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[1] Groundwater recharge is likely to be affected by climate change. In semiarid regions
where groundwater resources are often critical, annual recharge rates are typically small
and most recharge occurs episodically. Such episodic recharge is uncertain and difficult
to predict. This paper analyzes the impacts of different climate predictions on diffuse
episodic recharge at a low‐relief semiarid rain‐fed agricultural area. The analysis relies
on a probabilistic approach that explicitly accounts for uncertainties in meteorological
forcing and in soil and vegetation properties. An ensemble of recharge forecasts is
generated from Monte Carlo simulations of a study site in the southern High Plains,
United States. Soil and vegetation parameter realizations are conditioned on soil
moisture and soil water chloride observations (Ng et al., 2009). A stochastic weather
generator provides realizations of meteorological time series for climate alternatives from
different general circulation models. For most climate alternatives, predicted changes in
average recharge (spanning −75% to +35%) are larger than the corresponding changes in
average precipitation (spanning −25% to +20%). This suggests that amplification of climate
change impacts may occur in groundwater systems. Predictions also include varying
changes in the frequency and magnitude of recharge events. The temporal distribution of
precipitation change (over seasons and rain events) explains most of the variability in
predictions of recharge totals and episodic occurrence. The ensemble recharge analysis
presented in this study offers a systematic approach to investigating interactions between
uncertainty and nonlinearities in episodic recharge.

Citation: Ng, G.‐H. C., D. McLaughlin, D. Entekhabi, and B. R. Scanlon (2010), Probabilistic analysis of the effects of climate
change on groundwater recharge, Water Resour. Res., 46, W07502, doi:10.1029/2009WR007904.

1. Introduction and Background

[2] The most recent Intergovernmental Panel on Climate
Change (IPCC) report [IPCC, 2007] documents a growing
consensus that the climate is changing due to increased
atmospheric CO2 from anthropogenic sources. However, the
impacts of such change on terrestrial hydrologic systems
remain uncertain. The impacts on groundwater resources
in semiarid regions are particularly uncertain. Because
groundwater is a major source of water supply for agricul-
tural and domestic use, it is important to understand the
possible connections between the climate and the recharge
processes that replenish aquifers.
[3] In water‐limited regions, climate change is likely to

affect groundwater resources through changes in precipita-
tion. Precipitation predictions provided by general circula-
tion models (GCMs) vary significantly. Although these
models generally agree that global average precipitation will
increase with a warmer climate, there is much less agree-

ment about regional changes [IPCC, 2007]. It is likely that
climate change will affect precipitation intensity and timing
as well as long‐term totals. Higher‐intensity rainfall is
possible at all latitudes, and changes in precipitation are not
expected to apply evenly over the seasons [Trenberth et al.,
2003]. Overall, local and regional effects of climate change
on precipitation are highly uncertain.
[4] Groundwater is linked to precipitation through

recharge at the water table. The amount of precipitation that
escapes evapotranspiration (ET) and runoff and reaches the
water table is influenced by a number of factors, including
precipitation intensity and timing, meteorological variables
such as temperature and humidity, topography, vegetation,
and soil properties.
[5] Numerical models that consider all relevant physical

factors can predict recharge from meteorological variables,
but these predictions can be very sensitive to model as-
sumptions and to errors in model inputs. This is especially
true in semiarid regions, where recharge occurs infrequently
during a few intense precipitation episodes [Gee and Hillel,
1988; Allison et al., 1994]. Predictions of climate change
impacts on groundwater resources must deal with two sig-
nificant sources of uncertainty: (1) uncertainty about the
nature of climate change (e.g., changes in precipitation and
temperature) at local and regional scales and (2) uncertainty
about the way recharge will respond to a given change in
climate. The importance of both types of uncertainty implies
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the need for a probabilistic approach that explicitly re-
cognizes the range of possible conditions that could occur.
[6] In recent years, a number of researchers have inves-

tigated the possible impacts of climate change on local
groundwater systems. The study approaches and the pre-
dicted changes vary greatly across different settings and
studies. Rosenberg et al. [1999] studied recharge changes in
two major basins overlying the Ogallala aquifer under dif-
ferent GCM climate and CO2 predictions and found decreases
under all conditions due to increased ET. Herrera‐Pantoja
and Hiscock [2008] also predicted decreases in recharge in
different locations in the United Kingdom due to higher ET,
despite precipitation increases during the wet season. In
contrast, Kirshen [2002] found recharge to a permeable
Massachusetts aquifer to vary significantly depending on
the climate scenario considered. Similarly, in a study of the
Grand River basin in Michigan, Croley and Luukkonen
[2003] found that the direction of recharge change depends
on the climate scenario. Serrat‐Capdevila et al. [2007] con-
sidered a comprehensive range of possible climates obtained
from 17 GCM predictions for the San Pedro basin on the
U.S.‐Mexico border and showed that the average impact
over the ensemble of these climates is a decrease in mountain
front recharge.
[7] Eckhardt and Ulbrich [2003] predicted that changes

in mean annual recharge will be small for a central European
low mountain catchment, but intra‐annual impacts will be
more significant. Jyrkama and Sykes [2007] used a distrib-
uted watershed model to show both significant temporal and
spatial recharge changes in a river watershed in Ontario.
Brouyère et al. [2004] developed a hydrological model
integrating soil, surface water, and groundwater components
and showed that groundwater levels in a chalky aquifer in
Belgium decrease under scenarios with increased winter rain
and decreased summer rain. Scibek and Allen [2006] and
Scibek et al. [2007] also used a combination of overland and
subsurface modeling and showed that climate change im-
pacts on groundwater levels in the Grand Forks area in
Canada will be greatest where there is indirect recharge
from rivers. Tague et al. [2008] similarly concluded that
groundwater–surface water exchanges were important for
predicting climate change impacts in mountainous regions
in Oregon. For a river basin in the southern Great Plains,
Maxwell and Kollet [2008] showed that shallow water tables
of 2–5 m depth interact with the atmosphere, thus affecting
recharge responses to climate change. Using a one‐dimen-
sional modeling approach, Green et al. [2007] implemented
a Richards solver with a dynamic vegetation component to
quantify how recharge changes in two different Australian
climatic zones depend on nonlinear responses to soil and
vegetation properties.
[8] In addition to climate and natural hydrological pro-

cesses, socioeconomic changes may significantly affect
recharge in many regions [Holman, 2006]. For example,
Loáiciga [2003] presented a method that assesses the effects
of both climate and population change on regional
groundwater systems. In particular, he showed that popu-
lation growth could be the overriding factor in inducing
recharge change in a karst aquifer in Texas.
[9] Changes in climate are most often quantified in impact

studies using change factors derived from GCM outputs.
Each factor is computed for a particular meteorological
variable at a particular time and space scale (e.g., a monthly

value for each GCM grid cell) and represents the additive or
multiplicative change from current to future GCM predic-
tions. Some studies use change factors to scale historical
meteorological data for hydrological investigations [e.g.,
Kirshen, 2002; Croley and Luukkonen, 2003; Eckhardt and
Ulbrich, 2003; Brouyère et al., 2004; Serrat‐Capdevila et
al., 2007; Maxwell and Kollet, 2008; Tague et al., 2008].
Others use change factors to calibrate stochastic weather
generators [e.g., Rosenberg et al., 1999; Scibek and Allen,
2006; Green et al., 2007; Herrera‐Pantoja and Hiscock,
2008]. These generators provide consistent synthetic time
series for the meteorological inputs to hydrologic models.
They are especially useful when long‐term data are
unavailable or do not have sufficient temporal detail to
resolve critical events such as floods or recharge episodes.
Many studies acknowledge uncertainty in future climate
conditions by considering multiple climate forecasts. Studies
that use stochastic weather generators also account for nat-
ural fluctuations in meteorological variables associated with
a given climate.
[10] Uncertainties about the response of recharge to cli-

mate change depend on many factors, including topography,
soil properties, and vegetation. Climate change impact stud-
ies typically use hydrologic models to study the aggregate
effects of these factors. Such models cover a large range
including empirical formulas, simple water balance calcula-
tions, multilayered distributed models, and detailed Richards’
solvers. Some investigators have combined groundwater,
overland flow, and unsaturated zonemodeling to demonstrate
the importance of groundwater–surface water interactions in
certain settings [Scibek et al., 2007; Maxwell and Kollet,
2008; Tague et al., 2008]. The appropriate type of hydro-
logical modeling depends on the dominant processes in a
given study region. All models are susceptible to input un-
certainties, questionable assumptions, and limited temporal
or spatial resolution. However, past climate change studies do
not generally consider uncertainty in the land surface and
subsurface properties that control recharge (e.g., soil and
vegetation factors) at a particular setting.
[11] Our objective in this study is to perform a compre-

