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Abstract
BigData andmachine learning (ML) technologies have the potential to impactmany facets of
environment andwatermanagement (EWM). BigData are information assets characterized by high
volume, velocity, variety, and veracity. Fast advances in high-resolution remote sensing techniques,
smart information and communication technologies, and socialmedia have contributed to the
proliferation of BigData inmany EWMfields, such asweather forecasting, disastermanagement,
smart water and energymanagement systems, and remote sensing. BigData brings about new
opportunities for data-driven discovery in EWM, but it also requires new forms of information
processing, storage, retrieval, as well as analytics.ML, a subdomain of artificial intelligence (AI), refers
broadly to computer algorithms that can automatically learn fromdata.MLmay help unlock the
power of BigData if properly integratedwith data analytics. Recent breakthroughs inAI and
computing infrastructure have led to the fast development of powerful deep learning (DL) algorithms
that can extract hierarchical features fromdata, with better predictive performance and less human
intervention. Collectively BigData andML techniques have shown great potential for data-driven
decisionmaking, scientific discovery, and process optimization. These technological advancesmay
greatly benefit EWM, especially because (1)many EWMapplications (e.g. early floodwarning) require
the capability to extract useful information from a large amount of data in autonomousmanner and in
real time, (2)EWMresearches have become highlymultidisciplinary, and handling the ever increasing
data volume/types using the traditional workflow is simply not an option, and last but not least, (3)
the current theoretical knowledge aboutmany EWMprocesses is still incomplete, but whichmay now
be complemented through data-driven discovery. A large number of applications onBigData andML
have already appeared in the EWM literature in recent years. The purposes of this survey are to (1)
examine the potential and benefits of data-driven research in EWM, (2) give a synopsis of key concepts
and approaches in BigData andML, (3) provide a systematic review of current applications, andfinally
(4) discussmajor issues and challenges, and recommend future research directions. EWM includes a
broad range of research topics. Instead of attempting to survey each individual area, this review focuses
on areas of nexus in EWM,with an emphasis on elucidating the potential benefits of increased data
availability and predictive analytics to improving the EWMresearch.

1. Introduction

Big Data and artificial intelligence (AI) are transform-
ing many aspects of our social, political, and econom-
ical lives. Various scientific fields are no exceptions. In
a 2007 presentation, data scientist Jim Gray argued

that the emerging ‘data intensive science’ should be
taken as a new and the fourth paradigm of scientific
research, after a long evolution from empirical obser-
vation, theoretical analyses, and computational simu-
lation paradigms [1]. In the context of environment
andwatermanagement (EWM), Peters-Lidard et al [2]
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recently advocated that hydrologists need to embrace
data science as a new paradigm by leveraging ‘emer-
ging datasets to synthesize and scrutinize theories and
models, and to improve the data support for the
mechanisms of Earth system change.’ Data and data
analysis have always been one of the main pillars of
scientific research, serving as the basis of theoretical
and numerical model developments. Currently many
questions, confusions, and even doubts exist about the
emerging data science, the differences between the
new breed of data analytics and the classical data
analyses, and the potential impact of digital transfor-
mation on EWM. For a paradigm shift to actually
occur in the EWM and for hydrologists and geoscien-
tist to have a competitive edge in an increasingly
digitized and connected world, the community not
only needs to have a thorough understanding of the
relevant technologies behind the modern data science,
but also needs to form a strong and unanimous vision
about what can be donewith these new technologies in
the context of environmental and hydrological appli-
cations. The main purpose of this survey is thus to
conduct an evidence-based review on the subject
matter, including existing use cases and the current
technological and institutional obstacles to the adop-
tion of Big Data andmachine learning (ML) technolo-
gies in the EWM.

Humans came to realize very early in our evolution
that the world is not just made up of ‘dry’ facts (i.e.
data), but these dry facts are glued together by an intri-
cate web of cause–effect relationships [3]. It is the seek-
ing of explanations to those causal relationships that
has shaped the bulk of our scientific knowledge exist-
ing today. Historically, a lot of knowledge in the EWM
was acquired through either empirical or hypothesis-
driven research, in which synthesis was done at a pace
managed by individual researchers or research groups.
In the past decade, the speed of data generation has
greatly surpassed the speed of traditional data compi-
lation and analyses, due to the advent of high-resolu-
tion remote sensing and smart Information and
Communication Technologies (ICT) enabled by
Internet-of-Things (IoT), cloud computing, and
machine to machine (M2M) infrastructure. It is esti-
mated that the world produces about 2.5 quintillion
bytes of data every day and by 2020 over 40 Zettabytes
(1 Zettabypes is 1 trillion Gigabytes) of data will have
been generated [4]. In the field of Earth observations,
the total volume of data stored in NASAʼs Earth
Observing System Data and Information System
archive at the beginning of 2017 was about 22 Peta-
bytes, but that number will soon be exceeded, with the
upcoming NISAR satellite mission alone expected to
add as much as 85 Terabytes of data each day to the
archive [5]. The emerging forms and volume of data
significantly refine the time-space granularity of data
availability and introduce a multitude of modalities in
environmental sensing (citizen sensing and UAV).
However, a strong asymmetry now exists and is likely

to continue to exist between the pipelines of data gen-
eration and knowledge extraction, creating the so-
called ‘dark data’ or ‘data iceberg’ situations where all
acquired data cannot be ingested in time to derive new
knowledge, thus losing a significant portion of their
scientific or business values [6].

Various ML-driven technologies are sought to
automate data discovery, reducing the gap in informa-
tion ingestion across both spatial and temporal scales.
Modern high-performance computing machines can
now process large amounts of information at a high
speed—200 petaflops to be exact for the world’s most
powerful supercomputer existing today [7]. However,
human knowledge acquisition and synthesis are typi-
cally made over longer time scales and at lower fre-
quency. Thus, machines are needed to perform the job
of information throttling/funneling by regularizing,
filtering, and aggregating raw data, sending only the
most high-level information to human users. The last
decade has seen a great leap forward in ML technolo-
gies, withmachines now demonstrating superior skills
in automated data analytics, processing millions of
real-time events per second [8, 9]. The recent and
near-term evolution of AI is perceived to consist of
three waves [10]. The first wave of AI (1970s–1990s)
mainly dealt with knowledge representation in well-
defined domains, enabled reasoning over narrowly
defined problems (e.g. rule engines), but generally
offered poor handling of uncertainty. The second
wave of AI (2000s–present) is distinguished by advan-
ces in statistical representation and learning as evi-
denced by the appearance of a large number of
unsupervised and supervised ML algorithms; the
handling of uncertainty has significantly improved,
but the reasoning and generalization abilities are still
limited. The third and future wave of AI (2020s and
beyond) will include technologies with contextual
adaptation and reasoning abilities, which can learn
withminimal supervision. The surge of interest in data
science in recent years has been driven by this parallel
advances in computing hardware and in ML algo-
rithms that possess strong pattern recognition and
even some AI-like contextual reasoning capabilities. It
is important to point out, however, that different
waves of AI do not supersede each other, instead they
serve for different purposes and deal with subsets of AI
problems that often coexist. In ML, a common exam-
ple is scalar time series analytics versus image time
series analytics—the former may be adequately ana-
lyzed by traditional ML algorithms, while the latter
often require more sophisticated computer vision
algorithms.

Concerns over Big Data are whether various data-
sets can be transmitted (to those who mostly need
them), ingested, and stored in a timely, secure, and
cost-effective manner for harnessing information
embedded in the data, and whether new forms of
insights derived from autonomous Big Data analytics
can help improve the transparency and equity of
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policymaking and further social justice in an unbiased
way. On the AI side, some lingering doubts and con-
cerns are (a) whether the field of AI is stuck with sol-
ving the narrow-AI problems (i.e. association type)
and whether they can ever reach human-level cogni-
tion and causal reasoning capabilities (according to
[3], most of the present-day learning machines per-
form the so-called association type learning by looking
for regularities in observations); (b)whether themain-
stream scientific community, deeply rooted with pro-
cess-based causal reasoning and inquiries, will be
more receptive to outcomes of ML methods that are
often perceived as black boxes; and (c) whether the
young generation of researchers should be too carried
away at knowing how to use AI tools, at the expense
of understanding the discoveries and knowing the
causes [11].

To address these questions and concerns in EWM,
one not only needs to be aware of successful applica-
tions involving the Big Data and ML technologies, but
also needs to have an unbiased and open-minded view
toward their strengths and limitations and their roles in
advancing the current research. It is not exaggerating to
say that we are at the crossroads of Big Data andML. As
more private entities and government funding agencies
start to invest in these technologies, doubts and ques-
tions are also mounting from failed cases in which the
new technologies could not meet the hyped expecta-
tions [12]. Such a cyclical pace is normal and healthy in
the evolution history of any major technology, includ-
ing AI itself. Perhaps amoremeaningful question to ask
at this time is what the EWM community has learned
and benefited from the Big Data and ML technological
breakthroughs in the last decade [13], in terms of the
types of domain-specific applications that have been
solved, what remains to be solved, the current chal-
lenges, and thenear-termopportunities.

Although a number of recent surveys and position
papers have been published on the prospects and
applications of Big Data and ML for environmental
and earth sciences, they tend to either focus on (a) spe-
cific topical areas within EWM such as remote sensing
[14–18], hydrology [13], groundwater [19], ecology
[20], smart city [21, 22], renewable energy [23], hydro-
informatics [24], and disaster response and resource
management [25–27]; or (b) computing technologies
[28–30]. Given the rapidly evolving technological
landscape, an evidence-based review is deemed neces-
sary to provide an update-to-date synthesis of the
technologies and their challenges.

The main hypotheses of this review are (a) Big
Data represents disruptive technology that will affect
many aspects of EWM, from sensing to governance;
(b) data-driven research may provide novel insights
and help discover salient features that are otherwise
difficult to capture using conventional workflows, and
(c) the current Big Data and ML approaches are most
useful when combined with physics-based research to
generate results that are human interpretable. In the

literature, the terms AI, ML, and deep learning (DL)
are sometimes used interchangeably. For the purpose
of this survey, AI is a general term referring to the use
of computers/machines to imitate human-like beha-
viors, ML is a branch of AI that aims to train machines
to learn and act like humans and to improve their
learning in autonomous fashion through data fusion
and real-world interactions, while DL refers to a newer
generation of ML algorithms for extracting and learn-
ing hierarchical representations of input data [31]. In
the following, we first summarize our search criteria.
To allow us to focus onmore recent developments, we
selected papers related to Big Data and DL, as opposed
to the traditional shallow learning ML that has already
been extensively surveyed for EWM applications (e.g.
[32–34]). We define the characteristics and sources of
EWMBig Data, and theDL technologies used to enable
Big Data analytics. The types of existing Big Data and
ML applications are synthesized according to respective
EWM fields. In particular, we review problems that can
be solved by the the current technologies, that can be
solved but with some help, and that can eventually be
solved. Prominent issues related to EWM fields, such as
inadequate training samples, nonstationary learning
environments, and the development of human-inter-
pretable hybrid ML and physics-based solutions will be
reviewed. Finally we provide an outlook of the near-
term opportunities of Big Data and ML in EWM. The
hypotheses and organization of this review are further
illustrated infigure 1.

