Please Pass the Salt:

Using Oil Fields for the Disposal

of Concentrate

Robert E. Mace
Texas Water Development Board
Jean-Philippe Nicot
Bureau of Economic Geology
September 29, 2004
Bureau of Reclamation

The problem:

• Communities interested in desalination need a cost-effective and safe solution for disposing of concentrate.

Goal of the project:

To develop the scientific foundation upon which we can support recommended policy change to allow an easier approval path for permitting concentrate injection wells in oil fields.

- Show location of oil fields across state that may be potential injection sites.
- Show through physical and geochemical modeling that oil fields can accept concentrate.
- Make a recommendation on how to streamline permitting.

TECHNICAL APPROACH

- Identify depleted oil and gas fields
- Historical perspective on fluid injection in oil and gas fields in Texas
- Characteristics of analysis areas
- > Characteristics of concentrates
- Formation damage
 - Scaling
 - Clay sensitivity
- Formation damage control
- Injection rates

IDENTIFY DEPLETED OIL AND GAS FIELDS

Pressure Depletion and AOR

Why Do We Care about Pressure Depletion?

- Create opportunity to inject fluid with little risk of exceeding maximum pressure that can be sustained by reservoir
- Simplify Area of Review Process
- Field production history guarantees surface infrastructure needed to move around fluids

Major Oil and Gas Reservoirs

Analysis Areas

- 1 Anadarko
- 2 Permian
- 3 East Texas
- 4 Fort Worth
- 5 Maverick
- 6 Southern
 Gulf Coast

SYSTEM	SERIES (AGE)	EAST TEXAS BASIN	HOUSTON EMBAYMENT AND	RIO GRANDE EMBAYMENT	
QUAT. 8			BEAUMONT (HOUSTON)	HOUSTON	
TERTIARY	일밀		WILLIS	GOLIAD	
	SEN			LAGARTO	
	MIOCENE/ PLIOCENE		O FLEMING	OAKVILLE	
	Ä		ANAHUAC	ANAHUAC	
	OLIGOCEN		FRIO FRIO	FRIO	
	Ь		● VICKSBURG	VICKSBURG	
		\/F0!!4	JACKSON	JACKSON	
	빌	YEGUA COOK MOUNTAIN	COOK MOUNTAIN	YEGUA COOK MOUNTAIN	
	EOCENE	SPARTA WECHES O QUEEN CITY	SPARTA WECHES QUEEN CITY REKLAW	O SPARTA	
	В	QUEEN CITY	QUEEN CITY	WECHES ○ QUEEN CITY	
		REKLAW CARRIZO	REKLAW CARRIZO ●	REKLAW CARRIZO	
	фш	WILCOX	WILCOX	O WILCOX	
	PALEO- CENE	MIDWAY	O MIDWAY	MIDWAY	
	<u></u>	●NACATOCH→ NAVARRO	NAVARRO	ESCONDIDO	
		UPPER TAYLOR	10.07.11.10	2000113130	
		PECAN GAP	TAYLOR	OLMOS	
	COMANCHEAN	WOLFE CITY LOWER TAYLOR	SERPENTINE AND DALE LIMESTONE	SAN MIGUEL ANACACHO UPSON	
		AUSTIN	AUSTIN	AUSTIN	
		● SUB-CLARKSVILLE			
		O COKER EAGLE FORD	EAGLE FORD		
		HARRIS /		EAGLE FORD	
		LEWISVILLE WOOD-	WOODBINE	2,1022,10112	
CRETACEOUS		DEXTER BINE	WOODBINE		
Ü		O BUDA	● BUDA	BUDA	
ΙĚ		GRAYSON	DEL RIO	DEL RIO	
CRE		o GEORGETOWN	GEORGETOWN	O SALMON PEAK STUART	
		o FREDERICKSBURG	WARDS PERSON STUART CITY	ED- MC KNIGHT CITY WARDS WEST NUECES	
		PALUXY • UPPER GLEN ROSE			
		MASSIVE ANHYDRITE	GLEN ROSE	GLEN ROSE	
		BACON LIMESTONE			
		□ RODESSA	DEADOALI	DEADOALI	
		JAMES PINE ISLAND	PEARSALL	o PEARSALL	
	÷ マ	O PETTET (SLIGO) PITTSBURG	SLIGO	SLIGO	
	COAH- UILAN	TRAVIS PEAK (HOSSTON)	HOSSTON	HOSSTON	
		O COTTON VALLEY			
JURASSIC	Ä	(SCHULER AND BOSSIER)	COTTON VALLEY	COTTON VALLEY	
	UPPER	GILMER-HAYNESVILLE BUCKNER SMACKOVER	GILMER BUCKNER—SMACKOVER	GILMER -BUCKNER-SMACKOVER	
	_	NORPHLET	NORPHLET	NORPHLET	
	MID.	LOUANN SALT	LOUANN SALT	LOUANN SALT	
	نـ	WERNER			
	\sim	EAGLE MILLS	EAGLE	EAGLE 7	
ᄱ			L MILLS _? /	L MILLS/	
٥	\sim				
PALEO. ZOIC		OUACHITA FACIES	OUACHITA FACIES	OUACHITA FACIES	
PA				QA11721(a)x	
Tabulated reservoirs in a major oil play and Small or isola					
Ì			nce as á producing unit	reservoirs only	

Selected
Stratigraphic
Columns
in Texas
with Oil
Production

Target Formations

Anadarko B.: Granite Wash Fm. Fort Worth B.: Atoka Fm.