hensive probabilistic analysis of the effects of climate change
on groundwater recharge in a low‐relief semiarid setting. We
are particularly interested in recharge changes at rain‐fed
agricultural areas similar to those found in the southern High
Plains (SHP), a topographically flat region spanning parts of
Texas and New Mexico and overlying the southern portion
of the Ogallala aquifer (Figure 1). In this work, we focus on
one of the two SHP study sites considered by Ng et al.
[2009]. The site is located in a rain‐fed cotton area that
currently produces an average diffuse recharge rate of about
40–65 mm/yr [Ng et al., 2009]. Our emphasis on diffuse
recharge is appropriate for our study site and is similar to
Green et al.’s [2007] investigation of diffuse recharge in a
Mediterranean climate zone of Australia.
[12] Although diffuse recharge dominates in our study

area, other recharge conditions have been noted elsewhere in
the region overlying the Ogallala aquifer, which also in-
cludes the central and northern High Plains. For example,
the Rosenberg et al. [1999] study mentioned earlier con-
sidered two major water resource regions in the United
States (the Missouri and Arkansas‐White‐Red river basins),
which, compared with the SHP, experience cooler tem-
peratures, include areas with greater precipitation, and
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encompass more diverse terrain and elevations. The
Maxwell and Kollet [2008] study also mentioned earlier
focuses on a southern Great Plains river basin that is more
humid and topography‐driven than the SHP, which lacks
perennial streams. These important differences in basin
characteristics have a critical influence on the mechanisms
that produce recharge (i.e., focused versus diffuse recharge).
Differences in recharge mechanisms lead, in turn, to dif-
ferences in the predicted effects of climate change. As a
result, the Rosenberg et al. [1999] prediction of decreased
recharge and the Maxwell and Kollet [2008] findings on
groundwater level controls do not necessarily apply to the
SHP region.
[13] In this recharge study, we explicitly account for un-

certainties in soil and vegetation properties, in addition to
uncertainties in meteorological variables and variability
across different climate models for our SHP study site. Our
approach is based on ensemble forecasting, a Monte Carlo
procedure that generates a set of many equally likely out-
comes rather than a single deterministic prediction. Ensem-
ble forecasts provide a more informative description of the
impacts of climate change than traditional deterministic
forecasts.
[14] The aim of our climate change analysis is to examine

sensitivity of recharge to climate change in a probabilistic
framework rather than to generate absolute predictions of
future recharge. In particular, we show how ensemble
analysis can be used to improve understanding of the
mechanisms responsible for changes in recharge. While
previous climate change impact studies typically examine

seasonal recharge patterns or longer‐term dynamics, our
analysis also assesses changes in the timing, frequency, and
magnitude of infrequent recharge events over many years.
This event‐oriented focus is important in many low‐relief
semiarid settings, where diffuse recharge is often episodic.
Because of the sensitivities to model errors in semiarid
settings, proper consideration of uncertainties is paramount
when evaluating episodic recharge.
[15] The ensemble forecasting procedure described in this

paper accounts for different sources of uncertainty at the
study site by combining data‐conditioned realizations of soil
and vegetation properties generated by Ng et al. [2009] with
meteorological time series realizations generated with a
stochastic weather generator for a range of GCM predic-
tions. Recharge at the study site is simulated with a one‐
dimensional vertical Richards‐based model. The results are
used to provide valuable insights about the different ways
that climate change may affect recharge.
[16] Section 2 of this paper provides background on the

SHP region and our study site. Section 3 describes the one‐
dimensional diffuse recharge model used in this study and
discusses its suitability for our study site. Section 4 presents
our ensemble forecasting approach. Section 5 describes how
we selected and incorporated GCM alternatives for our
forecasting procedure. Section 6 summarizes ensemble
forecasting results on episodic recharge at the southern High
Plains study site, and section 7 presents some general con-
clusions based on our site‐specific investigation.

2. Site Characteristics and History

[17] Our study site is located in the southern portion of the
southern High Plains (SHP), a 75,500 km2 region spanning
parts of northern Texas and eastern New Mexico (Figure 1).
The SHP has a semiarid climate, with about 75% of its 375–
500 mm/yr precipitation falling during May through Octo-
ber. The region is topographically flat and internally drained
through about 16,000 recharging playas, which cover about
1.4% of the total SHP area. Since major groundwater
development, there are no longer perennial streams in the
region, and remaining streams (called draws) have very low
flows that typically last only several days or fewer
[Blandford et al., 2003]. The primary discharge mechanism
is now irrigation pumpage. Mean clay content in the SHP
ranges from 36% in the north to 23% in the south [Scanlon
et al., 2007]. The surface soils (upper 1.5 m) at the study site
consist of sandy loam (mean clay content of 19%, silt 6%).
[18] Since the late 1800s to early 1900s, about 55% of the

natural grassland and shrubland in the SHP has undergone
agricultural development. About 42% of the region,
including our study site, is rain‐fed cropland and is domi-
nated by continuous monoculture cotton production (1992
National Land Cover Data [Vogelmann et al., 2001]). The
current median water table depth is 25 m the southern part of
the SHP and 63 m in the northern part. Under rain‐fed
agricultural regions in the SHP, the median water table
depth is 30 m. The current water table depth at our study site
is 10 m.
[19] Prior to land use change, recharge occurred nearly

exclusively through playas [Wood and Sanford, 1995;
Scanlon and Goldsmith, 1997]. A regional recharge estimate
of 11 mm/yr based on groundwater chloride concentrations
in the central High Plains was primarily attributed to playa

Figure 1. Southern High Plains (SHP) map [from Ng et al.,
2009, Figure 3]. Inset shows location of SHP in Texas and
New Mexico. The data site used in this study are D06–02.
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recharge by Wood and Sanford [1995]. Estimates of
focused playa recharge based on tritium analyses range
from 77 mm/yr to 120 mm/yr in the SHP [Wood and
Sanford, 1995; Scanlon and Goldsmith, 1997]. Assuming
an average value of about 100 mm/yr recharge through all
playas (1.4% of SHP area), playas provide a regional
average recharge rate of about 1.4 mm/yr (or a volumetric
rate of 0.11 km3/yr) to the SHP. Regional recharge rates of
0.1 mm/yr (0.08 km3/yr) to 3 mm/yr (0.23 km3/yr) have
been used in groundwater modeling of predevelopment
conditions in the SHP [Luckey et al., 1986; Blandford et al.,
2003].
[20] Although most interplaya regions of the SHP under

native vegetation experience negligible amounts of diffuse
recharge [Wood and Sanford, 1995; Scanlon and Goldsmith,
1997], Scanlon et al. [2007] estimated new rates of 5–
92 mm/yr (median 24 mm/yr) under rain‐fed agricultural
areas in the interplaya regions (away from playas). These
results are based on unsaturated zone chloride balance cal-
culations from 19 soil profiles (locations shown in Figure 1).
Other than in the southeastern part, these higher percolation
rates have not yet reached the water table in many parts of the
SHP [Scanlon et al., 2007], and they represent new recharge
rates once equilibrium with the land use change is estab-
lished. Ng et al. [2009] found new values of around 50 mm/
yr recharge at our particular rain‐fed study site. This value
lies in the middle of the Scanlon et al. [2007] range.
Extending this value to all SHP rain‐fed agricultural areas
(42% of the total SHP area) yields a new volumetric con-
tribution of 1.6 km3/yr in the SHP, compared with the
0.11 km3/yr value from playas. This estimate suggests that on
a regional scale, groundwater contribution from new diffuse
recharge rates below rain‐fed agriculture is greater than the
playa contribution in the SHP.
[21] Groundwater level measurements further corroborate

the dominance in the SHP of diffuse recharge under rain‐fed
cropland. Recharge estimates derived from observed water
table rises in southeastern SHP following agricultural
development [Scanlon et al., 2005] correspond with recharge
estimates from the unsaturated zone chloride data in rain‐fed
agricultural areas [Scanlon et al., 2007]. This indicates that
the major input to groundwater in rain‐fed agricultural
regions is areally distributed recharge through the unsatu-
rated zone rather than focused recharge through playas
caused by changes in runoff. Studying diffuse recharge in
such areas is thus imperative for understanding groundwater
impacts in the SHP.
[22] In this work, we examine future impacts on diffuse

recharge in the SHP by investigating a study site in a rain‐
fed agricultural area in an interplaya location (away from
playas) indicated in Figure 1. The change in land use (from
grassland to cotton) that occurred at our study site around
1935 induced a soil moisture and chloride transient that was
measured in an unsaturated zone soil profile at the site
[Scanlon et al., 2007]. Ng et al. [2009] used these profile
data to generate conditional probability distributions for soil
and vegetation properties and for subsurface moisture
fluxes. These distributions provide the probabilistic infor-
mation needed for the ensemble climate change analysis.
The results generated by Ng et al. [2009] indicate that the
site currently produces an average diffuse recharge rate of
about 40–65 mm/yr. This recharge occurs episodically and
exhibits significant interannual variability. Results shown

later in this paper suggest that the relatively rare events that
control groundwater recharge at our study site are sensitive
to climate change.

