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[1] Understanding and predicting regional impacts of El Niño–Southern Oscillation
(ENSO) and Pacific Decadal Oscillation (PDO) on winter (October–March) precipitation
can provide valuable inputs to agricultural and water resources managers. Effects of
ENSO and PDO on winter precipitation were assessed in 165 climate divisions throughout
the southern United States. A continuous region of significantly (P < 0.05) increased
(decreased) winter precipitation in response to El Niño (La Niña) conditions in the
preceding summer (June–September Southern Oscillation Index (SOI)) extends across the
entire southern United States and as far north as South Dakota. Within this region stronger
correlations (r � �0.45) are found along the Gulf of Mexico, southern Arizona, and
central Nebraska. Winter precipitation differs significantly (P < 0.1) between warm and
cold phase PDO periods only in the south central region, with greatest significance
centered in Oklahoma. Enhanced negative La Niña anomalies during PDO cold phases are
dominant in the central region (Texas to South Dakota) whereas enhanced positive El Niño
anomalies during PDO warm phases are dominant in the southwest (Arizona, Nevada, and
California) and southeast (Louisiana to Florida). Validation tests of winter precipitation
predictions based on summer SOI and/or PDO-phase show a decrease of 9% to 16% in the
relative Mean Absolute Error (MAE) from the MAE obtained by using the mean as a
predictor in areas with strong correlation (r < �0.45) between SOI and precipitation.
Logistic regression probability models of having above or below average winter
precipitation had up to 77% successful predictions. The advantage of having probabilities
of exceeding certain precipitation thresholds at the beginning of a hydrologic year makes
logistic regression models attractive for decision makers.
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1. Introduction

[2] Trends in availability of water resources throughout
the southern United States are known to be influenced by
global atmospheric pressure cycles related to variations in
sea surface temperatures (SST). The following provides a
brief overview of impacts of two major oceanic/atmospheric
cycles on precipitation and water resources in the southern
United States.

1.1. Hydrological Impacts of ENSO Based on
Large-Scale Studies

[3] El Niño–Southern Oscillation (ENSO) refers to pos-
itive (negative) anomalies in SST of the central and eastern
equatorial Pacific–El Niño (La Niña), associated with
anomalies in equatorial-Pacific sea level pressure (SLP)

differences known as the Southern Oscillation [Rasmusson
and Carpenter, 1982; Trenberth, 1997]. The Southern
Oscillation Index (SOI), defined as the monthly standard-
ized anomaly of the SLP difference between Tahiti and
Darwin, Australia, is a frequently used index of ENSO
conditions. A recent review of world-wide environmental
and socioeconomic impacts of ENSO indicates that many
impacts are related to precipitation, e.g., floods, droughts,
spread of water-borne diseases, and agricultural yield
[McPhaden et al., 2006].
[4] The following studies used the first harmonic of the

composite of 24 months centered in ENSO years (index 0)
to delineate regions having a similar hydrologic response
time phase (coherence). This method was first introduced by
Ropelewski and Halpert [1986]. Four regions were defined
as having a coherent precipitation response to ENSO in the
United States based on analysis of 1875–1980 data: Gulf of
Mexico (GM -Texas to Florida), High Plains (HP), Mid-
Atlantic, and Great Basins (GB) [Ropelewski and Halpert,
1986]. The ‘‘season’’ of response was October0–March+ for
the GM region and April0–October0 for the HP and GB
regions (the index + was assigned to months starting in
January of the year following the ENSO year). ENSO
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impacts on streamflow were identified in five regions in the
United States including the GM and the southwest (SW)
based on analysis of 1948–1988 data [Kahya and Dracup,
1993]. A season of increased streamflow corresponding to
El Niño events in December0 through April+ was identified
for the GM and in March+–November+ for the SW (south-
ernCalifornia, southernArizona,andsouthwestNewMexico).
Lower streamflow occurred in response to La Niña from
December0–August+ in the GM whereas streamflow was
not sensitive to La Niña in the SW [Dracup and Kahya,
1994]. Regions with coherent responses of the Palmer
Drought Severity Index (PDSI) to ENSO included two
subregions in the GM: a western (�Texas–GM1) and
eastern (�Florida–GM2) region based on analysis of
1900–1993 data [Piechota and Dracup, 1996]. The PDSI
in Texas had a significant (P < 0.1) positive response (wet
conditions) to El Niño in December0–August+ and a
significant (P < 0.1) negative response (dry conditions) to
La Niña in November0–December+ whereas the Florida
region only had a significant (P < 0.1) positive response to
El Niño in January+–April+. PDSI had no significant (P <
0.1) response to ENSO in the SW or in the central United
States (Kansas, Colorado, and Nebraska).
[5] Teleconnections between ENSO and global precipi-

tation were evaluated using statistical t tests for precipitation
composites of El Niño and La Niña extreme events from
1877 to 1982 [Kiladis and Diaz, 1989]. Regions where the
P value of t was �0.05 for a number of adjacent stations
were delineated as having a coherent response. El Niño
precipitation significantly exceeded La Niña precipitation in
a region extending from the Atlantic coast of Florida to the
Pacific coast of northern Mexico (including inland Texas)
from December0–February+, this signal persisted through
March+–May+ in south central United States. The full range
of an ENSO index (including normal or non-ENSO years)
was used to evaluate teleconnections with precipitation in
the western United States by Redmond and Koch [1991].
Highly significant (P < 0.001) negative correlations between
October0–March+ precipitation and June0–November0

averaged SOI were found in climate divisions in the SW
(New Mexico to southern California), based on analysis of
84 climate divisions in the western United States between
1933 and 1983 [Redmond and Koch, 1991].