2. Literature searchmethod

2.1. Search criteria
For this review, we searched the online citation
database Scopus for existing literature related to the
subject matter. We used a combination of related
keywords (Big Data, deep learning, Big Data analytics)
and EWM domain filters (hydrology, remote sensing,
water resources, ecosystem, and environmental man-
agement). To narrow down the search results, we
limited our search to those published in peer-reviewed
journals in English during the period 2004–2018. In
addition, we used the keyword ‘deep learning’ instead
of the broader ‘machine learning’ to allow us to focus
more on the recent developments. We also unchecked
a number of unrelated subject areas (e.g. pharmacy,
medicine) on the search dashboard of Scopus. The
final search criteria used become

(ALL (‘big data’ OR ‘big data analytics’ OR ‘pre-
dictive analytics’ OR ‘deep learning’) AND TITLE-ABS-
KEY (‘remote sensing’OR ‘hydrology’OR ‘water resour-
ces’ OR ‘ecosystem’ OR ‘environmental management’))
AND DOCTYPE (ar OR re) AND PUBYEAR > 2004
AND PUBYEAR< 2019 AND (EXCLUDE (SRCTYPE ,
‘k’) OR EXCLUDE (SRCTYPE , ‘d’) OR EXCLUDE
(SRCTYPE , ‘p’)) AND (EXCLUDE (SUBJAREA ,
‘MEDI’) OR EXCLUDE (SUBJAREA , ‘IMMU’) OR
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EXCLUDE (SUBJAREA , ‘HEAL’)OREXCLUDE (SUB-
JAREA , ‘PSYC’) OR EXCLUDE (SUBJAREA , ‘PHAR’)
OR EXCLUDE (SUBJAREA , ‘NURS’) OR EXCLUDE
(SUBJAREA , ‘VETE’))AND (LIMIT-TO (LANGUAGE
, ‘English’))

The search listed in the above initially returned a
total of 2227 documents. We refined the search results
in several iterations. We first went through the title
and abstract of each item to determine its relevance to
our review subject (in case it was not clear from the
title and abstract, we also read the full text to deter-
mine whether an article should be included). For
example, papers related to ‘cloud environmental man-
agement’ and ‘information ecosystems’ were filtered
out. The refining process reduced the number of
papers to 1451, of which 7.9% (or 114) of the docu-
ments are review papers and the rest are articles.

Figure 2 shows a summary of search results
according to their publication year and subject area.
Figure 2(a) suggests that the number of publications
related to our view topic has experienced a dramatic
increase since 2013. The top originating categories are
Earth and Planetary Sciences, Engineering, Environ-
mental Science, andComputer Science (figure 2(b)).

2.2. Top keywords and topics
The top 20 author-listed keywords of all articles are
shown in figure 3(a), which suggest that remote
sensing is the most commonly listed keyword (836
times), followed by neural networks, image classifica-
tion, deep learning, classification, and BigData.

To explore of the content of the large number of
articles, we used topic modeling, which is a class of
unsupervisedMLmethods for automatically discover-
ing ‘topics’ that occur in a large collection of docu-
ments. Topic modeling is often used as an exploratory
analysis tool for guiding more focused, intensive
synthesis efforts without having to sift through

massive volumes of literature [35]. More specifically,
we applied the latent Dirichlet allocation (LDA)
method, which is a generative probabilistic topic
model that identifies topics based on the frequency of
words from a collection of documents [36]. LDA is
commonly used for unsupervised document classifi-
cation—when fitting to a set of documents, the topics
are interpreted as themes in the collection, and the
document representations indicate which theme each
document is about [37, 38]. We used the Python pack-
age gensim [39] to perform the LDA-based topic
modeling.

Here we restricted ourselves to bigram terms (i.e. a
pair of consecutive words) extracted from all docu-
ments. Figure 3(b) shows the top 20 salient bigrams
extracted from our collection of papers. The term sal-
ience is defined as the product of the frequency of a
term (i.e. how often a bigram appears in documents)
and the distinctiveness of the term (i.e. how informa-
tive a specific term is for determining the generating
topic versus a randomly selected term) [40]. The use of
the salience measure enables rapid classification and
disambiguation of topics. Insights that may be gleaned
from the topicmodeling include (a)most of the papers
are related to the application of Big Data and DL in
remote sensing; (b) some topics are related to the
application of DL on high-resolution satellite images
and Earth observations, in topical areas such as land
cover/land use change detection, real-time disaster
responses (e.g. oil spill), climate change, and water
resources; (c) topics related to algorithm training tech-
niques (e.g. training sample, feature extraction, spatial
resolution, and classification accuracy) are often dis-
cussed in the papers; (d) the convolutional neural net-
work (CNN), a building block of many DL models, is
mentioned by many of the studies; (e) decision sup-
port and water resources represent significant areas of
research in EWM data analytics; (f) social media

Figure 1.The three hypotheses and structure of this review.
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(citizen science) is emerging as an important data
source. The top author-listed keywords and the salient
terms learned from topic modeling generally agree
with each other, both suggesting that so far Big Data
andDL publications in EWMhave been dominated by
theoretical developments and applications related to
remote sensing. While the dominance of remote sen-
sing may be a consequence of the use of DL in our
search criteria, it is consistent with the fact that many
high-dimensional EWM datasets originate from
remote sensing. This topic modeling exercise provides
a high-level guidance for organizing the remainder of
this review.

3. Result synthesis onBigData

3.1. BigData characteristics
The definition of Big Data evolves over time. Accord-
ing to the US National Institute of Standards and
Technology (NIST), Big Data consists of extensive
datasets that have characteristics of high volume,
variety, velocity, and variability (4V), and that require
a scalable architecture for efficient storage, manipula-
tion, and analysis [41]. In addition to the 4V character-
istics, recent definitions also add veracity and value to
the descriptors of the Big Data [4]. Some authors
explicitly emphasize the scale and complexity of Big
Data by adding high dimension, high complexity, and

Figure 2. Summary of BigData andML articles retrieved for this review: (a)number of documents by publication year, and (b)
documents by subject area.
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high uncertainty (3H) descriptors to the definition
[42], while others suggest that the intricacy of a dataset
should be a significant factor in determining whether
the dataset is big [4].

Volume. The volume attribute refers to the size of
Big Data. The data volume is considered large if it is at
a scale beyond the capability of the traditional in-
house IT infrastructure to process within a reasonable
amount of time. As a result, migration to a distributed
computing platform is necessary for scalable data
handling. The volume of a dataset is relative and may
have different implications in different applications.
Thus, NIST was careful in adding that data is usually
considered ‘big’ if the use of scalable architectures pro-
vides a ‘cost’ or ‘performance efficiency’ over the tradi-
tional architectures for processing the data [41]. The
rise of Big Data coincides with the rapid evolution of
ICT and IoT in the past decade. Commercially available
cloud computing services (e.g. infrastructure as service)
allow distributed processing of large datasets on clus-
ters. Switching data platforms, however, may incur dis-
ruptions to established data life cycles and, thus,
represents a decision that can have both explicit costs
(e.g. acquisition of new cloud service and/or software
and new skill sets) and hidden costs (data integrity and
security) associated with it. Depending on the applica-
tion, the volume may also have a hidden temporal
dimension that makes data size keep increasing. This is
especially true for EWM, which involves archiving and
querying Earth observations or simulations accumu-
lated over decades. Thus, even though the size of each
individual data instance is not big, collectively all data
holdings represent a BigData problem.

Variety. The variety attribute refers to hetero-
geneity in both the source and format of Big Data.
Because of the observation-based nature of EWM,
variety has been a well-known issue to hydrologists
that predated the Big Data era, with the disparity in

spatial and temporal resolution being one of the main
concerns [43]. On the basis of sources, EWMBig Data
may be classified as either passive or active, with the
former coming from derivative products of digital
media (e.g. terms used in online search or mobile
phone GPS data) and the latter coming from planned
data collection activities (online surveys, field cam-
paigns, or targeted remote sensing). The main differ-
ence is that passive data is collected without active user
involvement and, as a result, it typically reveals certain
things happen but does not explain why. On the basis
of format, EWMdata may be either structured (sensor
readings and satellite data) or unstructured (email,
video, audio, and text from social media), with the
main difference between the two being that unstruc-
tured data cannot be easily described using a pre-
defined data model. In addition to data format
disparity caused by vendors and distributors, variety
also arises due to organizational behaviors. In data sci-
ence, data silo is a term used to describe isolated ‘data
islands’ that exist in one department of an organiza-
tion, but are isolated from the rest of the organization.
Variety inevitably creates an extra layer of complexity
when dealing with Big Data, representing one of the
main frictions in data processing pipelines. A recent
survey of data scientists suggests that over 80% of their
time at work is spent on data cleansing [44]. As data is
increasingly generated in silos and as the boundary
between natural and social sciences is increasingly
blurred, data variety may become both an enabler and
hinderer. In mitigating data variety, two commonly
used techniques are data virtualization and data fed-
eration. The goal of data virtualization is to hide the
technical complexity of data from end users to deliver
data with simplified and integrated view, whereas the
purpose of data federation is to aggregate hetero-
geneous data from disparate sources so that it can be
viewed in a consistent manner from a single point of

Figure 3. (a)Top 20 author-listed keywords, and (b) top 20 most salient bigram terms extracted from all articles.
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access. Thus, data federation represents a form of data
virtualization. Note that data virtualization does not
normally persist or replicate data from sources to
itself; instead, it can be considered a broker that con-
nects and combines disparate data sources and makes
data accessible from a single place.

Velocity. The velocity attribute may refer to not
only the speed of data generation, but also the speed of
data analytics that is required for data ingestion. The
velocity of data generation is a direct consequence of
the ever-increasing connectivity, the pervasive use of
smart devices, and real-time monitoring networks.
High speed data sets that are continuously generated
by different sources require specialized processing. A
data stream is defined to be an unbounded sequence of
events that need real-time or near real-time processing
[45]. Real-time data streams are becoming more com-
mon in EWM applications because of the increasing
use of distributed sensors and remote sensing techni-
ques. Streaming analytics enables users to query con-
tinuous data stream and identify abnormal conditions
quickly after receiving the data [46, 47]. Streaming
analytics is arguably one of the most interesting devel-
opments in data analytics in recent years, not only
because of its potential for turning raw data streams
into value-added information, but also because it
poses new challenges to data storage and processing
algorithms, requiring high throughput data stream
servers with low latency (e.g. in-memory processing)
and efficient online ML algorithms that can filter and
process events on the fly. Significant challenges exist to
process large-scale Earth observation data in real time
because of bottlenecks in data transmission related to
network bandwidth and lacking of scalable data analy-
tics platforms [14]. Edge computing has been (re-)
introduced as an alternative paradigm for easing some
of the challenges associated with the high velocity of
Big Data. Under edge computing, data processing and
reduction are done close to where data is generated,
before transmitting the filtered data to a cloud-based
environment for central processing [48].

