliberation of the potential impact or
liability. The entire framework is implemented using open-source pack-
ages, most of which are written in Python. In the following, Section 2
describes the system design and metamodeling methodologies, Section 3
demonstrates the tool usage through a use case study. Finally, conclu-
sions and findings are given in Section 4.

2. Methodology

Fig. 2 shows the overall architecture of PyLACE, which includes two
major functional blocks: metamodeling (left block in dashed line), and
web-based probabilistic risk assessment and cost estimation (right block
in green color). Each block, in turn, consists of multiple modules. By
design, the modules are loosely coupled, communicating with each other
through messaging (e.g., JavaScript Object Notation or JSON). Thus,
technologies behind each module can be easily expanded or tailored
according to users' needs. Below we provide technical details of these
blocks and their implementation.
2.1. Metamodeling

Any process-level model for predicting the movement and fate of
injected CO2 plume can be subject to uncertainties in model conceptu-
alization (model structure), model parameters, and initial and boundary
conditions. Let such an uncertain, process-level model be denoted as

u ¼ f ðv; θÞ; (1)

where u ¼ uðx; tÞ is model solution, f is forward model, v is a set of
deterministic model parameters, and θ is a set of uncertain model pa-
rameters including both scalars and distributed variables. The idea of

metamodeling is to find a surrogate model bf that converges to f in the
mean square sense, but is computationally cheaper than the original
model (Sun and Sun, 2015). Commonly used metamodeling techniques
are originated from machine learning literature, including, for example,
artificial neural network, polynomial regression, Gaussian process
regression (GPR), kriging, multivariate adaptive regression splines, de-
cision tree, and support vector machine (Bishop, 2006; Wang and Shan,
2007; Villa-Vialaneix et al., 2012; Sun and Sun, 2015). Currently,
PyLACE supports two metamodeling algorithms, a special type of sto-
chastic response surface method and GPR, both are highly suitable for the
task at hand based on our previous experience and both allow for eval-
uation of input uncertainty (Sun et al., 2013b, 2015).

2.1.1. A stochastic response method
Various stochastic response surface methods have been used for
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model approximation and uncertainty quantification in porous media
modeling (e.g., Li and Zhang, 2007; Zeng et al., 2012; Zhang et al., 2013).
In PyLACE, a special stochastic response surface method based on the
polynomial chaos expansion (PCE) theory (Xiu and Karniadakis, 2002;
Ghanem and Spanos, 2003) is implemented.

The PCE, which is based on the homogeneous chaos theory byWiener
(1938), provides a stochastic representation of random variables. Here
PCE is used to expresses the model output u as a projection of input
random variables onto a stochastic space spanned by a set of orthogonal
polynomials fΦig,

u � bf ðx; tÞ ¼XNp

i¼0

fiðx; tÞΦiðξÞ; (2)

in which ffig is a set of deterministic coefficients, Np is the order of
expansion, and ξ ¼ fξ1; ξ2;…; ξNg is a set of N univariate random vari-
ables. For clarity, we shall omit the dependency on ðx; tÞ in the following
presentation where no confusion should occur. The basis functions fΦig
are multidimensional polynomials satisfying orthogonality constraint�
Φi;Φj

�
¼ ∫… ∫

Ω
ΦiðξÞΦjðξÞpðξÞdξ ¼ hΦii2δij; (3)

in which pðξÞ is joint probability distribution of ξ, δij is Kronecker oper-
ator which is 1 when i ¼ j and 0 otherwise, and h⋅i is an expectation
operator over the stochastic space Ω. The total number of terms in PCE is
determined by the random dimension N and the highest-order, p, of the
orthogonal polynomials used in the expansion

Np þ 1 ¼ ðN þ pÞ!
N!p!

: (4)

Eq. (4) indicates that the number of terms grows exponentially with
the random dimension, suggesting PCE is most useful for low-
dimensional problems. However, such a “curse-of-dimensionality” issue
is not unique to PCE-based metamodeling. Thus, an important step dur-
ing the “risk portfolio development” stage in Fig. 2 is to identify a small
set of most influential parameters for uncertainty quantification and
leave the rest of the parameters as deterministic variables.

