OFFSHORE OIL AND GAS INFRASTRUCTURE RE-USE IN THE GULF OF MEXICO

DARSHAN SACHDE, PHD
KATHERINE DOMBROWSKI, P.E.
JOE LUNDEEN, P.E.
RAY MCKASKLE, P.E.
Trimeric Corporation
DARRELL DAVIS (Consultant)
Disclaimer

This presentation is based upon work supported by the Department of Energy and was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Background

• Evaluation of Infrastructure Re-use has been a focus of Gulf of Mexico Partnership for Offshore Carbon Storage (GoMCarb)

• GoMCarb focus = identify gaps, challenges, needs, bigger picture trends

• Momentum building in the region for real projects
Motivation: Source-Sink Matching

CO₂ Sources > 400k t/yr
~75 within 50 miles of coastline in Texas
Size of dot = CO₂ emissions

Data from EPA GHGRP 2017
Motivation: Existing Infrastructure

Lack of new infrastructure

Inventory for Re-use Decreasing?

Active Inventory Circa 2017

<table>
<thead>
<tr>
<th></th>
<th>Cumulative Installed</th>
<th>Decommissioned</th>
<th>Active</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 400 ft</td>
<td>6,933</td>
<td>5,025</td>
<td>1,908</td>
</tr>
<tr>
<td>>400</td>
<td>121</td>
<td>24</td>
<td>97</td>
</tr>
<tr>
<td>Total</td>
<td>7,054</td>
<td>5,049</td>
<td>2,005</td>
</tr>
</tbody>
</table>

Source: Kaiser and Narra, LSU Center for Energy Studies; Offshore Magazine, March 2018
Motivation: Existing Infrastructure

Active structures in water depth less than 400 ft, 1942-2017E.

<table>
<thead>
<tr>
<th>Year</th>
<th>Active Structures</th>
<th>Cumulative Installed</th>
<th>Cumulative Decommissioned</th>
</tr>
</thead>
<tbody>
<tr>
<td>1942</td>
<td>1,000</td>
<td>1,000</td>
<td>0</td>
</tr>
<tr>
<td>1947</td>
<td>2,000</td>
<td>3,000</td>
<td>2,000</td>
</tr>
<tr>
<td>1952</td>
<td>3,000</td>
<td>6,000</td>
<td>4,000</td>
</tr>
<tr>
<td>1957</td>
<td>4,000</td>
<td>10,000</td>
<td>6,000</td>
</tr>
<tr>
<td>1962</td>
<td>5,000</td>
<td>15,000</td>
<td>10,000</td>
</tr>
<tr>
<td>1967</td>
<td>6,000</td>
<td>20,000</td>
<td>12,000</td>
</tr>
<tr>
<td>1972</td>
<td>7,000</td>
<td>25,000</td>
<td>15,000</td>
</tr>
<tr>
<td>1977</td>
<td>8,000</td>
<td>30,000</td>
<td>18,000</td>
</tr>
<tr>
<td>1982</td>
<td>9,000</td>
<td>35,000</td>
<td>20,000</td>
</tr>
<tr>
<td>1987</td>
<td>10,000</td>
<td>40,000</td>
<td>22,000</td>
</tr>
<tr>
<td>1992</td>
<td>11,000</td>
<td>45,000</td>
<td>24,000</td>
</tr>
<tr>
<td>1997</td>
<td>12,000</td>
<td>50,000</td>
<td>26,000</td>
</tr>
<tr>
<td>2002</td>
<td>13,000</td>
<td>55,000</td>
<td>28,000</td>
</tr>
<tr>
<td>2007</td>
<td>14,000</td>
<td>60,000</td>
<td>30,000</td>
</tr>
<tr>
<td>2012</td>
<td>15,000</td>
<td>65,000</td>
<td>32,000</td>
</tr>
<tr>
<td>2017</td>
<td>16,000</td>
<td>70,000</td>
<td>34,000</td>
</tr>
</tbody>
</table>

- **Lack of new infrastructure**
- **Inventory for Re-use Decreasing?**

• What is the practical **scale** of the opportunity for re-use?

• What are risks/benefits/incentives for re-use?

• What are the **challenges** to assessing re-use?

• What investments & steps are required to make an assessment?

