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A B S T R A C T

Understanding of the spatial and temporal dynamics of extreme precipitation not only improves prediction skills,
but also helps to prioritize hazard mitigation efforts. This study seeks to enhance the understanding of spatio-
temporal covariation patterns embedded in precipitation (P) and soil moisture (SM) by using an event-based,
complex-network-theoretic approach. Events concurrences are quantified using a nonparametric event syn-
chronization measure, and spatial patterns of hydroclimate variables are analyzed by using several network
measures and a community detection algorithm. SM–P coupling is examined using a directional event coin-
cidence analysis measure that takes the order of event occurrences into account. The complex network approach
is demonstrated for Texas, US, a region possessing a rich set of hydroclimate features and is frequented by
catastrophic flooding. Gridded daily observed P data and simulated SM data are used to create complex networks
of P and SM extremes. The uncovered high degree centrality regions and community structures are qualitatively
in agreement with the overall existing knowledge of hydroclimate extremes in the study region. Our analyses
provide new visual insights on the propagation, connectivity, and synchronicity of P extremes, as well as the
SM–P coupling, in this flood-prone region, and can be readily used as a basis for event-driven predictive analytics
for other regions.

1. Introduction

In late August 2017, Hurricane Harvey, a Category-4 tropical storm
made landfall in the Gulf Coast of Texas, US. With peak accumulations
of 51.88 in (1318mm), Harvey became the wettest tropical cyclone on
record in the contiguous United States (CONUS) (NCEP, 2017), and
caused catastrophic flood damage and economic losses in southeastern
Texas. Globally, flood is the most prevalent and damaging natural ha-
zard, affecting more regions than any other types of natural hazard
(Coumou and Rahmstorf, 2012; Easterling et al., 2000; Huntington,
2006; Kunkel et al., 2003; Seneviratne, 2012; Winsemius et al., 2015).
The warming climate, steady growth of population, and rapid devel-
opment of watersheds are likely to induce further changes in the dis-
tribution, severity and frequency of floods (Luke et al., 2017; Milly
et al., 2002; Peduzzi, 2017), aggravating flood risks in flood-prone re-
gions, especially along coastlines (Syvitski et al., 2009).

Extensive work has been done in the understanding of flood gen-
eration mechanisms (Berghuijs et al., 2016; Villarini and Smith, 2010),
flood forecasting (Demargne et al., 2014; Komma et al., 2008; Restrepo

et al., 2012; Wu et al., 2014; Yuan et al., 2014), development of early
warning systems (Alfieri et al., 2013), and flood risk management
(Brouwer et al., 2007; Few, 2003). In particular, significant interests
exist in using both process-based modeling and statistical analyses to
identify mechanisms in the atmosphere, land surface, surface waters,
build environment, and vadose zone that can potentially affect flood
characteristics and distributions. Traditional flood frequency analyses
typically extract events (e.g., maximum annual flood) from the site of
interest and then fit a univariate probability distribution to the data
(Reiss et al., 2001). Disparity among sites is mainly analyzed through
qualitative examination. Villarini and Smith (2010), for instance, ana-
lyzed the flood peaks of more than 500 streamgage stations in the
eastern US, fitted a generalized extreme value distribution to annual
flood peaks of each station, and quantified upper tail properties of flood
distributions. They observed “striking spatial heterogeneity” in flood
distributions over the region, which was attributed to the dependence
of hydrologic and hydraulic responses on basin physiographic proper-
ties, as well as to the spatially varying mixtures of flood-generating
mechanisms. Berghuijs et al. (2016) compared the regional differences
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in the process control of flooding responses by using daily streamflow
and meteorological records from 420 Model Parameter Estimation Ex-
periment (MOPEX) catchments for the period 1948–2001. Using mean
and variance of the date of occurrence as statistics, they considered
concurrence of maximum annual flow and its four predictors (i.e.,
maximum daily precipitation, maximum weekly precipitation, pre-
cipitation excess, and snowmelt), and found that precipitation excess,
snowmelt, and rain-on-snow events are better predictors of the flooding
responses than rainfall characteristics alone. Merz and Blöschl (2008)
argued that in lieu of extracting flood peak samples obtained for a
single site of interest, “much better use should be made of the wealth of
hydrological knowledge gained in the past century” by expanding
temporal, spatial, and causal information.

Indeed, various forms of information expansion and fusion have
been adopted either explicitly or implicitly in recent hydrologic studies
to quantify complex couplings among hydrometeorological variables
and explain their roles in climate extreme events, such as concurrences
of heatwaves and meteorological droughts (Hao et al., 2013;
Mazdiyasni and AghaKouchak, 2015), the compound climate events
and their societal impact (Leonard et al., 2014), and development of
multivariate drought indices using precipitation (P), soil moisture (SM),
or potential evapotranspiration time series (Hao and AghaKouchak,
2013; Liu et al., 2017b; Vicente-Serrano et al., 2010). The SM–P cou-
pling belongs to one of such widely studied topics.