Depending on the type of distribution, different orthogonal poly-
nomials need to be used to ensure optimality. The most commonly used
method for constructing fΦig is the Askey-Wilson scheme (Askey and
Wilson, 1985), which specifies the optimal orthogonal polynomials for a
large number of probability distributions (e.g., Hermite polynomial for
Gaussian distributions and Legendre polynomial for uniform distribu-
tions). Determination of the coefficients ffig is usually the most compu-
tationally demanding step. For this purpose, two categories of methods
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exist, the intrusive and non-intrusive methods, with the main difference
being that the former requires modification of the numerical solver.
Thus, non-intrusive methods are often preferred over intrusive methods,
especially in black-box applications. Non-intrusive methods can be
further divided into integration methods and point collocation methods.
Integration methods obtain the coefficients ffig by numerically inte-
grating a multidimensional integral using a quadrature rule. On the other
hand, point collocation methods first obtain model outputs at a set of
predefined points (collocation points), using which an over-determined
system of equations is formed and then solved using linear regression
to obtain the coefficients. In either case, a large number of runs of the
original model is required. Generating random samples (collocation
points) from the joint probability distribution of ξ may not be trivial. A
common approach is to assume that all components are independent
random variables so that only univariate sampling is required. Correlated
random fields may be approximated by a linear combination of inde-
pendent random variables using, for example, Karhunen-Lo�eve transform
(Ghanem and Spanos, 2003). Multivariate sampling techniques, such as
Rosenblatt transform (Rosenblatt, 1952), have been implemented to
allow sampling from arbitrary distributions.

Application of a PCE-based metamodeling technique can be summa-
rized in four main steps: (1) specification of the uncertain variables and
their distributions, (2) construction of orthogonal polynomials, and
generation of nodes and weights (if integration method is used) or
collocation points (if point collocation method is used), (3) calculation of
model outputs at the nodes, and (4) formulation of a metamodel for
online simulation and uncertainty quantification. In this work, the open-
source Python toolbox, Chaospy, developed by Feinberg and Langtangen
(2015), was used. Chaospy currently supports (1) construction of
orthogonal polynomials fΦig, for either independent random variables or
dependent variables; (2) sampling of a joint distribution of all random
variables; and (3) calculation of coefficients ffig through either integra-
tion methods or point collocation methods.

2.1.2. Gaussian process regression (GPR)
GPR represents another commonly used metamodeling methodology

for estimating a mapping between training points (in multidimensional
parameter space) and discrete function values. It has been applied in
water distribution network design (Krause and Guestrin, 2007),
contaminant source identification (Zhang et al., 2016), streamflow
forecasting (Sun et al., 2014), and atmospheric modeling (Marrel et al.,
2008).

In GPR, the function outputs are treated as realizations of a random
process and, in particular, a Gaussian process (GP), that is completely
specified by its mean and covariance (Rasmussen, 2006). The starting
point of GPR is the following additive error model that is assumed be-

tween outputs of a process-level model and its surrogate, bf ðθÞ
uiðθiÞ ¼ bf iðθiÞ þ εi; εi 2 N

�
0; σ2i

�
; i ¼ 1; 2;…;NT (5)

where εi is zero-mean Gaussian random error with variance σ2i ; NT is the
total number of training points fθig; and fuig are the corresponding

process-level model outputs. Denoting u ¼ fuig; Θ ¼ fθig, f ¼ fbf ig, and
z ¼ fεig, Eq. (5) may be written in a vector form as

uðΘÞ ¼ fðΘÞ þ zðΘÞ (6)

Because of the GP assumption, the prior PDF of f is Gaussian

pðfjβÞ∝N ð0;KÞ; (7)

where K is an NT � NT covariance matrix with kernel function elements

kðθi; θjÞ;β are parameters used to define the functional form of bf ðθÞ, as
well as parameters of the kernel function (see below). The most
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commonly used form of bf ðθÞ is a linear combination of basis functions,
similar to that given in Eq. (1),

bf ðθiÞ ¼XM
j¼1

wjϕjðθiÞ ¼ wTϕðθiÞ; i ¼ 1; 2;…;NT (8)

where w ¼ ðw1;…;wMÞT is a weight vector and fϕjg is a set of basis
functions. Applying Eq. (8) to all discrete values in f leads to

f ¼ Φw; (9)

in which the NT �M matrixΦ is called the design matrix, with each row
containing the outputs of all basis functions calculated on a specific
training sample, namely,