1.2. Hydrological Impacts of PDO Based on
Large-Scale Studies

[6] Decadal climatic variability driven by SST anomalies
in the northern Pacific was termed Pacific Decadal Oscilla-
tion (PDO) [Mantua et al., 1997]. PDO is distinguished by
warm and cold phases, i.e., decadal scale periods when the
SST in the northern Pacific near the North American coast is
warmer than average (warm phase) or cooler than average
(cold phase). Mantua et al. [1997] defined the following
PDO phases for the twentieth century: <1925 cold phase;
1925 to 1946 warm phase; 1947 to 1976 cold phase; and
>1977 warm phase. There is some confusion about whether
a regime shift (back to cold phase) occurred after 1998
[Bond et al., 2003]. Newman et al. [2003] claim that ENSO
and equatorial SST anomalies are the forcing for the
northern SST anomalies and that the PDO index can be
predicted with a simple linear model of previous PDO
and current ENSO indices. Low correlations (jrj < 0.25)
between monthly PDO index and winter precipitation were

described by Mantua et al. [1997] for the southern United
States (data 1990–1993). The PDO cycle modulates ENSO
teleconnections, resulting in a stronger El Niño precipitation
signal during PDO warm phases and a stronger La Niña
signal during PDO cold phases [Gershunov and Barnett,
1998]. There is a ‘‘dipole’’ in precipitation related to multi-
decadal ENSO variability in the western United States; i.e.,
in the PDO cold phase winter precipitation in the SW has a
lower correlation with average September–November SOI
while winter precipitation in the NW has a higher correla-
tion, the opposite is true for the PDO warm phase [Dettinger
et al., 1998; Brown and Comrie, 2004].

1.3. Hydrological Impacts of ENSO and PDO Based on
Small-Scale Studies

[7] Many studies have been conducted at the scale of
individual states or basins. Andrade and Sellers [1988]
showed greatest correlation between El Niño and spring
and autumn precipitation, no correlation with summer
precipitation of the El Niño year and weaker correlation
with the following winter precipitation in Arizona
and western New Mexico. Simpson and Colodner [1999],
ignoring the emerging PDO-ENSO modulation concept,
found a generally decreasing correlation between June0–
November0 SOI and September0–April+ precipitation
excluding January+ throughout the twentieth century and
relatively large regression slopes between 1924–1946
(PDO warm phase) for one climate division in Arizona.
Gutzler et al. [2002] found that the annual PDO index did
not improve ENSO index predictions of precipitation in
climate divisions in Arizona and New Mexico. However,
knowledge of PDO phase, rather than PDO index, makes
ENSO data more valuable: during PDO cold phase, fall
La Niña conditions are generally followed by a dry winter
but to lesser extent El Niño conditions are followed by a wet
winter; during PDO warm phase, wet El Niño winters are
highly probable but not dry La Niña winters. Goodrich
[2004] examined non-ENSO years with respect to PDO
phase in Arizona and found that winters of PDO cold/non-
ENSO years are nearly as dry as winters of PDO cold/
La Niña years. Guan et al. [2005] showed that PDO phase
had a stronger effect than SOI on winter precipitation in the
mountainous region of northern New Mexico. Namely non-
ENSO and even La Niña years during PDO warm phase had
significant positive anomalies while El Niño years during
PDO cold phase did not have a positive anomaly.
[8] Hanson et al. [2004] applied frequency analysis to

data from the Mojave River Basin, California, and showed
that PDO range (10–25 annums (a)) reconstructed compo-
nents (frequencies) captured 83% of streamflow variance
and 75% of groundwater level variance. In contrast, ENSO
related frequencies (2–6 a) captured only 7–12% of stream-
flow and 17% of groundwater level variances. Pool [2005]
showed greater probability of above average winter precip-
itation, streamflow, and groundwater recharge during
El Niño years and almost exclusively below average con-
ditions during La Niña years in southern Arizona. Sun and
Furbish [1997] reported that ENSO was responsible for up
to 40% of annual precipitation variation and up to 30% of
river discharge variation in Florida. El Niño years were
wetter than average and La Niña years were drier. These
authors used annual precipitation rather than seasonal
precipitation, which was used in most of the aforementioned
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studies. Annual stream discharge was also used by
Redmond and Koch [1991]. Correlations between ENSO
indices and stream discharge in Florida and the SW are
similar (r � 0.3–0.4) in these two studies [Sun and Furbish,
1997; Redmond and Koch, 1991]. Chen et al. [2005]
evaluated the ENSO-dependent component of water and
agricultural management of the Edwards aquifer in Texas
(1970–1996 data). They concluded that use of ENSO
events has the potential to help offset costs of diminishing
regional pumping due to legislative mandates.

1.4. Approach and Objectives

[9] Previous studies vary in the spatial scale evaluated
(global to state/basin level), time period considered (27 to
>100 a), ENSO index used (SOI, SST indices), analysis
approach (harmonics, t tests, correlations, or frequency
analysis), seasons of forcing and response, and whether
PDO phases were considered. The time period considered in
hydro-climatology studies is important because it deter-
mines the number of PDO cold and warm phase years
included in the analysis. Dominance of one phase (e.g.,
1970–2000, dominated by PDO warm phase) may bias
results; therefore, a period including an equal number of
years of PDO cold and warm phases was used in this study.
Many small scale studies focused on ENSO and/or PDO
impacts on precipitation in the SW United States rather than
in the south central and SE United States, although some
phenomena are stronger in the latter areas. Results from
global analyses may differ from those of local analysis
because of differences in spatial resolution, as exemplified
by differing results for southern Brazil provided by global
analysis [Ropelewski and Halpert, 1987] and by a local
analysis [Grimm et al., 1998]. Therefore, a statistical
descriptive analysis of ENSO and PDO impacts on winter
precipitation throughout the entire southern United States at
a climate-division resolution can provide an improved
regional perspective, which is lacking in both global/conti-
nental and state/basin scale studies. Previous studies have
not explicitly tested the validity of simple statistical precip-
itation predictions based on ENSO/PDO data, especially the
use of logistic regression models, for quantifying probabil-
ities of exceeding precipitation thresholds; however, such
analyses can be extremely beneficial to agricultural and
water-resource managers.
[10] These issues helped define the research objectives of