Variability. The variability attribute refers to varia-
tions in all other attributes of the Big Data, for exam-
ple, variations in data flow rates (velocity) or changes
in data meaning, with the latter often being the case in
crowd sourced data. In EWM, variability may be
caused by endogeneous factors (e.g. sensor drift,
change of sensors, and inherent variations of the phy-
sical process beingmonitored) and exogeneous factors
(e.g. disparity in sensor metadata, social media data,
and changes introduced by human activities). Varia-
bility is a major concern to EWM because many ML
algorithmswork under the premise of stationarity.

Veracity. The veracity attributes refers to potential
inconsistency and data quality problems, such asmiss-
ing data, anomalies, and data entry errors. Although
data quality control is the first and foremost part of sci-
entific research, the high-volume and high-velocity
attributes of Big Data may render the traditional

manual procedure for data quality check infeasible.
Rule-based procedures may be instituted to auto-
matically check data integrity. A significant number of
processing and fusion steps are behind high-level data
products released by data centers. With the data cen-
ters constantly updating algorithms, however, mana-
ging data versions becomes a significant challenge
when ingesting multisource data. The democratiza-
tion of large datasets presents huge opportunities for
all types of businesses and public institutions, but it
also carries the potential of undesirable and malicious
use, including privacy violation and misinformation,
which is especially true for passive data [49]. Thus, the
design of data collection andmining platforms need to
be guided by explicit and transparent principles and
policies for protecting data integrity and gaining user
trust.

The nature of EWM Big Data warrants the devel-
opment of specialized data governance systems for
managing the availability, usability, integrity and
security of EWM datasets. Although such needs have
long been recognized by government agencies (e.g. the
US National Oceanic and Atmospheric Administra-
tion and European Copernicus Programme) in terms
of data archiving, access, and stewardship, the tradi-
tional centralized data governancemodel is unlikely to
serve different levels of user data needs, nor does it
typically have strong support for stakeholder partici-
pation and engagement. In recent years, the notion of
self-service or agile data governance model is gaining
momentum, which is oriented toward providing ser-
vice and decision support to individual users that are
the most close to actions [50]. Ultimately managing
Big Data will require a sustainable ecosystem enabling
different stakeholders (e.g. citizens and advocacy
groups, research organizations, policy analysts, scien-
tists, software developers, journalists and politicians)
to participate and find their data ecosystem
niches [49].

3.2. Sources of EWMBigData
EWMBig Data may originate from (a) high-frequency
data products derived fromEarth observation systems,
(b) multi-sensor data collected from ground-based
monitoring networks and IoT, (c) large-scale datasets
collected from field experiments via multiple instru-
ments, (d) data simulated by large-scale Earth system
models, and (e) crowdsourced data from social media
and citizen science [29]. Table 1 gives some examples
under each of the categories. Earth observation
datasets falling under the remote sensing category are
generally available in gridded format, the sizes of
which depend on the level of postprocessing, the
spatial and temporal resolution, the number of
attribute fields included in each dataset, as well as on
the frequency of data generation. For example, the Soil
Moisture Active Passive satellite mission, Level 4
(SMAP L4) surface and root zone soil moisture global
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Table 1.Examples of EWMdata.

Category Field Subfield Data Source Data Size (format, spatial res) Temporal Coverage (freq)

Remote Sensing Hydrology Terrestrial water storage GRACE (RL05) 39 Mb (Ta)(netcdf, 220 km) 2002–2017 (monthly)
Soilmoisture SMAP (L4) 219 Mb (hdf5, 9 km) 03/31/2015–present (3 h)
Precipitation GPM (L3) 5 Mb (hdf5, 0.1 deg) 03/12/2014–present (0.5 h)
Landmapping Landsat8 (L1) 1Gb (geotiff, 30 m) 2013–present (16 d)
Snow and ice ICESat (L1) 4 Mb (hdf5, 70 m) 02/20/2003–10/11/2009 (23min)

ET MODIS (L4) 5 Mb (hdf5, 500 m) 01/01/2001–present (8 d)
Vegetation index MODIS (L3) 28Mb (hdf5, 500 m) 02/2000–present (16 d)

Hazards oil spill,flooding Sentinel-1(L1) 1Gb (SAFE, 5 m) 2014–present (12 d)

Ground based Hydrology Streamflow Stream gauge varies varies (15min)

Field campaign Geophysics Earthquake distributed acoustic sensing 1Gb (segy, 8700 channels at 1 kHz) 30 s recording period

Areal survey Topography LiDAR 5.9Gb (per sq km)

Simulation Hydrology Atmospheric and land surface GLDAS-NOAH(L4) 2 Mb (netcdf, 1 deg) 01/01/2000–present (3 h)
ERA-Interim 38 Tb (T)(GRIB, 0.7 deg) 01/01/1979–present (6 h)

NCEP climate forecast system reanalysis 67 Tb (T) (GRIB, 0.1 deg) 01/01/1979–present (6 h)

Crowd sourced Hydrology Flood Socialmedia Picture, video and texts –

a T indicates total data size.
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product (temporal resolution 3 h, spatial resolution
9 km) include geophysical, analysis, and land-model
constants subgroups, with each group in turn includ-
ingmultiple fields [51]. Each SMAP L4 dataset is about
219Mb in size and the total data size for a year is about
0.63 Tb. The Moderate Resolution Imaging Spectro-
radiometer (MODIS) sensors onboard the Terra and
Aqua satellites have been in orbit since 2000 and have
enabled dozens of products related to atmosphere,
land, ocean, and cryosphere sensing. Most global
climate and Earth system simulation models also
generate data in gridded format. Common file formats
used in disseminating gridded data include ASCII,
GRIB (gridded binary), netCDF (network common
data form), andHDF (hierarchical data format).

Data derived from satellite missions and simula-
tion models are good examples of structured data. On
the other hand, most crowdsourced data comes in
unstructured forms. Social sensing is defined as sen-
sing of real-world events using unsolicited content
from digital communications (e.g. phone calls, social
media, and web searches) [52]. Ground-based datasets
from environmental monitoring networks tend to be
dominated by time series, which become sizable when
the length of time series is long and/or the number of
observation points is large. Data from field campaigns
may become sizable when data acquisition is done at
high intensity and/or high spatial resolution. In gen-
eral, data volume increases with the level of proces-
sing. At the preprocessing stage, the data volume
increases by 45% compared to the original raw data,
while the value-added processing stage adds another
20% compared to the preprocessing stage [53].

3.3.Datawranglingwith BigData ecosystems
Before datasets can be ingested, they must be pro-
cessed and integrated into a unified view for feeding
the downstream analyses. In data science, data wran-
gling broadly refers to steps that data scientists take to
reduce or eliminate data frictions resulting from data
variety, variability, and veracity. Data wrangling is
concerned with data gathering, cleansing, transforma-
tion, virtualization, and visualization. Although not
mentioned explicitly in most of the EWM literature
(only in two of the papers collected for this survey),
virtually all data-related EMW research involves some
form of data wrangling [54, 55]. A somewhat less
appreciated aspect is that data wrangling also repre-
sents a significant investment in time and effort,
especially when performed on Big Data platforms. In
general, EWMusers who interact with Big Data can be
divided into three groups, data generator, data inte-
grator, and data user. Depending on the group, the
objectives and tasks of data wrangling also vary, as
shown in figure 4. Data generators are mainly con-
cerned with raw data acquisition, quality control, and
processing. Data integrators are responsible for data
gathering (from multiple sources), virtualization,

storage, provisioning, and development of data analy-
tics as services. Ideally, application users would only
need to focus on problem solving by leveraging
features offered by a user-friendly data analytics plat-
form. In reality, however, the boundaries between
different groups are often blurred.

A large number of open-source and commercial
Big Data analytical products are currently available
and the number keeps increasing, making navigation
through the maze of products a formidable task. On
the brighter side, the current trend in BigData product
development favors interoperability and compatibility
of products which, in turn, nurtures the formation of
Big Data ecosystems that are consisted of com-
plementary products and subsystems. For example,
figure 5 shows some of the commonly seen products
under the open-source Apache Hadoop ecosystem.
The base of the ecosystem is Hadoop, which includes
the Hadoop distributed file system (HDFS), Yet
Another Resource Negotiator (YARN), and MapRe-
duce. HDFS is a distributed file storage system that
provides scalable and reliable data storage through
clusters. MapReduce is a distributed programming
framework that performs parallel processing of data
by partitioning a large dataset into smaller ones to be
processed on different cluster nodes (mapper) and
then automatically gathers the results across themulti-
ple nodes to return a single result (reducer). Apache
SPARK is a faster alternative to MapReduce. Unlike
MapReduce which persists interim datasets to local
disks, SPARK performs in-memory processing of data
and can be up to 100 times faster than MapReduce
[56]. Apache YARN is responsible for Hadoop
resource management, helping to allocate computing
resources to various applications running on a
Hadoop cluster and to dispatch tasks to be executed on
different cluster nodes. Apache HBASE is a type of
columnar, non-relational distributed database (also
called No-SQL database) that runs on top of HDFS.
Unlike the traditional relational databases, No-SQL
databases are designed to handle large volumes of
rapidly changing structured, semi-structured, and
unstructured data, and can be scaled up horizontally
by adding more nodes. The base components provide
distributed infrastructure support for higher-level
applications. For example, Mahout is a mature library
of distributedML algorithms that can operate on large
datasets. SPARK MLlib is a newer generation of ML
library that is part of SPARK [57]. PIG and HIVE pro-
vide scripting support for working with large datasets,
with the latter using a SQL-like interface. A distributed
system must handle multiple jobs/tasks in parallel.
Oozie helps to scheduleHadoop jobs, combiningmul-
tistage jobs from PIG or HIVE into a single job, while
Zookeeper maintains shared objects used in a cluster
environment and coordinates synchronization among
the cluster nodes. Finally, Sqoop provides an interface
for transferring bulk data between a Hadoop ecosys-
tem and structured data stores.
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Figure 4.Commondatawrangling tasks conducted by data generator, integrator, and application user groups.

Figure 5.Common components in the open-source Apache BigData ecosystem.

Figure 6.Qualitativemapping between EWMBigData sources and application areas in terms of volume, variety, and velocity of the
data.
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Big Data ecosystems like the one portrayed in
figure 5 reduce the barrier to entry to Big Data analy-
tics, and help various EWMusers and organizations to
develop high-level, self-service data analytics.

3.4. EWMBigData applications
3.4.1. Problems BigData have tackled
Problems tackled by the collection of papers retrieved
for this review span a wide range of EWM topics. In
figure 6, these topical areas (right side) are mapped to
their data sources (left side) by also linking (in a
qualitative sense) to the levels of data volume, variety,
and velocity, which are three of the most common Big
Data characteristics (3V). Table 2 further lists the
number of papers fallen under each category, with a
list of examples. In general, the topics are identified
according to the salient topics listed under section 2.2
(figure 3) and based on the papers surveyed for this
study.