• **FOCUS ON PIPELINES AND PLATFORMS TODAY**

Source: Kaiser and Narra, LSU Center for Energy Studies; Offshore Magazine, March 2018
Pipelines
Pipeline Re-Use: Incentives

- Existing Pipelines: ~20k in federal waters (+ more in state waters)
- New Pipeline Costs
 - Offshore Lines: ~2 – 3x cost of onshore “equivalent”
 - MAJOR CAVEATS
 - Data comparing on- and offshore is almost exclusively for NG lines
 - Large range in costs - highly project and route-specific
- Hidden risks/costs of new pipelines
 - Shore crossing through env. sensitive/challenging geography
 - Routing risks (right of way, new regulatory requirements vs. existing lines)
Pipeline Re-Use: Challenges

• Pressure Rating
 • ANSI Class 600 (working P = 1,480 psig @100 F)
 • ANSI Class 900 (working P = 2,220 psig @100 F)
 • Actual pressure rating of an existing line?
 • Reminder – sCO₂ density + offshore slope = overpressure risk?

• Age
 • Pipeline broker – Up to 85 years usable life
 • Older lines = higher risks (especially out of service lines)

• Condition of Line
 • Corrosion, repairs, thickness, cathodic protection
 • Existing records (or lack thereof) represent essential data

Case Inlet Pressure (psig) CO₂ Flow (Mt/yr)

<table>
<thead>
<tr>
<th>Case</th>
<th>Inlet Pressure (psig)</th>
<th>CO₂ Flow (Mt/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Class 900</td>
<td>2,000</td>
<td>~3.2</td>
</tr>
<tr>
<td>Existing Class 600</td>
<td>1,400</td>
<td>~1.8</td>
</tr>
</tbody>
</table>

• 8”, 5-mile pipeline
• P_{Outlet} > 1,200 psig (CO₂ always above P_{Critical})
Pipeline Screening Results – Federal Water Lines

<table>
<thead>
<tr>
<th>FEDERAL WATERS</th>
<th>Number of Segments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inactive* Line Screening (Near-Term Opportunity)</td>
</tr>
<tr>
<td>Total</td>
<td>20,274</td>
</tr>
<tr>
<td>Service Status (Inactive/Active)</td>
<td>11,195</td>
</tr>
<tr>
<td>8” or larger</td>
<td>2,335</td>
</tr>
<tr>
<td>MAOP > 1000 psig</td>
<td>1,927</td>
</tr>
<tr>
<td>> 2 miles long</td>
<td>951</td>
</tr>
<tr>
<td>Water Depth < 100’</td>
<td>520</td>
</tr>
<tr>
<td>In Service 1980 or later</td>
<td>355</td>
</tr>
<tr>
<td>Key Segments**</td>
<td>11</td>
</tr>
<tr>
<td>Median Diameter</td>
<td>16”</td>
</tr>
<tr>
<td># of Lines MAOP > 1,440 psig</td>
<td>0</td>
</tr>
</tbody>
</table>

*Inactive = Abandoned in place, Proposed abandonment, Out of service

**Key Segments = Come onshore/near-shore (TX, LA)
Pipeline Re-Use: Discussion

• **Scale** of pipeline re-use opportunity limited by size and pressure rating
 • Re-use vs. new is not binary
 • Incremental Capacity: Pair existing with new (reduce total investment)
 • “Phased” Investment: Start-up with existing, build-out new (flexibility)

• What does business model look like for re-use of pipelines?
 • Outright sale of pipelines
 • “Pipeline as a service”: Operators sell “access” to pipelines, potentially provide O&M Support
 • Reduces risks for the project developer (likely increases lifetime cost vs. purchase)

• If CO₂ is transported at lower P, how does offshore compression (incl. access to power) impact economics?
Platforms
Platform Re-Use Overview

• Repurposing platforms for CO₂ storage = offset cost of decommissioning idled platforms (“win-win”)

• High-Level platform re-use criteria
 • Location/proximity to preferred injection site
 • Age/general condition of platform
 • Space on platform
 • Regulatory/legal considerations
 • How does liability/decommissioning responsibility transfer?
Overview of Platforms in GoM

- Caisson
- Well Protector
- Fixed Leg Platform
- Compliant Tower
- Mini Tension Leg Platform
- Tension Leg Platform
- SPAR Floating Production
- Mobile Production Unit
- Semi Submersible Floating Production
- FPSO