this study to address the following questions: (1) What is
the extent of the region throughout the southern United
States where a significant precipitation response to ENSO
exists, i.e., wetter than normal winters following El Niño
summers? (2) What are the spatial distribution and relative
importance of ENSO, PDO, and combined ENSO and
PDO on winter and annual precipitation in the region
defined in 1? (3) What is the validity of predictions of
winter precipitation based on simple statistical models, such
as linear and logistic regressions, using ENSO and/or PDO
in representative areas of the region defined in 1?

2. Methods

2.1. Precipitation Data and Climatic Variables
Selection

[11] A variety of indices are available to represent ENSO
conditions based on SST (e.g., Nino-3, Nino-4, Nino-3.4 and

Japan Meteorological Agency, JMA index), sea level pres-
sure (e.g., SOI) and combinations of different oceanic and
atmospheric variables (e.g., Multivariate ENSO Index, MEI
[Wolter and Timlin, 1993]). SOI was chosen in this study
because it is publicly available in real time (i.e., September
SOI is available on 2 October), it has the longest period of
record (1876 to present), and it was successfully used in
previous climate analyses of different areas in the southern
United States [e.g., Redmond and Koch, 1991; Piechota and
Dracup, 1996; Pool, 2005]. Monthly SOI values were
obtained from the Australian Bureau of Meteorology
(http://www.bom.gov.au/climate/glossary/soi.shtml). The
June–September average of monthly SOI was used in this
study to provide an ENSO index that would be available at
the beginning of the hydrologic year (1 October [Chen et al.,
2005]). The June–September average of monthly SOI is
similar to the June–November average (r2 = 0.95) that was
successfully used in previous studies [e.g., Redmond and
Koch, 1991; McCabe and Dettinger, 1999]. For the
100 years 1905–2004, 9 out of the 10, and 23 out of the
25 strongest El Niño years (negative SOI) are the same for
both indices (June–September and June–November SOI
averages) and similarly for the strongest La Niña years
(i.e., 9 out of 10 and 23 out of 25).
[12] Monthly PDO indices, defined as the leading prin-

ciple component (PC1) of monthly SST anomalies in the
North Pacific Ocean, pole-ward of 20�N, were obtained for
the period 1900 to 2005 (Joint Institute for the Study of the
Atmosphere and Ocean, JISAO; http://jisao.washington.
edu/pdo/PDO.latest). Following Gutzler et al. [2002], rather
than using the PDO index, discrete PDO phases were
revealed from 9 a moving averages of annual and November–
March PDO indices (Figure 1). The November–March
mean was used to delineate PDO phases by Mantua et al.
[1997] and Hidalgo and Dracup [2003]. A 9 a window
was chosen because it clearly reveals the multi-decadal
frequency and yet it is not too long. Moving averages of
the June–November SOI index were plotted together with
the PDO indices to define the decadal phase changes
because Newman et al. [2003] showed a clear linkage
between Pacific equatorial SST (ENSO) and northern
Pacific SST (PDO) anomalies. Hanley et al. [2003] also
showed correspondence between running sums of ENSO
indices and PDO-phase changes. The PDO moving average
analysis (Figure 1) suggests the following PDO phases:
warm 1922–1944, cold 1945–1977, and warm 1978–
2004. The two PDO moving average series for 1905–
1921 have low amplitudes and change from positive to
negative around 1912, whereas the SOI series shows a more
consistent cold pattern (Figure 1); therefore, this period
(1905–1921) was assigned to a cold phase. The century
(1905–2004) includes 50 PDO cold phase and 50 PDO
warm phase years; therefore, biases resulting from domi-
nance of one phase over another are avoided (Figure 1). In
some studies 1998 is defined as the end of the warm phase
[e.g., Peterson and Schwing, 2003]. Although PDO indices
between 1999 and 2002 have mostly negative values, PDO
indices between 2003 and 2006 have almost all positive
monthly values, making the decadal phase shift still unclear.
[13] The National Climate Data Center (NCDC) averages

meteorological data from stations spatially to represent
areas defined as climate divisions (see Figure 2 for climate
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division boundaries and Guttman and Quayle [1996] for
further information). Monthly precipitation data for climate
divisions in the contiguous United States were obtained
from the NCDC (http://www1.ncdc.noaa.gov/pub/data/cirs).
Precipitation data from October 1905 to September 2005
were arranged according to hydrologic years (October0–
September+). Time series of annual (October0–September+)
and winter (October0–March+) precipitation for each cli-
mate division were calculated for 100 hydrologic years
1905/1906–2004/2005. The October0–March+ season was
selected because it was identified in earlier studies as the
season with highest correlations between ENSO and pre-
cipitation in some areas of the southern United States

[Ropelewski and Halpert, 1986; Redmond and Koch,
1991]. Shorter periods may show higher correlations in
some areas but are less useful from a water-management
perspective. Annual (October0–September+) precipitation
was analyzed (to a lesser extent) to determine whether
water management could benefit from precipitation–ENSO/
PDO correlations at an annual timescale.