On the data source side, so far remotely sensed
(RS) Big Data represents the most prevalent data
source in all papers surveyed. On the application side,
the problems can be further classified into predictive,
diagnostic, descriptive, and prescriptive analyses.
Rapid disaster response is a commonly documented
application area that ranks high in all 3V attributes.
Natural disasters are often characterized by their
unpredictability, availability of limited resources in
impacted areas, and rapid situation changes [27], mak-
ing RS data the most useful and, sometimes, the only
source of information for assessing the situation on
the ground. Disaster management in many countries
is a closed-loop process involving four major stages:
(a) long-term planning andmitigation, (b) early warn-
ing and prevention, (c) rapid response and rescue, and
(d) recovery and restoration [27, 58]. The character-
istics of Big Data thus vary according to the stage of
disaster management and the RS technology involved,

as well as the actual application needs, which is illu-
strated infigure 6.

Flooding is one of the most frequently occurring
natural hazards, causing significant socioeconomic
damage in many regions around the world [59, 60].
Thus, not surprisingly flooding is one of the most stu-
died topics under EWM Big Data. During flooding
events, RS provides a cost-effective way for delineating
and tracking surface water dynamics, including the
extents and water stage. Pollard et al [61] discussed Big
Data approaches for handling coastal flooding on
issues related to synthesis of coastal datasets, data
handling and validation, and integration with process-
based models in real time. Huang et al [62] reviewed
sources and techniques for detecting, extracting, and
monitoring surface water extents using optical remote
sensing. Remote sensing of surface water bodies can be
done using multispectral, hyperspectral, and micro-
wave sensor data (e.g. synthetic aperture radar, or
SAR). Hyperspectral sensing is concerned with the
extraction of information from objects ormaterials on
the Earth’s surface, based on their radiance acquired
by airborne or spaceborne sensors [63]. Hyperspectral
imagery typically includes hundreds of bands and car-
ries more detailed spectral information that may be
used to differentiate materials with only slightly differ-
ent spectral characteristics [64]. For the same reason,
information in the resulting hyperspectral sensing
images is also highly redundant, meaning values in the
neighboring locations and wavelengths are highly
correlated.

Common public domain RS sources for surface
water monitoring include MODIS (250–1000 m),
Landsat8 (15–80 m), and Sentinel-1, 2, 3 (10–300 m)
satellites. On the other hand, commercial RS data
sources (e.g. IKONOS, RapidEye, Worldview, ZY-3,
Quickbird, andGF-1/2)may provide imageswith spa-
tial resolutions at meter or even submeter resolution,

Table 2.A survey of EWMBigData applications (number in parentheses indicates the number of articles found under each subcategory).

Application area Subarea Example studies Main challenges

Disastermanagement Flooding (25) Remote sensing [61, 62, 65] Real-time data access, data integration,

lack of co-observed images

Social sensing

[67, 68, 70, 91]
Data validation,missing geotags

Earthquake (10) [92–95] Real time damage assessment

Landslide (2) [96–98] Data fusion for early warning

Oil spill(5) [99, 100] Data resolution

Smart city Water distribution and allo-

cation(2)
[87] Data fusion and governance

Sustainability (17) [86]
Land covermapping (27) Surfacewater extent [82, 83] Data volume

Droughtmonitoring (8) [76, 101] Data fusion, trend detection

Land deformation (4) [102]
Crop yield, precision agri-

culture (11)
[78, 79, 103] Data validation

Long-term trend analysis (6) [82, 84] Multiresolution, nonstationarity

Food-water-energy nexus (5) [104, 105]
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but are limited to small-scene coverage and longer
revisit intervals. Notti et al [65] discussed potential and
limitations of the public domain RS data for flood
mapping; in particular, cloud coverage, spatial resolu-
tion, and the latency of co-observations (e.g. co-
observed SAR imagery)were believed to limit the value
of these public domain data in disaster response
operations, althoughmultiresolution data fusion tech-
niques may alleviate some of the limitations (see
section 4). In recent years, the launch ofmicrosallite or
cubesat constellations, which consist of groups of
lower-Earth-orbit, light-weight satellites working
together, may fundamentally change the landscape of
Earth imaging. Planet’s SkySat constellation (com-
mercial data), for example, can scan the Earth at sub-
meter resolution every single day and can generate
continuous video clips lasting up to 90 s at 30 frames
per second for pattern-of-life monitoring and 3D
modeling (https://planet.com). The volume of data
generated has pushed RS data processing to a new level
that is dubbed by some authors as Remote Sensing
2.0 [66].

Social sensing is also emerging as a form of
unstructured data for inferring real-time situations. In
the case of flooding situation awareness, Arthur et al
[67] used publicly available social media data (Twitter
data) to detect and locate flood events in UK, by fol-
lowing a four-step data analytics process, namely, data
collection, content filtering, location inference and
event detection. The authors suggested that the num-
ber of tweets may be used as a proxy for the severity of
floods. Smith et al [68] assessed the utility of combin-
ing social networking data and real-time high-resolu-
tion hydrodynamic modeling, where the Twitter data
stream was used to inform locations of storm events
for invoking near real-time, hydrodynamic model
runs. Main challenges identified by those authors are
(a) typically only a small percentage of tweets have GPS
coordinates attached as metadata, making geolocation
inference difficult; (b) downloading and use of social
media data are often restricted by vendor policies; and (c)
semantics of social media data is often vague and hard to
quantify. In urban environment, a possible workaround
is to supplement social sensingdatawith known-location
sensor data. Zhai et al [69] described a traditional sensor-
web framework for fusing multisource sensor streams
during hydrological disaster events byusingweb services.
Restrepo-Estrada et al [70] proposed a transformation
function for converting georeferenced social media data
into a proxy indicator for use in conjunction with gauge
hydrometeorological data to calibrate a streamflow
model. In the Array-of-Things Project [71], hundreds of
networked sensor nodes (camera, air quality sensor,
weather sensor)weremounted on light poles inChicago,
US, to provide high spatial and temporal resolution sen-
sordata; all sensornodes are equippedwith an edge com-
puting platform toprocess the sensor data on the node so
that privacy information is stripped from the derived
data products. These sensor data hubs potentially

encourage more public participation and can eventually
lead to more sustainable cities, but they also pose new
challenges in terms of long-term maintenance and data
streamanalytics.

Unmanned aerial vehicles (UAVs) represent yet
another data source for aiding disaster response and
rescue effort. Compared to satellite RS data, UAV data
collection is considered more agile—UAVs can be
remotely controlled or have a programmed route to
perform autonomous flights. UAVs have been
deployed to collect small-scene geodata to improve
situation awareness during and after natural disaster
events [66]. UAVdata has been used in earthquake and
tsunami damage assessment, and landslide survey
[25, 72, 73]. Many UAVs carry hyperspectral sensors
onboard that can sample narrow band spectra and
providemore details that are otherwise unnoticeable if
multispectral sensors are used. However, the high
volume of hyperspectral data currently represents a
Big Data processing challenge, especially for real-time
applications [63, 74].

Monitoring and analysis of non-time-sensitive
phenomena are generally less data intensive, but may
require significant effort when working with long time
series and multisource data. Droughts, caused by sus-
tained rainfall deficits, represent a slowly developing
natural hazards and can occur in virtually all climatic
zones [75]. RS Big Data have been used to (a) perform
drought monitoring from a climatological perspec-
tive, by retrieving hyperspectral, multispectral, ther-
mal infrared, gravimetry, or microwave satellite data
to monitor precipitation, soil moisture, evapo-
transpiration, or terrestrial water storage; and (b)
assess and quantify drought impacts from an ecosys-
tem perspective, by using satellite observations to
assess vegetation health [76]. Drought analyses focus
on early warning and impact assessment. Although the
velocity of observation data is less of a concern and
most of the analyses are performed offline, scalable
distributed platforms are desirable tomanage and syn-
thesize information frommultisources andmulti-sen-
sors [77]. Main data analytics challenges are related to
(a) fusion ofmulti-sensor data to derive drought infor-
mation, (b) development of robust long-term clima-
tology for drought assessment, (c) development of
robust change detection methods for drought warn-
ing, and (d) enabling self-service, region-specific
drought analyses at different user-specified resolution
or scales.

Big Data and IoT are behind many precision agri-
culture or smart farming applications. For example,
estimation of crop yield, defined as the ratio of total
mass of harvested product to cropped area, is an appli-
cation area that may benefit from recent advances in
Big Data analytics. Traditionally, crop yield relies
heavily on field survey. Azzari et al [78] introduced a
scalable satellite-based Crop Yield Mapper (SCYM)
that combines crop model simulations with imagery
and weather data to generate 30-m resolution yield
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estimates; their work focused on tracking spatial crop
yield variation using publicly available data (Landsat
and MODIS) on the Google Earth Engine platform.
Burke and Lobell [79] showed that high-resolution
satellite imagery (SkySat) can be used to make predic-
tions of smallholder agricultural productivity to an
extent that is as accurate as the survey-basedmeasures.
Adão et al [74] discussed processing and application of
UAV hyperspectral data in agricultural and forestry
applications.

EWM trend analysis involves the use of long-term
observation time series frommultiple sources of infor-
mation. It becomes a Big Data problem when each
slice of the time series in turn involves multi-dimen-
sional data such as multispectral or even hyperspectral
imagery. So far, Landsat datasets, with nearly 40 years
of continuous observation, are the most analyzed.
Kennedy et al [80] described LandTrendr (Landsat-
based detection of Trends in Disturbance and Recov-
ery), an algorithm to extract spectral trajectories of
land surface change from yearly Landsat time series
stacks. Wulder et al [81] surveyed Landsat-based
change detection applications including, for example,
forestland change, phenology, wetlands, land frag-
mentation, and urban impervious surface change. In
an application that is more related to flood prevention
and planning, Heimhuber et al [82] and Heimhuber
et al [83]modeled surface water extent dynamics using
statistically validated long-term time series consisting
of more than 25 000 Landsat images available for the
period 1986–2011, in combination with streamflow,
rainfall, evaporation, and soil moisture data, for Aus-
tralia’s Murray-Darling Basin. Zou et al [84] analyzed
open-surface water bodies using Landsat 5, 7, and 8
images (∼370 000 images,>200 TB) of the contiguous
US in the period 1984–2016.

In parallel to the development in high-resolution
remote sensing, sensor web and IoT are being increas-
ingly deployed in smart city applications. Abella et al
[85] defined smart city as ‘a public-private ecosystem
providing services to citizens and their organizations
with strong support from technology, and considers
the social and economic impact on the society.’ Bibri
and Krogstie [86] coined the term smart sustainable
city, which refers to the pervasive and massive use of
advanced ICT to enable the city to control available
resources safely, sustainably, and efficiently to
improve socioeconomic outcomes. The use of Big
Data to create added value and innovative services is a
key element in smart city applications. Smart city sen-
sor networks typically deploy a large number of envir-
onmental sensors as mentioned in the Array-of-
Things application.Most of the smart city applications
are still in their nascent stage, but cost-effective cyber-
infrastructure and Big Data platforms, as well as trans-
parent data governance policy, have already been
identified as the key enabling components. March et al
[87] described the experience of smart water meter use
in Alicante, Spain, and suggested that the access to

detailed knowledge of water use at the household level
can be used to identify patterns of water consumption,
eventually leading to better water conservation and
improvement of efficiency of the water network. Stew-
art et al [88] presented web-based system for collecting
real-time water consumption data through a smart
water metering system, and transferring and storing
the data into a repository for knowledge extraction.
Eggimann et al [30] reviewed the role of data analytics
in urban water management applications (e.g. urban
pluvial flood-riskmanagement and forecasting, drink-
ing water and sewer network operation and manage-
ment), and suggested that data-driven urban water
management analytics allows for optimization of the
efficiency of the existing network-based approach and
can extend functionality of the current systems.