ϕi ¼ ½ϕ1ðθiÞ;ϕ2ðθiÞ;…;ϕMðθiÞ�; i ¼ 1;…;NT (10)

It can be shown that the relationship between covariance matrix K
and design matrix Φ is (Rasmussen, 2006)

K ¼ ΦΣwΦT ; (11)

where Σw is the covariance matrix of weight vectorw. The likelihood and
posterior PDF of f are also Gaussian, and the mean and covariance of the
posterior PDF are given by (Rasmussen, 2006)

μ ¼ KT ðKþ ΣzÞ�1u; (12)

Σ ¼ K� KT ðKþ ΣzÞ�1K; (13)

where Σz is model error covariance matrix. Note that only the kernel
function is required to calculate mean and covariance, but not the actual
forms of basis functions, nor weights w. This is known as the “kernel
trick” in machine learning (Bishop, 2006). PyLACE adopts a radial-basis
function kernel defined as

kðθ; θ'Þ ¼ σ2f exp
�
� r2

2l2

�
(14)

where r ¼ jjθ� θ'jj is the Euclidean distance between two input points θ
and θ', and length scale l and variance σ2f are hyperparameters. Training
of the GPR then entails finding the values of the hyperparameters and the
variance of model error, σ2, by minimizing a log marginal likelihood
function (Rasmussen, 2006). We use the Python package GPy (GPy,
2012) to train GPR models.
2.2. Leakage cost estimate

Leakage cost estimate is an integral part of CCS project planning. In
general, local stakeholder concerns and leakage risks dominate during
the CCS planning stage. Issues such as the ownership of injected CO2,
damage attribution and partition among multiple actors, and remedia-
tion liability must be addressed in a site-specific manner (Wilson et al.,
2007). The outcome of liability cost analysis may serve several purposes,
for instance, for securing an insurance policy or transferring liability from
private firms to a community pool (e.g., trust fund). In their case study
related to a CCS project in Michigan sedimentary basin, Bielicki et al.
(2014) solicited inputs from local experts, oil and gas engineers, regu-
lators, academics, attorneys, and other environmental professionals who
were knowledgeable about the basin to estimate costs related to (1)
finding and fixing leak, (2) environmental remediation, (3) injection
interruption, (4) legal costs, and (5) business disruptions to others. They
found that the majority of leakage costs is incurred from activities related
to finding and fixing a leak and to injection interruptions.



Fig. 3. (a) JSON schema used in PyLACE for specifying un-
certain variables and metamodeling algorithm, in which <>

indicates data types; (b) an example of JSON file that spec-
ifies a single uncertain variable (flow rate) and its distribu-
tion information.
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To assist stakeholders in their deliberation of potential leakage costs,
PyLACE provides a graphic user interface for users to enter cost cate-
gories, the weight (or likelihood) of each category, as well as the asso-
ciated unit costs (e.g., in dollar per ton of leaked fluid). A survey may also
be set up using PyLACE to elicit expert opinions on the likelihood of each
category. Expert elicitation is a “formal heuristic process of acquiring an
expression of the opinion of one or more experts in the form of words,
numbers, language, pictures or figures” (Ayyub, 2001). A large number of
elicitation techniques are available, as reviewed by Krueger et al. (2012)
and the references therein. Creation of a shared and accessible knowl-
edge base is important for improving transparency and unbiasedness of
an elicitation process (Krueger et al., 2012). In this work, experts are
asked to provide a probabilistic scale of each category, with 1 the least
likely, and 10 the most likely. The weight assigned to each category is a
weighted arithmetic average of all expert inputs.