2.2. Analysis of Climatic Variables and Precipitation
Data

2.2.1. Spatial Descriptive Statistics
[14] Hereafter, the term SOI in this study refers to June0–

September0 average SOI. The Wet El Niño Winter (WEW)

Figure 1. Nine-annum moving averages of annual PDO, November–March PDO, and June–November
SOI (SOI values were multiplied by �1 for clarity; 2001, 2002, 2003, and 2004 indices were averaged
over 7, 5, 3, and 1 a, respectively). Vertical bars delineate periods of PDO warm and cold phases.

Figure 2. P values for regression coefficients between June0–September0 SOI and October0–March+

precipitation defining the continuous Wet El Niño Winter (WEW) region in the southern United States.
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region of analysis was defined by a threshold correlation
significance of P � 0.05 (�r � �0.2 for the 100 a data)
between SOI and winter precipitation. The southern states
were examined first and if the northern climate divisions in
the state showed significant correlation the neighboring
state to the north was examined until the entire continuous
WEW region throughout the southern United States was
delineated.
[15] Serial correlation in time series can reduce the

effective degrees of freedom and therefore reduce the level
of statistical significance related to correlation coefficients.
McCabe and Dettinger [1999] addressed this issue when
correlating June–November average SOI with winter pre-
cipitation in the western United States, and concluded that
their 30 a series of indices could be regarded as independent
(0 serial correlation). Serial correlations in SOI used in this
study were evaluated in 56 series of 75 a each for correla-
tions between pairs of series lagging from 1 to 10 a. The
highest absolute average correlation coefficient was found
for the 7 a lag (hri = 0.18). No pair of series out of the
505 pairs tested had a correlation coefficient that was
statistically different from zero at a confidence level of
P = 0.1; therefore, the 100 a SOI time series used in this
study was treated as independent and correlation signifi-
cance was calculated with 98 degrees of freedom.
[16] The following analyses were preformed for each

climate division of the southern WEW continuous region.
The correlation coefficient, statistical significance (P value
of the regression coefficient), and linear regression model
were calculated for winter (October0–March+) and annual
(October0–September+) precipitation versus SOI. The El
Niño and La Niña precipitation anomalies were derived for
composites of 10% and 25% SOI-extreme years. T tests for
differences in mean precipitation between PDO cold and
warm phases were conducted and associated P values were
calculated assuming the 50 a of precipitation are serially
independent. PDO-50% cold (warm) phase precipitation
anomalies were compared with SOI 50% precipitation
anomalies (50% higher (lower) SOI years) to delineate areas
with a higher PDO or ENSO response. El Niño–PDO warm
phase, El Niño–PDO cold phase, La Niña–PDO warm
phase, and La Niña–PDO cold phase anomalies for each
climate division were calculated to test decadal modulation
of ENSO.
2.2.2. Precipitation Predictions and Validation Tests
[17] Two categories of winter-precipitation predictions

were examined: (1) continuous predictions, where the exact
precipitation amount was predicted; (2) dichotomous pre-
dictions, where a prediction of exceeding a certain precip-
itation threshold was determined. All predictions were
tested for six selected climate divisions.
[18] The predictions of eight continuous predictors were

compared. Two trivial predictors (i.e., predictors that do not
use any SOI or PDO-phase data) were evaluated: the mean
and median precipitation of the climate division. The third
continuous predictor was the linear regression model of
winter precipitation versus SOI (SOI Reg.). The fourth
predictor was a three number predictor; i.e., the winter
precipitation data were divided into three categories accord-
ing to the ENSO conditions of the previous June–September:
El Niño (25% low SOI), La Niña (25% high SOI) and Non-
ENSO (the second and third quartiles of SOI). The mean

precipitation of each of the three categories was the pre-
dicted winter precipitation according to the ENSO condi-
tions that preceded the predicted-winter (NNN). In the same
manner as the fourth predictor, the fifth predictor was a two
number predictor including: average winter precipitation in
50 a PDO warm phase or in 50 a PDO cold phase (PDO).
The sixth predictor was a superposition of SOI Reg. and
PDO anomaly (SOI Reg. + PDO). The seventh predictor
was a choice between two SOI-precipitation linear regres-
sion models, one derived from PDO cold phase years and
one from PDO warm phase years (Two Reg.). The last
predictor was a six number predictor including average
winter precipitation for the following conditions: El Niño-
PDO warm phase, El Niño-PDO cold phase, La Niña-PDO
warm phase, La Niña-PDO cold phase, Non-ENSO-PDO
warm phase, and Non-ENSO-PDO cold phase (Six).
[19] Logistic regression models (equation (1)) were used

to predict the probability of winter precipitation being above
or below the mean and the first quartile. The logistic
regression model calculates the probability - Pr for one of
two possible outcomes of the dependent variable y using the
following equation (in our case: yi = 1 means above the
precipitation threshold in year i).