Many of the applications described in the above
are interwoven and are increasingly being studied
under cross-disciplinary initiatives such as food-
energy-water (FEW) nexus. Creating a Big Data analy-
tics platform for supporting FEW nexus studies is
challenging and requires inherent support for (a)
interfacing coupledmodels involving physical, chemi-
cal, and biological models, socioeconomic models,
andmodels of law and policy; and (b) engaging partici-
pation of multiple stakeholders. The success of these
platforms depends on whether multi-faceted datasets
can be transformed and ingested to support decision
making. In addition, the process-based coupled mod-
els are often computationally costly to run and not sui-
table for web-based decision support. Surrogate
models may be developed to bridge process-based
modeling and decision support [89, 90] (see
also 4.2.3).

3.4.2. Problems BigData can tackle, but with some help
Big Data analytics can lead to smarter decisions,
optimal solutions, and deeper insights, but the success
of BigData analytics hinges onwhether knowledge can
be extracted in a timely manner and delivered to those
who most need it. Many EWM applications involve
problems that can be potentially solved using Big Data
analytics, but the solutions of which are not yet being
sought due to technological difficulty, institutional
resistance, lack of in-house talents, and high
entry cost.

Technology wise, remote sensing technologies can
now provide synoptic view of exposed objects and
structures at an extremely high level of details [66].
Some authors used the term ‘big crisis data’ to refer to
the large amount of unstructured and structured data
generated during disaster events, which has the poten-
tial to significantly improve situational awareness and
support decisionmaking during disasters [25]. Opera-
tional disaster management is an area that can benefit
from better cyberinfrastructure and higher through-
put Big Data pipelines. The need for speed was high-
lighted as one of the most crucial elements in disaster
management [66]. Loading and transmission of Earth

13

Environ. Res. Lett. 14 (2019) 073001 AY Sun andBR Scanlon



observation Big Data in real time, however, represent a
main bottleneck for data ingestion, especially when
high-resolution data streams are involved, for exam-
ple, in UAV and microsatellite applications. Key data
ingestion considerations include velocity, size, and
format of the incoming data. In addition to improving
the network bandwidth scalability, strategies are nee-
ded to reduce data volume, which may include data
compression and reduction implemented at the edge
for each data instance. Data compression techniques
seek to reduce spatial and temporal data volume by
using, for example, data aggregation/upsampling and
sparse representation (e.g. principal component ana-
lysis, discriminative sparse coding, joint sparse repre-
sentation, sparse autoencoder (SAE), and discrete
wavelet transform) [106–109].

Data modeling and standardization also represent
a critical challenge for ingesting real-time IoT data
streams. TheOpenGeospatial Consortium (OGC) has
developed a number of specifications for standardiz-
ing geospatial web services, including web coverage
service and web map service, for individual users to
employ in a client-server spatial computing setting.
WaterML is a data standard for modeling hydrological
time series and was developed by the Consortium of
Universities for the Advancement of Hydrologic Sci-
ence (CUASHI) and OGC [110]. OGC recently devel-
oped SensorThings standard to help overcome the
interoperability challenge in the IoT domain [111].
SensorThings uses OGC’s Observations andMeasure-
ment standard as data model, and defines a REST-like
application programming interface (API) to inter-
connect IoT devices over theWeb, and to interact with
and analyze their observations [112]. The character-
istics of Big Data, however, often require data standar-
dization and other data wrangling tasks to be
performed more efficiently. Cloud-based data ware-
houses are repositories of cleansed and structured data
stored in a cloud. On the other hand, data lakes typi-
cally endorse a ‘store all’ philosophy and are used to
store raw data in its native format, both structured and
unstructured, until it is needed. By design, data lakes
give the end user more flexibility (or elasticity in terms
of data provisioning) and probably even more insight
because of the availability of raw data. The downside,
however, is that data lakes tend to create additional
complexity, cost, and latency, which only get wor-
sened as data volume increases. Apache Sqoop
(http://sqoop.apache.org) can facilitate the transfer of
bulk data between data lakes and data warehouses effi-
ciently. A number of Apache projects (Storm, Flink,
Spark, Kafka) are designed to provide distributed fra-
meworks for performing real-time or near real-time
data ingestion, allowing the EWM users to focus more
on domain specific problems.

Organizational wise, data silos still widely exist
because of data acquisition cost and lack of incentives
to share data. Open data policies have been shown to
have a profound impact on scientific discoveries

[85, 113]. One of such well-known examples is Land-
sat data, which was charged US$600 per scene prior to
2008, but has been made freely available to the public
since 2008 [81]. Mass processing of Landsat data,
enabled by the cloud-based Big Data platform, opened
new venues for understanding long-term ecological
and land cover dynamics. Another example is Eur-
opean Union’s Earth observation program, Coperni-
cus, which assembles and produces open-source
remotely sensed data (currently 12 Tb d−1) from a glo-
bal network of thousands of sensors (https://
copernicus.eu/en/access-data). Several authors have
analyzed the role of open data in the context of smart
cities and demonstrated the potential impact of open
data on data-driven innovation in cities [85]. Histori-
cally, the opening and commercialization of remote
sensing technology in 1990s happened at the same
time as a shift in environmental security discourse
towards human security and resilience. The focus of
environmental security in recent decades has increas-
ingly shifted away from the international system or the
nation-state towards individuals’ and local commu-
nities’ vulnerabilities and local environmental risks
[114]. New actors, including non-government organi-
zations, commercial entities, social scientists, and gen-
eral public, are increasingly involved in forming
narratives and storylines of environmental migration
and conflict, because of the easy access to visual assem-
blages of EWM Big Data. Nevertheless, at this time
many high resolution datasets are collected and owned
by private firms who do not have strong incentives to
share their digital assets [115]. A benign cycle needs to
be formed to encourage investment from the govern-
ment, non-government organizations, and private
entities, eventually leading to lowered data cost and
wider accessibility; in return, the data users should
open-source the derived products and methods,
instead of hoarding the data in silos. Toward this goal,
Shum et al [49] envisioned a Global Participatory Plat-
form (GPP), which consists a coherent set of inter-
faces, services, software infrastructures, tools, and
APIs, as well as social institutions, legal and social
norms that would allow the participants to collaborate
openly, freely and creatively in the development and
use of knowledge. Main functionalities of the envi-
sioned GPP may include (a) sensing the environment
in order to pool data, (b)mining the resulting data for
patterns in order to model the past/present/future,
and (c) sharing and contesting possible interpretations
of those models, and in a policy context, possible
decisions.

Finally, central to the success of EWM Big Data is
the availability of a trained workforce that is proficient
in bothdata science and EWMdisciplines. The current
environmental and geosciences curricula need to be
enriched to equip students with the latest knowledge
andBigData analytics techniques.
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3.4.3. Problems BigData can eventually solve
Currently EWM Big Data analytics address more
association type of inference than causal inference;
thus, BigData alone is unlikely to provide explanations
of causal mechanisms on the observed environment
processes [114, 116]. In other words, rather than
providing answers to questions, the current Big Data
platforms mainly enable the cability for researchers
and policymakers to seek courses of action and to
determine their consequences [117]. Nativi et al [118]
described a geodata discovery and access broker
(DAB) to provide necessary mediation on data dis-
covery. Google recently released Google Dataset
Search (https://toolbox.google.com/datasetsearch)
to facilitate data sharing and discovery. The EWM
community needs to leverage the enhanced data
discovery tools to develop strong inference and
predictive analytics engines, and to improve sense-
making and situation awareness.

EWM is lagging behind the business intelligence
world in the ability to infer meaning from data and
subsequently take actions based on that meaning (e.g.
recommendation engines for online shopping or
social networks). Most EWMproblems are also inher-
entlymore complicated than the typical business intel-
ligence problems, often requiring the syntheses of
multivariate and higher-dimensional time series for
sensemaking. As the data quantity continues to
increase and data quality improve in the future dec-
ades, ML is expected to be more well trained and reli-
able, and the inference capability of EWM is expected
to improve as well. The fate of EWM Big Data will
depend on the actions taken within all three groups
shown in figure 4, as well as the coordination among
the groups.

Eventually the role of EWMBig Data analytics will
be to facilitate and automate common tasks related to
the provision of datasets, data mining, reinforced
learning, participatory decision making, and even to
the making of human-like inference. In the course of
doing so, the current Big Data will become leaner but
more intelligent Smart Data in the future, with a large
portion of data complexity removed and more high-
level information infused. The road to the Smart Data
era will require a different scale of operation from the
current one, specifically the current EWM data plat-
forms will need to better support collective intelli-
gence of human agents. A collective computing
platform such as the GPP envisioned by Shum et al
[49] will also be necessary, in which different agents/
stakeholder are equipped to effectively sense their
environments, interpret signals, share the results,
deliberate and debate, and ultimately, make better
decisions.

3.4.4. EWMdata analytics platforms used
The role of an integrated platform in BigData analytics
cannot be overemphasized. According to Khalifa et al
[119], the six pillars of the Big Data platforms are

storage, processing, task scheduling, analytics work-
flow assistance, user interface, and deployment.
Table 3 lists the analytics platforms mentioned in the
papers collected for this review. The Apache Big Data
ecosystem (Hadoop, MapReduce, and Spark) is the
most frequently cited in the papers reviewed. These
software components are built for general purposes.
So far, only a few integrated platforms are specially
designed for ingesting and analyzing Earth observation
applications. Google Earth Engine, which is free for
research, education, and nonprofit use, provides a
large collection of Earth observation data, as well as
APIs to enable the analysis of these large datasets on
Google Cloud without downloading the data. Ama-
zon’s cloud service is behind NASA’s Earth Data
portal. In addition, Amazon also hosts its own selec-
tion of Earth observation data (e.g. Landsat, Digital-
Globe Open Data). Microsoft, teaming with
Environmental Systems Research Institute (ESRI),
provides a GeoAI Data Science Virtual Machine
service for geospatial analytics. Plenar.io is an open
data portal for sharing and analyzing data streams
from smart city applications. Cloudera and Horton-
works offer cloud-based software and services for
performing data analytics.