The unit damage cost is calculated as the weighted mean of all
damage categories. Most of the previous studies investigating the leakage
impact considered a CO2-rich brine as the primary form of leakage
(Carroll et al., 2009; Navarre-Sitchler et al., 2013). Here, we allow the
user to separate the leakage impact assessment of brine and CO2-rich
brine based on the following rationales: (1) the footprint of pressure
perturbation caused by injection is generally much greater than that of
CO2 plume (Zhou et al., 2008); (2) leakage would be dominated by brine
leakage before CO2 plume arrival; (3) chemical reactions with and
without dissolved CO2 are different; (4) brine leakage is as detrimental as
CO2 leakage, if not worse, because of its high concentrations of heavy
metals; and (5) unexpected CO2 migration to neighboring properties may
disrupt their operations because of the acidic nature of CO2 gas and
potential corrosion (Islam and Sun, 2016), while the oil production
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infrastructure is generally more tolerant to brine intrusion by design.
Thus, it is desirable for the metamodels to provide estimates of damage
caused by leaked CO2 and brine separately.

2.3. System implementation

Features currently supported by PyLACE are represented in the
shaded blocks in Fig. 2. The web interface is implemented on top of an
open-source Python web framework, Django (Django Project, 2017),
which supports a model-view-controller web design pattern. Thus,
Django is particularly useful for developing data-driven web applica-
tions, in which the programmer specifies business logics and data
abstraction (model), the control of user interactions (controller), and the
look-and-feel of the frontend (view). Django has been used in several
environmental web-GIS applications (Sun, 2013; Swain et al., 2016).

PyLACE allows the user to specify uncertain variables and meta-
modeling algorithm in JSON format, which is a standard file format for
web application messaging and can be easily edited by using any text
editor. Fig. 3a shows the JSON schema used in PyLACE, in which the
main tag groups are UncertainVariables and metamodel. Currently
available metamodel choices are either pce or gpr. For the former model,
the parameter is the order of polynomials to be used, while for the latter
there is no required parameter.

An example implementation of the JSON schema is given in Fig. 3b, in
which only one uncertain variable (flowrate) is included, which is nor-
mally distributed with mean (10.0) and standard deviation (0.5), as
specified under the params tag.

A typical workflow may involve the following two steps. First, the
user uploads a JSON metamodel specification file via PyLACE's
Fig. 4. Sequence diagram of metamodeling job
management.



Fig. 5. Submitted jobs can be managed and monitored
using Django admin dashboard.
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metamodeling module. Second, the user launches a process to create a
metamodel. At this point, several actions happen depending on the al-
gorithm specified in the metamodel file. For PCE solver, collocation
points are created by sampling from the joint PDF of all random vari-
ables, according to the polynomial order specified by the user in the
JSON file. For GPR solver, a large number of training points are sampled
from the joint PDF using Latin hypercube sampling. Note the actual
number of training points required is problem dependent. Validation
tests can be performed to check the accuracy of the trained models.
Recently, adaptive methods (or exploration-exploitation) have also been
used to train GPR, in which the training points are added gradually until
certain model performance criterion is reached (Desautels et al., 2014;
Zhang et al., 2016). PyLACE then translates the generated collocation
point set or training set into a launcher job script. Launcher is a distrib-
uted computing utility developed by the Texas Advanced Computing
Center (TACC) at the University of Texas. It is used to run a large number
of serial or multi-threaded applications as a single, multinode parallel job
on HPC clusters (Wilson and Fonner, 2014).

Because all tasks involved in metamodel creation are potentially time
consuming, PyLACE uses a Django-based job management tool, django-
RQ (https://github.com/ui/django-rq), to schedule the jobs as
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asynchronous tasks. Fig. 4 shows a sequence diagram of these different
tasks. During run time, a cron job scheduled on the TACC cluster
constantly checks for new launcher jobs in a PostgreSQL database
deployed on the web server side. This is necessary for this study because
TACC implements a multi-factor authentication for login, making it
easier to pull jobs from inside TACC resources than to push jobs to TACC
from the web server side. When a new launcher job is found in the
database, the cron job copies the job script, submits the job to the HPC,
and periodically checks for the job completion status. After the HPC job is
finished, the cron job copies the results back to the web server. The
PostgreSQL database is used as a intermediate place for different tasks to
update task status. The user may monitor job status using Django's admin
interface (see Fig. 5). Email notification can also be added. Although a
large part of the web server and HPC interactions described here pertains
to the particular HPC used for this study, the methodology is general and
may be readily applied to any batch-scheduled HPC environment.