Pr yi ¼ 1ð Þ ¼ e aþb1xi1þb2xi2þ...þbk xikð Þ

1þ e aþb1xi1þb2xi2þ...þbk xikð Þ ð1Þ

where x1, x2 . . . xk are explanatory variables (in our case
two variables SOI and PDO phase) and a and b1, b2 . . . bk

are model coefficients. A stepwise variable-selection
method was used in SAS [SAS Institute Inc., 2004] for
determining model coefficients, in which only statistically
significant explanatory variables were incorporated into the
model. This means that either SOI or PDO phase, or both,
or neither were used in the logistic model. Pr(yi = 1) > 0.5
was assigned as above threshold prediction. The percentage
of successful predictions was compared to the trivial
prediction: ‘‘always below the mean’’ (precipitation dis-
tributions are skewed and there is more than 50%
probability of having below mean precipitation) and
‘‘always above the first quartile’’ (Pr = 75%). The level of
success of predictions for the subset of years in which the
logistic regression models gave high or low probabilities
[Pr(yi = 1) > 0.6 and Pr(yi = 1) < 0.4] was also evaluated.
[20] The following prediction-validation procedure was

used for both continuous and dichotomous predictions. The
100 a of precipitation, SOI, and PDO data were sorted
according to precipitation. Five sets of 20 records were
taken out for validation by removing records numbered 1-6-
11. . .96, 2-7-12. . .97, 3-8-13. . .98, 4-9-14. . .99 and 5-10-
15. . .100. For each one of these 20 record sets the
corresponding set of the remaining 80 records was used
for estimating the predictors (i.e., record numbers 2-3-4-5-7-
8-. . .-100, 1-3-4-5-6-8-. . .-100, 1-2-4-5-6-7-. . .-100, etc.).
In this way prediction models were relatively unbiased,
which is the case when using all the available data for real
prediction of the following winter precipitation. Another
advantage of this method is that each one of the 100 a of
precipitation data was predicted once. The Mean Absolute
Error (MAE) of the 100 predictions was compared among
the eight continuous predictors to determine the best con-
tinuous predictor. The percentage of successful predictions
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was examined for dichotomous predictions (logistic regres-
sion models). Both MAE and percentage of successful
predictions were compared with those obtained from trivial
predictors to assess improvement in prediction due to use of
SOI and PDO data.

3. Results and Discussion

3.1. Wet El Niño Winter (WEW) Region

[21] A continuous, statistically significant WEW region
extends from North Carolina to southern California. Its
south-north extent varies from lowest along the Gulf Coast
in Mississippi and Alabama to highest from southern Texas
to South Dakota (Figure 2). Three areas of higher signifi-
cance are evident: Gulf of Mexico including most of Texas
(GM), southern Arizona and New Mexico (SW), and north
central Nebraska (Nebraska) (Figure 2). This WEW region
and the three centers differ from the large scale precipitation-
ENSO zones defined in previous studies [Ropelewski and
Halpert, 1986; Kiladis and Diaz, 1989] by: (1) the coast to
coast continuity throughout the southern United States, and
(2) the northward extent in the High Plains including the
high correlation center in Nebraska. Many of the studies that
concentrated on the western United States [e.g., Redmond
and Koch, 1991; Brown and Comrie, 2004] did not include
Nebraska; therefore, this area had not been delineated as an
ENSO affected region previously.
[22] The GM and SW WEW centers can be explained by

the southerly shift of storm tracks associated with the
Subtropical Jet Stream in El Niño years [Trenberth et al.,
1998; Eichler and Higgins, 2006]; however, the Nebraska
WEW center cannot be explained by the relative abundance
of storm tracks along the Subtropical Jet. A more frequent
southward movement of the Polar Jet Stream that converges
with the Subtropical Jet in El Niño winters may explain the
Nebraska WEW center (e.g., the 24–25 October storm
during the strong El Niño year of 1997 described in http://
cimss.ssec.wisc.edu/goes/misc/oct97_winter_storm.html
[CIMSS, 2006]). Noel and Changnon [1998] examined the
correlation between frequency of winter cyclones and
ENSO events. They suggested that during El Niño events,
where the 28�C SST isotherm near the equator is west of
longitude 150�W, the Polar-Jet related cyclones are dis-

placed to the south, resulting in more winter cyclone events
in the Nebraska WEW region (Figure 2).

3.2. Annual Precipitation

[23] Correlation between SOI and annual precipitation for
the continuous WEW region also includes three hotspots
(SW, GM, and Nebraska), similar to those identified for the
October0–March+ precipitation; however, hot spot areas are
smaller and P values are higher (significance of correlations
is lower) for annual precipitation (Figure 3). Similarity in
responses for winter (Figure 2) and annual precipitation
(Figure 3) is consistent with results from other studies that
identified relationships between ENSO and hydrologic
variables in the spring and summer following March+

[Dracup and Kahya, 1994; Piechota and Dracup, 1996].

3.3. ENSO and October0–March+ Precipitation
Anomalies

[24] Comparison of relative precipitation anomalies of the
25 strongest El Niño years (SOI � �0.57) and of the 25
strongest La Niña years (SOI � 0.58) shows that positive
anomalies in the El Niño composite are larger than negative
anomalies in the La Niña composite (notice the larger red
and orange areas in Figure 4a relative to those in Figure 4b,
similarly for Figures 4c and 4d). This is partly because
relative positive precipitation responses to extreme ENSO
conditions are not bounded whereas relative negative
responses cannot exceed 100%. The Arizona SW climate
division (bold boundaries in Figures 4a–4c) has the highest
relative positive anomaly in El Niño winters (47% in the
upper quartile composite and 75% in the upper decile) as
well as the strongest negative anomaly in La Niña winters
(-32%) and it is the only climate division that has a negative
anomaly stronger than -25% for the upper quartile SOI years
composite. The composite of the 10%most extreme El Niños
(SOI��1.36) reveals the entire southwest as the region that
is affected most dramatically by extreme El Niño conditions
(Figure 4c). This is probably the reason why this area was the
subject of many small scale ENSO studies, mentioned
previously (section 1.3). The high negative precipitation
anomalies for the 10% extreme La Niña conditions (SOI �
1.10) shift eastward relative to the high positive precipitation
anomalies for the 10% extreme El Niño conditions, leaving
California almost unaffected (Figures 4d and 4c). Texas and
the western GM suffer from stronger negative anomalies
during extreme La Niña winters than positive anomalies
during extreme El Niño winters (Figures 4d and 4c). The
combination of the aforementioned differences between
the SW and the south central regions and the higher relative
variability of precipitation in the SW is another reason for
the overall observation that relative positive anomalies
after El Niño are stronger than relative negative anomalies
after La Niña.
[25] When absolute quantities of precipitation anomalies