4. Result synthesis on deep learning

4.1.Deep learning (DL)
ML algorithms have been around for decades if not
centuries, considering the linear regression problem
originally studied by CF Gauss is a type of supervised
learning. A summary of the traditional ML algorithms
can be found in many classical textbooks (e.g. [120]).
The modern DL era is commonly believed to start in
2006 with the publication of the seminal paper by
Hinton et al [121], who proposed an efficient algo-
rithm to train an artificial neural network (ANN) with
many layers. The fact that modern DL era started
about the same time as the Big Data era is not just a
pure coincidence. The availability of more powerful
computers with multi-processor CPU and GPU con-
tributed directly to the record-breaking performance
of DL algorithms in recent computer vision contests
[122, 123]. It is the rapidly growing Big Data, however,
that motivates the development of more scalable and
commercially operational DL algorithms for Big Data
analytics and knowledge discovery. Thus, the modern
ecosystems of Big Data and DL are highly intertwined,
sharing common use cases and providing mutual
impetus to each other’s advancement.

Traditional forward neural nets withmany hidden
layers were hard to train because of the ‘vanishing gra-
dient’ problem arising during training [122]. The
backpropagation algorithm used to train ANN invari-
ably adopts a certain gradient based algorithm. For an
ANN model involving many hidden units that are
connected using the traditional activation functions
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(e.g. hyperbolic tangent or sigmoidal function), the
gradients of the network’s output with respect to the
unknown weights can quickly become too small,
resulting vanishing updates. Three key changes were
instrumental for paving the way of the modern DL era
[31, 124]. The first key change was the adoption of pie-
cewise linear activation functions, such as rectified
linear function (ReLU), in lieu of the traditional acti-
vation functions, which have been shown to sig-
nificantly suppress the vanishing gradient problem
[124]. ReLU, defined as { }xmax 0, , where x is the
input, is a simple function that is faster to compute
and leads to sparse representations; more specifically,
only about half of the hidden units are active and have
non-zero outputs. The second key change was the
incorporation of better regularization techniques to
reduce overfitting. Besides regularization used on the
cost functions, two commonly used heuristic regular-
ization techniques are dropout and batch normal-
ization. Dropout is a simple technique that randomly
ignores a portion of hidden units during training. To
compensate for the reduced effective capacity of a
model due to dropout, a largemodel sizemust be used.
Batch normalization partitions the training data into
small batches (mini-batch) and then normalizes each
mini-batch to have zeromean and unit variance [125].
Batch normalization makes it possible to use larger
learning rate (learning rate is a hyperparameter that
controls the step size in gradient descent algorithms)
and in some cases even eliminate the need for dropout.
The third key change is the incorporation of shared
weights and biases in each hidden layer.Weight sharing
drastically reduces the number of unknown parameters
resulting from each pair of connected layers, withmany
units in the input connecting to the same units (or local
receptive field) in the output. When combined with a
large training dataset, the seemingly trivial techniques
mentioned herein make it possible to train a deep net-
work architecture layer by layer, at an accelerated train-
ing speedwhile avoiding overfitting.

A direct consequence of adopting deeper archi-
tectures in DL is that discriminative features of input
data can be extracted and learned through hierarchical
representations such that higher-level features are

derived from lower-level features [126]. Thus, the bur-
den of feature design is shifted to the underlying DL
system. In comparison, many traditional ML algo-
rithms rely on hand-crafted features, which are selec-
ted via a so-called feature engineering process, to
achieve good performance. Like for the traditional
ML, the existing DL algorithms can also be divided
into unsupervised, supervised, and semi-supervised
learning algorithms. Under supervised learning, clas-
sification and regression problems are commonly
solved. For classification problems, a classifier is used
at the output layer, such as the softmax function that
gives probability distribution of different classes. For
regression problems, both linear or nonlinear (e.g.
hyperbolic tangent) activation functions can be used
to get continuous outputs. For completeness, in the
following we first briefly describe several dominant
algorithm categories that are used in the papers sur-
veyed, before presenting the actual DL applications
in EWM.

4.1.1. Autoencoder
Autoencoder, or AE, is a neural network used for
unsupervised learning of unlabeled data. A typical AE
consists of a couple of functions, an encoder and a
decoder. For input data Îx N , where N is data
dimension, the encoder function maps the input to a
latent space, y=f (x), where Îy p is latent repre-
sentation or code. The decoder function then conducts
an inverse mapping or reconstruction, from the latent
space to the input space, =ˆ ( )gx y . For an AE with a
single hidden layer, the encoder may be expressed as

s= = +( ) ( )fy x Wx be , and the decoder may be
written as s= = ¢ + ¢ˆ ( ) ( )gx y W y bd , where se and
sd are element-wise activation functions (e.g. sigmoid)
used to transform (reconstruct) the input, and

¢W b W, , and ¢b are weight matrices and bias vectors
of the encoder and decoder, respectively. Training of
AE is done by minimizing a cost function, ( ˆ))x x, ,
that measures the similarity or distance between input
data and reconstruction, for example, themean square
error. In essence, the AE tries to reproduce the input,
but in a parsimonious way that promotes learning the
most useful features of the input data. In other words,

Table 3. Survey of BigData analytics platforms used.

Platform URL No. Articles Availability

ApacheHadoop,MapReduce, Spark http://apache.org 37 Open source

Google Earth Engine https://earthengine.google.com 17 Free for non-commercial uses

Earth onAWS https://aws.amazon.com/earth 8 Open data

https://earthdata.nasa.gov

Planet Analytics https://planet.com 10 Commercial

Microsoft Data ScienceVM https://azure.microsoft.com 1 Commercial

Microsoft AI for Earth https://microsoft.com/en-us/ai-for-earth 1 Commercial

Plenar.IO http://plenar.io 1 Open source

tableau https://tableau.com 1 Commercial

Hortonworks https://hortonworks.com 1 Open source

Cloudera https://cloudera.com 4 Commercial
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themain purpose of AE is to learn a generative process
(see more about generative modeling below) and AE
provides a nonlinear alternative to the commonly used
PCA for feature extraction and dimension reduction.
Thus, sparsity of the AE is an important consideration
in its design—if the encoder and decoder are allowed
toomuch capacity (i.e. toomany hidden units), the AE
only duplicates the input without learning the most
useful features [31]. In SAE, an extra sparsity con-
straint is added to the cost function . A commonly
used sparsity penalty term is the Kullback–Leibler
(KL) divergence [127, 128]
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where r is a sparsity parameter (typically close to zero),
r̄j denotes the average activation of the jth hidden unit
that is averaged over the training set, and s is the total
number of hidden units in a layer. To progressively
learn higher level representations, a deep Stacked SAE
(SSAE) architecture is usually formed by chaining the
input and hidden layers of a number of SAEs on top of
each other [129]. The number of hidden units, the type
of activation function, and the number of layers in an
AE model are hyperparameters and need to be tuned
during validation.

SAE and SSAE are mainly used to perform the so-
called unsupervised pretraining, the outputs of which
(i.e. high-level feature representations) are passed to a
classifier (e.g. a logistic regression function or a super-
vised learning algorithm) to perform the actual
classification.

4.1.2. Convolutional neural networks
CNNs,first introduced by LeCun andhis collaborators
[130–132], are multilayer feedforward neural net-
works designed to process input data that has grid-like
structured topology, which appears in a large number
of EWM applications involving time series of scalars
(1D), gray-scale images (single channel 2D inputs),
color images (three-channel 2D inputs), and multi-
dimensional, time-varying Earth observation data
( 3D). A standard convolution layer consists of three
operations, namely, convolution, nonlinear transfor-
mation, and pooling. The convolution operation
systematically moves a kernel (filter) across the input
layer and outputs a feature map. Each move generates
an element (pixel) of the feature map obtained by
computing a dot product between the kernel and a
local region in the input (or receptive field). The
dimensions of the kernel are typically much smaller
than that of the input. For a 2D input of dimensions
W×H, and a kernel of sizesWf×Hf, outputs of the
convolution operation are
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where I is the input, K is the kernel, S 1f is a stride
parameter that controls the skip distance between
consecutive kernel moves, and x(i, j) is the value of the
featuremap at location (i, j), i=1,K,W, j=1,K,H.
The size of the feature map is ((W−Wf)/Sf+1),
(H−Hf)/Sf+1)). The convolution operation is
followed by an element-wise transformation using a
nonlinear activation function, s= ( ( ))y x i j, . So far,
ReLU and its variants are the most widely used hidden
layer activation function for reasons mentioned in the
beginning of this section. In the third stage, outputs
are further modified through pooling, which is a
subsampling operation that replaces the output at a
certain pixel with the summary statistics (e.g. max-
imum, average) from a local region surrounding the
pixel. The convolution layer exemplifies three core
concepts of ML, namely, sparse connectivity, para-
meter sharing, and equivariant representation [31].
The former two are accomplished by using a single and
small-sized kernel to scan the entire input, whereas the
equivariant representation property is achieved by
design—when the input changes, the output changes
in the same way. In practice, each convolutional layer
may consist of a large number of kernels (filter bank)
to extract different aspects of the input data (e.g. edges,
corners). A deep CNN is a multilayer architecture
composed of multiple stacked convolutional layers to
extract hierarchical feature representations, with each
convolutional layer also being used in conjunction
with the dropout or batch normalization layers to
reduce overfitting and improve learning speed. The
kernel weights and biases of convolutional layers are
trainable parameters.

CNNs have been used in all three types of learning
problems. The success of CNNs relies on their cap-
ability to learn hierarchical representations of context
invariant features, which are particularly useful for
image classification [133]. At present a large number
of CNN-based deep architectures exist in the litera-
ture, including those that have won the recent comp-
uter vision contests, such as AlexNet [134],
GoogLeNet [135], VGGNet [136], and ResNet [137].
Early CNN architectures (e.g. AlexNet, VGGNet) use
one or more fully-connected dense layers between the
last convolutional layer and the classifier to enable
classification into a small number of classes, while
recent designs favor end-to-end fully convolutional
networks (FCNs). Representative designs of the latter
kind include the standard FCN [138], U-Net [139],
and SegNet [140].

In computer vision, CNN architectures for pixel
level classification use two main approaches, patch-
based and pixel-to-pixel based methods. In patch-
based methods, a CNN classifier is trained on small
image patches, which is then used to predict the class

17

Environ. Res. Lett. 14 (2019) 073001 AY Sun andBR Scanlon



of each pixel using a sliding window; this type ofmeth-
ods are suitable for detecting large objects. In pixel-to-
pixel methods, a FCN-like method is used to predict
class labels. For example, in the standard FCN, the
classifier is a convolutional layer of the same size as the
input, which allows fine-grained inference such that
each pixel is labeled with the class of its enclosing
object or region [138]. U-Net and SegNet further the
ideas of the standard FCN by using a symmetric con-
traction-expansion architecture, which includes a
downsampling (encoding) path followed by an
upsampling (decoding) path to recover the input reso-
lution. Downsampling by pooling inevitably loses
fine-detailed information. To recover information lost
in the downsampling path, skip connections are used
in FCNs to concatenate feature maps from the same
level of downsampling path and upsampling path,
such that more abstract semantic information is fused
with shallow fine-scale information. To further
improve learning, transposed convolutional layers
with trainable parameters are also used in upsampling
paths, instead of the bilinear interpolation, to recover
more spatial information [138]. Pixel-based classifica-
tion accuracy may be further improved as part of the
post-processing by enforcing spatial regularity
(smoothness) using probabilistic graphing models,
such as the conditional random fields (CRF) that
model the posterior distribution of labels for given
observed data [141].