Permian B.:San Andres Fm.

Maverick B.:
San Miguel/Olmos Fm.

East Texas B.: Woodbine Fm.

Southern Gulf Coast B.: Frio Fm.

Pressure-depleted Fields

HISTORICAL PERSPECTIVE ON OIL AND GAS FIELDS IN TEXAS

Water Injection in Oil&Gas Fields

- > Reservoir drive mechanisms in oil&gas fields:
 - Water drive
 - Gas cap drive
 - Solution gas drive

- Pressure maintenance and waterflooding with fresh, brackish, or produced waters
- Fresh water needs no treatment before injection
- Fresh water reduces or eliminates scaling in pipes but could generate downhole scaling and/or fine plugging

Injection Historical Data

Data compilation up to 1982

Conclusions

- Oil and Gas industry in Texas has an extensive experience with fluid injection
- Fluids include fresh, brackish and saline waters

Source: Hycal.con

SELECT ANALYSIS AREAS

Analysis Area Selection Criteria

- Counties with depleted oil/gas fields
- Counties with a predicted shortfall of water supply over the next 50 years
- Counties with brackish ground water resources
- Counties with injection wells not too deep

County Water Needs

Source: TWDB, 2002 Water for Texas

Water Quality of Shallow Groundwater

Target Brackish Water Sources

- Anadarko B.:
 - Ogallala Aq.
 - Dockum Aq.
- Permian B.:
 - Ogallala Aq.
 - Dockum Aq.
- East Texas B.: Carrizo-Wilcox Aq.

Fort Worth B.:
Trinity Aq.

- Maverick B.: Carrizo-Wilcox Aq.
- Southern Gulf Coast B.: Gulf Coast Aq.

CHARACTERISTICS OF ANALYSIS AREAS

Important Parameters

- Lithology/Mineralogy:
 - Rock type
 - Mineral in contact with flowing fluids
 - Clay content and nature
- Formation water composition
- Flow properties:
 - Porosity, permeability
 - Other fluid present (relative permeability)
- > Field characteristics
 - Pay thickness
 - Geothermal gradient
 - Average pressure and depth

Mineralogical Characteristics of Analysis Areas

Basin	Rock Type	Important Minerals
Anadarko	Silico-clastic	Feldspars, quartz, clays
Permian	Carbonate	Calcite, dolomite
East Texas	Silico-clastic	Feldspars, quartz, clays
Fort Worth	Silico-clastic	Quartz, feldspars
Maverick	Silico-clastic	Quartz, feldspars
S. Gulf Coast	Silico-clastic	Feldspars, quartz, clays

Porosity/Permeability of Analysis Areas

Median and Range of Porosity/Permeability

Basin	Porosity (%)	Permeability (mD)
Anadarko	~12 (4 - 20)	~20 (6 – 65)
Permian	~9.3 (<3 - >20)	~5 (1 - >100)
East Texas	~25 (20 - >35)	~500 (15 - >3,000)
Fort Worth	~14.5 (6 – 28)	~20 (1 - >1,000
Maverick	~25 (19 -32)	~30 (3 - >2,000)
S. Gulf Coast	~25 (<15 - >35)	~305 (20 - >1,000)

CHARACTERISTICS OF CONCENTRATES

From R.W. Beck

2 MGD Oceanside CA RO Installation

2 MGD Sarasota, FL EDR plant

Concentrate

- Most feed water TDS between 1,000 and 3,000 mg/L
- Concentration factor of 4 (all ions have the same rejection rate)
- Closed system (no equilibration with CO₂)
- > Two cases:
 - Addition of antiscalant
 - Addition of antiscalant and sulfuric acid to a pH=6
- Difficulty in obtaining minor element (Si, Fe, Ba, Sr) concentrations

FORMATION DAMAGE

Formation Damage Definitions

- A condition that occurs when barriers to flow develop in the near-wellbore region. Results in lower than expected production rate from (or injection rate into)
- Any process causing a reduction in the natural inherent productivity or injectivity of a producing or injection well

Mechanical Formation Damage

Origin: injected suspended solids, formation fine migration plugging pore throats

Chemical Formation Damage

Origin1: deflocculation of clays, swelling of clays due to chemical changes (pH, ionic

makeup)

Origin2: formation of scales due to mixing of incompatible water and change in environmental conditions

JCLA, Cohen et a

SCALING

What is scaling?