rather than relative anomalies are considered, the GM
region is the region most affected by ENSO rather than
the SWor Nebraska (Figure 5). For composites of upper and
lower quartiles of SOI, the Southeast Louisiana climate
division has the highest winter El Niño anomaly (+128 mm)
while the Gulf climate division in Alabama has the strongest
winter La Niña anomaly (�100 mm). The highest annual
El Niño anomaly (+160 mm) is in the Coastal climate
division of Mississippi and the strongest annual La Niña

Figure 3. P values for the regression coefficient between
June0–September0 SOI and annual October0–September+

precipitation in the Wet El Niño Winter (WEW) region in
the southern United States.
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Figure 5. Absolute precipitation anomalies (in mm) for composites of the upper and lower 25% SOI for
(a) El Niño year’s winter (October0–March+), (b) La Niña year’s winter, (c) El Niño years annual
(October0–September+), and (d) La Niña years annual. Climate divisions with the strongest anomalies
are in bold.

Figure 4. October0–March+ relative precipitation anomalies (in % of 100 a mean) for (a) the 25%
strongest El Niño years, (b) the 25% strongest La Niña years, (c) the 10% strongest El Niño years, and
(d) the 10% strongest La Niña years. Climate divisions with the strongest anomalies are in bold.
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anomaly (�146 mm) is in the Texas Upper Coast climate
division (boundaries for the aforementioned climate divi-
sions are bolded in Figure 5).

3.4. PDO and Winter Precipitation Anomalies

[26] The effect of PDO phase on October0–March+

precipitation was analyzed using a t test to determine
significance of the difference in the mean of the two 50-a
composites of PDO cold (1905–1921, 1945–1977) and
PDO warm (1922–1944, 1978–2004) phases (Figure 6a).
Winter precipitation is significantly different (P < 0.1)
between PDO phases in the south central region from
New Mexico to Louisiana, with the highest significance
(lowest P values) centered in Oklahoma (Figure 6a).
Although low correlations between precipitation and PDO
index were shown for this area by Mantua et al. [1997], the
current t test analysis suggests that knowledge of the PDO
phase can improve winter precipitation predictions in this
region.
[27] Areas where the 50% PDO warm (cold) phase

composite winter precipitation anomaly is greater than the
50% SOI winter precipitation anomaly are shown for
climate divisions that had significant correlation (P <
0.05) between SOI and winter precipitation (Figure 6b).
The 50% SOI composites are simply the 50 a, out of the 100 a
of data used in this study, in which SOI > 0 (the La Niña
composite) and the other 50 a where SOI � 0 (the El Niño

composite). The continuous area where PDO had a greater
influence on winter precipitation than the more frequent
ENSO cycle is restricted to the central region (Figure 6b)
and does not include the three WEW hotspots (SW, GM,
and Nebraska). In light of these results, the effect of the
many small spatial scale studies that dealt with relationships
between PDO and water-resource variables in the SW [e.g.,
Hanson et al., 2004; Goodrich, 2004; Guan et al., 2005]
may provide a biased impression of regions in the southern
United States where the PDO effect is significant.

3.5. Combined ENSO and PDO Effects

[28] Strengthening El Niño positive anomalies during
PDO warm phase (13 a) and reducing this effect during
PDO cold phase (12 a) is termed the El Niño Decadal
Modulation (ENDM, Figure 7a). Similarly, strengthening
La Niña negative anomalies during PDO cold phase (18 a)
and reducing this effect during PDO warm phase (7 a) is
termed La Niña Decadal Modulation (LNDM, Figure 7b).
While the ENDM exists in the south central part of the
study area, it does not exist at all (there is even a negative
ENDM) in the north central part (Kansas, Nebraska and
South Dakota) (Figure 7a). ENDM is greatest in areas most
affected by PDO in the south central region (New Mexico–
Louisiana; Figures 6a and 7a); however, ENDM also occurs
in the southeast (Florida) and southwest (southern Nevada,
Arizona, and California) (Figure 7a). LNDM is confined to
the central region and is negligible in the southeast and
southwest (Figure 7b). In contrast to the ENDM, the LNDM
is strong in the Nebraska–South Dakota area. The frequency
of La Niña years is also higher during PDO cold phase
(36% in PDO cold phase versus 25% in both phases) while
the frequency of El Niño years during PDO cold phase is
not significantly less than the general frequency. It seems
that in the southern United States the PDO modulation is
more related to La Niña than to El Niño (compare total red
areas between Figures 7a and 7b). Although the Oklahoma,
northern Arkansas, and Missouri region is not a high ENSO
region, it is within the southern WEW (Figure 2), and it is
influenced by PDO phases, particularly during La Niñas
(Figures 5b, 6, and 7). There is a sharp divide between the
central area where the LNDM is stronger (orange and red in
Figure 7c) than the southwest and southeast regions where
the ENDM is dominant (green and blue in Figure 7c).