The PyLACE application was developed on a virtual machine running
CentOS (https://www.centos.org/) Linux operation system. The Apache
(https://www.apache.org/) web server is used to host Django applica-
tions. Because of the large number of the Python package used, a Python
package manager, fabric (http://www.fabfile.org), is used to automate
Fig. 6. Plan view of the injection layer, which shows
locations of leaky wells (red dots), observation wells
(green dots), and a single injector (blue square). Note
in this example the leaky and observation wells
should be interpreted as virtual wells, where either
leakage impact assessment or model outputs are
needed for worst-case assessment. (For interpretation
of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

https://github.com/ui/django-rq
https://www.centos.org/
https://www.apache.org/
http://www.fabfile.org


Table 1
Deterministic parameters used in the multi-layer CO2 leakage model.

Parameter Value [unit] Parameter Value [unit]

CO2 density 479 [kg/m3] CO2 viscosity 3:95� 10�5 [Pa⋅S]
Brine density 1045 [kg/m3] Brine viscosity 2:535� 10�4[Pa⋅S]
Total
compressibility

4:2� 10�10 [1/
Pa]

Brine residual
saturation

0.2

Table 2
Damage categories, unit costs, and the corresponding weights.

Type Category Unit Cost ($/ton) Weight

CO2 Fixing well cost 0.5 0.3
Legal costs 0.5 0.1
Environmental remediation 0.5 0.2
Injection interruption 1.1 0.35
Business activity interference 2.0 0.05

Brine Fixing well cost 0.5 0.5
Legal costs 0.5 0.1
Injection interruption 1.5 0.3
Groundwater remediation 1.0 0.1
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application deployment and manage Python package dependencies.
Alternatively, the virtual machine image may be directly uploaded to a
Cloud platform.

3. Demonstration

3.1. Description of the use case

Here the workflow of PyLACE is demonstrated using a synthetic
scenario, in which CO2 is injected into a multi-layer storage site con-
sisting of an injection zone (reservoir), a confining unit (aquitard), and a
number of above-zone aquifers. All aquifers are horizontal, homoge-
neous, and confined. The reservoir may have one or more injectors, and
one or more abandoned wells that are potentially leaky. This stylized,
stacked-aquifer configuration has been used extensively in the CCS
research community for benchmarking purposes. Specifically, models
based on such conceptualization are behind several risk assessment tools,
such as ELSA (Celia et al., 2011; Bielicki et al., 2014; Gonz�alez-Nicol�as
et al., 2015) and CO2-PENS (Stauffer et al., 2006).

Assuming (1) horizontal flows in the aquifers, (2) capillary pressure is
negligible, (3) sharp fluid interface between brine and CO2, and (4)
pressure responses from sources and sinks can be super-imposed on each
aquifer, a semi-analytical solution can be obtained by using Green's
function as a fundamental solution and solving for unknown pressures at
observation locations (see Appendix A) (Nordbotten et al., 2009).
Recently, an iterative global pressure solution procedure was also pro-
posed to speed up calculation by eliminating the need to solve a large set
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of linear equations at each time step (Baù et al., 2015). Nevertheless, the
computational effort may still be significant when the number of leaky
wells and/or model output locations (i.e., virtual observation locations)
is large.

As an illustration, a three-layer system consisting of an injection zone,
aquitard, and single above-zone aquifer is considered. The region of in-
terest is 4000 m�4000m. The whole field has 24 abandoned wells,
which are uniformly distributed. The underlying assumption is that the
probability of leakage is uniform across the field and the worst-case
scenario is desired for leakage impact assessment. In other words, the
leaky well locations may not correspond to actual wells; instead, they
represent locations for impact assessment. All leaky wells penetrate the
three formations and the well permeability is set to 1� 10�12 m2 (1
darcy). Fig. 6 shows a plan view of the model domain, where locations of
injector, leaky wells, and observation wells are labeled. Model outputs
are calculated at “virtual” observation well locations, with a uniform
spacing of 200m. The deterministic model parameters are given in
Table 1. The total injection period is 20 years.