Antecedent SM and the storage of soil reservoirs at the beginning of
a flood event are important for reliable flood forecasts (Komma et al.,
2008). Soil moisture content, through its role in the evapotranspiration
process, also serves as a key control in the partitioning of radiative
energy into latent and sensible heat fluxes, thus affecting air tempera-
ture, boundary-layer stability, and possibly P. The nature of SM–P
coupling, however, is still under debate (Seneviratne et al., 2010).
Previous ensemble land surface modeling experiments (Koster et al.,
2004) suggested that strong SM–climate coupling may exist in transi-
tional zones between dry and wet climates. D’Odorico and Porporato
(2004) provided theoretical and experimental evidence to support the
hypothesis that in continental regions summer SM anomalies affect the
probability of occurrence of the subsequent P. For each summer day
(May 1–September 30) between 1980 and 2002, they calculated rainfall
frequency in the subsequent 21 days and then related it to the regional
average SM. Tuttle and Salvucci (2016) used Granger causality test, a
multivariate linear regression analysis in essence, to estimate the causal
relationship between SM and occurrence of the next-day P over CONUS.
Their analysis was done using 9 years of remotely sensed SM and gauge-
based P products at daily steps and a spatial resolution of 0.25°. They
found that SM anomalies significantly influenced rainfall probabilities
over 38% of CONUS. Liu et al. (2017a) evaluated the sensitivity of
runoff to climate variables using Global Land Data Assimilation System
(GLDAS) and a regional climate model. Again, they derived multiple
hydroclimatic indices using only co-located series in each grid cell.

Because of the convection or other atmospheric dynamics, hydro-
climatic covariability is often not limited to co-located events, ne-
cessitating the search for spatial patterns beyond single sites by looking
at many-to-many correlation among all potentially connected sites.
Such is a form of spatial information expansion referred to by Merz and
Blöschl (2008). Geostatistical methods (e.g., kriging) have been widely
used to analyze spatiotemporal distribution of variables, but they are
parametric and require specification of covariance models. Empirical
orthogonal decomposition (EOF) is another often used method for
studying spatial and temporal patterns in gridded data sets, using which
spatiotemporally varying climate variables are expanded as a linear
combination of eigenmodes for explaining climate teleconnection
phenomena, as well as for comparing climate observations to model
simulations (Hannachi et al., 2007). An alternative approach for ana-
lyzing spatial and temporal processes is the complex network theory,
which may be regarded as an extension of the classic graph theory to
complex systems with high structural heterogeneity and inherently

dynamic properties (Newman, 2003). Complex network theory pro-
vides a powerful framework to dissect interdependence and connection
strength of physical processes while retaining only the most significant
network topology in the analyses, thus helping to reveal new visual
evidence on embedded driving mechanisms that are otherwise not ex-
tractable through conventional analytical tools. Although the con-
temporary complex network theory bears many similarities to the
classic graph theory that has long been used in hydrology, it provides a
flexible computational framework for experimenting with many simi-
larity/dissimilarity measures originated from fields like information
theory and statistical physics. Importantly, more efficient algorithms
have been developed to cope with large-scale networks arising from Big
Data analytics.

In recent years, the complex network analysis has been applied to
quantifying multivariate and multiscale connectivity in hydroclimate.
Tsonis et al. (2006) and Donges et al. (2009b) constructed the so-called
“climate networks” using climate reanalysis data. In their studies, the
network nodes (or vertices) were identified with grid cells of climate
data sets, and links between nodes (edges) were established using a
similarity measure between times series associated with different grid
cells; only the strongest links, filtered using either a predefined link
density or correlation cutoff threshold, were retained in the final net-
works to help uncover the most important network characteristics.
Using linear correlation analysis, Steinhaeuser et al. (2011, 2012)
constructed climate networks from reanalysis data and demonstrated
their potential to capture regional and global dependence structures
within and among climate variables. Sun et al. (2015) quantified spatial
connectivity of observed terrestrial water storage anomalies from
Gravity Recovery and Climate Experiment (GRACE) satellite data and
suggested that network measures may be used as additional spatial
constraints when calibrating global hydrological models, such that
network statistics obtained using simulated data should match the same
statistics obtained from observed data. Fan et al. (2017) constructed
climate networks to identify regions that are most significantly affected
by El Niño/La Niña events. In addition to linear correlation measures,
nonlinear similarity measures have been used to explore uni- or mul-
tivariate pairwise relationships, such as mutual information
(Donges et al., 2009b) and transfer entropy (Runge et al., 2015). Kri-
ging, EOF, and complex network analysis all operate on certain simi-
larity matrices (either covariance or adjacency matrix) constructed
from gridded data sets. Thus, complex network analysis is applicable
wherever the other two methods are applicable. However, a subtle but
important difference is that even when linear similarity measures (e.g.,
Pearson correlation) are used, network-based analyses may still recover
characteristics of nonlinear dynamic systems (e.g., scale free property)
that are otherwise not identifiable using linear approaches such as EOF
(Tsonis et al., 2006).

Many hydrologic analyses involve identification and extraction of
discrete events (e.g., flood events) from continuous time series and then
quantifying concurrence rates. Nonparametric event-based synchroni-
city measures, originally introduced in neuroscience to quantify event
synchronicity in electroencephalogram (EEG) signals (Kreuz et al.,
2013; Quiroga et al., 2002), have been combined with the complex
network analysis to quantify spatial and temporal patterns of rainfall
extremes. Given any two event series in binary form (i.e., 1 if an event
occurs at a measurement time and 0 otherwise), event synchronization
(ES) counts the number of concurrent events in a sliding window which,
after being normalized by the total number of events, gives a simple
nonparametric measure of synchronicity. ES circumvents some diffi-
culty and/or ambiguity associated with the conventional correlation
analysis, such as handling non-normality and nonlinearity in data.
Malik et al. (2012) used ES to analyze extreme precipitation events in
Indian Monsoon System, and Boers et al. (2013) applied ES and com-
plex network analysis to characterize extreme precipitation synchro-
nicity in South America Monsoon System. Konapala and Mishra (2017)
used ES to study spatiotemporal evolution of droughts in 344 climatic
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divisions of CONUS. Because ES depends on properties beyond the
second statistical moment, it can be used to examine causal relation-
ships (Quiroga et al., 2002). Recently, Donges et al. (2016) and
Siegmund et al. (2017) introduced a similar event coincidence analysis
(ECA) measure, using which precursor (trigger) coincidence rate may
be calculated to reflect the probability of one type of events preceding
(succeeding) another, thus complementing the ES measure which does
not differentiate the order of events. Sun et al. (2017) applied ECA to
quantifying concurrences of hydroclimate extremes in global river ba-
sins using GRACE data.