4.1.3. Generativemodels
Many fields of EWM are characterized by limited
labeled data and small sample sets, due to, for example,
sparse in situ observation networks and high costs
associated with labeled data creation. Training a
supervised ML algorithm on limited training data can
result in severe overfitting. The advent of Big Data era
has created a wealth of unlabeled data. It is thus
desirable to utilize the abundant unlabeled data to
compensate for the lack of labeled data in many
applications. Several ways exist for tackling this
problem,which all fall under semisupervised learning.

Transfer learning seeks to learn a less observed
process or domain y by exploring ‘indirect clues’ from
another related process/domain x with abundant
data. Putting in a slightly different way, transfer learn-
ing may also be regarded as using what has already
been learned about x to improve generalization of y.
Similarly, domain adaptation refers to learning a single
system from the set of domains for which labeled and
unlabeled data are available and then applying it to any
target domain (labeled or unlabeled) [142].

Generative modeling seeks to learn a good repre-
sentation of x through unsupervised learning of unla-
beled data, and then uses it to compute the conditional
distribution ( ∣ )p y x , for which only a small sample set
exists. A variant of generative modeling is to assume a
latent variable h exists that represents the underlying
causes of the observed x, and the outputs y are among

one of the causes. Then learning hmakes it possible to
predict y. These ideas are behind a number of DL
models. For example, the AE described before can be
considered a type of generative model that learns a
latent variable. The deep belief network (DBN), which
was used in the original work of Hinton et al [121] to
demonstrate training of deep architectures, is a type of
deep generative graphical model. A commonly used
building block of DBN is the restricted Boltzmann
machine (RBM), which is a simple undirected prob-
abilistic graphic model containing a visible layer v and
a hidden layer h. The latent variables are typically bin-
ary. The RBM is fully connected, meaning each unit in
a layer is connected to all other units in the neighbor-
ing layer; however, there are no direct interactions
between units inside the same layer. The RBM is an
energy-basedmodel with its joint probability distribu-
tion specified by an energy function,

= - - -( ) ( )E v h a v c h a Wh, , 3T T T

where a, c, and W are trainable parameters. Like AE,
RBM performs nonlinear dimension reduction and
feature extraction, and it can extract features in
hierarchical levels when stacked. As shown in Hinton
et al [121], training of a DBN can be done using a
greedy layer-wise unsupervised learning procedure
that trains the DBN one layer at time. At the last stage,
supervised fine-tuning is optionally done to adjust
parameters of all layers together.

The generative adversarial network (GAN), first
proposed by Goodfellow et al [143], pairs a generative
networkwith a discriminator network in a game-theo-
retic framework. The generator network samples from
a probability distribution q( )g z; ;g in other words, it
transforms samples from a low-dimensional latent
variable z to samples of a potentially high-dimensional
variable x. The discriminator network, q( )d x; d , tries
to distinguish ‘faked’ samples generated by q( )g z; g

from the training data samples, assigning a value of 0
to faked samples and a value of 1 to real training sam-
ples. Here, qg and qd are trainable parameters of the
generator and discriminator networks, respectively. In
a zero-sum game, the generator and discriminator
attempt to maximize their own payoff, leading to a
minimax optimization problem

( ) ( )V g darg min max , , 4
g d

inwhich the cost functionV(g, d) is




q
q q

=

+ -
~

~

( ) ( )
( ( ( )) ) ( )( )

V g d d

d g

x

z

, log ;

log 1 ; ; , 5

p d

p g d

x

z z

data

where  denotes the expectation operator over the
respective probability distribution. At convergence of
the optimization, the discriminator is maximally
confused, meaning the generator samples are indis-
tinguishable from the training samples, forcing the
discriminator to emit a probability of 0.5 on all inputs.
The standard GAN essentially trains the discriminator
into a classifier using a small amount of labeled data,
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thus providing a powerful framework for semi-
supervised learning.

Training of GANs, however, is known to be chal-
lenging due to larger networks (i.e. more trainable
parameters), the nonconvex cost functions used in
GAN formulations, diminished gradient (the dis-
criminator gets so successful that the generator’s gra-
dient vanishes and learns nothing), and mode collapse
(the generator only returns samples from a small num-
ber of modes of a mutimodal distribution). Never-
theless, GANs represent one of the most active
research areas in DL. A number of GANs have
emerged from the computer vision research for (a)
image generation, such asWassersteinGAN [144], and
stacked GAN [145]; (b) cross-domain image transla-
tion where labeled information in the form of either
text description or image is used to generate images in
another domain, such as coupled GAN (coGAN)
[146], conditional GAN (cGAN) [147], CycleGAN
[148], and DualGAN [149]; (c) image super-resolu-
tion, where the resolution of coarse images is
enhanced, such as deep-convolution GAN (DCGAN)
[150] and superresolutionGAN [151].

4.1.4. Training of DLmodels
Training ofDLmodels is computationally challenging.
First, large-scale DL models may have thousands to
millions of trainable parameters, which need to be
tuned using a large amount of data. Second, solving
the optimization problems involved in DL is more of
an art, requiring careful considerations on factors
related to, for example, the design of cost functions
(including hyperparameters), the selection of solvers,
and heuristic strategies (e.g. early stopping, dropout,
batch normalization) for preventing overfitting and
accelerating training speed. ML training optimization
is different from the general optimization problems in
the sense that training algorithms do not halt at local
minimum; instead, ML training usually minimizes a
performance measure defined with respect to the
training dataset, and halts when a convergence criter-
ion based on early stopping is satisfied over a valida-
tion dataset [31]. Commonly used state-of-the-art
large-scale DL algorithms include stochastic gradient
descent (SGD), SGD with momentum (Momentum),
adaptive moment estimation (Adam), and root-
mean-square propagation (RMSProp) solvers. A
detailed description of the solvers can be found in [31].

In general, large-scale learning can get help from
scalable parallel solvers, the efficient use of in-memory
processing to reduce data transfer cost, and hardware
acceleration through GPUs or Field Programmable
Gate Arrays (FPGA). Most stochastic solvers (e.g.
SGD) are scalable by performing parallel processing
on subsets of training data, instead of on the whole set
of training data. The best strategy for EWM domain
users may be leveraging the distributed ML support
provided by existing Big Data ecosystems, including
Spark MLlib and Apache Mahout (see figure 5).

Out-of-box support for hardware acceleration is also
provided by open DL packages and libraries, such as
Theano, Caffe, Torch, andGoogle Tensorflow.

4.2.DL applications in EWM
Table 4 provides a summary of DL applications based
on the papers collected for this review. For each type of
application, a small set of citations are listed as
examples.

4.2.1. Earth data classification
A large number of existing DL studies in EWMpertain
to remote sensing data classification problems, includ-
ing scene classification, semantic segmentation, object
tracking, and change detection. The goal of scene
classification is to automatically assign an image to
predefined semantic labels. In particular, holistic scene
understanding aims at recoveringmultiple aspects of a
scene so as to provide a better understanding of the
scene as a whole, while semantic segmentation, also
known as pixel-based classification or dense predic-
tion, aims to predict and assign a class label to each
pixel in an image. In object tracking/detection, the
goal is to identify objects of interests (e.g. airplane,
vehicle, or ship) from various sensing images.

Liu et al [152] was one of the first to apply CNN to
detect extreme climate events (heatwave, hurricane,
cyclone) from climate simulations and reanalysis pro-
ducts. Classification of hyperspectral image (HSI),
which are 3D data cubes containing rich spectral and
spatial information of the same scene, has attracted
significant attention in recent years. A key interest in
all HSI applications is to extract high-level feature
representations of joint spectral-spatial information
using DL. It has been found that incorporating both
spatial and spectral information can provide sig-
nificant advantages for improving the performance of
classification techniques [63]. Chen et al [153] pro-
posed a hybrid PCA and stacked AE method to per-
form HSI classification, in which PCA is applied to
condense the volume of HSI while preserving spatial
(contexual) information, the outputs from which are
then passed to an SSAE. Similarly, Abdi et al [128]
applied a deep SSAE to first perform unsupervised
learning, and the output feature descriptors are used as
input to a logistic regression classifier. Zhong and
Gong [141] designed an end-to-end DBN and CRF
model that leverages the strength of DBN in learning a
high-level representation and the ability of CRFs to
model (or regularize) contextual (spatial) information
in both the observations and labels. Labeled HSI train-
ing samples are often limited. Chen et al [154] pro-
posed to apply Gabor filtering as an unsupervised pre-
training technique before CNN to help extract fea-
tures, thus indirectly mitigating the CNN overfitting
problem caused by the lack of labeled data. Hamida
et al [155] recently developed 3D CNN architectures
for the HSI classification. They showed that their 3D
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CNN models were able to achieve a better classifica-
tion rate than the standard 2D CNN models. He et al
[156] and Zhu et al [157] applied GAN to HSI classifi-
cation, who showed that GAN gave better perfor-
mance than the traditional CNN when training data
was limited.

In object tracking, Alshehhi et al [158] used a
patch-based CNN to extract roads and buildings, and
a post-processing method to incorporate spatial struc-
ture (e.g. road connectivity and building closure).
Ding et al [159] applied the faster region-based CNN
(Faster R-CNN) for object detection. The Faster
R-CNN [160] consists of two modules. The first mod-
ule is a deep fully convolutional network for generat-
ing region proposals, where region proposals are
boxes/regions in an image that potentially bound the
object of interest. The secondmodule is a detector that

uses the proposed regions to find the occurrences of
objects (i.e. classification).

4.2.2. Spatial and temporal data fusion
Fusion of spatial and temporal data has been extensively
studied in the EWM literature [161–163]. Significant
interests now exist in using DL methods to provide
automated processing of large sensing datasets. In
general, spatiotemporal data fusion is a special class of
regression problems that seeks to obtain a better (e.g.
more complete or less corrupted) dataset with higher
spatial and temporal resolutions. Typical application
areas found in the papers surveyed for this review include
(a) pansharpening, (b) data imputation, (c) fusion of
images from multiple satellites to reconstruct high-
quality dense time-series data, and (d) fusion of remote
sensingdatawithpointmeasurements for space infilling.

Table 4. Survey ofDLmethods and applications.

