Appendix 1

GUIDANCE MANUAL

FOR

COMPLIANCE WITH THE

FILTRATION AND DISINFECTION REQUIREMENTS

FOR

PUBLIC WATER SYSTEMS

USING

SURFACE WATER SOURCES

MARCH 1991 EDITION

SCIENCE AND TECHNOLOGY BRANCH
CRITERIA AND STANDARDS DIVISION
OFFICE OF DRINKING WATER
U.S. ENVIRONMENTAL PROTECTION AGENCY
WASHINGTON, D.C.

GUIDANCE MANUAL
FOR
COMPLIANCE WITH THE
FILTRATION AND DISINFECTION REQUIREMENTS
FOR
PUBLIC WATER SYSTEMS
USING
SURFACE WATER SOURCES

for

Science and Technlogy Branch Criteria and Standards Division Office of Drinking Water U.S. Environmental Protection Agency Washington, D.C.

Contract No. 68-01-6989

by

Malcolm Pirnie, Inc. 100 Eisenhower Drive Paramus, New Jersey 07653 HDR Engineering, Inc. 5175 Hillsdale Circle Eldorado Hills, CA 95630

October, 1990

Acknowledgments

Preparation of this document involved important contributions from many people in two consulting engineering firms, several private consultants, and the United States Environmental Protection Agency (USEPA). Malcolm Pirnie, Inc., with technical contributions provided by HDR Engineering Inc., conducted the day-to-day work under contract with the USEPA.

Principal authors from Malcolm Pirnie were David J. Hiltebrand and Linda Averell Wancho. Personnel from HDR involved in this work were Jerry Troyan and Perri P. Garfinkel. Additional personnel from Malcolm Pirnie who contributed to either the technical content or the preparation of the manual included: John E. Dyksen, James K. Schaefer, Scott L. Phillips and Peter B. Galant.

Private consultants who contributed to the document included: Dr. Appiah Amirtharajah, Georgia Institute of Technology, Atlanta, GA; Dr. Ovadia Lev, Hebrew University, Jerusalem, Israel; Dr. Vincent Oliveri, formerly John Hopkins University, Baltimore, MD; Dr. Phillip C. Singer, University of North Carolina, Chapel Hill, NC; Dr. Mark Wiesner, Rice University, Houston, TX.

Preparation of the document was overseen by Stig Regli, the USEPA project officer. Valuable technical review and major contributions to the text were provided by Thomas Grubbs, Office of Drinking Water, USEPA, and Leigh Woodruff, Region X, USEPA.

Special thanks are given to the following individuals working for USEPA whose review and comment on numerous drafts greatly contributed to the evolution of this document: John Davidson, Office of Policy, Planning and Evaluation; Edwin Geldreich, Drinking Water Research Division, Office of Research and Development; John Hoff, formerly with Drinking Water Research Division, Office of Research and Development; Walt Jakubowski, Environmental Monitoring and Support Laboratory, Office of Research and Development; Dr. Gary Logsdon, formerly with Drinking Water Research Division, Office of Research and Development; Kevin Reilly, Region I; Margaret Silver, Office of General Council; and Jim Westrick, Technical Support Division, Office of Drinking Water.

Appreciation is also expressed to state public health officials, representatives of the drinking water industry, academicians, and the American public for their participation in submitting timely and insightful comments without which this document would not have been possible.

Some of the appendices have primary authors which are noted on the corresponding cover pages.

TABLE OF CONTENTS

1. INTRODUCTION

2. GENERAL REQUIREMENTS

- 2.1 Application
- 2.1.1 Types of Water Supplies
- 2.1.2 Determination of Applicable Sources
- 2.2 Treatment Requirements
- 2.3 Operator Personnel Qualifications

3. COMPLIANCE FOR SYSTEMS NOT FILTERING

- 3.1 Source Water Quality Criteria
- 3.1.1 Coliform Concentrations
- 3.1.2 Turbldity Levels
- 3.2 Disinfection Criteria
- 3.2.1 Inactivation Requirements
- 3.2.2 Determination of Overall Inactivation for Residual Profile, Multiple Disinfectants and Multiple Sources and Multiple Sources
- 3.2.3 Demonstration of Maintaining a Residual
- 3.2.4 Disinfection System Redundancy
- 3.3 Site-Specific Conditions
- 3.3.1 Watershed Control Program
- 3.3.2 On-site Inspection
- 3.3.3 No Disease Outbreaks
- 3.3.4 Monthly Coliform MCL
- 3.3.5 Total Trihalomethane (TTHM) Regulations

4. DESIGN AND OPERATING CRITERIA FOR FILTRATION AND DISINFECTION TECHNOLOGY

4.1	Introduction
4.2	Selection of Appropriate Filtration Technology
4.2.1	General Descriptions
4.2.2	Capabilities
4.2.3	Selection
4.3	Available Filtration Technologies
4.3.1	Introduction
4.3.2	General
4.3.3	Conventional Treatment
4.3.4	Direct Filtration
4.3.5	Slow Sand Filtration
4.3.6	Diatomaceous Earth Filtration
4.3.7	Alternate Technologies
4.3.8	Nontreatment Alternatives
4.4	Disinfection
4.4.1	General
4.4.2	Recommended Removal/Inactivation
4.4.3	Total Trihalome.thane (TTHM) Regulations

5. CRITERIA FOR DETERMINING IF FILTRATION AND DISINFECTION ARE SATISFACTORILY PRACTICED

5.1	Introduction
5.2	Turbidity Monitoring Requirements
5.2.1	Sampling Location
5.2.2	Sampling Frequency
5.2.3	Additional Monitoring
5.3	Turbidity Performance Criteria
5.3.1	Conventional Treatment or Direct Filtration
5.3.2	Slow Sand Filtration
5.3.3	Diatomaceous Earth Filtration
5.3.4	Other Filtration Technologies
5.4	Disinfection Monitoring Requirements
5.5	Disinfection Performance Criteria
5.5.1	Minimum Performance Criteria Required Under the SWTR
5.5.2	Recommended Performance Criteria
5.5.3	Disinfection By-Product Considerations
5.5.4	Recommended Disinfection System Redundancy
5.5.5	Determination of Inactivation by Disinfection
5.6	Other Considerations

6. REPORTING

- 6.1 Reporting Requirements for Public Water Systems Not Providing Filtration
- 6.2 Reporting Requirements for Public Water Systems Using Filtration

7. COMPLIANCE

- 7.1 Introduction
- 7.2 Systems Using a Surface Water Source Not Ground Water Under the Direct nfluence of Surface Water)
- 7.3 Compliance Transition with Current NPDWR Turbidity Requirements
- 7.4 Systems Using a Ground Water Source Under the Direct Influence of a Surface Water
- 7.5 Responses for Systems not Meeting the SWTR Criteria
- 7.5.1 Introduction
- 7.5.2 Systems Not Filtering
- 7.5.3 Systems Currently Filtering

8. PUBLIC NOTIFICATION

9. EXEMPTIONS

- 9.1 Overview of Requirements
- 9.2 Recommended Criteria
- 9.3 Compelling Factors
- 9.4 Evaluation of Alternate Water Supply Sources
- 9.5 Protection of Public Health
- 9.6 Notification to EPA