The main purposes of this study were to (a) quantify the spatial and
temporal patterns of P and SM extremes with a focus on wet events, and
(b) identify potential coupling between SM–P using ECA. Few network
studies have analyzed the covariation pattern of hydrometeorological
variables, which may span over multiple spatial and temporal scales.
Knowledge of the SM–P covariation pattern is useful for flood mitiga-
tion and drought management, although we mainly focused on the
former in this analysis. The selected area of study is the State of Texas in
US, which is a geographic region possessing several unique and im-
portant attributes: (a) its climate divisions span a wide spectrum, from
the semiarid west to the humid east; (b) it has produced some of the
heaviest rainfall accumulations and flood magnitudes in the history of
the US and the world (Smith et al., 2000); (c) the state is at the forefront
of water-energy nexus studies, where increased energy production ac-
tivities in semiarid west Texas are perceived to compete for limited
water supplies that are already under stress due to drought, urbaniza-
tion, and irrigated agriculture (Scanlon et al., 2014); and yet (4) sea-
sonal predictability of rainfall and streamflow is generally low for most
of Texas (Houborg et al., 2012; Sun et al., 2014; Zhang et al., 2006).
This study utilized more than 30 years of daily precipitation data from
the North American Land Data Assimilation System Phase 2 (NLDAS-2),
which is a gauge-only precipitation product over the NLDAS grid
(0.125°) and includes an orographic adjustment (Rui and Mocko, 2017).
For SM, gridded model outputs from NLDAS-2 were used. This paper is
organized as follows: Section 2 provides a brief description of the study
area, Section 3 describes data and methodology, Section 4 shows the
results of analyses, followed by discussion and conclusions.

2. Study area

Texas, covering an area of 690,000 km2, is the largest state in CONUS
by area and the second largest state by economic outputs (BEA, 2015)
(Fig. 1(a)). Texas is divided into 10 climate subdivisions. Mean annual
precipitation ranges from 355 mm in its semiarid west to 1187mm in the
humid east (PRISM, 2015), and the annual precipitation distribution
(Fig. 1(b)) shows a clear north–south stripe pattern across the state.
Average annual temperature gradually increases from 11° C in the northern
Panhandle to 20° C in Lower Rio Grande that is located in the southmost
part of the state. Gulf of Mexico is the predominant geographical feature
affecting the state’s climate, moderating seasonal temperatures along the
Gulf Coast and providing the major source of precipitation for most of the
state, except for the Trans-Pecos and Panhandle regions of Texas, where
precipitation originates mostly from the eastern Pacific Ocean and from
land-recycled moisture (TWDB, 1967).

Annual precipitation in Texas exhibits a distinctive bimodal tem-
poral pattern. Spring is the wettest season in most of the Texas, with
April and May the wettest months. A secondary peak of rainfall occurs
in September and October (Slade and Patton, 2003). Tropical cyclones
(hurricanes and tropic storms) typically occur in late summer or early
fall, and those that made landfall have produced large depths of rainfall
over wide areas of the state. Balcones Escarpment, an area of steep
elevation gradient in central Texas at the boundary between the Ed-
wards Plateau and the Gulf Coast Plain (labeled in Fig. 1(a)), assists in
uplifting of air masses and formation of storms, and have produced
many of the largest storms in the state (Slade and Patton, 2003; Smith
et al., 2000).

Texas has suffered greatly from severe storms throughout its history.
Flooding is common during spring and early fall. The maximum known
discharges typically range from about 1.5–3 times greater than 100-
year discharges for sites in the western and eastern parts of the state,
but documented discharges for some sites along the Balcones
Escarpment have been as much as 4 or 5 times greater than the 100-
year peak discharges, causing severe losses to those establishments
existing outside the 100-year floodplain but within floodplains of
maximum floods (Slade and Patton, 2003). As a result, Texas has con-
sistently suffered the most deaths and damage from flooding than any
other state (Brody et al., 2008; Sharif et al., 2014). According to Federal
Emergency Management Agency (FEMA) statistics on flood insurance
payments from January 1978 to June 2017, Texas alone accounted for
USD 6.9 billion in property losses, only second to Louisiana (https://
bsa.nfipstat.fema.gov/reports/1040.htm). The recent Hurricane Harvey
is expected to significantly increase that amount. Thus, the complex
climatic and geographic settings of Texas represent a unique complex
system with high structural heterogeneity, making it well suited for
demonstrating the event-based complex network analysis. Insights
gained from this study shall be beneficial not only to local emergency
managers, but also to other coastal regions prone to flooding.