3.6. Predictions of Winter Precipitation

[29] Six climate divisions were selected to test the
predictability of winter (October0–March+) precipitation
(Table 1 and Figure 8a). The WEW centers are represented
by TX8 and FL3 (GM), NE2 (Nebraska), and AZ4 (SW)
(Figures 2 and 8a). The PDO dominant region is repre-
sented by OK8 (Figures 6 and 8a). California division 7
(CA7) was chosen to represent an area with significant,
but low, correlation with SOI (Figures 2 and 8).
[30] Inall sixdivisions,knowledgeof theJune0–September0

SOI (and the PDO-phase in two out of the six) improved
the prediction of winter (October0–March+) precipitation
relative to the mean or median trivial predictors (Table 1
and section 2.2.2 for the different predictors). Relative
improvement from the mean prediction [defined as:
(MAEmean - MAEpredictor)/MAEmean expressed in percent]
was relatively low (3.7–5.4%) for OK8, CA7, and AZ4,
which are characterized by low correlations between SOI

Figure 6. (a) P values for t test of the difference between
October0–March+ precipitation of PDO warm phase and
cold phase composites. (b) Area within the southern WEW
region in which the winter (October0–March+) precipitation
anomaly of the 50% composite of PDO warm (cold) phase
is greater than the 50% composite of negative (positive)
SOI.
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Figure 7. (a) Mean winter (October0–March+) precipitation of the composite of the lower quartile SOI
which occurred during PDO warm phase minus the mean winter precipitation of the composite of the
lower quartile SOI which occurred during PDO cold phase – El Niño Decadal Modulation (ENDM).
(b) Mean winter (October0–March+) precipitation of the composite of the upper quartile SOI which
occurred during PDO warm phase minus mean precipitation of the composite of upper quartile SOI which
occurred during the PDO cold phase – LaNiña DecadalModulation (LNDM). (c) ENDM – LNDM. Scales
are in percents of the 100 a winter precipitation mean.

Table 1. Validation Test Results for Predictions of October0–March+ Precipitation Using June0–September0 SOI and PDO Phase, and

Some Related Statistics of These Variables for Six Representative Climate Divisions

Parameter or Predictor

Climate Division

TX8 OK8 FL3 CA7 AZ4 NE2

Statistics SOI-Precipitation Correlation (r) �0.52 �0.33 �0.46 �0.30 �0.40 �0.47
PDO-Precipitation Anomalya (% of mean) 7.2 10.8 1.4 2.2 1.7 4.3

Continuous predictions
Mean Absolute Error (MAE)
of precipitation predictions
(% of mean)

mean (trivialb) 23.4 25.8 26.1 40.1 33.9 25.9
median (trivial) 23.2 25.5 25.9 38.7 33.4 25.8
Best prediction (lowest MAE) 19.6 24.4 23.4 38.4 32.6 23.5
Best predictorc SOI Reg.

+ PDO
SOI Reg.
+ PDO

SOI Reg. SOI Reg. SOI Reg. SOI Reg.

Relative improvement from mean,d% 16.2 5.4 10.3 4.2 3.7 9.0

Dichotomous predictions
Successes of above or below
mean precipitation predictions
(% of successful predictions)

Always below (trivial) 54 56 53 61 57 52
Logistic – Pr > 0.5 – above mean,
Pr < 0.5 below mean

72 64 67 65 60 67

Improvement from triviale 18 8 14 4 3 15
Logistic – Pr < 0.4 or Pr > 0.6f 75 70 77 66 71 76

Above or below first quartile Logistic – Pr > 0.5 – above, Pr < 0.5 below 81 79 76 75 71 76

aAbsolute deviation of mean precipitation of the 50% warm (cold) PDO years from the 100 a mean.
bTrivial predictions refer to predictions that do not use SOI and/or PDO data.
cSee section 2.2.2, second paragraph for a description of the different predictors.
d(MAEmean – MAEpredictor)/MAEmean expressed in percent.
eDifference in percent of successful predictions between predictions of the Logistic model in the row above and the trivial prediction.
fSee section 3.6, fifth paragraph for the difference between (Logistic – Pr > 0.5 – above mean, Pr < 0.5 below mean) and (Logistic – Pr < 0.4 or

Pr > 0.6).
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and winter precipitation (r � �0.4, Table 1). In contrast,
relative improvement from trivial predictors was much
higher (9.0–16.2%) for TX8, FL3, and NE2 climate
divisions, which are characterized by higher correlation
between SOI and winter precipitation (r < �0.45, Table 1).
[31] Regression predictors (e.g., SOI Reg., SOI Reg. +

PDO) were superior to fixed number predictors in all six
climate divisions (see section 2.2.2 and Table 1), proving
that the P values calculated (Figure 2) as if the SOI data are
serially independent, are consequential. Although higher
order polynomial regressions may result in lower MAE
values [Pool, 2005], they can also result in a larger error for
a single prediction; therefore, decision makers need to
decide whether to use higher order polynomials for predic-
tive regression models.
[32] Improvements in dichotomous predictions of higher

or lower than mean winter precipitation relative to the trivial
predictor (always lower than the mean) are significant in the
same climate divisions where SOI and precipitation are
highly correlated (r < �0.45, Table 1). The advantage of
logistic regression is that it provides the probability for
higher than average precipitation. Therefore, percentage of
successful predictions for high or low probabilities (Pr > 0.6
or Pr < 0.4) which occurred over a certain percentage of
time for the climate divisions (AZ4, 46%; CA7, 68%; OK8,
70%; FL3, 73%; TX8, 74%; and NE2, 77%) is higher
than those made for the complete set of predictions (Pr �
0.5 or Pr < 0.5; Table 1). For example, successful predic-
tions increased by 14% (relative to trivial predictions) in
OK8 and AZ4 when using the higher or lower probabilities
alone (Table 1), suggesting that use of logistic regression
models is worthwhile also in areas of lower SOI-precipita-
tion correlation and the high PDO area in the south central
region. The success rate in these high and low probability
cases was �75% in climate divisions where SOI and
precipitation are highly correlated (TX8, FL3, and NE2,
Table 1).
[33] Predicting whether winter precipitation would be in