3. Recharge Model

[23] In this study, we distinguish between percolation, the
moisture flux at the bottom of the root zone, and recharge,
the moisture flux at the water table. At our study site, the
root zone is within the top 1.5 m of the soil profile [Ng et al.,
2009]. Although strong upward moisture fluxes may occur
at 1.5 m under native grassland regions in the SHP [Scanlon
et al., 2003], the flux at this depth is almost always down-
ward at the studied rain‐fed cotton site [Ng et al., 2009]. At
this site, short‐term percolation values fluctuate more than
the deeper recharge values, but average annual values
(averaged over the 71 years since land use change) at the
two depths are similar (once the increased flux reaches the
water table). For this reason, the terms “percolation”
(moisture flux at 1.5 m depth) and “recharge” are used
interchangeably when discussing annual averages. When
discussing shorter‐term weekly or monthly totals, we base
our analysis on percolation simulations, which respond to
surface forcing more quickly and dramatically than
recharge. We base our analysis on these short‐term perco-
lation simulations because they provide the clearest picture
of the physical mechanisms that relate climate change and
episodic recharge. Surface signals are far more attenuated at
greater depths, making it difficult to relate them to control
factors.
[24] Moisture fluxes in this study, including percolation,

are simulated with the Soil‐Water‐Atmosphere‐Plant
(SWAP) model version 3.0.3, a one‐dimensional unsaturated
zone model of soil moisture transport, solute transport, and
vegetation [van Dam et al., 2008]. Soil moisture is simulated
in SWAP using a finite difference solution of the well‐known
Richards’ equation. A Richards‐based model is preferable
over a multilayer bucket model in semiarid settings because
fluxes can be small compared with precipitation.
[25] The one‐dimensional vertical modeling approach

used in this study is appropriate for simulating episodic
diffuse recharge in semiarid, low‐relief environments simi-
lar to our study site. Recent studies have shown that surface
water dynamics can affect climate change impacts on
recharge if there are significant groundwater and surface
water interactions [Scibek et al., 2007; Tague et al., 2008].
However, these processes are not applicable at our study
site, located in an interplaya, rain‐fed agricultural area of the
SHP with no perennial streams. As discussed in section 2,
diffuse recharge through rain‐fed agricultural areas like our
study site is the dominant recharge process in the SHP.
[26] The water table depth at our study site is about 10 m,

and more generally, the median water table depth in rain‐fed
agricultural areas of the SHP is 30 m. In regions where
increased drainage rates have reached the water table (spe-
cifically the southeast), groundwater depths are less now
than in the period before the introduction of widespread
agriculture. However, there is evidence that these reduced
groundwater depths are leading to increased irrigation
pumpage in the region [Scanlon et al., 2007], which may
counter further depth declines in the future. Maxwell and
Kollet [2008] showed for a river basin in the southern
Great Plains that water tables within a 2–5 m “critical zone”
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depth, located near river valleys, control evapotranspiration
and thus potential recharge. With the deeper water table
levels observed in the topographically flat SHP, it is rea-
sonable to assume that the water table has little influence on
the root zone there, and we apply the free gravity drainage
condition in SWAP at the base of the 10 m profile for
simulations of our study site. Although this choice for the
lower boundary condition does not provide accurate simu-
lations of the actual water table, it has little effect at the 1.5 m
reference depth used to characterize percolation. As men-
tioned previously, percolation at this reference depth is used
to examine short‐term recharge mechanisms.
[27] Our one‐dimensional vertical model domain is dis-

cretized such that the top layer is 2 cm thick, and thicknesses
in lower layers increase by a 1.05 factor until a maximum
10 cm thickness is reached. SWAP implements the Richards’
solver using the van Genuchten‐Mualem soil moisture
retention and unsaturated hydraulic conductivity functions
[van Genuchten, 1980]. We use the nondynamic crop option,
which requires the user to specify vegetation parameters over
the growing season. SWAP computes potential evapotrans-
piration from daily meteorology using the Penman‐Monteith
equation [Monteith, 1981] and derives actual evapotranspi-
ration with the empirical approach proposed by Black et al.
[1969]. Daily actual evaporation and precipitation rates
were applied for the surface boundary condition. The
Richards solver uses a variable time step that cannot exceed
0.2 days. Ponding is allowed when infiltration limits are
exceeded, and extra moisture is then removed from the
model as runoff. Recharge analysis and model results for our
site both indicate that surface runoff is very small compared
with precipitation, with average annual amounts less than 1%
in simulations.
[28] It should be noted that using precipitation data

coarser than daily resolution may be inadequate for mod-
eling recharge episodes. Subdaily meteorology provides
more accurate simulations of episodic recharge and runoff,
yet such fine‐scale data are generally not available for the
time periods considered in this study, nor are they available
from GCM outputs. Largely on the basis of data availability,
daily meteorological inputs were used for both the historical
analysis of the site [Ng et al., 2009] and the assessment of
future climate change impacts described in this study. This is
a nonideal but reasonable temporal resolution for obtaining
informative results for the vegetated sandy loam surface
conditions found at our study site.
[29] For our ensemble forecasting, uncertain SWAP

model inputs are conditioned on soil moisture and chloride
observations. These inputs include the six van Genuchten
soil parameters; vegetation parameters such as maximum
root depth, leaf area index, crop height, and minimal crop
resistance; and the evaporation parameter required by the
Black et al. [1969] evapotranspiration calculation. Observa-
tions had the greatest impact on the conditional input prob-
ability distributions for maximum root depth, certain shallow
soil parameters, and the evaporation parameter. Further
details on the parameter distribution estimates are given by
Ng [2008].
[30] The one‐dimensional vertical free gravity drainage

modeling approach summarized above is effective for
examining average annual diffuse recharge in settings such
as the SHP. The implications of the conclusions presented
for our study site extend to regions with similar diffuse

recharge conditions. Other semiarid regions with similar
properties include sandy regions in Senegal [Gaye and
Edmunds, 1996] and parts of Australia [Cook et al.,
1989]. In river basins where topography is important, or
in settings where feedback from a shallow water table oc-
curs, it may be necessary to adopt a distributed modeling
approach that accounts for lateral flow and for the effects of
groundwater on surface infiltration and runoff [Maxwell and
Kollet, 2008; Scibek et al., 2007; Tague et al., 2008].
However, it is important to note that the probabilistic
framework we present is generally applicable. The simula-
tion model that forms the basis for this approach should be
chosen to be appropriate for the site of interest. Regardless
of the model used, its inputs need to properly describe the
conditions that produce recharge. For this reason the input
realizations used in an ensemble forecast should be condi-
tioned on observations, whenever possible.

4. Ensemble Forecasting Procedure

[31] Ensemble forecasting is a form of Monte Carlo
simulation that reveals the range of possible outcomes that
could occur in situations where uncertainty is significant.
The basic idea is to perform a large number of model si-
mulations, each based on a different sample (or realization)
from the physically probable distribution of uncertain in-
puts. If the input samples are equiprobable, the results of
these simulations can be viewed as equally likely alternative
futures. The ensemble of simulated realizations can be used
to construct probability densities and various statistical
measures of variability. The ensemble forecasting procedure
described in this paper accounts for multiple sources of
uncertainty by combining conditional realizations of soil
and vegetation properties generated by Ng et al. [2009] with
realizations of meteorological time series.
[32] The effect of conditioning uncertain model inputs on

soil moisture and soil water chloride measurements is
demonstrated by the average annual recharge probability
densities plotted in Figure 2, adapted from Ng et al. [2009,
Figure 6]. These densities show the distribution of average
annual recharge values over the 71 year historical period
(from the time of land conversion until the observation
time). The average annual recharge values were obtained by
dividing the cumulative amount of percolation over the
historical simulation period by the number of years simu-
lated. The unconditional density in this figure was generated
from about 30,000 equally weighted realizations obtained
from SWAP model simulations. The soil and vegetation
inputs for each of these simulations were obtained by
sampling reasonable prior distributions. The conditional
density shown in Figure 2 was obtained by using importance
sampling to modify the equal weights of the unconditional
realizations. Importance sampling assigns to each realization
a weight that reflects the quality of its match to soil moisture
and soil water chloride observations. Higher weights are
given to realizations that are closer to observations.
[33] Figure 2 shows that conditioning of the average