3. Data and methods

3.1. Data

Gridded P and SM data were acquired from NLDAS-2 (https://ldas.
gsfc.nasa.gov/nldas/NLDAS2model.php), which includes four land
surface models (i.e., Noah, Mosaic, SAC, and VIC) and covers CONUS
with high spatial (0.125°) and temporal (hourly) resolution. Period of
coverage includes a 30-year retrospective run from January 1, 1979 to
December 31, 2008, augmented with a real-time extension from
January 1, 2009 to the present (Xia et al., 2012). NLDAS precipitation
field is synthesized using a number of rainfall products, including daily
gauge, hourly radar, and global satellite observations. Non-precipita-
tion forcing fields are derived from the analysis fields of North Amer-
ican Regional Reanalysis (Mesinger et al., 2006).

NLDAS forcing and output have been validated and assessed by
using measurements collected from selected observation networks. For
example, NLDAS-2 daily SM outputs were validated against the long-
term in situ datasets (i.e., the North American Soil Moisture Database),
including Illinois SM database, Oklahoma Mesonet SM dataset, and data
from a total of 121 sites of the Soil Climate Analysis Network (SCAN)
covering CONUS (Xia et al., 2014). The study of Xia et al. (2014) used
in situ SM data from 1997–2002. Xia et al. (2015) further expanded the
evaluation period to 13 years (1999–2012). Overall, all four NLDAS-2
land surface models were shown to capture the broad features of ob-
served SM variations (i.e., the seasonal cycle and interannual varia-
bility), reproducing the daily, monthly, and annual SM anomalies well
and capturing most of the wet and dry events at different soil depths
(Xia et al., 2014). In their P and SM causality analysis, Tuttle and
Salvucci (2016) compared the remotely sensed data (top 1 cm SM) from
Advanced Microwave Scanning Radiometer for the Earth Observing
System (AMSR-E), a sensor deployed on NASA’s Aqua satellite, to
NLDAS-2 simulation results (0–10 cm SM simulated by Noah and Mo-
saic); they reported that the two products generally gave similar feed-
back patterns.

The period of study in this work ranges from January 1, 1979 to
December 31, 2014. Previously, the model validation study by
Xia et al. (2014) showed that for the top 10 cm, Noah (SAC) has the
smallest (largest) mean absolute error and root-mean-square error,
while Mosaic and VIC are in between. Noah is currently being used as
the land component for National Centers for Environmental Prediction’s
(NCEP) operational model systems, including Global Forecast System,
Climate Forecast System, North American Modeling System, and other
regional numerical model systems. It is important to understand the
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limitations and strengths of Noah for improving weather and climate
prediction skills. Thus, simulated 0–10 cm SM data from Noah were
mainly used for quantifying SM–P coupling. Results from VIC and
Mosaic are provided as part of the supporting materials. The total
number of valid NLDAS grid cells for Texas is 4112. Downloaded hourly
P and SM data were first aggregated into daily steps. The daily step is
short enough for identification of low-frequency, high-magnitude wet
events. To explore seasonal patterns, the daily time series corre-
sponding to each grid cell were split into four seasons, De-
cember–February (DJF), March–May (MAM), July–August (JJA), and
September–November (SON). Data processing was done using Python
scripts on a computer cluster operated by the Texas Advanced Com-
puting Center at The University of Texas.

3.2. Event-based complex network analysis

3.2.1. Event synchronization (ES)
General workflow of the event-based complex network analysis used

in this study consists of event extraction, event synchronization quan-
tification, and network construction (Fig. 2). During event extraction,
events of interest are identified according to certain criteria (e.g., the
top 10% daily rainfalls in a season). Manual event identification has
also been used, as done in Ford et al. (2015). After forming event series,
pairwise event synchronization is then performed.

Let = < = …+S t t t i N{ }, ( , 1, , )A
i i i A

( )
1 denote an ordered event series

A containing NA events, where ti denotes the time index (an integer) of
the ith event. Similarly, = = …S t j N{ }, ( 1, , )B

j B
( ) denotes another or-

dered event series B. The two event series may represent either events
of the same type (e.g., P) but occurred at different locations, or co-
located events of different types (e.g., P and SM). A coincidence in-
dicator Ci

A B( , ) between S(A) and S(B) is defined as (Kreuz et al., 2013)

= ⎧
⎨⎩

− ≤C t t τ1, if
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in which the factor 1/2 is used to avoid double counting if two events in
S(A) are close to the same event in S(B) (Quiroga et al., 2002). Because
intervals between events indirectly reflect the event occurrence rate,
τij

A B( , ) allows the coincidence indicator to adapt to the local rate of event
occurrence. By allowing such dynamic delays between events, the ES
measure avoids specification of a fixed lag between time series, which
can often be ambiguous for climate series (Boers et al., 2013). An upper
bound τmax can be imposed such that the window width is

̂ =τ τ τmin{ , }ij
A B

ij
A B( , ) ( , )

max . The ES measure is then simply calculated by
summing over Cij

A B( , ) and normalizing the result by the total number of
events from both series,

∑=
M

CES 1

ij
ij

A B( , )

(3)

where = +M N NA B is the total number of events. The nonlinear ES
measure as given in Eq. (1) is symmetric.

In this work, ES was used to quantify similarity between all pairs of
grid cells, yielding an Nc×Nc square similarity matrix, where Nc is the
total number of grid cells (because of symmetry, only half of the cal-
culations are necessary). For each P time series, an event series was
extracted by considering the top 10% (5%) of all daily values, resulting
in about 328 (165) events per grid cell per season. The similarity matrix
was obtained by using the Python package, pyspike (Mulansky, 2015),
with a τmax value of 3 days.