List of Tables

Table	Description
2-1	Survey Form for the Classification of Drinking Water Sources
4-1	Removal Capabilities of Filtration Processes
4-2	Generalized Capability of Filtration Systems to Accommodate Raw Water Quality Conditions
6-1	Source Water Quality Conditions for Unfiltered Systems
6-2	Long Term Source Water Quality Conditions for Unfiltered Systems
6-3	CT Determination for Unfiltered Systems Monthly Report to Primacy Agency
6-4	Disinfection Information for Unfiltered Systems Monthly Report to Primacy Agency
6-5	Distribution System Disinfectant Residual Data for Unfiltered and Filtered Systems - Monthly Report to Primacy Agency
6-6	Monthly Report to Primacy Agency for Compliance Determination - Unfiltered Systems
6-7	Daily Data Sheet for Filtered Systems
6-8	Monthly Report to Primacy Agency for Compliance Deterimination-Filtered Systems
7-1	Requirements for Unfiltered Systems
7-2	Requirements for Filtered Systems
2-1	Steps to Source Classification
3-1	Determination of Inactivation for Multiple Disinfectant Application to a Surface Water Source
3-2	Individually Disinfected Surface Sources Combined at a Single Point
3-3	Multiple Combination Points for Individually Disinfected Surface Sources
4-1	Flow Sheet for a Typical Conventional Water Treatment Plant
4-2	Flow Sheet for Typical Softening Treatment Plants
4-3	Flow Sheet for a Typical Direct Filtration Plant
4-4	Flow Sheet for a Typical Direct Filtration Plant with Flocculation

LIST OF APPENDICES

Appendix Description

- A Use of Particulate Analysis for Source and Water Treatment Evaluation
- **B** Institutional Control of Legionella
- C Determination Of Disinfectant Contact Time D Analytical Requirements of the SWTR and a Survey of the Current Status of Residual Disinfectant Measurement Methods for all Chlorine Species and Ozone
- **E** Inactivation Achieved by Various Disinfectants
- F Basis for CT Values
- **G** Protocol for Demonstrating Effective Disinfection
- H Sampling Frequency for Total Coliforms in the Distribution System
- I Maintaining Redundant Disinfection Capability
- J Watershed Control Program
- **K** Sanitary Survey
- L Small System Considerations
- **M** Protocol for Demonstration of Effective Treatment
- N Protocols for Point-of-Use Treatment Devices
- 0 Guidelines to Evaluate Ozone Disinfection

1. INTRODUCTION

This Guidance Manual complements the filtration and disinfection treatment requirements for public water systems using surface water sources or ground water under the direct influence of surface water promulgated in 40 CFR Part 141, Subpart H. In this manual, these requirements are referred to as in the Surface Water Treatment Rule (SWTR).

The purpose of this manual is to provide guidance to United States Environmental Protection Agency (USEPA) Regional Offices, Primacy Agencies and affected utilities in the implementation of the SWTR, and to help assure that implementation is consistent. For example, the SWTR sets treatment requirements which apply to a large range of source water conditions. The guidance manual suggests design, operating and performance criteria for specific surface water quality conditions to provide the optimum protection from microbiological contaminants. These recommendations are presented as advisory guidelines only; unlike the provisions of the SWTR, these recommendations are not mandatory requirements. In many cases, it will be appropriate to tailor requirements to specific circumstances; the guidance manual is designed to give the Primacy Agency flexibility in establishing the most appropriate treatment requirements for the systems within their jurisdiction.

Throughout this document, the term "Primacy Agency" refers to a State with primary enforcement responsibility for public water systems or "primacy," or to mean EPA in the case of a State that has not obtained primacy.

In order to facilitate the use of this manual, it has been structured to follow the framework of the SWTR as closely as possible. Brief descriptions of the contents of each section of this manual are presented in the following paragraphs.

Section 2

This section provides guidance for determining whether a water supply source is subject to the requirements of the SWTR including the determination of whether a ground water source is under the direct influence of surface water, i.e. at risk for the presence of <u>Giardia</u> cysts or other large microorganisms. The overall treatment requirements of the SWTR are also presented, along with recommendations for the qualifications of operator personnel.

Section 3

For systems which are subject to the requirements of the SWTR and which do not currently provide filtration, this section provides guidance to the Primacy Agency for determining if a given system:

- Meets the source water quality criteria
- Meets the disinfection requirements including:
 - 99.9 and 99.99 percent inactivation of <u>Giardia</u> cysts and viruses and application of the CT (disinfectant residual concentration x contact time) concept
 - Point of entry to distribution system requirements
 - Distribution system requirements
 - Provision for disinfection system redundancy
- Maintains an adequate watershed control program
- Meets the on-site inspection requirements
- Has not had an identified waterborne disease outbreak
- Complies with the requirements of the revised Total Coliform Rule
- Complies with Total Trihalomethane (TTHM) Rule

Section 4

This section pertains to systems which do not meet the requirements to avoid filtration outlined in Section 3 and therefore are required to install filtration. Guidance is given for the selection of an appropriate filtration technology based on the source water quality and the capabilities of various technologies to achieve the required performance criteria. In addition, recommended design and operating criteria are provided for different filtration technologies.

Section 5

Section 5 presents guidance to the Primacy Agency for determining compliance with the turbidity and disinfection performance requirements, and in turn, whether filtration and disinfection are satisfactorily practiced. Recommendations are made for the level of disinfection to be provided in order to meet the overall treatment requirements of the SWTR. This section describes how to evaluate the adequacy of disinfection using CT or other methods.

Section 6

Section 6 provides guidelines to the Primacy Agency for establishing the reporting requirements associated with the SWTR. The requirements include report content and frequency, and are applicable to both filtering and nonfiltering systems.

Section 7

This section provides an overview of the schedule for Primacy Agencies and utilities to meet the requirements of the SWTR. Examples are presented to provide guidance for corrective measures which can be taken by systems which are not in compliance with the treatment requirements. Section 8

This section presents guidance on public notification. Included are examples of events which would require notification, language for the notices and the methods of notification.

Section 9

Section 9 provides guidance to the Primacy Agency for determining whether a system is eligible for an exemption. The criteria for eligibility for an exemption include:

- Compelling factors (economic or resource limitations)
- No available alternate source
- Protection of public health

This section also provides guidance for evaluating the financial capabilities of a water system, reviewing the availability of alternate sources and suggests interim measures for protecting public health.

Appendices

The manual also contains appendices which provide more detailed quidance in specific areas. These include:

Appendix A - EPA Consensus Method for Giardia cyst Analysis

Several procedures are available for <u>Giardia</u> cyst analysis in water. In 1983 the USEPA held a conference to establish a consensus on the procedure to be used in the future. This consensus method would promote uniformity in testing and provide a basis for future conparisons. The consensus method and the background data used to develop it are presented in this appendix.

Appendix B - Institutional Control of Legionella

Filtration and/or disinfection provides protection from <u>Legionella</u>. However, it does not assure that recontamination or regrowth will not occur in the hot water or cooling systems of buildings within the distribution system. This appendix provides guidance for monitoring and treatment which can be used by institutional systems for the control of <u>Legionella</u>.