the three higher quartiles using SOI and PDO-phase data
was improved relative to the trivial prediction (always in the
three higher quartiles �75% success) only in TX8 and OK8
where the PDO phase and La Niña conditions have a
stronger impact on precipitation (Table 1).
[34] Summarizing this prediction-validation analysis,

substantial increases in predictability of winter precipitation

over trivial predictions with June0–September0 SOI and
PDO-phase data can be obtained in areas where the corre-
lation coefficient between historic SOI and precipitation
data is <�0.45. This area includes the three southern
climate divisions in Arizona, almost all the coastal climate
divisions on the Gulf of Mexico, and climate divisions 2
and 7 in Nebraska (in red in Figure 8b). In other climate
divisions where a significant correlation exists between
historic SOI and precipitation data (�r < �0.2 in the 100 a
data set), improvement in predictions is relatively minor.
Nevertheless, high or low probabilities obtained by logistic
regression models gave above/below mean-precipitation
predictions in the 70% success level also in regions where
r � �0.4. The percentage of successful predictions obtained
in this analysis does not show the full strength of logistic
regression models because it does not use the exact prob-
abilities calculated by the models. These probabilities can
be very helpful for calculating expected values of precipi-
tation-related variables (e.g., agricultural yield and income
from a precipitation-related economic activity). The PDO
phase improved precipitation prediction only in TX8 and
OK8 climate divisions. Whereas SOI is always known at the
beginning of a hydrologic year, the PDO phase is often
debatable. Nevertheless, non-ENSO cold phase years are
expected to have lower than average winter precipitation in
the Texas–Oklahoma area. For example, the probabilities
based on the logistic regression models for 2005–2006
October0–March+ precipitation, which followed a non-
ENSO summer (SOI = 0.01), assuming cold-phase PDO,
were Pr = 0.29 and Pr = 0.36 for above mean precipitation
in climate divisions OK8 and TX8, respectively. October–
March precipitation in both climate divisions was far below
average in 2005–2006.

4. Conclusions

[35] A continuous, statistically significant (P < 0.05),
wet-El-Nino and dry-La-Nina winter (October–March)
region was found in response to ENSO (June–September
SOI) forcing, extending from North Carolina in the east to
southern California in the west and as far north as South
Dakota in the center, based on analysis of climate division
precipitation data from 1905–2005 in the southern United
States. Centers of highest correlation were found along the
Gulf of Mexico, southern Arizona, and a previously ignored

Figure 8. (a) Selected climate divisions where predictability of winter precipitation was tested.
(b) Correlation coefficients – r for June0–September0 SOI and October0–March+ precipitation. Note
areas in red where r < �0.45.
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area centered in Nebraska. Similar results were found for
analysis of annual precipitation; however, correlations are
weaker and the area affected is smaller for annual than for
winter precipitation.
[36] The strength and spatial distribution of ENSO-related

precipitation anomalies in the southern United States vary
with the extremity of composites used to calculate
the anomaly (e.g., upper decile or upper quartile SOI)
and whether relative or absolute anomalies are considered.
Highest relative anomalies are found in Arizona, New
Mexico, and Nebraska when the less extreme composite
(upper quartile) was used, while the entire southwest is the
most affected region when the more extreme composite
(upper decile) was used. Absolute anomalies were greatest
along the Gulf of Mexico and Texas.
[37] Pacific Decadal Oscillation impacts on winter pre-

cipitation are significant (P < 0.1) only in the south central
region (New Mexico to Louisiana), with highest signifi-
cance in Oklahoma. Climate divisions in which the 50%
PDO anomaly is greater than the 50% SOI anomaly are
primarily in Oklahoma, Arkansas, and Missouri, which are
outside the areas that have high correlations between SOI
and precipitation. Decadal modulation of El Niño (higher
anomalies during PDO warm phase) was found in the
southeast (Louisiana to Florida) and southwest (Arizona,
Utah, Nevada, and California) while decadal modulation of
La Niña was found in the north- central region (Kansas to
South Dakota). In the south central region (Texas and
Oklahoma) both El Niño and La Niña decadal modulations
exist and the latter is stronger.
[38] Testing of winter precipitation prediction models in a

representative set of climate divisions (6) relative to trivial
predictors (precipitation mean and median) indicated that
summer SOI was a useful predictor of winter precipitation
in all six climate divisions. PDO-phase was useful only in
the two south central climate division regions tested in
Texas and Oklahoma. The decrease in relative mean abso-
lute error (MAE) over the MAE of a trivial prediction
(mean precipitation) was greatest (9%–16%) in three out of
the six climate divisions in which the correlation coefficient
between SOI and winter precipitation is relatively strong
(r < �0.45).
[39] A novel application of logistic regression models that

use summer-SOI and PDO phase data for calculating the
probability of exceeding the mean winter precipitation was
found to improve the success over trivial predictions
(always below the mean) by 14%–18% in climate divi-
sions where SOI and precipitation are strongly correlated
(r < �0.45). Increases in prediction success by up to 14%
higher than the trivial predictor when only the higher and
lower probabilities (Pr > 0.6 and Pr < 0.4) were consid-
ered, was found also in climate divisions with low
correlation between SOI and precipitation (r � �0.40),
suggesting that use of probabilities calculated from SOI
and/or PDO-phase logistic models could be beneficial over
large areas. The advantage of having probabilities of
exceeding a pre-specified precipitation threshold at the
beginning of a hydrologic year can be highly beneficial
to water resource managers.
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