Fig. 1. (a) Map of Texas. Elevation decreases from northwest towards southeast. All major rivers (blue) originate from within the state. Major basins (basin boundary in golden)
mentioned in the discussion are labeled. Balcones Escarpment (labeled in white), a narrow area of steep elevation changes in central Texas, is historically associated with extreme flooding
events; (b) Annual precipitation pattern in Texas exhibits a distinctive north–south stripe pattern (source: PRISM Climate Group). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 2. Workflow of network construction.
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3.2.2. Network measures
Climate networks can be constructed from the similarity matrix, in

which grid cells are treated as network nodes, and a pair of nodes are said
to be connected if there is a significant link between them. For the latter
purpose, a preset link density (e.g., 0.02) is usually set to help uncover the
most significant features in the network (Donges et al., 2009a). In this
approach, the ES values of all pairs of event series are first sorted in an
increasing order to generate an empirical cumulative distribution function
(ECDF) of ES, and a cutoff ES value (denoted as EST) is then found for the
corresponding percentile (e.g., 98th percentile for a link density of 0.02).
Only links having ES values greater than the EST are retained for network
construction. The higher the EST is (or equivalently, the smaller the link
density), the less likely that two nodes are linked due to spurious correla-
tion. To test the statistical significance of the chosen link density, a pro-
cedure similar to that in Boers et al. (2013) and Konapala and
Mishra (2017) was used. Specifically, 5000 independent event series were
generated with 328 (165) independent and uniformly distributed random
events in each; the ES values of all pairs of event series were then calcu-
lated, and used to derive a test ECDF for comparison with the original input
data. The null hypothesis is that the randomly generated test set has a
similar ES value to EST at the same link density. If EST is significantly larger,
then the null hypothesis is rejected. The link trimming process described
here leads to a very sparse, binary adjacency matrix, with elements equal to
1 if the corresponding grid cells are linked and 0 otherwise. Calculation and
storage of similarity matrices is often the most time-consuming step in
network construction.

The following climate network measures were used in this study to
characterize the topology of networks.

Degree centrality (DC) of a node is the number of directly connected
neighbors (also known as the first neighbors in literature) the node has,

∑=
∈

aDC ,i
j n

ij
i (4)

where ni is the set of directly connected neighbors of node i and aij are
elements of the adjacency matrix. Nodes with a high DC are called
super nodes and clusters of such super nodes are referred to as hubs.

Betweenness centrality (BN) of a node is the fraction of shortest paths
connecting any two nodes that also pass through the node,

=
∑

∑
≠

≠

σ i

σ
BN

( )
i

k l i kl

k l i kl

,

, (5)

where σkl denotes the number of shortest paths between any pair of
nodes k and l, and σkl(i) includes only the shortest paths that pass
through i. A node with a high BN value indicates the importance of the
node in mediating transport of network attributes (e.g., traffic, in-
formation, or mass). In climate networks, regions exhibiting high BN
values may represent pathways for the long-ranged, directed propaga-
tion of extreme climate events (Boers et al., 2013).

Mean link distance (LD) is the average length of links that each node
has, which is normalized by node degree centrality

∑=
=

a dist i jLD 1
DC

( , )i
i j

N

ij
1

c

(6)

where DCi is the DC of node i, Nc is the number of nodes, and dist(i, j) is
the geographical distance between nodes i and j, and is defined as

= +−dist i j R λ λ λ λ( , ) cos (sin sin cos cos cosΔ )i j i j ij
1 (7)

in which λi and λj are latitudes of the nodes, Δij is the absolute difference in
longitudes, and R is Earth radius. High LD values indicate regions of high
synchronicity with distant nodes. Unlike DC which is a local measure of
the directly connected neighborhood, both BN and LD are global measures
of network topology that rely on shortest link lengths.

The artificially imposed boundary (i.e., the Texas state border in the
current case) may affect the accuracy of calculated network measures
because connections to nodes outside the boundary are cut off. For DC

measure, we simply expanded the study area to include significantly
larger areas outside Texas, whereas for BN and LD measures, we
adopted a more sophisticated procedure suggested in
Rheinwalt et al. (2012) and recently in Wiedermann et al. (2016): for
each season an ensemble of random surrogate networks are generated
that preserve the global and local link distributions between nodes,
hence explicitly taking into account the spatial embedding of the net-
work in some metric space. The underlying assumption is that links that
are clipped due to the boundary effect can be randomly “re-wired”
inside the boundary using network statistics derived from the existing
network. The ensemble mean of all surrogate networks is then used to
correct for the boundary effect. For example, the corrected BN is ex-
pressed as the ratio between BN of the input network and the ensemble
mean BN. In this work, an ensemble of 300 surrogate networks were
used for each season. Network measures were computed using the
pyunicorn package developed by Donges et al. (2015) which, in turn,
calls the open-source graph package, igraph (Csardi and Nepusz, 2006),
for network calculations.

3.2.3. Community detection
The problem of community detection refers to the partition of a

network into communities of densely connected nodes, with the nodes
belonging to different communities being only sparsely connected
(Blondel et al., 2008). In this study, we were interested in combining
community detection with the aforementioned network measures to
understand the spatial structures of covariation regions.