From bsee.gov
Overview of Platforms in GoM

<table>
<thead>
<tr>
<th>Structure Type</th>
<th>% of Total (~1,850)</th>
<th>Average Depth (ft)</th>
<th>Average Age (years)</th>
<th>Re-Use for Drilling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caisson</td>
<td>24.6%</td>
<td>41</td>
<td>39</td>
<td>No</td>
</tr>
<tr>
<td>Well Protector</td>
<td>0.7%</td>
<td>53</td>
<td>84</td>
<td>No</td>
</tr>
<tr>
<td>Fixed Leg Platform</td>
<td>71.9%</td>
<td>131</td>
<td>41</td>
<td>Yes</td>
</tr>
<tr>
<td>Compliant Tower</td>
<td>0.2%</td>
<td>1,467</td>
<td>28</td>
<td>Yes</td>
</tr>
<tr>
<td>Mobile Production Unit</td>
<td>0.1%</td>
<td>2,200</td>
<td>13</td>
<td>No</td>
</tr>
<tr>
<td>Mini Tension Leg Platform</td>
<td>0.2%</td>
<td>3,024</td>
<td>20</td>
<td>Yes</td>
</tr>
<tr>
<td>Tension Leg Platform</td>
<td>0.8%</td>
<td>3,378</td>
<td>19</td>
<td>Yes</td>
</tr>
<tr>
<td>SPAR Floating Production</td>
<td>1.0%</td>
<td>4,380</td>
<td>17</td>
<td>Yes</td>
</tr>
<tr>
<td>Semi Submersible Floating Production</td>
<td>0.6%</td>
<td>5,695</td>
<td>22</td>
<td>Yes</td>
</tr>
<tr>
<td>FPSO</td>
<td>0.1%</td>
<td>8,930</td>
<td>9</td>
<td>No</td>
</tr>
</tbody>
</table>
Overview of Platforms in GoM

The map illustrates the distribution of platforms in the Gulf of Mexico (GoM) with the maximum water depth being 1,353 feet. The table below provides a detailed overview of the different types of platforms, their percentage of the total, average depth, average age, and whether they are re-used for drilling:

<table>
<thead>
<tr>
<th>Structure Type</th>
<th>% of Total (~1,850)</th>
<th>Average Depth (ft)</th>
<th>Average Age (years)</th>
<th>Re-Use for Drilling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caisson</td>
<td>24.6%</td>
<td>41</td>
<td>39</td>
<td>No</td>
</tr>
<tr>
<td>Well Protector</td>
<td>0.7%</td>
<td>53</td>
<td>84</td>
<td>No</td>
</tr>
<tr>
<td>Fixed Leg Platform</td>
<td>71.9%</td>
<td>131</td>
<td>41</td>
<td>Yes</td>
</tr>
<tr>
<td>Compliant Tower</td>
<td>0.2%</td>
<td>1,467</td>
<td>28</td>
<td>Yes</td>
</tr>
<tr>
<td>Mobile Production Unit</td>
<td>0.1%</td>
<td>2,200</td>
<td>13</td>
<td>No</td>
</tr>
<tr>
<td>Mini Tension Leg Platform</td>
<td>0.2%</td>
<td>3,024</td>
<td>20</td>
<td>Yes</td>
</tr>
<tr>
<td>Tension Leg Platform</td>
<td>0.8%</td>
<td>3,378</td>
<td>19</td>
<td>Yes</td>
</tr>
<tr>
<td>SPAR Floating Production</td>
<td>1.0%</td>
<td>4,380</td>
<td>17</td>
<td>Yes</td>
</tr>
<tr>
<td>Semi Submersible Floating Production</td>
<td>0.6%</td>
<td>5,695</td>
<td>22</td>
<td>Yes</td>
</tr>
<tr>
<td>FPSO</td>
<td>0.1%</td>
<td>8,930</td>
<td>9</td>
<td>No</td>
</tr>
</tbody>
</table>
Platforms

• Texas State Waters:
 • 95% of platforms (of 89 total) = inactive
 • Minimal detailed data (no age, water depth, inspect. records)

• Federal Waters:
 • 1,800+ platforms offshore TX (8%) & LA (92%)
 • High-level data (inspection reports in some cases)

• Age:
 • SME: Beyond 30 years, structural integrity risk rises
 • Important Standards/Best Practices
 • API RP 2A 9th Ed (1977): “100-year return period conditions”
 • MMS – From 1988 on, enhanced inspection requirements

• Critical information such as structural integrity, topsides space, etc. requires contact with operators
Platforms – Are Incentives Aligned?

CCS Project Developer: Minimize cost while managing risk

ASSET OWNER: Avoid decommissioning liability

Government/Public: Mitigate asset liability, ideally re-use
Conclusions
Summary

• **Pipelines:**
 • **Scale** of pipeline re-use opportunity limited by size and pressure rating
 • Re-use vs. new is not binary
 • Incremental Capacity: Pair existing with new (reduce total investment)
 • “Phased” Investment: Start-up with existing, build-out new (flexibility)
 • Existing right-of-way, existing routes have inherent value
 • Are there different business models to de-risk pipeline re-use?