Category Subcategory DL technique used Example articles

RS classification

Scene classification [187]
Automatic target recognition Generative Adversarial Network (GAN) [188]

Segnet [189]
DeepCNNw/ fully connected lay-

ers (DCNN)
[190, 191]

Deep Belief Network (DBN) [99]
Rotation invariant CNN (R-ICNN) [192]
Transfer learning [193]
Faster Region-basedConvolutional Net-

work (Faster R-CNN)
[159]

Image registration DCNN [194]
GAN [195]

Pixel-based classification (Semantic

segmentation)
DCNN [155, 158]

Stacked autoencoder (SAE) [196]
Fully ConvolutionalNetwork (FCN) [197–199]
SegNet [200–202]
Fine segmentation network (FSN) [203]
Gated segmentation network (GSN) [204]
Ensemble FCN [205]
Super-resolution CNN (SR-CNN) [206]
MultiresolutionCNN (FuseNet) [207]
DeepWaterMap [208]
HallucinationNet [209]
GAN [156, 157, 210, 211]

Data fusion

Pansharpening, spatial-spectral Pansharpening CNN (PS-CNN) [212]
Deep residual PS-CNN (DPS-CNN) [213, 214]
Deepmetric learning (DML) [165]
PansharpeningU-net (PUnet) [164]

Spatial-temporal,multiresolution Deep convolutional spatiotemporal fusion

network (DCSTFN)
[167]

Long short-termmemory (LSTM) [170]
Change detection DCNN [215]

Surrogatemodeling FCN [181, 182]
GAN [216, 217]

Inversion, parameter

estimation

State-Parameter IdentificationGAN [183]
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Pansharpening refers to fusion of multispectral
images with a high spatial resolution panchromatic
image. It is also closely related to superresolution (SR)
in image processing, which refers to the enhancement
of the spatial resolution of imaging sensors by infer-
ring information at the subpixel level. Yao et al [164]
presented a variant of U-Net, the pansharpening
U-Net, to enhance resolution of multispectral images,
in which the inputs are low-resolution multispectral
and panchromatic images, and the outputs are high-
resolution multispectral images. Xing et al [165]
trained an ensemble of SSAE to perform pansharpen-
ing of low-resolution panchromatic images. In their
method, low-resolution images from different satel-
lites are first divided into a large number of training
image patches and are then clustered according to
their shallow geometric structures. SSAEs are trained
to learn mappings between the low- and high-resolu-
tion patches used for training. The resulting SSAE
ensemble can then be used to construct high-resolu-
tion images from low-resolution images.

Jean et al [166] used CNN to predict the nighttime
light intensities corresponding to input daytime satel-
lite imagery, where the nighttime light intensity was
used as a proxy for economic activity. In their method,
a transfer learning approach was taken to use a CNN
model pre-trained on a large number of labeled images
from a different domain (a VGG model). Tan et al
[167] and Song et al [168] developed CNN models to
generate high spatiotemporal resolution images by
fusing high-temporal, low-spatial resolution images
and low-temporal, high-spatial resolution images.
Their models are demonstrated using MODIS (low-
spatial, high-temporal resolution) and Landsat Opera-
tional Land Imager (high-spatial, low-temporal reso-
lution) data. In high-latitude regions, large fractions of
snow-covered surface and frequent snowfall adversely
affect the quality of precipitation products for those
regions. Tang et al [169] trained a deepmultilayer per-
ceptron model to extract information from Global
Precipitation Measurement Microwave Imager and
MODIS channels to estimate high-latitude rain and
snow. Fang et al [170] used a hybrid CNN and long
short-term memory (LSTM) model (ConvLSTM) to
extrapolate Soil Moisture Active Passive (SMAP) L3
soil moisture product with atmospheric forcings,
model-simulated moisture, and static physiographic
attributes as inputs. The impact of clouds on optical
satellite imagery can be of major concern, especially in
tropical locations and regions with variable topo-
graphy. Zhang et al [171] proposed a CNN-based
approach for thick cloud removal and demonstrated
their method using Landsat ThematicMapper images.
Sun et al [172] applied DL and a land surface model to
extend the terrestrial total water storage (TWS) data
from the Gravity Recovery and Climate (GRACE)
satellite mission, which was decommissioned in 2017.
Because of missing processes or conceptualization
errors, model-simulated TWS anomalies (TWSA) can

be different from the GRACE-derived TWSA over
many global river basins [173]. In their work, Sun et al
[172] used CNN models to learn the spatiotemporal
patterns of mismatch between model-simulated and
GRACE-derived TWSA, so that the trained model can
be used to predict the ‘corrected’ TWSA in the absence
ofGRACEdata.

Inmany data-driven EWMapplications, monitor-
ing time series may exist only at monitoring locations
and it is desirable to perform data infilling using aux-
iliary information. Traditionally, geostatistical regres-
sion methods have been extensively used for space
infilling based on point measurements, but most
methods assume Gaussian-like data distributions
[174, 175]. As mentioned in the previous method
reviews, many DL methods, especially the generative
models, are designed to learn the salient features of
arbitrary data distributions in a nonlinear and yet scal-
able way. Li et al [176] used DBN to extend the spatial
coverage of PM2.5 (i.e. particulate matter with an
aerodynamic diameter of 2.5 μm or less) monitoring
networks by fusing nearby point observations
(ground-level PM2.5 time series) and satellite data
(e.g. satellite-derived aerosol optical depth, MODIS
normalized difference vegetation index). Zhang et al
[177] used a deep multilayer perceptron (MLP)model
to upscale point measurements of soil moisture for
croplands using Visible Infrared Imaging Radiometer
Suite (VIIRS) raw data records consisting multiple
moderate-resolution spectral bands and visible bands;
the DL regression model was trained using labeled
in situmeasurements andVIIRS data.

4.2.3. Hybridmodeling and reduced-ordermodeling
A long held view ofMLmodels is that they are black box
models having no physical meanings and lacking the
ability to deliver mechanistic explanations of the under-
lying physical processes. For this reason, the scientific
community was and still is reluctant to accept black-box
models, even though those models can achieve more
accurate performance. Significant interests exist in devel-
oping human-interpretable ML models by combining
ML and physics-based solutions, which can be particu-
larly fruitful in theBigData andDLera. Toward this goal,
the theory-guideddata science (TGDS)paradigmaims to
introduce scientific consistency as an essential comp-
onent for learning generalizable models [178]. TGDS
attempts to infuse theories into data-driven models in
two ways. First, TGDS attempts to learn dependencies
that have a solid basis in physical principles and thushave
a better chance to represent causative relationships;
second, TGDS attempts to achieve better generalizability
than purely data-driven models by learning models that
are consistent with scientific principles. These hybrid
models are referred to as the ‘physically consistent’
models [178].

A subarea of research of the TGDS is related to the
development of reduced order models or surrogate
models. The basic idea behind surrogate modeling is
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to find an alternative and yet, computationally effi-
cient and accurate approximation of the input–output
relations simulated in a (large-scale) dynamic model.
Main requirements of surrogate modeling are to pro-
vide quantitatively accurate descriptions of the
dynamics of systems at a computational cost much
lower than the original model, and to provide a means
by which system dynamics can be readily interpreted
[179, 180]. Zhu and Zabaras [181] developed an end-
to-end FCN model to capture the complex forward
mapping between the high-dimensional input–output
fields in a stochastic partial differential equation. Mo
et al [182] developed a similar FCNmodel to learn the
high-dimensional input–output relationship in a sub-
surfacemultiphase flowmodel by using paired perme-
ability realizations and the corresponding system
outputs for training. In Sun [183], a state-parameter
identification GAN is formed to learn not only the for-
ward mapping, but also the reverse mapping between
high-dimensional model inputs and outputs. These
end-to-end regressionmodels work under the premise
that a low-dimensional latent space exists and that the
image-to-image GAN can learn this mapping impli-
citly. In the next steps, theseDL-drivenmodels need to
have the ability to assimilate data so that they can be
continuously updated when new information
becomes available. In recent years, the notion of data
space inversion (DSI) [184–186] has been introduced
in subsurfacemodeling. Themain purpose of DSI is to
combine an uncertain numerical model with Monte
Carlo sampling to establish a statistical relationship
between the historical and forecast variables. This
allows quantifying posterior uncertainty on the fore-
cast variable without explicit inversion or history
matching. Similarly, the DL-driven models can be
applied as an ensemble in the DSI sense to quantify
uncertainty, thus providing an alternative to the con-
ventional data assimilation and uncertainty quantifi-
cation procedures.

5. Conclusions and future directions

This review provides an evidence-based survey on
applications of Big Data and machine learning (ML) in
EWM, with an emphasis on deep learning (DL). EWM
data exemplifies many V’s of Big Data and calls for a
broad set of BigData analytics, from data virtualization,
edge computing, low-latency data transmission to
high-throughput, real-time processing. It is not exag-
gerating to say that the multidisciplinary EWM repre-
sents some of the most interesting and yet challenging
use cases that are out there forBigData andDL.

A wide range of applications are presented in the
1000+ papers surveyed for this review. The applica-
tions show that (a)BigData will fundamentally change
the way that EWM researchers are conceiving, con-
ducting, and analyzing experiments; (b) the benefits of
Big Data can only be maximized when appropriate

automated data wrangling and cleansing are accessible
with relatively low cost; (c)DL techniques have already
demonstrated superior performance in solving a num-
ber of problems, especially in the areas of remote sen-
sing image classification, high-dimensional spatial and
temporal data fusion, and multisource data predictive
analytics.Many of the studies call for a digital transfor-
mation within EWM, one where the researchers and
institutions must continually re-invent themselves by
adapting to disruptive changes like cloud computing
and IoT. In turn, the multiplication of modalities and
agencies of environmental sensing, the proliferation of
new environmental governance actors, transparency
in data collection, accessibility, and integration may
create the conditions for potentially significant trans-
formations in environmental governance [218].

The main roadblocks identified are (a) data cleans-
ing challenge associated with unifying heterogeneous
data sources and data streams arising fromnew IoT and
sensing technologies, including autonomous data qual-
ity check; (b) lack of labeled datasets; (c) mismatch
between data ingestion and data generation speeds; (d)
lack of fundamental understanding of DL architectures
and best practice guidance for algorithmic selection,
training, and tuning; (e) lack of hybridML and physics-
based approaches for developing human-interpretable
solutions; (f) high costs associated with Big Data plat-
forms; and last but not least, (g) lack of a data govern-
ance and sociotechnical infrastructures for engaging a
wide range of stakeholders to improve data quality and
democratize data assets in a socially justified manner.
Regarding the last bullet, the future generation of Big
Data solutions must be designed and produced by peo-
ple who understand the problems and context, not just
by those who understand the algorithms [115]. One
potential way to achieve this is though fostering colla-
boration among data scientists, domain experts, gov-
ernments, the public, and the private sectors. It is also
critically important to train the next generation of
EWM researchers to be more proficient in data science
and to design semantically rich, reproducible data pro-
ducts from the ground up. As suggested by Vitolo et al
[28], scientific data should be associated with prove-
nance to aid interpretation and trust, and description of
methods to support reproducibility.

The road toward Smart Data (the future of Big
Data) will require a different scale of operation from
that of the current, and one that is predicated onAI and
automated execution. The potential reward associated
with embracing Big Data andDL for EWM is also huge,
considering the improved humanitarian effort in dis-
aster relief due to better and faster information flow.
Ultimately Big data and AI will become most valuable
when it can improve causal inference and reasoning.
For EWM, thismeans Big Data and DLwill need to sig-
nificantly improve situation awareness skills, leading to
not only a better capability to predict short-term chan-
ges, but also a better understanding of the gradual
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changes that the Earth system is experiencing, in terms
of environmental conditions andhumanpressure.
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