Appendix C - Determination of Disinfectant Contact Time

In many cases, the determination of disinfectant contact times needed to evaluate the CT of a water system will necessitate the use of tracer studies. This appendix provides guidance for conducting these studies. In some cases it may not be practical to conduct a tracer study. For such cases guidance is given for estimating the detention time based on the physical configuration of the system.

Appendix D - Analytical Requirements of the SWTR and A Survey of the Current Status of Residual Disinfectant Measurement Methods for all Chlorine Species and Ozone

This appendix includes a listing of the analytical methods required under the SWTR. An executive summary of a report on the analytical methods used to measure the residual concentrations of the various disinfectants is included. The reliability and limitations of each of the methods are presented.

Appendix E - Inactivations Achieved by the Various Disinfectants

This appendix presents the log inactivations of <u>Giardia</u> cysts and viruses which are achieved at various CT levels by chlorine, chlorine dioxide, chloramines and ozone. Inactivations of viruses achieved by UV absorbance are also included.

Appendix F - Basis for CT Values

This appendix provides the background and rationale utilized in developing the CT values for the various disinfectants. Included is a paper by Clark and Regli, 1990, in which a mathematical model was used in the determination of CT values for free chlorine.

Appendix G - Protocol for Demonstrating Effective Disinfection

This appendix provides the recommended protocols for demonstrating the effectiveness of chloramines, chlorine dioxide and ozone as primary disinfectants.

Appendix H - Sampling Frequency for Total Coliforms in the Distribution System

The sampling frequency required by the revised Total Coliform Rule 54 FR 27544 (June 29, 1989) is presented in this appendix.

Appendix I - Maintaining Redundant Disinfection Capability

This appendix details the conditions and equipment which should be maintained by a system using chlorine, chlorine dioxide, ozone or chloramines to assure that compliance with the SWTR requirement for redundant disinfection is met.

Appendix J - Watershed Control Program

This appendix provides a detailed outline of a watershed program. This program may be adjusted by the Primacy Agency to serve the specific needs of a particular water system.

Appendix K - Sanitary Survey

This appendix provides guidance for conducting a comprehensive sanitary survey of a supply source and its treatment and delivery to the consumer. Suggested elements of an annual on-site inspection are included in Section 3.

Appendix L - Small System Considerations

This appendix describes difficulties which may be faced by small systems in complying with the SWTR along with guidelines for overcoming these difficulties.

Appendix M - Protocol for the Demonstration of Effective Treatment

This appendix presents pilot study protocols to evaluate the effectiveness of an alternate filtration technology in meeting the performance requirements of the SWTR. It presents the use of particle size analysis for demonstrating the actual removal of <u>Giardia</u> cyst achieved by a treatment train. Guidance for conventional and direct filtration plants to demonstrate that adequate filtration is being maintained at effluent turbidities between 0.5 and 1 Nephelometric Turbidity Unit (NTU) is also included.

•

Appendix N - Protocol for Point-of-Use Treatment Devices

In some limited cases, it may be appropriate to install point-of-use (POU) or point-of-entry (POE) treatment devices as an interim measure to provide protection to the public health. This appendix provides a protocol for evaluating and determining the efficacy of POU/POE treatment devices.

Appendix 0 - Guidelines to Evaluate Ozone Disinfection

The CT evaluation used for other disinfectants is inappropriate for ozone. This appendix presents alternative methods for evaluating the disinfection effectiveness of ozone systems.

2. GENERAL REQUIREMENTS

2.1 Application

The SWTR pertains to all public water systems which utilize a surface water source or ground water source under the direct influence of surface water. The SWTR defines a surface water as all waters which are open to the atmosphere and subject to surface runoff. Ground water under the direct influence of surface water is defined as: any water beneath the surface of the ground with (i) significant occurrence of insects or other macroorganisms, algae, organic debris, or large-diameter pathogens such as Giardia lamblia, or (ii) significant and relatively rapid shifts in water characteristics such as turbidity, temperature, conductivity, or pH which closely correlate to climatological or surface water conditions. Direct influence must be determined for each individual source in accordance with criteria established by the Primacy Agency. The Primacy Agency criteria may provide for documentation of well construction and geology, with field evaluation, or site-specific measurements of water quality as explained in Section 2.1.2.

Saline water sources such as the ocean are not generally considered to be subject to the requirements of the SWTR because of the low survival time of pathogens in a saline environment (Geldreich, 1989). Pathogens generally can only survive a few hours in saline water and any remaining pathogens should be removed or inactivated during desalination. However, it is up to the Primacy Agency's discretion to determine which systems must meet the SWTR requirements. In cases where there is a sewage discharge located near the water intake, it may be appropriate for the Primacy Agency to require the system to comply with the SWTR.

The traditional concept that all water in subsurface aquifers is free from pathogenic organisms is based upon soil being an effective filter that removes microorganisms and other relatively large particles by straining and antagonistic effects (Bouwer, 1978). In most cases pathogenic bacteria retained in the soil find themselves in a hostile environment, are not able to multiply and eventually die. However, some underground sources of drinking water may be subject to contamination by pathogenic organisms from the direct influence of nearby surface waters.

Only those subsurface sources which are at risk to contamination from <u>Giardia</u> cysts will be subject to the requirements of the SWTR. <u>Giardia</u>

cysts generally range in size from 7 to 12 um. Subsurface sources which may be at risk to contamination from bacteria and enteric viruses, but which are not at risk from <u>Giardia</u> cysts will be regulated either under the Total Coliform Rule or forthcoming disinfection treatment requirements for ground waters. EPA intends to promulgate disinfection requirements for ground water systems in conjunction with regulations for disinfection by-products by 1992.

2.1.1 Types of Water Supplies

Surface Waters

Surface water supplies that are often used as sources of drinking water include two major classifications, running and quiescent waters. Streams, rivers and brooks are examples of running water, while lakes, reservoirs, impoundments and ponds are examples of quiescent waters. The exposure of surface waters to the atmosphere results in exposure to precipitation events, surface water runoff and contamination with micro and macroorganisms resulting from activities in their surrounding areas. These sources are subject to the requirements of the SWTR.

Systems with rain water catchments not subject to surface runoff (e.g. roof catchment areas) are not considered vulnerable to contamination from animal populations which carry protozoan cysts pathogenic to humans and are thus not subject to the SWTR requirements. However, such systems should at least provide disinfection to treat for potential bacterial and viral contamination coming from bird populations.¹

Ground Waters under Direct Influence of Surface Water

Ground water sources which may be subject to contamination with pathogenic organisms from surface waters include, springs, infiltration galleries, wells or other collectors in subsurface aquifers. The following section presents a recommended procedure for determining whether a source will be subject to the requirements of the SWTR. These determinations are to be made for each individual source. If the determination will involve an evaluation of water quality, eg. particulate analysis, it is important that these analyses be made on water taken

One study (Markwell and Shortridge, 1981) indicates that a cycle of waterborne transmission and maintenance of influenza virus may exist within duck communities, and that it is conceivable for virus transmission to occur in this manner to other susceptible animals, including humans.

directly from the source and not on blended water or water from the distribution system.