annual recharge probability density on soil moisture and soil
water chloride observations at our study site shifts the
density significantly toward increased recharge (negative
fluxes are downward) while also reducing spread (or
uncertainty). This shift brings the median of the average
annual recharge density closer to the value independently
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identified from a steady state chloride mass balance analysis
[Ng et al., 2009]. The additional information provided by
soil profile measurements clearly yields a narrower proba-
bility density.
[34] The ensemble forecasts for the climate change anal-

ysis presented in this paper are obtained from Monte Carlo
simulations similar to those used by Ng et al. [2009] to

obtain Figure 2. The primary addition to our earlier work is
incorporation of uncertainty about the effects of climate
change on meteorological variables. Figure 3 provides an
overview of our climate change ensemble forecasting pro-
cedure. The primary inputs to this procedure are (1) samples
of long‐term (75 year) daily meteorological time series
compatible with a specified IPCC GCM climate prediction
and (2) samples from the conditional soil and vegetation
property probability densities previously identified by Ng et
al. [2009]. Each future climate condition predicted by a
different IPCC GCM is referred to here as a “climate
alternative.” The meteorological time series samples for
each climate alternative are produced by the LARS‐WG v.
4.0 stochastic weather generator [Semenov et al., 1998]. The
soil, vegetation, and meteorological inputs are then used to
simulate ensembles of future recharge values over a 75 year
period for each climate alternative. Many years are simu-
lated in order to include a reasonable number of infrequent
recharge events in order to adequately characterize the epi-
sodic nature of recharge at the study site. The simulation
period was chosen to facilitate comparisons with historical
recharge estimates over a similar amount of time. It should
be noted that our decision to use soil and vegetation para-
meters conditioned on recent observations in an analysis of
climate change is justified only if there will be no major
changes in soil or vegetation conditions in the future. The
implications of this assumption are discussed later.
[35] As mentioned above, the importance sampling

approach used by Ng et al. [2009] assigns different weights
to different realizations of soil and vegetation properties.
Because the meteorological time series samples produced by
the weather generator are equally likely, it is convenient to
also represent the other input distributions with equally
weighted realizations. For this reason, we generate a new

Figure 3. Diagram of the ensemble forecasting approach carried out for each general circulation model
(GCM) climate alternative. An ensemble of percolation predictions is generated from multiple simulations
of the Soil‐Water‐Atmosphere‐Plant (SWAP) model using different inputs for each simulation (represented
by the multiple arrows in diagram). Meteorological inputs (time series) are obtained from the LARS‐WG
weather generator. LARS‐WG inputs are adjusted to account for differences in the GCM climate alterna-
tives. Soil and vegetation parameter distributions and historical precipitation values are conditioned on soil
moisture and chloride concentration observations. The final percolation ensemble incorporates natural mete-
orological variability as well as uncertainty from soil and vegetation parameters.

Figure 2. Probability densities of average annual recharge
derived from Monte Carlo realizations of unconditional and
conditional meteorological, soil, and vegetation properties
(adapted from Ng et al. [2009, Figure 6]). Negative values
represent downward moisture flux. Values are averaged
over all years in the 71 year historical period analyzed by Ng
et al. [2009]. The figure indicates that conditioning on site‐
specific observations can make a significant difference in
recharge predictions.

NG ET AL.: EFFECTS OF CLIMATE CHANGE ON GROUNDWATER RECHARGE W07502W07502

6 of 18



ensemble of equally likely conditional soil and vegetation
inputs by resampling from the original realizations in pro-
portion to the importance sampling weights, as described by
Arulampalam et al. [2002]. The resampling works by
including multiple copies of original realizations with high
weights in the new ensemble. In contrast, few, if any, copies
of original realizations with low weights are included. This
produces a new ensemble of equally weighted realizations
that has the same conditional probability distribution as the
original weighted ensemble. In our application, about 150 of
the more than 30,000 unconditional input realizations
account for 97.5% of the total weight in the conditional
distribution. Our ensemble forecasting analysis is based on
an ensemble of 200 resampled equally likely samples
composed, for the most part, of these high weight realiza-
tions. The resampled ensemble gives a representative cross
section of the most likely model input combinations.
[36] The outputs of our ensemble forecasting analysis are

daily LARS‐WG time series of precipitation and SWAP
simulations of potential ET (PET), actual ET (AET), soil
moisture, and percolation. These time series are computed
over the 75 year simulation period, for a specified climate
alternative. The set of output time series obtained for a given
set of randomly generated inputs constitutes one output
realization. We compute, for each realization, time averages
of monthly and annual total percolation. Ng et al. [2009]
shows that under current land use and climate conditions,
much of the recharge for our semiarid study site originates
from a relatively small number of major events scattered
over a 70–75 year period. In order to investigate the role of
this episodic recharge phenomenon in the climate change
context, we tally, for each realization, the total number of
recharge events for a given event magnitude. A recharge
event is defined in terms of the weekly total percolation time
series. The beginning and end of each event occur at
inflection points in the weekly percolation time series: The
beginning is marked by a change from a negative to a
positive weekly percolation second derivative, and the end
is marked by a change from a positive to a negative second
derivative, for negative (downward) percolation values. The
event magnitude is defined as the peak weekly percolation
value over the time window between the beginning and end
of the event. In general, a percolation event will last more
than 1 week. We characterize the ensemble of all realization

averages, maxima, and event counts with probability den-
sities and ensemble means, medians, and quartiles.

5. Climate Change Alternatives

[37] A number of GCMs have been developed to predict
future climate conditions. These all generate results over
coarser temporal and spatial resolutions than are needed to
resolve episodic recharge at our study site. Sections 5.1–5.3
describe our approach for selecting GCM predictions and
for putting these predictions in a form suitable for recharge
analysis.

5.1. GCM Selection

[38] GCMs are coupled numerical models of the atmo-
sphere, ocean, and land surface that simulate global condi-
tions over grid cells of 2°–4° resolution. They are used to
model changes in climate for different postulated CO2 le-
vels. In this study, we considered GCM outputs only for the
SRES A1B scenario [IPCC, 2000], which is the midrange
CO2 emissions scenario most commonly used in the IPCC
[2007] Fourth Assessment Report. We compare the cli-
mate predicted for the period 2080–2099 with the climate
for the base case period 1980–1999, as is done in most of
the IPCC [2007] Fourth Assessment Report summaries.
GCM average monthly outputs simulated over the base case
period agree reasonably well with observed 1980–1999 SHP
average monthly data [Ng, 2008]. GCM matches to histor-
ical data tend to be poorer for temporal resolutions finer than
1 month [Prudhomme et al., 2002].
[39] In order to focus our analysis, we consider climate

predictions from five of the 25 GCMs participating in the
World Climate Research Programme’s (WCRP’s) Coupled
Model Intercomparison Project Phase 3 (CMIP3) multi-
model data set (see http://www‐pcmdi.llnl.gov/ipcc/about_
ipcc.php). This data set includes outputs from the GCMs
cited in the IPCC [2007] Fourth Assessment Report and is
available online at http://www‐pcmdi.llnl.gov/ipcc/about_
ipcc.php. Most models included in CMIP3 predict that
future conditions are likely to be warmer in the SHP, but
there are notable discrepancies in precipitation predictions
[Ng, 2008]. The GCMs included in this study and listed in
Table 1 were selected for the diversity of their precipitation
predictions at our study site. As mentioned above, the aim of

Table 1. List of All General Circulation Model Alternatives Considered

Alternative GCM GCM Sponsor/Country Characteristic

Wet ECHO‐G Meteorological Institute of University of Bonn,
Meteorological Research Institute of the Korea

Meteorological Administration (KMA),
and Model and Data Group/Germany, Korea

wetter throughout most
of the year

Intense BCCR‐BCM2.0 Bjerknes Centre for Climate Research/Norway similar annual precipitation,
higher intensity

Seasonal CGCM3.1 (T47) Canadian Centre for Climate Modeling and Analysis/Canada similar annual precipitation,
wetter summer and drier winter

All‐dry MIROC3.2
(medres)

Center for Climate System Research (University of Tokyo),
National Institute for Environmental Studies, and Frontier
Research Center for Global Change (JAMSTEC)/Japan

all months drier

Driest IPSL‐CM4 Institut Pierre Simon Laplace/France lowest annual precipitation
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our work is to examine the sensitivity of recharge to the
climate changes simulated by different GCMs rather than to
make absolute predictions. Our set of alternative GCMs
includes two models with drier futures: IPSL‐CM4
(“driest”), with the lowest annual rainfall, and MIROC3.2
(medres) (“all dry”), with decreased rainfall in all months.
ECHO‐G (“wet”) has higher annual rainfall. Also included
are two GCMs that give annual rainfall similar to current
conditions: BCCR‐BCM2.0 (“intense”), with more intense
rainfall, and CGCM3.1(T47) (“seasonal”), with drier win-
ters and wetter summers. All of these GCMs predict
increased average daily maximum and minimum tempera-
tures (Tmax and Tmin) in almost every month.