Community detection has gained significant interests since the
seminal paper by Girvan and Newman (2002). Although a wide array of
algorithms are available for community detection (Fortunato, 2010),
very few of those are suitable for large networks having more than
several hundreds of nodes. The particular algorithm adopted in this
work is a multilevel partition algorithm proposed by
Blondel et al. (2008). It optimizes a network measure called modularity
(Q), an indicator of “partition correctness” in the sense that a good
partition should have many edges within communities but only a few
between them (Clauset et al., 2004):
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DC DC
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2 2
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l i j
ij

i j
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, (8)

where Nl is the total number of edges in a network; aij are elements of
adjacency matrix, DCi and DCj are the degree centrality of nodes i and j,
respectively;Cu is the community membership of a node u and is equal
to 1 if u is part of it; and the delta-function C C−δ ( )u v is 1 if nodes u and
v are in the same community and 0 otherwise. Eq. (8) suggests that Q is
closely related to degree centrality, with higher Q values indicating
better community partitions. To maximize the value of Q, the multi-
level partition algorithm operates iteratively in two stages. In the first
stage, every node in the network is assigned a separate community and
the nodes are moved among communities iteratively in a way that
maximizes each node’s local contribution to the overall modularity. In
the second stage, a new network is built whose vertices are commu-
nities identified from the first stage. The two-stage process is iterated
until there are no more changes and a maximum modularity is attained.
The algorithm is very efficient, making it suitable for analyzing large
networks within reasonable time. We used an implementation of the
multi-level partition algorithm from the igraph (Csardi and
Nepusz, 2006) for this work.

3.2.4. Soil moisture–precipitation coupling
In addition to constructing extreme precipitation networks, the

SM–P coupling was quantified using an event-based analysis measure,
ECA. In particular, we were interested in a precursor coincidence rate
that is defined between two event series, S(A) and S(B), as
(Siegmund et al., 2017)
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in which S(A) and S(B) are as defined before, H( · ) is Heaviside function;
I[0, ΔT]( · ) is an indicator function, which is equal to 1 when its argu-
ment falls within [0, ΔT] and 0 otherwise. The parameter ΔT defines the
width of a sliding window, and parameter τ allows to explicitly take
into account lagged relationships between event series. By definition, rp
is in the [0,1] range.

Thus, if S(A) represents P events and S(B) represents SM anomalies,
then rp is the fraction of P events that are preceded by at least one SM
anomaly event. Here SM anomalies are obtained by detrending time
series for each season by subtracting the seasonal means. The maximum
slide window length, ΔT, was set to 7 days and the lag τ to 0 for the
SM–P analysis.

4. Results and discussion

Extreme precipitation networks were generated from gridded P data
from NLDAS-2, using the 90th percentile of individual grid time series
as event cutoff threshold and with a link density of 0.02 (see description
under Section 3.2.1). For DJF, for example, the resulting network has
171,000 links (out of 41122/2) at the specified link density, which
corresponds to an ES value of 0.79. The procedure described in
Section 3.2.2 was used to test the significance of the specified link
density by using 5000 uniformly distributed random event series. The
ES value of the test set is only 0.27 at the 0.02 link density and the
maximum ES value of the test set is 0.33. Thus, the retained links are
considered statistically significant. Unless otherwise specified, all re-
sults reported below pertain to this set of networks.

Fig. 3 shows the resulting seasonal DC maps, which are normalized
by the maximum nodal degree of each season. Significant variations in
spatial DC patterns can be observed across seasons. Node clusters ex-
hibiting high DC values (hot spots) tend to synchronize with a relatively
large number of adjacent nodes during extreme rainfalls (note:

adjacency is in a similarity sense, not necessarily in a geographical
sense). Consequently, those hot spot regions may be used as a proxy of
high flooding risks. In winter (DJF), high-value clusters (DC > 0.4)
cover the northeastern half of Texas, which extends further to the north
to Oklahoma. In spring (MAM), the high-value clusters become sig-
nificantly smaller in size and are mainly located in southeastern Texas.
In summer (JJA), the extreme P clusters cover the entire central Texas.
Finally, in fall (SON), a high-value (>0.8) DC cluster is observed near
the four-state corner of Texas–Oklahoma–Arkansas–Louisiana (i.e., near
the right border in Fig. 3(d)).

These DC patterns may be further interpreted using Texas’ clima-
tology. In winter and spring, precipitation is formed when cool air from
the north and from high plains of northern Mexico meet the humid air
from Gulf of Mexico. In early fall, tropical cyclones from both the
eastern Pacific and Atlantic Basins contribute to some of the heaviest
rainfalls near the Texas Gulf Coast. In the summer, orographic ascent
along the Balcones Escarpment acts an important forcing mechanism
for the extreme thunderstorms observed in central Texas (Nielsen et al.,
2016). The lack of strongly synchronized P clusters in MAM, the wettest
season in Texas, is intriguing. This may be attributed to the lack of a
dominant precipitation generation mechanism in MAM.

As a sensitivity study, DC maps generated using the 95th-percentile
event cutoff is shown in Supporting Information (SI) Fig. S1. In general,
the DC clusters become weaker when the P event cutoff threshold is
increased, because of the smaller number of P events and subsequently
less spatial synchronicity. This is especially true for DJF and MAM. In
SON, however, we see that more smaller-sized extreme rainfall hot
spots appear in the Brazos river basin.