2.1.2 Determination of Applicable Sources

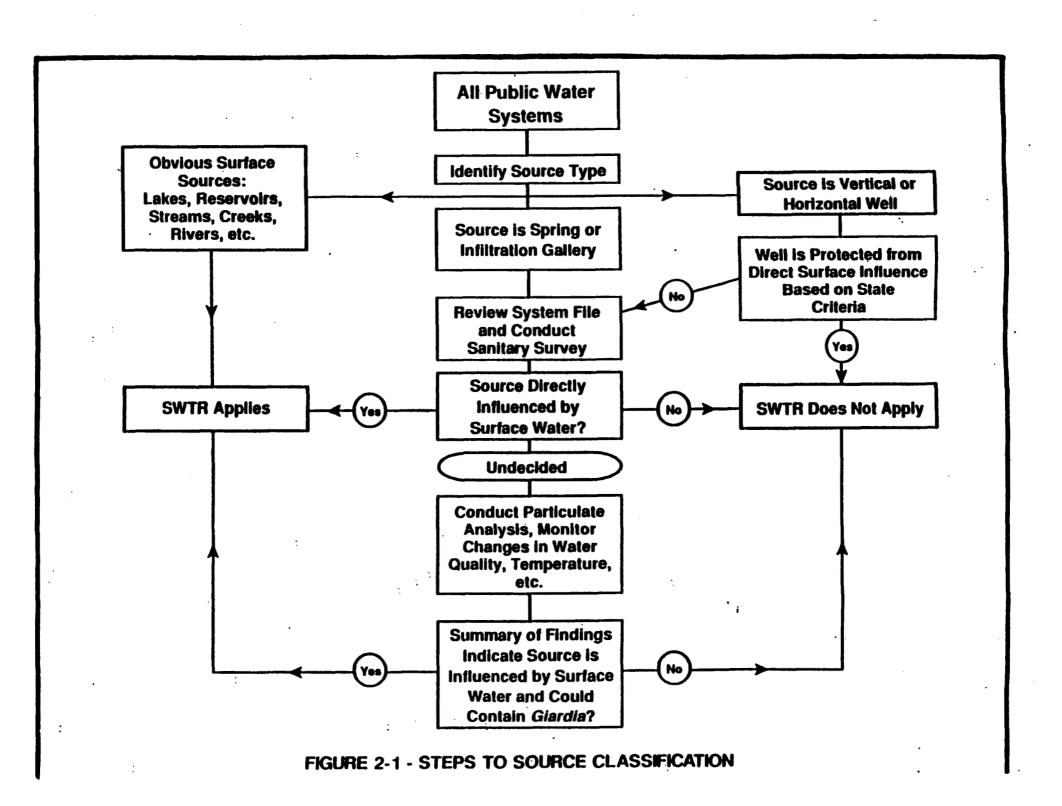
The Primacy Agency has the responsibility for determining which water supplies must meet the requirements of the SWTR. However, it is the responsibility of the water purveyors to provide the Primacy Agency with the information needed to make this determination. This section provides guidance to the Primacy Agency for determining which water supplies are surface waters or ground waters directly influenced by a surface water and are thereby subject to the requirements of the SWTR. Following the determination that the source is subject to the SWTR, the requirements enumerated in Sections 2.2 and 2.3 must be met.

The Primacy Agency must develop a program for evaluating ground water sources for direct influence by December 30, 1990. All community ground water systems must be evaluated by June 29, 1994, while all non-community systems must be evaluated by June 29, 1999. Primacy Agencies with an approved Wellhead Protection (WHP) Program, may be able to use the WHP program's requirements which include delineation of wellhead protection areas, assessment of sources of contamination and implementation of management control measures. These same requirements can be used for meeting the requirements of the watershed control program for ground water under the direct influence of a surface water.

A multiple step approach has been developed as the recommended method of determining whether a ground water source is under direct influence of a surface water. This approach includes the review of information gathered during sanitary surveys. As defined by the USEPA, a sanitary survey is an on-site review of the water source, facilities, equipment operation and maintenance of a public water system for the purpose of evaluating the adequacy of such source, facilities, equipment, operation and maintenance for producing and distributing safe drinking water. Sanitary surveys are required under the Total Coliform Rule and may be required under the forthcoming disinfection requirements for ground water systems as a condition for obtaining a variance or for determining the level of disinfection required. Therefore, it is recommended that the determination of direct influence be correlated with the sanitary surveys conducted under these other requirements.

A. Source Evaluation Protocol

As illustrated on Figure 2-1, the determination of whether a source is subject to the requirements of the SWTR may involve one or more of the following steps:


- 1. A review of the records of the system's source(s) to determine whether the source is obviously a surface water, i.e. pond, lake, streams, etc.
- 2. If the source is a well, determination of whether it is clearly a ground water source, or whether further analysis is needed to determine possible direct surface water influence.
- 3. A complete review of the system's files followed by a field sanitary survey. Pertinent information to gather in the file review and field survey includes: source design and construction; evidence of direct surface water contamination; water quality analysis; indications of waterborne disease outbreaks; operational procedures (i.e. pumping rates, etc.); and customer complaints regarding water quality or water related infectious illness.
- 4. Conducting particulate analyses and other water quality sampling and analyses.

Step 1. Records Review .

A review of information pertaining to each source should be carried out to identify those sources which are obvious surface waters. These would include ponds, lakes, streams, rivers, reservoirs, etc. If the source is a surface water, then the SWTR would apply, and criteria in the rule would need to be applied to determine if filtration is necessary. If the source is not an obvious surface water, then further analyses, as presented in Steps 2, 3, or 4, are needed to determine if the SWTR will apply. If the source is a well (vertical or horizontal), go to Step 2. If the source is a spring, infiltration gallery, or any other subsurface source, proceed to Step 3 for a more detailed analysis.

Step 2. Review of Well Sources

While most well sources have historically been considered to be ground water, recent evidence suggests that some wells, especially shallow wells constructed near surface waters, may be directly influenced by surface water. One approach in determining whether a well is subject to contamination by surface water would be to evaluate the water quality of the well by the criteria in Step 4. However, this process is rather time

consuming and labor intensive. In an attempt to reduce the effort needed to evaluate well sources, a set of criteria has been developed to identify wells in deep, well protected aquifers which are not subject to contamination from surface water. While these criteria are not as definitive as water quality analysis, it is believed that they provide a reasonable degree of accuracy, and allow for a relatively rapid determination for a large number of well sources in the U.S.

Wells with perforations or a well screen less than or equal to 50 feet in depth are considered to be shallow wells, and should be evaluated for direct surface influence according to steps 3 and/or 4. For wells greater than 50 feet in depth, State or system files should be reviewed for the criteria listed below:

- The well construction should include:
 - A surface sanitary seal using bentonite clay, concrete or other acceptable material.
 - A well casing that penetrates a confining bed.
 - A well casing or collector laterals that are only perforated or screened below a confining bed.