5.2. Downscaling GCM Predictions With a Weather
Generator

[40] Most GCM predictions are reported at 2°–4° spatial
resolution and only at monthly or longer temporal resolu-
tions. Finer temporal resolutions are available but are not
considered very reliable [Prudhomme et al., 2002]. For our
study, we require higher resolution site‐specific predictions
at a daily resolution, in order to investigate the episodic
events that yield recharge. A number of spatial and temporal
downscaling techniques have been developed to generate
higher‐resolution meteorological predictions suitable for
hydrologic analysis from GCM outputs (see the review by
Fowler et al. [2007]). The most straightforward of these
uses change factors, which represent the change from GCM
outputs for the current climate to the GCM outputs for a
future climate with a given emissions scenario. Downscaling
is carried out by combining the change factors with
observed fine‐scale meteorological information. For spatial
downscaling, it is common to assume that change factors
computed at the scale of a GCM grid cell apply unmodified
to all points within the cell. We implicitly follow this
approach by applying the corresponding GCM grid cell
output (representing hundreds of kilometers) directly to our
study site (representing the point scale). We do this primarily
because more complex alternatives have not been shown to
give consistent results [e.g., Scibek and Allen, 2006].
[41] The simplest approach to temporal downscaling is to

apply monthly GCM change factors directly to daily his-
torical data, similar to the approach described above for
spatial downscaling. This method has been adopted in a
number of climate change and groundwater studies
[Kirshen, 2002; Eckhardt and Ulbrich, 2003; Croley and
Luukkonen, 2003; Brouyère et al., 2004; Serrat‐Capdevila
et al., 2007]. However, the IPCC [2007] Fourth Assess-
ment Report warns that longer dry periods and higher‐
intensity precipitation events could occur when the total
amount of rainfall decreases. These changes in the temporal
distribution of rainfall could greatly affect recharge but
cannot be generated by simply adjusting historical records
with monthly change factors. Moreover, the approach can-
not be used to generate the many independent realizations
required in a 75 year ensemble forecasting analysis. Con-
sequently, in this study, we use a stochastic weather generator
to simulate the daily meteorological time series needed to
generate ensemble predictions of episodic recharge.
[42] Particular care must be taken in choosing a generator

that can properly simulate the rain events that lead to epi-
sodic recharge [Ng, 2008]. The review by Wilks and Wilby

[1999] describes the two main classes of stochastic weather
generators: (1) those that model precipitation occurrence as
a Markov process and (2) those that explicitly model spell
lengths (number of consecutive rainy days and number of
consecutive dry days). Because first‐order Markov pro-
cesses tend to under‐simulate long dry spells [Wilks and
Wilby, 1999], they are less attractive for analyses of epi-
sodic recharge. As a result, we use the spell‐length generator
LARS‐WG v. 4.0 [Semenov et al., 1998]. This weather
generator performs well over a range of different climate
conditions [Semenov et al., 1998; Semenov, 2008], and it has
been adopted in a number of other climate change studies
[e.g., Semenov and Barrow, 1997: Scibek and Allen, 2006;
Semenov, 2007]. It also appears to be able to satisfactorily
simulate extreme daily precipitation rates [Semenov, 2008],
which is crucial for modeling episodic recharge [Ng, 2008].
[43] Using historical data for calibration, LARS‐WG can

generate daily time series realizations of precipitation,
maximum and minimum air temperature (Tmax and Tmin),
and solar radiation. Monthly change factors derived from
GCM outputs for future and base case periods are applied to
LARS‐WG to generate time series compatible with a
changed climate. Note that the change factors for the mean
wet and dry spell lengths, which implicitly determine mean
monthly precipitation intensity, must be derived from daily
GCM outputs. In this study, we define monthly precipitation
intensity to be the total monthly precipitation divided by the
number of rainy days.
[44] The SWAP model used in our study requires two

meteorological variables not generated by LARS‐WG:
vapor pressure and wind speed. Because relative humidity is
not expected to change with rising temperatures [Allen and
Ingram, 2002], changes in vapor pressure were indirectly
introduced through Tmin. Monthly multiplicative change
factors calculated from GCM outputs of wind speed were
applied to historical wind speed values. In addition, solar
radiation outputs were slightly altered to better match cali-
bration data. Further details are provided by Ng [2008].

5.3. Predicting the Effects of Climate Change on
Recharge

[45] For this study, we use LARS‐WG to generate, for
each GCM climate alternative plus the base case, 200 rea-
lizations of meteorological time series of 75 years length.
As mentioned earlier, using a long analysis period is
important for characterizing infrequent episodic recharge
events in semiarid environments. The base case is simulated
with LARS‐WG in order to compare with the historical
analysis of Ng et al. [2009]. Climate alternative analyses are
compared with this LARS‐WG simulated base case for
consistency.
[46] In our study, the weather generator is provided with

the conditional precipitation ensemble generated by Ng et
al. [2009] rather than the historically observed precipita-
tion series, which was recorded at a station in Lamesa,
Texas, about 15 km from our study site. The conditioned
precipitation realizations reflect additional information pro-
vided by field measurements of soil moisture and chloride.
The conditioning procedure assumes that the timing of each
historical rainfall events is known perfectly (to within 1 day),
and thus the conditional precipitation realizations differ from
one another only with respect to the magnitude of rainfall
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during rainy days. The conditioned realizations provide a
more realistic description of uncertainty than a single
deterministic time series. Ng et al. [2009] found recharge
simulations to be relatively insensitive to uncertainty in other
meteorological variables.
[47] The base case meteorological realizations are gener-

ated from LARS‐WG parameters fit to the Ng et al. [2009]

conditional precipitation ensemble and to a single historical
time series for all other meteorological variables. Meteoro-
logical realizations for the five GCM alternatives are derived
from the same conditional precipitation ensemble and his-
torical time series as the base case, modified by the
corresponding GCM change factors. Together with the
conditional soil and vegetation realizations generated by Ng
et al. [2009], these LARS‐WG meteorological realizations
make up the uncertain inputs used in the SWAP model to
analyze recharge mechanisms under future climate condi-
tions. The recharge simulations are initialized with the final
conditions from the historical simulations performed by Ng
et al. [2009], in 2006. For the base case and each of the five
climate alternatives, SWAP is used to derive 200 realizations
of percolation, soil moisture, crop AET (defined as AET
during the growing season), and total AET (defined as AET
throughout the year) over the 75 year simulation period.
[48] For validation purposes, it is useful to evaluate

effective climate change factors from the LARS‐WGoutputs.
For each climate alternative, a multiplicative change factor
is determined, where a LARS‐WG climate alterative reali-
zation is used for the numerator and the corresponding
LARS‐WG base case realization is used for the denominator.
The ensemble mean of change factors over all realization
pairs is then the effective multiplicative change factor for the
alternative. Because the weather generator supplies the
weather time series actually used to evaluate recharge, these
effective change factors implicitly define the alternative
climates considered in our study. Figure 4 shows the effective
LARS‐WGmultiplicative change factors for average monthly
precipitation and average monthly precipitation intensity.
The effective change factors are reasonably close to the
change factors obtained from the GCMs that are used to
calibrate LARS‐WG.
[49] The change factor plots in Figure 4 clearly show the

distinctive seasonal patterns associated with each of the five
GCM alternatives. Note the broadly higher values for the
“wet” alternative, the distinct peaks for the “intense” and
“seasonal” alternatives, and the broadly lower values for the
“all‐dry” and “driest” alternatives. The impacts of these
different climate alternatives are discussed in section 6.