In Fig. 4, BN maps derived for the same P networks are shown.
Recall that BN is a measure of the importance of a network node in
mediating propagation of a certain network attribute which, in the
current case, may be interpreted as air mass associated with extreme P.
As described under Section 3.2.2, the BN maps were corrected by using
the ensemble mean of 300 surrogate networks that were generated
separately for each season to compensate for the boundary effect. In

Fig. 3. Precipitation degree centrality maps for (a) DJF, (b) MAM,
(c) JJA (d) and SON. At each valid grid cell, the 90th percentile
value of precipitation time series (from 1979 to 2014) was used as
event cutoff threshold. All P networks were constructed using a
link density of 0.02.
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DJF, strong BN values can be observed in northeastern Texas near the
junction of Brazos/Trinity river basins. The pattern is rotated clockwise
during JJA, with one cluster seen in north central Texas and another
trace of clusters aligned with Balcones Escarpment. BNs in MAM and
SON are more scattered, suggesting the randomness in heavy rainfalls
in those seasons. Therefore, flooding risks in spring and fall tend to be
quite widespread, an observation that is consistent with what Slade and
Patton (2003) had observed on the basis of 256 major storms in the
history of Texas (1850–2002). In general, many of the high-valued BN
clusters appear on or near the major river basin boundaries. Specifi-
cally, the Brazos river basin acts as a major P transport pathway in most
of the seasons. BN maps derived from networks that were constructed
using the 95th-percentile cutoff (Fig. S2) agree well with those in Fig. 4,
showing Brazos river basin as a major pathway.

The LD maps, shown in Fig. 5, measure the average shortest spatial
distance between each node and its first neighbors. All high value LD
clusters are concentrated in central Texas, in the middle of Brazos and
Colorado river basins. Small sized clusters are observed in Balcones
Escarpment in JJA and near east Texas in SON. The nodal average link
distance is smaller in JJA than in other seasons, probably because of the
local nature of many storms. Comparing to Fig. 4, we see co-existence of
high-valued LD and BN clusters in central Texas, indicating that the
region acts as a central hub for facilitating the long-range, directed
moisture transport processes from different parts of the state.

At last, we identified the P community structure using the 90th
percentile extreme P networks. All seasons have similar numbers of
community structures, as shown in Fig. 6. The community structure
shapes are relatively fixed in the north Panhandle area and in west
Texas across all seasons, but vary significantly in central Texas and the
Gulf Coast region. A community border is formed around the Balcones
Escarpment in all seasons, except in SON. In the latter case, a golden
color community covering the Houston area is seen, with its longer axis
parallel to the Gulf Coast. On the other hand, an elongated north–south
green color community is observed that spans from the southern most
corner all the way to central Texas. These are the communities that are
often influenced by tropical cyclones during SON. For example, the
golden color community includes the area that was severely flooded

during the landfall of Hurricane Harvey in late August 2017.
SM patterns were examined using the same complex network ana-

lysis. Although SM does not transport as dynamically as air masses per
se, its spatial distribution is influenced by multiple atmospheric, sur-
face, and subsurface processes, including P, evapotranspiration, and
infiltration. Thus, the spatial distribution of SM and its network to-
pology inherently reflect not only the soil properties (e.g., texture and
hydraulic conductivity), but also signatures of multiple physical pro-
cesses. Soil property data used in NLDAS were derived from 1-km State
Soil Geographic (STATSGO) database and have 11 layers and 16 texture
classes. Fig. S3 shows the soil texture data for Texas.

We constructed the SM networks using the 0–10 cm SM data from
Noah model of NLDAS-2. The event cutoff was again set to 90th per-
centile of cell-wise SM anomaly values and the link density to 0.02. The
resulting SM DC maps are shown in Fig. 7. Overall, the spatial patterns
of SM DC bear many similarities with the rainfall DC maps shown in
Fig. 3, especially in the summer and fall seasons. In addition, high-value
soil moisture DC clusters are found near the southern High Plains area
(the lower Texas Panhandle), which is a region of relatively deep soils,
comprising of sandy loams and clay loams. Human alterations of the
surface water and energy balance have been massive in the High Plains
area, as already reported in numerous previous studies (e.g., Moore and
Rojstaczer, 2002; Scanlon et al., 2012). Irrigation water withdrawal at
the region is over 6×109 m3 annually, an amount that is so massive
that it can cool the surface and raise the latent heat flux, as well as the
convective available potential energy (Moore and Rojstaczer, 2002).
Although NLDAS-2 land surface models do not simulate human activ-
ities directly, a number of in situ SCAN sites are located near the lower
Texas Panhandle area. Noah outputs were shown to have relatively high
correlation (0.78) with in situ observations in Great Plains (Xia et al.,
2014). For comparison, the SM degree maps constructed using the
0–10 cm SM data from Mosaic and VIC are given in Figs. S5 and S6,
respectively. Overall, the spatial patterns of Mosaic are similar to those
from Noah (except for DJF), although the DC cluster sizes obtained
from Mosaic are smaller. The SM patterns from VIC, however, are sig-
nificantly different from those given by Noah and Mosaic. The latter
observation is consistent with Xia et al. (2014), who showed that the

Fig. 4. Precipitation betweenness centrality maps
for (a) DJF, (b) MAM, (c) JJA, and (d) SON.
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VIC top 10 cm soil moisture has less seasonal variation when compared
with the observations and the other three models, and a likely cause
was attributed to the limited bare soil fractions assigned in VIC grid
cells.

The combination of short-duration extreme rainfalls, high soil
moisture conditions, and low-permeability soil classes may significantly
aggravate the flooding risk. Thus, regions with stronger covariability in

P and SM should be evaluated during hazard mitigation planning. A
question is then whether there is also coupling between P and SM in
these regions, especially in the sense of SM–P feedback mechanism.

The ES measure we have used so far does not differentiate the order
of events, as mentioned before. It is trivial that higher P leads to higher
SM. However, SM–P coupling in the other direction (i.e., due to SM
feedback) is more intriguing and is still subject to active investigations,

Fig. 5. Precipitation mean local distance maps for
(a) DJF, (b) MAM, (c) JJA, and (d) SON.