The importance of evaluating the hydrogeology of wells or collectors, even those more than 200 feet from a surface water, cannot be overstated. The porosity and transmissivity of aquifer materials, hydrologic gradients, and continuity of confining layers above screens or perforations may need to be considered in detail for some sources. Porous aquifer material is more likely to allow surface water to directly influence ground water than finer grained materials. In addition, high well pumping rates may alter the existing hydrologic gradient. Ground water flow direction may change such that surface water is drawn into a collector, whereas under low pumping rates it may not. Evaluating pumping rate effects and other hydrogeologic information must be done on a site specific basis.

If information on well construction or hydrogeology are incomplete or raise questions regarding potential surface water influence, a more detailed analysis in steps 3 and 4 should be considered.

- 2. The casing or nearest collector lateral should be located at least 200 feet from any surface water.
- 3. The water quality records should indicate:

- No record of total coliform or fecal coliform contamination in untreated samples collected over the past three years.
- No history of turbidity problems associated with the source.
- No history of known or suspected outbreak of <u>Giardia</u>, or other pathogenic organism associated with surface water (e.g. <u>Cryptosporidium</u>), which has been attributed to that source.
- 4. If data is available for particulate matter in the well there should be:
 - No evidence of particulate matter associated with surface water.

If data is available for turbidity or temperature from the well and a nearby surface water there should be:

- No turbidity or temperature data which correlates to that of a nearby surface water.

Wells that meet all of the criteria listed above are not subject to the requirements of the SWTR, and no additional evaluation is needed. Wells that do not meet all the requirements listed require further evaluation in accordance with Steps 3 and/or 4 to determine whether or not they are directly influenced by surface water.

Step 3. On-site Inspection

For sources other than a well source, the State or system files should be reviewed for the source construction and water quality conditions as listed in Step 2. Reviewing historical records in State or system files is a valuable information gathering tool for any source. However, the results may be inconclusive. A sanitary survey in the field may be helpful in establishing a more definite determination of whether the water source is at risk to pathogens from direct surface water influence.

Information to obtain during an on-site inspection include:

 Evidence that surface water enters the source through defects in the source such as lack of a surface seal on wells, infiltration gallery laterals exposed to surface water, springs open to the atmosphere, surface runoff entering a spring or other collector, etc.

Distances to obvious surface water sources.

If the survey indicates that the well is subject to direct surface water influence, the source must either be reconstructed as explained later in this section or it must be treated in accordance with the requirements for the SWTR. If the survey does not show conclusive evidence of direct surface water influence, the analysis outlined in Step 4 should be conducted.

The Washington State Department of Social and Health Services has developed a form to guide them and provide consistency in their evaluation of sources for surface water influence (Notestine & Hudson, 1988). Table 2-1 provides a copy of this form as a guide for evaluating sources.

Step 4. Particulate Analysis and Other Indicators

a. Surface Water Indicators

Particulate analysis is intended to identify organisms which only occur in surface waters as opposed to ground waters, and whose presence in a ground water would clearly indicate that at least some surface water has been mixed with it. The EPA Consensus Method in Appendix A can be used for <u>Giardia</u> cyst analysis.

In 1986 Hoffbuhr et. al. listed six parameters identifiable in a particulate analysis which were believed to be valid indicators of surface contamination of ground water. These were: diatoms, rotifers, coccidia, plant debris, insect parts, and <u>Giardia</u> cysts. Later work by Notestine and Hudson (1988) found that microbiologists did not all define plant debris in the same way, and that deep wells known to be free of direct surface water influence were shown by particulate analysis to contain "plant debris" but none of the other five indicators. Their work suggests that "plant debris" may not currently be a useful tool in determining direct surface water influence, but may be in the future when a standard definition of "plant debris" is developed. Therefore, it is recommended that only the presence of the other five parameters; diatoms and certain other algae, rotifers, coccidia, insect parts, and <u>Giardia</u>, be used as

TABLE 2-1

SURVEY FORM FOR THE CLASSIFICATION OF DRINKING WATER SOURCES

Gene	<u>ral</u>
1.	Utility Name (ID#)
2.	Utility Person(s) Contacted
3.	Source Type (As shown on state inventory)
	Spring Horizontal Well Vertical Infiltration System Shallow Well Well
4.	Source Name Year constructed
5.	Is this source used seasonally or intermittently? NoYes If yes, are water quality problems the reason? NoYes
6.	Has there ever been a waterborne disease outbreak associated with this source? Yes No If yes, explain
7.	Have there been turbidity or bacteriological MCL violations within the last five years associated with this source? No Yes If yes, describe frequency, cause, remedial action (s) taken
8.	Have there been consumer complaints within the past five years associated with this source? No Yes If yes, discuss nature, frequency, remedial action taken
9.	Is there any evidence of surface water intrusion (pH, temperature, conductivity, etc. changes) during the year? Yes No If yes, describe
	If not, submit supporting data.
10.	Sketch of source in plan view (on an additional sheet)

Shallow Wells

Does the well meet good sanitary practices regarding location, construction, seal etc. to prevent the entrance of surface water? Yes No If no, describe the deficiencies
What is the depth of the well? (ft) Elevation of top of casing? (ft msl) Elevation of land surface? (ft msl)
Hydrogeology (Attach copy of well log or summarize it on reverse) a. Depth to static water level? (Feet) b. Drawdown? (Feet) c. What is the depth to the highest screen or perforation? (Feet) d. Are there impervious layers above the highest screen of perforation? Yes No Unknown If yes, please describe
Is there a permanent or intermittent surface water within 200 feet of the well? Yes No If yes, describe (type, distance etc.) and submit location map
What is the elvation of normal pool?(ft msl) Elevation of 100 year flood level?(ft msl) Elevation of bottom of lake or river?(ft msl)
Additional comments:

Springs	į
---------	---

•								
Spri	ings							
1.	 a. What is the size of the catchment area (acres)? b. Give a general description of the area (terrain; vegetat soil etc.) 	Give a general description of the area (terrain; vegetation;						
2.	What is the vertical distance between the ground surface and nearest point of entry to the spring collector(s) (feet)?							
3.	How rapidly does rainfall percolate into the ground around spring?	the						
	Percolates readily; seldom if ever any runoff. Percolates readily but there is some runoff in heavy rain Percolates slowly. Most local rainfall ponds or runs off Other	•						
4.	Does an impervious layer prevent direct percolation of surface we to the collector(s)? Yes No Unknown	ater —						
5.	Is the spring properly constructed to prevent entry of sur water? Yes No	face						
6.	Sediment a. Is the spring box free of debris and sediment? Yes No b. When was it last cleaned (Date) c. How often does it need to be cleaned? (month) d. How much sediment accumulates between cleaning? (estimatinches)							

Infi	ltra	tion	Syste	ms		
						_

.

•

•

.

l .	What are the shortest distances (vertical and horizontal separating the collector from the nearest surface water? (Feet)
2.	Does turbidity of the source vary 0.2 NTU or more throughout the year? Yes No Not measured If yes, describe how often and how much (pH, temperature, conductivity, etc.)
3.	AdditionalComments
	ey Conducted By: Date:

•

.

indicators of direct surface contamination. In addition, if other large diameter (> 7 um) organisms which are clearly of surface water origin such as <u>Diphilobothrium</u> are present, these should also be considered as indicators of direct surface water influence.

b. Interpretation

Since standard methods have not been developed specifically for particulate analysis, there has not been consistency in the way samples have been collected and analyzed. Differences in the degree of training and experience of the microbiologists has added further to the difficulty in comparing results from sample to sample, and system to system. The current limitations in sample collection and analytical procedures must be considered when interpreting the results. Until standardized methods are developed, the EPA Consensus Method included in Appendix A is recommended as the analytical method for particulate analysis. The following is a discussion of the significance of finding the six indicators identified above.