6. Results and Discussion

6.1. Validation of the Weather and Recharge
Simulations

[50] We chose LARS‐WG for our ensemble forecasting
analysis because it has features that are well suited for
predictions of episodic recharge at a semiarid site. However,
it is important to emphasize that weather generators are
constructed to match only certain statistics, making it
unlikely that they can accurately simulate all the character-
istics of real weather. For example, LARS‐WG and many
other weather generators are known to underestimate inter-
annual variability [Semenov et al., 1998; Wilks and Wilby,
1999]. However, Gurdak et al. [2007] identified signatures
of both the Pacific Decadal Oscillation (10–25 years) and
El Niño–Southern Oscillation (ENSO) (2–6 years) in his-
torical groundwater levels in the High Plains. Also, Ng et al.
[2009] showed it was likely that unusually wet years pro-
duced disproportionately large contributions of recharge at
our study site. Although weather generators may not capture
all the subtleties of real weather, they should at least

Figure 4. Effective multiplicative change factors derived
from the monthly LARS‐WG precipitation and monthly pre-
cipitation intensity for the five GCM alternatives and base
case considered in this study. Precipitation intensity is total
monthly precipitation divided by number of rainy days in
the month. Monthly values for each realization in the
ensemble are averaged over all years in the 75 year simula-
tion period. Effective change factors match reasonably well
with GCM‐derived change factors.
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reproduce those features that are most important for the
application of interest. It is thus important to check that the
percolation time series derived from the weather generator
with no climate change (base case simulations) included has
statistical properties that are similar to those observed during
the historical period.
[51] Figures 5a and 5b compare historical and simulated

base case probability densities of average annual precipita-
tion and average annual PET. The average annual values are
averaged over all simulations years. The realizations used to
construct the historical probability densities were derived
from the 71 year conditional time series described by Ng et
al. [2009]. The realizations used to construct the simulated
“base case” densities were derived from 75 year time series
produced by LARS‐WG (using inputs set to reproduce
historical statistics). Ensemble spread in the historical
average annual precipitation originates from uncertainty in
precipitation intensities during rainy days, as discussed
earlier. Ensemble spread in the historical average annual
PET originates from uncertainty in vegetation parameters
used in the Penman‐Monteith equation [Monteith, 1981]. It
is apparent that LARS‐WG is able to adequately reproduce
the PET distribution. However, its precipitation distribution
is biased to the high side.
[52] Comparisons of historical and simulated probability

densities for average annual recharge and average annual

AET in Figures 5c and 5d reveal the implications of these
precipitation discrepancies. Note that conditional soil and
vegetation property realizations from Ng et al. [2009] are
used in both the historical and simulated base cases. Figure 5
indicates that average annual recharge derived from LARS‐
WG meteorological forcing compares favorably with aver-
age annual recharge estimated from historical data, even
though LARS‐WG average annual precipitation is somewhat
biased. Most of the excess rain generated by LARS‐WG
seems to go to the high LARS‐WG AET amounts, despite
the similar PET. Because the excess LARS‐WG rainfall has
little impact on recharge, it apparently lacks the distinctive
features (i.e., timing, intensity, etc.) needed to produce the
episodic events that yield recharge at the study site. Figure 5
also shows greater spread in the LARS‐WG recharge prob-
ability density. This reflects the greater sources of random-
ness in the LARS‐WG precipitation series (i.e., random
rainfall times).
[53] Figure 6 provides some indication of the performance

of LARS‐WG in simulating interannual variability over a
multiyear period. It compares the ensemble quartiles of the
maximum monthly precipitation values for the historical and
LARS‐WG time series. For each realization, the maximum
values of monthly precipitation are taken are all simulation
years. Because the LARS‐WG base case time series are
generated to have the same monthly precipitation as the

Figure 5. Historical and simulated base case probability densities constructed from realizations of
(a) average annual precipitation and (b) average annual potential evapotranspiration (PET). Average annual
values for each realization in the ensemble are averaged over all years in either the 71 year historical period
(historical) or the 75 year LARS‐WG simulation period (base case). Historical realizations are derived
from the conditional time series described by Ng et al. [2009]. Simulated realizations are derived from
the LARS‐WG base case time series. Probability densities of (c) average annual recharge and (d) average
annual actual evapotranspiration (AET), averaged over all years in the historical or LARS‐WG simulation
periods. Recharge and AET realizations for both historical and simulated cases are derived from the SWAP
model. The bias in the LARS‐WG precipitation probability density does not significantly affect recharge,
although it has an effect on AET.
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historical series, higher maximum monthly precipitation in
one series indicates greater monthly precipitation extremes
for that series over the other. Although LARS‐WG does not
explicitly include interannual variations, it generates year‐
to‐year deviations due to its stochastic nature. It is apparent
from Figure 6 that high rainfall periods observed in the late
spring and early fall are underestimated by the weather
generator.
[54] Because Ng et al. [2009] showed that high precipi-

tation events have an important impact on recharge during
these seasons, the LARS‐WG under‐simulation of maxi-
mum monthly precipitation could lead to under‐predictions
of recharge. To further investigate this, we show in Figure 7
the ensemble quartiles of the number of recharge events
(as defined earlier) during the simulation period with peak
weekly percolation greater than the value specified on the
horizontal axis. Figure 7 indicates that there were typically
only a few events with percolation magnitudes greater than
30 mm/week. Higher magnitude percolation events occur
over short time periods, often lasting less than a few weeks
(not shown here). As expected from its underestimation of
extreme monthly rains, high recharge events are less frequent
with the base case LARS‐WG weather series. However,
LARS‐WG appears to compensate for missed high‐intensity
rainfall by slightly over‐simulating the number of low rainfall
events. This leads to greater prediction of lower‐magnitude
recharge events, which collectively make a significant
recharge contribution. Consequently, although LARS‐WG
may underestimate the number of large recharge events
at the study site, it provides an estimate of total recharge
over the historical period that is consistent with available
observations.
[55] The recharge compensation observed with LARS‐

WG for our site is fortuitous but cannot be relied upon in
general. The analysis presented here suggests that recharge
estimates derived from stochastic weather generators may be

less reliable when long‐term recharge totals depend strongly
on a small number of episodic events which are difficult to
reproduce. A likely example is a very arid site with low‐
conductivity soils. In such cases, weather generators that
underestimate seasonal and interannual precipitation variabil-
ity may also underestimate long‐term recharge [Ng, 2008].

6.2. Recharge Predictions

[56] The percolation predictions generated by our
ensemble analysis take the form of multiyear time series,
each corresponding to a particular random combination of
precipitation forcing, soil properties, and vegetation para-
meters. Comparisons in Figure 8 of two typical realizations
obtained for the “wet” and “all dry” alternatives show that
percolation is episodic, exhibiting distinct peaks after some,
but not all, major rainfall events. It is also apparent that the
two climate alternatives give qualitatively different results,
with the “wet” alternative exhibiting more peaks of higher
intensity. Although these percolation peaks are damped and
delayed by the time they reach the water table, the water
they carry eventually becomes recharge. Each percolation
peak represents a significant contribution to total recharge.
[57] We examine in section 6.2.1 the average annual

recharge obtained for our five climate alternatives and then
consider in section 6.2.2 the mechanisms responsible for
differences among these alternatives. We focus on ensemble
statistics such as ensemble means, medians, quartiles, and
event counts because these give a good overview of the
aggregate response of all the realizations generated by our
ensemble forecasting procedure.
6.2.1. Long‐Term Average Results
[58] Figures 9 and 10 summarize the ensemble forecast

results obtained for the five different alternative GCM pre-

Figure 7. Ensemble median and first and third ensemble
quartiles of the number of recharge events with a magni-
tude greater than the value specified on the horizontal
axis, counted over either the 71 year historical period or
the 75 year LARS‐WG simulation period. A recharge event
is defined by two successive inflection points in the weekly
percolation time series. The event magnitude is the highest
weekly percolation value during the event time window. His-
torical realizations are derived from the conditional time
series described by Ng et al. [2009]. Simulated realizations
are derived from the LARS‐WG base case time series. As
discussed in the text, LARS‐WG under‐simulation of
infrequent high‐recharge events does not significantly affect
overall recharge amounts.

Figure 6. Ensemble median (bold curves) and first and
third quartiles (thin curves) of the maximum monthly pre-
cipitation probability density. Monthly maxima for each
realization in the ensemble are taken over all years in either
the 71 year historical period or the 75 year LARS‐WG sim-
ulation period. Historical realizations are derived from the
conditional time series described by Ng et al. [2009]. Sim-
ulated realizations are derived from LARS‐WG base case
daily time series. Note that LARS‐WG under simulates
high‐rainfall events in late spring and fall.
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dictions considered in our study. Figure 9 compares proba-
bility densities. Figure 10 compares percent changes, relative
to the simulated base case, in the ensemble means of several
average annual fluxes, also for each of the five alternatives. In
Figures 9 and 10, the average annual value for each realiza-
tion in the ensemble is taken over all years in the 75 year
LARS‐WG simulation period.
[59] The shapes of the probability densities shown in