Fig. 6. Communities identified from precipitation networks
for (a) DJF, (b) MAM, (c) JJA, and (d) SON. (For inter-
pretation of the references to color in this figure, the reader is
referred to the web version of this article.)
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as mentioned in the introduction. Here we applied the ECA measure
described under Section 3.2.4, specifically the precursor coincidence
rate, to quantify cell-wise SM–P coupling with SM anomalies being the
precursor. The absolute values of SM anomalies were used so that
contributions of both dry and wet SM events to subsequent P events
could be included. A statistical significance test was used to ensure that
the coincidence is not purely random. The null hypothesis of the sig-
nificance test is that the observed number of coincidences can be ex-
plained by two independent series of randomly distributed events fol-
lowing a Poisson process. If the p-value is smaller than a user-defined
confidence level α, the null hypothesis can be rejected (Donges et al.,
2016).

Results are presented in Fig. 8. All colored areas are significant at
=α 0.05 level. In winter, SM–P coupling is sparse; strong precursor

coincidence rate (> 0.7) is mainly observed along the Texas Gulf Coast.
In spring and fall, the coupling becomes more widespread, with mild
coupling regions (0.5–0.6) covering almost the entire state. However,
strong coupling is still limited to the coastal area. SM–P coupling seems
to be the strongest in summer, the hottest and driest season in Texas,
where significant coupling is seen in Lower Rio Grande river basin near
the US–Mexico border and in the adjacent Nueces river basin. A pre-
vious study showed that summer precipitation in the US may be sig-
nificantly contributed by local recycling, through moisture returning to
the atmosphere by evapotranspiration from the same region
(D’Odorico and Porporato, 2004). A more recent study tried to link in
situ observations of soil moisture from more than 100 stations in Ok-
lahoma to subsequent unorganized afternoon convective precipitation
(Ford et al., 2015); the authors found a statistically significant pre-
ference for convective precipitation initiation over drier than normal
soils, with over 70% of events initiating over soil moisture below the
long-term median. In our case, the hot summer evapotranspiration may
directly drive moisture recycling, leading to initiation of local con-
vective precipitation. The coupling in the Texas Panhandle, part of the
High Plains, is weak or none in all seasons. Interestingly, many areas
exhibiting high extreme rainfall synchronicity (e.g., central Texas and
Balcones Escarpment) do not exhibit strong SM–P coupling, suggesting
the alternative forcing mechanisms behind the extreme P events

occurred in those areas (e.g., sharp elevation changes). The main ex-
ception is near the Texas–Louisiana border in SON, where we see high
precipitation DC, soil moisture DC, and strong SM–P coupling. Indeed,
that is the region known to be highly prone to flooding. As a sensitivity
study, the same analysis was repeated using the 95th percentile event
threshold (Fig. S4), in which case the higher threshold tends to weaken
the coupling pattern, as we already saw in other network measures.

Our SM–P coupling results are generally in agreement with the
findings of Tuttle and Salvucci (2016), who used observed P and SM
data. For example, those authors identified the Texas Gulf Coast area as
a region of strong SM–P coupling. They did not observe significant
SM–P feedback in Great Plains, one of the hot spots identified in the
original study of Koster et al. (2004). Our study, which uses a non-
parametric event causality measure, also confirmed that little coupling
exists in the Texas High Plains, which is a subregion of Great Plains.
Nevertheless, model uncertainties in land surface models may affect the
simulated SM, which in turn may affect the SM patterns and SM–P
coupling. Future works may use in situ data and/or remotely sensed soil
moisture data to further confirm the spatiotemporal patterns reported
here.

5. Summary and conclusions

Extreme event covariability has received significant attention in
recent years. From the perspective of flood risk and vulnerability as-
sessment, a strong need exists to identify flooding risks in flood-prone
areas, to support local decision making (Balica et al., 2013; Kauffeldt
et al., 2016; Leskens et al., 2014) and mitigate the negative impact of
climatic variability (Mazdiyasni and AghaKouchak, 2015). This study
examined covariation patterns embedded in extreme P and its land
surface covariate, SM, using an event-based, complex-network-theoretic
approach. The nonlinear, nonparametric ES and ECA measures are
useful for quantifying the coincidence of extreme events, circumventing
limiting assumptions behind conventional linear correlation analyses.
These network measures were demonstrated using high-resolution
NLDAS data for Texas, which is a US state exemplifying strong water-
energy nexus. Results reveal that extreme event hot spot patterns and

Fig. 7. Soil moisture degree centrality maps for (a)
DJF, (b) MAM, (c) JJA, and (d) SON.

A.Y. Sun et al. Advances in Water Resources 112 (2018) 203–213

211



community structures show strong seasonal patterns in Texas. Within
each season, strong spatial variability also exists because of the wide
range of climate divisions in the study area. The high-resolution ex-
treme event patterns uncovered in this study may be used as a reference
to direct future hazard mitigation efforts.

The capability to quickly visualize embedded connections in mas-
sive spatiotemporal data is critical as environmental scientists start to
embrace Big Data technologies (Granell et al., 2016). Built on a number
of network measures, we show that the complex network analysis re-
presents a promising tool for extracting interesting features out of large
gridded data sets, providing new visual analytics and supplementary
information to emergency managers. Finally, it is emphasized that al-
though the methodologies are demonstrated for Texas, they are general
and can be applied to studying any other regions or other types of ex-
treme event synchronicity.
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