Identification of a <u>Giardia</u> cyst in any source water should be considered conclusive evidence of direct surface water influence. The repeated presence of diatoms in source water should be considered as conclusive evidence of direct surface water influence. However, it is important that this determination be based on live diatoms, and not empty silica skeletons which may only indicate the historical presence of surface water.

Bluegreen, green, or other chloroplast containing algae require sunlight for their metabolism as do diatoms. For that reason their repeated presence in source water should also be considered as conclusive evidence of direct surface water influence.

Hoffbuhr (1986) indicates that rotifers and insect parts are indicators of surface water. Others have pointed out though that rotifers do not require sunlight, and not all rotifers require a food source such as algae which originates in surface water. Their nutritional requirements may be satisfied by organic matter such as bacteria, or decomposing soil organic material, not necessarily associated with surface water. More precise identification of rotifers, i.e. to the species level, is necessary to determine the specific nutritional requirements of the rotifer(s) present. Further information on identifying rotifer species and on which species require food sources originating in surface water,

would be valuable, but is not readily available at this time. Without knowledge of which species is present, the finding of rotifers indicates that the source is either a) directly influenced by surface water, or b) it contains organic matter sufficient to support the growth of rotifers. It could be conservatively assumed based on this evidence alone that such a source is directly influenced by surface water. However, it is recommended that this determination be supported by other evidence, eg. the source is near a surface water, turbidity fluctuations are significant, etc.

Insects or insect parts likewise may originate in surface water, from the soil, or they may be airborne in uncovered sources. If insects are observed in a particulate analysis sample, it should be confirmed if possible that there is no other route by which insects could contaminate the source other than surface water. For example, if a spring is sampled, and the cover is not well constructed, it is possible that insects found in a sample were airborne rather than waterborne. Insects which spend a portion of their lifecycle in water are the best indicators of direct surface water influence, for example, larvae of mayflies, stoneflies, damselflies, and dragonflies. Terrestrial insects should not be ruled out as surface water indicators though, since their accidental presence in surface water is common.

Howell, (1989) has indicated that some insects may burrow and the finding of eggs or burrowing larvae (eg. chironomids) may not be good indicators of direct surface water influence. For some insects this may be true, but the distance which insects burrow in subsurface sediments is expected to be small, and insect larvae are generally large in comparison to <u>Giardia</u> cysts. Until further research suggests otherwise, it is recommended that insects or insect parts be considered strong evidence of surface water influence if not direct evidence in and of themselves. The strength of this evidence would be increased if the source in question is near a surface water, and particulate analysis of the surface water found similar insects.

Coccidia are intracellular parasites which occur primarily in vertebrates, eg. animals and fish, and live in various tissues and organs including the intestinal tract (eg. Cryptosporidium). Though not frequently identified by normal particulate analysis techniques, coccidia are good indicators of direct surface water contamination since they

require a vertebrate host or hosts and are generally large in size (10 - 20 um or greater). Cryptosporidium is commonly found in surface water, but due to its small size (4 - 6 um) it is not normally identified without specific antibody staining techniques.

Other macroorganisms (>7 um) which are parasitic to animals and fish may be found and are good indicators of surface water influence. Examples include, but are not limited to, helminths (e.g., tape worm cysts), ascaris, and Diphyllobothrium.

c. Sampling Method

A suggested protocol for collecting samples is listed below.

- Sampling Procedure

Samples should be collected using the equipment outlined in the EPA Consensus Method included in Appendix A.

Location

Samples should always be collected as close to the source as possible, and prior to any treatment. If samples must be taken after disinfection, samples should be noted and analyzed as soon as possible.

- Number

A minimum of two samples should be collected during the period the source is most susceptible to surface water influence. Such critical periods will vary from system to system and will need to be determined case by case. For some systems, it may be one or more days following a significant rainfall (eg. 2" in 24 hours). For other systems it may be a period of maximum flows and stream turbidities following spring snowmelt, or during the summer months when water tables are elevated as a result of irrigation. In each case, particulate samples should be collected when the source in question is most effected. A surrogate measure such as source turbidity or depth to water table may be useful in making the decision to monitor. there is any ambiguity in the particulate analysis results, additional samples should be collected when there is the greatest likelihood that the source will be contaminated by surface water.

Volume

Sample volume should be between 500 and 1000 gallons, and should be collected over a 4 to 8 hour time period. It is preferable to analyze a similar (+/-10%) volume of water for all sources, preferably a large volume, although this may not always be possible due to elevated turbidity or sampling logistics. The volume filtered should be recorded for all samples.

d. Other Indicators

A number of other indicators could be used to provide supportive evidence of surface influence. While particulate analysis probably provides the most direct evidence that pathogens from surface water could be migrating into a ground water source, other parameters such as turbidity, temperature, pH and conductivity could provide supportive, but less direct, evidence.

Turbidity fluctuations of greater than 0.5 - 1 NTU over the course of a year may be indicative of surface water influence. Considerable caution should be used when evaluating turbidity changes though, since the turbidity could be caused by very small particles (< 1um) not originating in a surface water or it could be that larger particles are being filtered out and only the very smallest particles migrate into the water source. Only ground water sources at risk to contamination from <u>Giardia</u> or other large pathogens (> 7 um) are subject to the SWTR requirements.

Temperature fluctuations may also indicate surface water influence. Fortunately these are easy to obtain and if there is a surface water within 500 feet of the water source, measurements of both should be recorded for comparison. Large changes in surface water temperature closely followed by similar changes in source temperature would be indicative of surface water influence. Also, temperature changes (in degrees F) of greater than 15 to 20% over the course of a year appear to be a characteristic of some sources influenced by surface water (Randall, 1970). Changes in other chemical parameters such as pH, conductivity. hardness etc. could also be monitored. Again, these would not give a direct indication of whether pathogens originating in surface water were present, but could indicate whether the water chemistry was or was not similar to a nearby surface water and/or whether source water chemistry changed in a similar pattern to surface water chemistry. At this time no numerical guidelines are available to differentiate what is or is not similar, so these comparisons are more qualitative than quantitative.

B. Seasonal Sources

Some sources may only be used for part of the year, for example during the summer months when water usage is high. These sources should not be excluded from evaluation and, like other sources, should be evaluated during their period(s) of highest susceptibility. Particular

attention should be given to those sources which appear to be directly influenced by surface water during part of the year. There may be times during which these subsurface water sources are not influenced by surface water and other times when they are part or all surface water. If that is the case, then it is critical that careful testing be done prior to, during and at the end of the use of the source. This should be done over several seasons to account for seasonal variation. In practice, it is preferable to use sources which are less vulnerable to contamination since susceptible sources will necessitate ongoing monitoring and close attention to operation.