Figure 9 differ significantly. The base case recharge density
is fairly symmetric, but the “intense” and “seasonal” dis-
tributions are skewed (in different directions). Recharge
uncertainty is generally less for the drier alternatives.
Although wetter (drier) meteorological conditions generally
yield more (less) recharge, it is apparent from Figure 10 that
average annual recharge does not scale in a simple, pro-
portional way with average annual precipitation. For most of
the cases examined, relative changes in recharge are more
pronounced than relative changes in rainfall. The “seasonal”
alternative is notable since the precipitation and recharge
changes have different signs (precipitation increases while
recharge decreases). For the alternatives with agreeing signs,
changes in recharge are about 1.5 to more than 3.5 times
greater than changes in precipitation.
[60] Average annual PET, which represents energy

demand, increases for all the climate change alternatives,
due to the higher study site temperatures predicted by all of
the GCMs. However, changes in the average annual crop
AET do not appear to be correlated with changes in average
annual PET. Precipitation change is generally a better pre-
dictor of change in both crop and total AET. This confirms

that the study site is moisture rather than energy limited, a
condition that marginalizes the effects of climate‐induced
temperature changes. Although average annual AET closely
follows average annual precipitation, it is important to note
that relatively small differences have a significant effect on
recharge. These effects can be better understood if we
examine finer‐scale temporal variations in seasonal precip-
itation, which have a significant influence on the partition-
ing of water between ET and recharge.
6.2.2. Detailed Analysis of Alternatives
[61] Figure 11 shows the seasonal variation in the

ensemble mean of the monthly total percolation for each
alternative, while Figure 12 shows the ensemble median of
the number of recharge events with a peak weekly perco-
lation magnitude greater than the value specified on the
horizontal axis. Figure 13 gives a seasonal assessment of the
number of recharge events that focuses on differences
between the base case and the “intense” alternative. Taken
together, Figures 11–13 provide insights about the mechan-
isms that control recharge for different types of climate
change. The details are discussed for each alternative in the
following paragraphs.
6.2.2.1. “Wet” Alternative: Wetter Throughout Most
of the Year
[62] The “wet” climate alternative represents the wettest

end of the spectrum of GCM predictions considered in our
study. Average annual precipitation increases by about 20%
above the base case, with the largest monthly increases
occurring during the rainy June–October period and the dry
December–January season (Figure 4). The ensemble mean

Figure 8. Examples of typical weekly time series realizations for (a) “wet” alternative and (b) “all dry”
alternative. Weekly total precipitation is shown in blue above the horizontal line, and weekly total per-
colation is shown in red below the horizontal line. Growing seasons are shaded in yellow. The frequency,
timing, and magnitude of episodic recharge events differ for the GCM alternatives.
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Figure 10. Percent changes, relative to the base case, in the ensemble means of several average annual
fluxes, for each of the five alternatives. Average annual flux values for each realization in the ensemble
are averaged over all years in the 75 year LARS‐WG simulation period. Realizations are derived from
LARS‐WG time series. Changes in total AET and recharge generally follow changes in precipitation
rather than PET.

Figure 9. Probability densities constructed from realizations of average annual recharge and average
annual crop AET, for the base case and for each of the five GCM climate alternatives. Average annual
values for each realization in the ensemble are averaged over all years in the 75 year LARS‐WG simu-
lation period. Realizations used to construct the probability densities are derived from the LARS‐WG
time series.
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of the “wet” average daily rainfall intensity increases rela-
tive to the base case in almost all months except February–
May (Figure 4). These changes give an increase in monthly
downward percolation (over the base case) for every month
except August (Figure 11). Although the greatest precipi-
tation increase (total amount and intensity) for the “wet”
alternative occurs in the late summer, much of this precipi-
tation increase appears to be taken up by crops, which are
mature by this time. In fact, average annual crop AET for the
“wet” alternative increases more than average annual pre-
cipitation. This result could be a benefit for cotton production
in the region. Notable increases in May–June downward
percolation occur despite largely unchanged spring monthly
mean precipitation values (compare Figures 5 and 12). These

increases appear to result from a combination of increased
rainfall intensity and increased antecedent moisture from
wetter winters.
[63] The incidence of high‐magnitude recharge events,

with magnitudes of 20 mm/week or greater, doubled from
about five times in 75 years for the base case to about 10 times
for the “wet” climate (Figure 12). This increase in the number
of significant events reflects increases in both total rainfall
and rainfall intensity.
6.2.2.2. “Intense” Alternative: Similar Annual
Precipitation, Higher Intensity
[64] The “intense” alternative predicts that average annual

precipitation will remain close to the present‐day value, with
wetter totals in the late summer roughly balanced by drier

Figure 12. Ensemble median of the number of events with a weekly percolation magnitude greater than
the value specified on the horizontal axis for the five climate alternatives. Events for each realization in
the ensemble are counted over the entire 75 year simulation period. Realizations are derived from the
LARS‐WG base case time series.

Figure 11. Ensemble mean of monthly percolation for each of the five alternatives. Monthly percolation
values for each realization in the ensemble are averaged over all years in the 75 year LARS‐WG simu-
lation period. Realizations are derived from LARS‐WG time series.
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winters. The key feature of the “intense” alternative is the
increase in daily rainfall intensity. Precipitation intensity
increases in both the spring and the fall, while total spring
precipitation remains about the same as the base case
(Figure 4).
[65] Monthly downward percolation for the “intense”

alternative increases most, relative to the base case, in the
spring (Figure 11). It actually decreases slightly during the
winter. However, the average annual recharge increases by
nearly 20% even though the average annual precipitation
increases only about 10% (Figure 10). The timing of the
more intense storms that occur with the “intense” alternative
appears to have a substantial impact on recharge.
[66] Changes in precipitation intensity experienced in the

“intense” alternative are likely to result in more high‐mag-
nitude recharge events during both May and September
(Figure 13). There is also an increase in the total number of
recharge events over a broad range of magnitudes during the
fall, when total precipitation is expected to increase in
addition to precipitation intensity. Because rainfall totals in
the winter and spring months do not increase significantly,
late spring antecedent moisture levels are about the same as
for the base case. This implies that the predicted increase in
spring downward percolation is caused almost exclusively
by higher rain intensity.
[67] Although the “wet” alternative provides a wetter

climate overall, the “intense” alternative generates nearly as
many high‐magnitude recharge events (Figure 12). This
demonstrates that changes in spring rain (including inten-
sity) have a disproportionate impact on recharge. The
“intense” alternative yields a smaller increase in predicted

crop AET (only about 10% higher than the base case) than
the “wet” alternative (Figure 12).
6.2.2.3. “Seasonal” Alternative: Similar Annual
Precipitation, Wetter Summer and Drier Winter
[68] Like the “intense” alternative, the “seasonal” alter-

native predicts average annual precipitation close to base
case conditions. Average monthly precipitation decreases in
the winter but increases throughout the summer. A signifi-
cant increase in June rainfall yields an increase in July
downward percolation. This happens even though the
intensity of June rainfall is essentially the same as the base
case. Additional late summer rains are mostly taken up by
ET. As a result, the net change in average annual recharge is
a 10% decrease, which is in the opposite direction of the
approximately 10% increase in average annual rainfall. This
implies that increased July downward percolation, relative
to the base case, is insufficient to compensate for the
decrease experienced during the rest of the year (Figure 11).
[69] Although total summer rainfall amounts are similar

for the “wet” and “seasonal” alternatives, the earlier con-
centration of summer rain before maximum rooting in the
“seasonal” alternative suggests that there should be more
percolation and less crop AET for this option (Figure 4).
Instead, it seems that dry antecedent conditions following
drier winters limit summer percolation for the “seasonal”
alternative. These results suggest that recharge events are
controlled by a complex mix of factors which must align in
particular ways to yield significant long‐term recharge.
6.2.2.4. “All Dry” Alternative: All Months Drier
[70] The “all dry” alternative predicts a drier future than

the base case, with lower precipitation in every month. As

Figure 13. Ensemble median and first and third ensemble quartiles for number of events with a weekly
percolation magnitude greater than the value specified on the horizontal axis during the indicated month.
Events for each realization in the ensemble are counted over the entire 75 year simulation period. Gray
curves show the base case, while black curves show the “intense” alternative. Realizations are derived
from the LARS‐WG base case time series. Recharge events occur significantly more often in May and
September under the “intense” alternative.
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might be expected, downward percolation decreases
throughout the year for this alternative. Although small
amounts of downward percolation still occur in winter,
September and October have barely any recharge. The
greatly decreased summer rains also limit root water uptake.
Ng et al. [2009] suggest that recharge uncertainty scales
with precipitation, with lowest uncertainty during dry peri-
ods. This observation is supported by the smallest spread in
recharge values for the “all dry” and “driest” alternatives,
which have the lowest average annual recharge (Figure 9).
[71] The “all dry” alternative is too dry to experience any