- Precipitation of minerals in the wellbore or in the formation.
- Calcite, gypsum, barite, silica (iron oxides, brucite, siderite, anhydrite, strontianite)
- > Term also applies to corrosion products
- Fluid injection is typically less scale-prone than production

Approach

- Compute concentrate composition with the USGS geochemical code PHREEQC using standard industry pretreatment and a factor of 4
- Mix in different proportions concentrate with formation water with the USGS geochemical code SOLMINEQ (able to handle high salinity fluids)
- Choose randomly 2x5,000 samples to mix
- Analyze statistically (histograms) saturation index for relevant minerals of resulting combinations
- Determine the fraction of mixing combinations above the SI threshold beyond which antiscalants are not effective

Examples of SI Histograms

Summary of SI's of Mixing Combinations

- Most SI are <1 including amorphous (colloidal) silica</p>
- Barite may be a problem locally (*SI* is also higher because of H₂SO₄)

Median and 95th percentile With acidified concentrate

Scaling Discussion

- Previous results assume thorough mixing between concentrate and formation water
- This is conservative because mixing is likely to be less than thorough owing to ~piston flow of concentrate displacing formation water

CLAY SENSITIVITY

Source: hycal.com

What is Clay Sensitivity?

- Clay sensitivity is due to the ability of clays to exchange ions with surroundings and/or to absorb water (swelling)
- A change in environmental conditions (ionic makeup, salinity, pH) may also disperse clay particles (deflocculation)
- Before injection, two questions need to be answered:
 - Is there any clay?
 - What type of clay?

Clay Types in Analysis Areas

Basin	Clay Abundance	Clay Type
Anadarko		Chlorite, illite, kaolinite
Permian	Rare	Kaolinite
East Texas	Common	Smectite, illite, chlorite, kaolinite
Fort Worth		Chlorite, illite, kaolinite
Maverick	Abundant	Mx-layer illite-smectite, chlorite, kaolinite
S. Gulf Coast	Abundant	Mx-layer illite-smectite, smectites, kaolinite

Clay Sensitivity Principles

Ka=kaolinite
II=illite
Mx=mixed layers;
Sm=smectite
TCC=Total Cation Conc.

Any water inside the delineated domain will deflocculate the corresponding clay at equlibrium.

Possible cation stripping and deflocculation in the transient stage

MAR Study: East TX B. Analysis A.

MAR Ratio =
{[Na]²/[Ca]}_{conc}/ {[Na]²/[Ca]}_{form}
If MAR Ratio <0.5, problems are expected for smectite clay

FORMATION DAMAGE CONTROL

Chemical and Physical Solutions

- Matrix acidizing by HCl, H₂SO₄ (both for carbonates), HF (for silicates), organic acids
- Treatment with KOH and NaOH (for calcium sulfate)
- CaCl₂ brine treatment (to limit clay sensitivity). NaCl and KCl. Clay stabilizers that bind clays

to the substrate

- > Hydraulic fracturing
- Heat treatment (?)

3ore Hole

Damaged Zone

Operational Solutions

- Surface treatment to remove suspended solids
- Lower flow rate, increase perforation density
- Gradual change in salinity to avoid salinity shock
- Injection of a buffer solution
- > Oxygen scavengers, antiscalant

INJECTION RATES

Injection Rate Issues

- Maximum injection rate controls number of wells needed
- Injection rate is dependent on formation parameters:

$$\Delta P = \frac{Q\mu}{4\pi k b} \ln \left(\frac{2.25kt}{\phi c \,\mu r^2} \right)$$

(Limited sampling of injection wells)

Computed Injection Rates

$median = 7.3 gpm; 95^{th} = 23 gpm$

median = 466 gpm; 95th = 3,347 gpm

West Texas Basin - Computed Maximum Injection Rate

0.90
0.80
0.70
0.60
0.50
0.30
0.30
0.20
0.10
0.00

| Maximum Injection Rate (gpm)

median = 13.2 gpm; 95th = 153 gpm

$median = 9.8 \text{ gpm}; 95^{th} = 376 \text{ gpm}$

median = 278 gpm; 95^{th} = 9,038 gpm

median = 6.3 gpm; $95^{th} = 270 \text{ gpm}$

Injection Rate Conclusions

- > 1 MGD of concentrate:
 - Is equivalent to 695 gpm
 - Would require a couple of wells in the eastern half of the state in recent formations
 - Would require one or several well clusters in the paleozoic formations
- Injection rate can be augmented by screening the pay thickness and stimulating the well

Summary of Technical Conclusions

- A significant fraction of the wells would qualify for a variance of AOR
- Scaling can be mitigated with standard approaches (acidification, antiscalant)
- Clay sensitivity may be a local issue for several fields. It could be dealt with but at a price
- Multiple wells/well clusters are needed to accommodate concentrate output of a typical plant

Policy procedures:

- Met with RRC and TCEQ
- Met with EPA Region 6 and headquarters
- Talked with other states about their solutions
- Researched permitting and permitting options

Current permitting process:

- History
- Class I
- Class II
- Class V

Possible permitting paths:

- Non-hazardous Class I
- Class II
- Class V
- Dual-permitted wells
- General permit, Class I
- Special Class I
- Change Federal regulations