C. Modification of Sources

Sources directly influenced by surface water may be altered in some cases to eliminate the surface water contamination. Primacy Agencies may elect to allow systems with such sources to modify the construction of the source and/or the area surrounding the source in an effort to eliminate surface water contamination. Since this could be expensive and take considerable time to evaluate for effectiveness, careful consideration should be given to the decision to modify a source. In deciding whether source modification is appropriate, systems and Primacy Agencies should consider the following points:

- Is the cause of the surface water contamination known? If the specific cause or point of surface water contamination is not known, it will not be possible to determine an effective control strategy. Further, there may be several reasons why the source is susceptible to direct surface water influence. For example, an infiltration gallery may receive surface water because some of its laterals are exposed in the bed of a nearby stream, and also because laterals distant from the stream are shallow and are affected by surface runoff. Simply modifying or eliminating one or the other set of laterals in this case would not entirely eliminate surface water influence.
- What is the likelihood that modification of the source will be effective? Assuming that the source of contamination has been identified, the expected effectiveness of control measures should be evaluated. If the cause is relatively evident, a crack in a well casing or an uncovered spring box for example, then there is a high degree of confidence that an effective solution could be developed. Should the nature of the contamination be more diffuse, or widespread, then the merits of spending time and money to modify the source should be carefully considered. In the case of the example above, eliminating the use of the laterals under the stream will solve part of the

problem. However, without considerably more hydrogeologic information about the aquifer and the placement of the other laterals, it is not clear what, if any, control measures would effectively eliminate direct surface water influence in those laterals distant from the stream.

If a source is identified as being directly influenced by surface water, and it is decided to attempt to modify it, interim disinfection practices which will ensure at least 99.9% inactivation of <u>Giardia</u> should be considered. Methods and levels of disinfection which can be used to achieve such removals can be found in S141.72 (a) of the SWTR and in Section 3.2 of this manual.

A partial listing of types of modifications which could be undertaken includes:

- Diverting surface runoff from springs by trenching, etc.
- Redeveloping springs to capture them below a confining layer.
- Covering open spring collectors.
- Reconstructing wells to install sanitary seals, and/or to screen them in a confined (protected) aquifer.
- Repairing cracks or breaks in any type of source collector that allows the entry of surface contaminants.
- Discontinue the use of infiltration laterals which intercept surface water.

An extended period of monitoring should follow reconstruction (eg. through at least two years or critical periods) to evaluate whether the source is still directly influenced by surface water. Preferably particulate analysis would be used to make such evaluations, but it may be helpful to use simpler measures, such as temperature and turbidity, as screening tools. Longer term monitoring at critical times may also be an appropriate agreement between the system and the Primacy Agency if there is still doubt about the long term effectiveness of the solution.

If modification is not feasible, another alternative to avoid having to comply with the SWTR may be to develop a new well either deeper or at a different location.

2.2 Treatment Requirements

According to the SWTR, all community and noncommunity public water systems which use a surface water source or a ground water under the direct influence of a surface water must achieve a minimum of 99.9 percent (3-log) removal and/or inactivation of <u>Giardia</u> cysts, and a minimum of 99.99 percent (4-log) removal and/or inactivation of viruses. In the SWTR and this manual, "viruses" means viruses of fecal origin which are infectious to humans by waterborne transmission. Filtration plus disinfection or disinfection alone may be utilized to achieve these performance levels, depending on the source water quality and site specific conditions. The SWTR establishes these removal and/or inactivation requirements based on <u>Giardia</u> and viruses because this level of treatment will also provide protection from heterotrophic plate count (HPC) bacteria and <u>Legionella</u>² as required in the SDWA amendments.

Guidelines for meeting the requirements of the SWTR are provided in the remainder of this manual as outlined in Section 1. All systems must meet the operator qualifications presented in Section 2.3.

2.3 Operator Personnel Qualifications

The SWTR requires that all systems must be operated by qualified personnel. It is recommended that the Primacy Agency set standards for operator qualifications, in accordance with the system type and size. In order to accomplish this, the Primacy Agency should develop a method of evaluating an operator's competence in operating a water treatment system. Primacy Agencies which do not currently have a certification program are thereby encouraged to implement such a program. An operator certification program provides a uniform base for operator qualifications and an organized system for evaluating these qualifications.

It is recommended that plant operators have a basic knowledge of science, mathematics and chemistry involved with water treatment and supply. The minimum requirements for at least one key staff member should include an understanding of:

In the SWTR and this manual "<u>Legionella</u>" means a genus of bacteria, some species of which have caused a type of pneumonia called Legionnaires Disease; the etiologic agent of most cases of Legionnaires Disease examined has been <u>L. pneumophila</u>.

- The principles of water treatment and distribution and their characteristics
- The uses of potable water and variations in its demand
- The importance of water quality to public health
- The equipment, operation and maintenance of the distribution system
- The treatment process equipment utilized, its operational parameters and maintenance
- The principles of each process unit (including the scientific basis and purpose of the operation and the mechanical components of the unit)
- Performance criteria such as turbidity, total coliform, fecal coliform, disinfectant residual, pH, etc. to determine operational adjustments
- Common operating problems encountered in the system and actions to correct them
- The current National Primary Drinking Water Regulations, the Secondary Drinking Water Regulations and monitoring and reporting requirements
- Methods of sample collection and sample preservation
- Laboratory equipment and tests used to analyze samples (where appropriate)
- The use of laboratory results to analyze plant efficiency
- Record keeping
- Customer relations
- Budgeting and supervision (where appropriate)

Training in the areas listed above and others is available through the American Water Works Association (AWWA) training course series for water supply operations. The course series includes a set of four training manuals and one reference book as follows:

- Introduction to Water Sources and Transmission (Volume 1)
- Introduction to Water Treatment (Volume 2)
- Introduction to Water Distribution (Volume 3)
- Introduction to Water Quality Analyses (Volume 4)

- Reference Handbook: Basic Science Concepts and Applications
- Instructor Guide and Solutions Manual for Volumes 1, 2, 3 and

These manuals are available through the American Water Works Association, 6666 West Quincy Avenue, Denver, Colorado 80235 USA, (303) 794-7711.

The State of California also offers a series of training manuals for water treatment plant operators prepared by the California State University School of Engineering in Sacramento. The manuals include:

- Water Supply System Operation. (1 Volume)
- 2. Water Treatment Plant Operation. (2 Volumes)

These operator training manuals are available from California State University, Sacramento, 6000 J Street, Sacramento, California 95819, phone (916) 454-6142.

Completion of an established training and certification program will provide the means of assuring that the operators have received training in their respective area, and are qualified for their position. The education and experience requirements for certification should be commensurate with the size and the complexity of the treatment system. At the present time, some states have instituted a certification program while others have not. Following is a summary of the basic contents of a certification program, which can serve as a guide to the Primacy Agency in developing a complete program.

- Board of examiners for the development and implementation of the program.
- Classification of treatment facilities by grade according to the size and technology of the facilities.
- Educational and experience requirements for operators of the various treatment facilities according to grade.
- A written/oral examination to determine the knowledge, ability and judgement of the applicants with certification obtained upon receiving a passing grade.
- Renewal program for the license of certification, including the requirement of additional coursework or participation in workshops.