high‐intensity recharge events (Figure 12). Most events that
occur with this alternative have percolation magnitudes less
than 20 mm/week, and the total number of events of any size
is about 25% less than the base case. An approximate 20%
drop in rainfall gives a 50% drop in recharge and about a 20%
drop in crop AET for the “all dry” alternative (Figure 10).
Because rain‐fed cotton is already near the limit of eco-
nomical feasibility under current semiarid conditions [Howell
et al., 2004], such a reduction in water supply would likely
end rain‐fed cotton cultivation at the study site.
6.2.2.5. “Driest” Alternative: Lowest Annual
Precipitation
[72] The “driest” alternative gives the least precipitation

and recharge of all the climate alternatives investigated in
our study. It differs from the “all dry” scenario in predicting
a much wetter August and much drier winter (Figure 4).
Average monthly downward percolation for the “driest”
alternative decreases relative to the base case for every
month except September, and winter percolation falls almost
to zero (Figure 11). Because of the high August rains,
September percolation is close to the base case value, which
is quite small. No increase in downward percolation occurs
in response to the August rains, because of dry antecedent
soil moisture conditions and crop AET demands. There is a
substantial drop in intense episodic recharge for the “driest”
alternative (Figure 12). In fact, there are barely any events
with percolation magnitudes greater than 10 mm/week.
[73] The role of ET is apparent from Figure 10, which

indicates that the decrease of approximately 10% in crop
AET is smaller than the 25% drop in precipitation and much
less than the drop of about 75% in recharge. Crops are
taking up a larger fraction of annual rainfall, especially
during August when excess rain is available, and leaving
little moisture to generate recharge. This suggests that rain‐
fed cotton may remain possible, even though average annual
rainfall is lower than in the “all dry” alternative.
[74] The “driest” alternative provides a particularly dra-

matic example of the amplification of climate change im-
pacts. This amplification of a small decrease in average
annual rainfall into a much larger decrease in average annual
recharge may seem counterintuitive at first, but is readily
explained by considering how the timing of precipitation
interacts with crop water demands and antecedent moisture
conditions.

7. Summary and Conclusions

[75] This paper presents a probabilistic approach for
analyzing the impacts of climate change on diffuse episodic
recharge in semiarid climates. The objective is to use the
approach to provide insight into how climate changes might
affect the mechanisms that control diffuse recharge in such

environments. It is useful to discern patterns in the infre-
quent episodic events that dominate semiarid recharge by
looking at an ensemble of many time series of relatively
long duration. In an ensemble analysis covering a long
forecast period, most conditions that generate recharge will
be encountered sufficiently often to provide quantitative
descriptions of mechanisms and to support probabilistic
assessments.
[76] Our approach relies on an ensemble forecasting

technique that accounts for uncertainty in soil and vegeta-
tion properties as well as uncertainty in the meteorological
variables associated with climate predictions. The analysis
focuses on changes in percolation at the bottom of the root
zone between a base period and a forecast period. Exam-
ining percolation at this depth makes it possible to resolve
the individual short duration events that contribute most of
the recharge in semiarid regions. We consider five alterna-
tive future climates predicted by five representative GCMs
selected from IPCC [2007]. Realizations of percolation and
other hydrologic fluxes are obtained from repeated simula-
tions of the SWAP unsaturated zone flow and solute
transport model [van Dam et al., 2008]. These flux reali-
zations depend on realizations of uncertain meteorological
inputs and uncertain soil and vegetation properties, which
are the primary inputs to SWAP. The meteorological reali-
zations for the base case (no climate change) and for each of
the five climate change alternatives are 75 year daily time
series produced with the LARS‐WG weather generator
[Semenov et al., 1998]. The soil and vegetation property
realizations are obtained from the importance sampling
procedure described by Ng et al. [2009]. These property
realizations are conditioned on observations of soil moisture
and chloride concentration at the study site.
[77] Weather generators provide meteorological realiza-

tions with higher temporal resolution than can be obtained
directly from climate models. This is important for accurate
simulation of transient precipitation and recharge events.
Generators are also more convenient for ensemble analyses
than a single record. The LARS‐WG parameters for the base
case (no climate change) were adjusted to obtain a good
statistical match to the conditional precipitation ensemble
generated by Ng et al. [2009] and to historical observations
for other meteorological variables. For each of the five cli-
mate change alternatives, the generator parameters were
modified from the base case values using climate change
factors derived from GCM outputs.
[78] Meteorological time series obtained from weather

generators, such as LARS‐WG, may underestimate the
occurrence of rare and intense recharge events that account
for a significant fraction of total recharge in dry environ-
ments. Although validation tests indicate that LARS‐WG
gives a reasonable description of episodic recharge at our
SHP study site over the 75 year forecast period, it is likely
that more reliable results could be obtained if the weather
generator incorporated a more accurate description of
interannual variability. Some researchers have introduced
information on interannual variability in weather generator
simulations of current climate conditions by using sea sur-
face temperature and pressure [Katz and Parlange, 1993;
Wilby et al., 2002]. It may be useful to also incorporate such
indices in simulations of future climate alternatives.
[79] Results from our ensemble analysis of five climate

alternatives at a semiarid study site in the U.S. southern
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High Plains indicate that precipitation changes have a
greater impact on recharge than temperature changes. The
possible precipitation changes represented by our five GCM
alternatives vary from drier to wetter, with changes in pre-
dicted average annual rainfall spanning a range of ‐25% to
+20%, relative to the present climate. These alternatives
give a range in average annual recharge that is even greater,
from ‐75% to +35% relative to present conditions. For most
alternatives, changes in average annual recharge are greater
than the corresponding changes in average annual precipi-
tation. These results can be explained by considering the
role of episodic recharge events. Such events can have a
critical impact on the replenishment of groundwater resources
and the mobilization of contaminants in the subsurface
environment.
[80] Our simulations show that one of the most important

factors affecting episodic recharge is the timing of high‐
rainfall periods. If these periods occur in the winter or
spring, when PET is lower and crops have not fully
emerged, a significant fraction of rainfall is likely to result in
recharge. Furthermore, if these rains occur with great
intensity, they are likely to produce higher‐magnitude
recharge events. Alternatively, if rainfall occurs during
summer, when plant root systems are mature, soil moisture
is low, and PET is high, it is much more difficult for infil-
trating water to pass below the root zone and result in
recharge. These findings show that GCM predictions of
average annual precipitation changes do not provide ade-
quate information on likely climate change impacts because
they lack the seasonal and transient features that control
episodic recharge. Overall, impacts on recharge will be
determined by a complex mix of climate and land‐surface
factors.
[81] The significant range in our recharge results reflects

the considerable uncertainty in the amount and timing of
rainfall across the five climate alternatives, and the uncer-
tainty in terrestrial conditions that will filter changes in
climate. We believe that our recharge results give a realistic
view of the current level of uncertainty about the local and
regional impacts of climate change. At this point, it seems
more appropriate to try to define the range of possibilities
than to make specific predictions. Ensemble forecasting
studies such as the one described here are a step in that
direction.
[82] Although our unsaturated zone model provides use-

ful information about recharge mechanisms, it relies on a
very simple description of vegetation dynamics. It is likely
that a more physically based dynamic vegetation model
could provide additional insights [Green et al., 2007]. In
particular, other studies have shown that higher tempera-
tures could shorten the growing season [Rosenzweig, 1990]
and that CO2 fertilization effects could impact root water
uptake [Allen et al., 1996]. These effects are not included in
SWAP’s static vegetation model, which prespecifies crop
development independent of atmospheric conditions.
[83] Our emphasis on diffuse recharge in low‐relief

regions greatly simplifies our analysis by allowing the use
of a one‐dimensional unsaturated zone model. However,
in many areas, topographically focused recharge is an
important, and often primary, contributor to recharge. The
ensemble‐based methods used here can be extended to
incorporate lateral moisture movement. However, doing this
with the Richards’‐based description of unsaturated flow

used in SWAP would be very computationally demanding
for large ensembles. The ensemble forecasting procedure
used here consisted of 200 model runs for 75 years, and the
parameter estimates from Ng et al. [2009] used 30,000 si-
mulations. It is possible that the insights provided here about
diffuse recharge could be used to develop simpler unsatu-
rated zone models that account for the influence of topog-
raphy while remaining computationally feasible for large
ensemble runs. We believe that the advantages of a long‐
duration ensemble‐based analysis of episodic recharge make
it worthwhile to develop models appropriate for ensemble
forecasting.
[84] The ensemble forecasting analysis presented here il-

lustrates the advantage of combining data assimilation
techniques, which enable us to incorporate relevant field
observations, with a stochastic weather generator, which
enables us to generate realistic short‐term rain events, and
general circulation models, which enable us to consider
different climate change alternatives. This integrated
ensemble‐based approach to climate change analysis pro-
vides a systematic way to extract the maximum amount of
information from limited data while properly accounting for
uncertainty. In this respect, we hope that our study provides
a basis for continuing research on the connections between
climate change and groundwater resources.
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