Fig. 7 shows a screenshot of an uploaded metamodel file that specifies
the uncertain parameters and their statistics (mean and variance of log-
normal distributions, and lower- and upper-bound for uniform distribu-
tions). In this case, the uncertain variables include reservoir and aquifer
permeability (m2), aquitard thickness (m), reservoir and aquifer porosity
(-), and injection rate (Mt/year). Their probability distribution types are
Fig. 7. User interface for uploading and displaying user-
specified metamodel file, the Create Metamodel button
launches the metamodel creation process.



Fig. 8. User interface for soliciting expert
opinions on the likelihood of each damage
category, with 1 the least likely and 10 the
most likely.

Fig. 9. Benchmark of PCE metamodel using Monte Carlo
simulations: (a) mean and (b) standard deviation of total
leaked CO2 mass (in Mt). The leaky wells are sorted ac-
cording to the magnitude of leakage.
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given under the Distribution column, and statistical parameters are given
under the Parameters column in Fig. 7. These variables are chosen
because they are usually the most influential variables controlling
leakage (Gonz�alez-Nicol�as et al., 2015). In this example, the process-level
CO2 flow model is implemented as a Python module according to the
algorithms described in (Nordbotten et al., 2009; Baù et al., 2015) and
briefly described under Appendix A. The uncertain parameters listed in
Fig. 7 are provided as input parameters to the Python module. The out-
puts of the model are the estimated mass of brine and CO2 that migrate
out of the injection zone.

When the Create Metamodel button (see Fig. 7) is clicked, the
Django-RQ queue management module sets up asynchronous tasks to
perform all required model runs, according to the sequence diagram
shown in Fig. 4. Running 1000 models on TACC's Lonestar5 cluster
(equipped with 1252 Cray XC40 computing nodes, with each node
having two 12-core Intel Xeon processing cores) using 5 hosts (13
processes/host) generally takes less than 2 h. The results are copied
back to the web server for online use.

To demonstrate cost estimation, the categories listed in Table 2 are
used, the data of which are assumed to be taken from a stakeholder
survey. Fig. 8 shows the user interface for entering categorical scores. The
scores of all experts are aggregated and normalized to generate the
weights needed for calculating the unit cost, which is shown in the
rightmost column in Table 2).
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3.2. Model validation

Model validation is an important step of metamodeling process
(Fig. 1). Depending on the results of model validation, additional runs
may be needed to improve the performance of metamodels by sampling,
for instance, the underrepresented regions of parameter space. In this
example, validation of the developed PCE metamodel is done by using
Monte Carlo simulation, in which 1000 additional input samples are
randomly generated using the joint PDF, and the outputs of PCE meta-
model and process-level model are compared. Fig. 9 shows that the mean
and standard deviation of total leaked CO2 mass predicted by Monte
Carlo simulation (dots) and PCE metamodel (solid line) are almost the
same for all 24 leak wells.

Training and validation of the GPR metamodel is done by splitting a
1000 input sample set into two parts, 700 for training and 300 for vali-
dation. Validation of the trained GPR model on the test set shows satis-
factory results, with mean Nash Sutcliff Efficiency (NSE) equal to 0.99
and mean root-mean-square-error (RMSE) equal to 0.02 kg.

3.3. Results and discussion

After a metamodel is trained and post-processed, the cost estimator
can be deployed for use. Fig. 10 shows a screenshot of cost estimator
implemented for the use case on hand. It serves three functional



Fig. 10. Application of metamodel-supported leakage
cost estimator. Left-hand panel shows user inputs and
right-hand panel shows model outputs, including a plan
view of leaked CO2 mass (grey markers, their sizes are
scaled according to the magnitude of leaks), and esti-
mated total damage costs.
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purposes: (1) quickly generates a spatial view of leakage predicted at all
leaky well locations for any combination of uncertain parameters (in the
training range), (2) estimates the damage costs, and (3) performs un-
certainty quantification.