• **Platforms:**
 • Limited stock of “newer” platforms (mostly in deeper waters)
 • Fixed platforms are most common, span large range of water depth – needs more investigation
 • Platform re-use unlikely to drive a project (vs. reservoir, pipeline, wells)
 • Are incentives aligned for re-use?

• Decommissioning “best practices” not always followed. Urgency to identify assets before abandonment.
Thank You

- Acknowledgements:
 - Darrell Davis (Consultant) led efforts for pipeline and platform screening
 - davisdw58@hotmail.com
 - UT BEG for data analysis support
 - Trimeric Corporation
 - www.trimeric.com
 - Darshan Sachde
 - darshan.sachde@trimeric.com
Backup Slides
Pipeline Re-use Workflow

1. **Public Data Review**
 - Contact Owners, Public Records: Negligible Investment

2. **Pursue Evaluation?**
 - **No** → **New Line**
 - **Yes** → **Line Inspection**

3. **Line Inspection**
 - **No**
 - **Divers**: Est: $250k for 10 days
 - **SMART Pig**: Est: $150k < 25 miles
 - **Yes** → **Acceptable Integrity?**

4. **Acceptable Integrity?**
 - **No** → **New Line**
 - **Yes** → **Line Testing**

5. **Line Testing**
 - **Cathodic Protection Survey**: Est: $250k ~15 miles
 - **Pressure Test**: Est: $175k

6. **Repair/Reuse?**
 - **No** → **New Line**
 - **Yes** → **Permitting & Regulatory**

7. **Permitting & Regulatory**
 - **Total Investment (excl. repairs, permits): ~$750k+**
Pipeline Screening Results – Federal Active Lines

Pipeline Size Distribution - Active Lines

- Median Diameter = 21”

Pipeline Pressure Distribution - Active Lines

- >1,440 psig = 10 lines

Note:
- Out of Service Median Size = 16”

Note:
- Out of Service Lines >1,440 psig = 0
Pipeline Screening Results – Federal Out of Service

• Limited stock of large pipelines
 • ~23% ≥ 8 inches
 • 41% of this subset are 8” lines

• Class 600 pipelines are most common
 • 61% of all pipelines at least 1440 psig

• Nearly half of pipelines meeting size and pressure screen are active
 • Recent (last 10 years) common practice: fill abandoned lines w/ uninhibited seawater.

• Less than half (46%) of lines meet the age criteria (< 40 years)

<table>
<thead>
<tr>
<th>FEDERAL WATERS</th>
<th>Number of Segments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>20,274</td>
</tr>
<tr>
<td>8” or larger</td>
<td>4,614</td>
</tr>
<tr>
<td>Max Operating Pressure > 1000 psig</td>
<td>3,875</td>
</tr>
<tr>
<td>Not in Service</td>
<td>1,927</td>
</tr>
<tr>
<td>> 2 miles long</td>
<td>951</td>
</tr>
<tr>
<td>Water Depth < 100’</td>
<td>520</td>
</tr>
<tr>
<td>In Service 1980 or later</td>
<td>355</td>
</tr>
<tr>
<td>Key Segments*</td>
<td>11</td>
</tr>
</tbody>
</table>

*Key Segments = Come onshore & terminate near state waters offshore
Pipeline Opportunity: Texas State Waters

Light blue lines are abandoned lines which are 8” or greater

Source: Prepared by Darrell Davis for Trimeric Corporation
Platforms – Federal Waters

Oil and Gas Platforms Installed in Federal Waters off of the Texas Coast

- Total Platforms = 136
- Installed After 1977 = 113
- Installed After 2000 = 41

Oil and Gas Platforms Installed in Federal Waters off the Louisiana Coast

- Total Platforms = 1,671
- Installed After 1977 = 1,023
- Installed After 2000 = 371
Platforms – CO₂ Topsides Requirements

- **General Equipment**: Valving, instrumentation, filters, pig receivers, piping manifold, heaters
- **Drill new CO₂ injection wells**
 - Weight of a drilling rig or need a separate jack-up rig for drilling
 - Need open slots for injections wells or re-use existing wells
- **Booster compression/pumping (in some cases)**
 - Additional topsides weight, space, power requirements
- **Materials compatibility**:
 - Supercritical CO₂ is a solvent, P, T considerations
- **Do cost-savings of re-purposing vs. new-build hold up after modifications?**
- **More detailed engineering studies will be needed to**:
 - Assess the integrity and useful life of specific platforms
 - Assess modifications to the topsides for CO₂ injection
 - Understand the cost of a new platform