After the user clicks the Calculate button, potential leakage at all
leaky well locations is plotted for a set of user inputs (see the Uncertain
Variable Values part in Fig. 10; part of the web form is not shown due to
its long length). The user inputs are recorded in the underlying database
so they can be reloaded. For plotting, the graphics is generated dynam-
ically using the Python package, mdlp3 (https://mpld3.github.io), which
converts the native Python plot files into HTML pages. The leakage cost is
estimated using the categories given in Table 2. For uncertainty quanti-
fication, PCE metamodel automatically generates the mean and variance
of the leaked mass for each well, whereas the prediction variance of GPR
metamodel are used to generate confidence intervals.

Because the interface between PyLACE and underlying black-box
model is loosely coupled, the user may switch to any other process-
level models. Modifications required for a new model may include: (1)
defining a metamodel JSON file and (2) changing the Django model and
view files to work with different uncertain parameter sets.

4. Summary and conclusions

Geological sequestration provides an engineering measure for
reducing anthropogenic greenhouse emission. However, long-term lia-
bility costs associated with potential leakage from these geologic re-
positories is perceived as a barrier of entry by many interested
commercial operators. An online decision support tool is necessary for
multiple stakeholders to quickly assess leakage impacts, quantify un-
certainty, and make business decisions collaboratively. In this work, we
adopted a metamodel-mediated risk assessment approach to connect all
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these different tasks. A well-trained metamodel retains scientific char-
acteristics of the original process-level model while providing a powerful
tool for online decision making. The PyLACE web application developed
in this work aims to automate the conversion of process-level risk
assessment models into high-fidelity metamodels for online impact
assessment, by utilizing high-performance computing and cloud
computing infrastructures. The delegation of metamodeling to high-
performance clusters significantly reduces the user burden, allowing
training of the metamodels using a large input sample set. The user
interface provided by the Django framework provides a direct means for
the stakeholders to examinemodel inputs. Because of the large number of
open-source tools used, package management is essential for managing
version compatiability of dependencies. Finally, we emphasize that the
metamodeling workflow presented here is general and can be readily
applied to other process-level models by supplying user's own process-
level model.

5. Software availability

PyLACE is written in Python and developed on a CentOS virtual
machine. A code repository of PyLACE can be found at https://github.
com/dialuser/PyLACE.
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Appendix A. ELSA Algorithm

The pressure distribution of a homogeneous brine aquifer under constant-rate CO2 injection is (Nordbotten and Celia, 2006)
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pðr; t; 0Þ ¼ pðr; t;HÞ � ∫ hðr;tÞ
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dz� ∫ H
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dz (A.1)

� 	 � 	

where ρα (α ¼ b; c for brine and CO2) represents fluid density; g is gravitational constant;H is aquifer thickness; qα denotes volumetric flux; μα is dynamic
viscosity; k is permeability; and kr;α represents relative permeability. Assuming vertical equilibrium, the pressure buildup may be expressed as
(Nordbotten et al., 2009)

Δp ¼ Δp'ðρb � ρcÞgH (A.2)

and Δp' is defined as (Gonz�alez-Nicol�as et al., 2015)
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in which the dimensionless variables are defined as follows

χ ¼ 2πHϕ
�
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�
r2

Qt
(A.4)

Γ ¼ 2πðρb � ρcÞgkH2

μbQ
(A.5)
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Fðh'Þ ¼ � λ
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(A.8)

where Q is volumetric injection rate, Sresb is residual brine saturation, ceff is total compressibility, ϕ is porosity, and r is radial distance from the source.

The flux QðlÞ
α;j at any leak location j and layer ðlÞ may be expressed using Darcy's law,

QðlÞ
α;j ¼ �πr2w

kwkðlÞr;α
μαBðlÞ

�
pðlÞj � pðl�1Þ

j þ ραgB
l þ ραgH

ðl�1Þ
�
; (A.9)

where BðlÞ is the caprock thickness, rw is well radius, and kw is well permeability. Using Eqs. A.3-A.9 on each observation well and each layer, a linear
system of equations can be formed and solved iteratively for pressure.

Appendix B. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.cageo.2018.01.006.
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