The certification program should provide technically qualified personnel for the operation of the plant.

The extensive responsibility which is placed on the operating personnel warrants the development of an outline of the responsibilities and authority of the personnel members to aid them in the efficient operation of the plant. The major responsibilities which should be delegated in the outline of responsibilities include: the normal day-to-day operations, preventive maintenance, field engineering, water quality monitoring, troubleshooting, emergency response, cross-connection control, implementation of improvements, budget formulation, response to complaints and public/press contact. A reference which the Primacy Agency may utilize in developing the outline is "Water Utility Management Practices" published by AWWA.

3. CRITERIA FOR SYSTEMS NOT FILTERING

The provisions of the Surface Water Treatment Rule (SWTR) require that filtration must be included in the treatment train unless certain criteria are met. These criteria are described in this chapter. They include:

Source Water Quality Conditions

- 1. Coliform concentrations (total or fecal).
- 2. Turbidity levels.

Disinfection Criteria

- 1. Level of disinfection.
- 2. Point of entry disinfection.
- 3. Distribution system disinfection.
- 4. Disinfection redundancy or automatic shutoff.

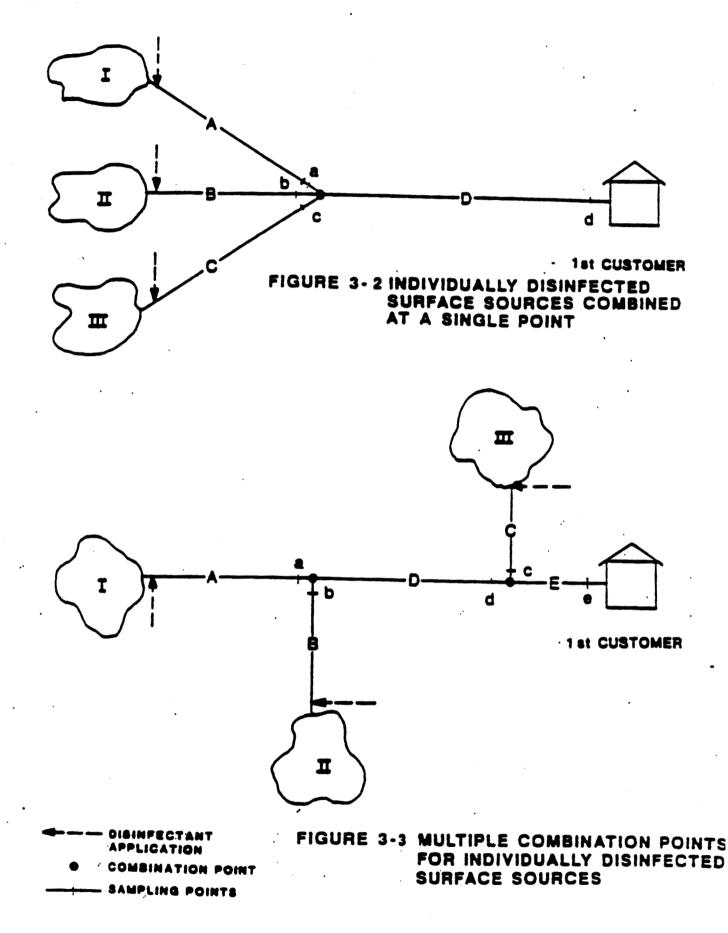
Site-Specific Criteria

- Watershed control program.
- 2. On-site inspections.
- 3. No waterborne disease outbreaks.
- 4. Complies with the total coliform MCL.
- 5. Complies with the Total Trihalomethane (TTHM) regulation. Currently this only applies to systems serving more than 10,000 people.

The purpose of this section is to provide guidance to the Primacy Agency for determining compliance with these provisions.

3.1 Source Water Ouality Criteria

The first step in determining if filtration is required for a given surface water supply is to determine whether the supply meets the source water quality criteria as specified in the SWTR. If the supply does not meet the source water quality criteria, changes in operation to meet the site-specific criteria may improve the water quality so that the source


criteria will be met. However, if the Primacy Agency believes that the source water quality criteria and/or the site-specific criteria cannot be met, or that filtration is appropriate regardless, the Primacy Agency may require the installation of filtration without a complete evaluation to determine whether the system meets all the criteria required to avoid filtration.

Sampling Location

The SWTR requires that source water samples be collected at a location just prior to the "point of disinfectant application," i.e., where the water is disinfected and no longer subject to surface runoff. For example, a system which has multiple reservoirs in series, where each of the reservoirs has previously been disinfected and receives surface runoff, must take the raw water sample(s) just prior to the point of disinfection or disinfection sequences used for calculating the CT [disinfectant residual (mg/L) x contact time (min.)]. Disinfected water in reservoirs receiving surface runoff cannot be counted toward CT credit. It is also not appropriate for systems to monitor the source water after the "point of disinfectant application" even if disinfection from this point is not used for calculating CT credit.

3.1.1 <u>Coliform Concentrations</u>: The SWTR states that, to avoid filtration, a system must demonstrate that either the fecal coliform concentration is less than 20/100 ml <u>or</u> the total coliform concentration is less than 100/100 ml in the water prior to the point of disinfectant application in 90 percent of the samples taken during the six previous months. Where monitoring for both parameters has been or is conducted, the rule requires that only the fecal coliform limit be met. However, EPA recommends that the analytical results for both total coliforms and fecal coliforms be reported. In addition, if the turbidity of a surface water source is greater than 5 NTU and the surface source is blended with a ground water source to reduce the turbidity, EPA recommends that the high turbidity water prior to blending meet the fecal coliform source water quality criteria.

Elevated coliform levels in surface water indicate higher probabilities of fecal contamination, some of which could be protected from exposure to disinfection by embodiment in particulate matter. Blending of

the surface water with ground water to reduce coliform levels may obscure the indication of such possible effects. Thus, EPA does not recommend blending to reduce coliform levels in the source water. Furthermore, EPA does not recommend blending to reduce turbidity levels in cases where elevated fecal contamination may be masked.

Ongoing monitoring is required to ensure that these requirements are continually met. The samples may be analyzed using either the multiple tube fermentation method or the membrane filter test (MF) as described in the 16th Edition of Standard Methods.

Sampling Frequency

Minimum sampling frequencies are as follows:

<u>Population Served</u>	Coliform Samples/Week
≤500	1
501-3,300	2
3,301-10,000	3
10,001-25,000	4
>25,000	5

Grab samples must be taken on different days. In addition, one sample must be taken every day during which the turbidity exceeds 1 NTU, unless the Primacy Agency determines that the system, for logistical reasons outside the system's control, cannot have the sample analyzed within 30 hours of collection. If taken, these samples count towards the weekly sampling requirement. Also, under the Total Coliform Rule, systems must take one coliform sample in the distribution system near the first service connection within 24 hours after a source water turbidity measurement exceeds 1 NTU. This measurement must be included in the total coliform compliance determination. The purpose of these requirements is to ensure that the monitoring occurs during worst case conditions.

The initial evaluation of the source water quality is based on the data from the previous 6 months. After the initial evaluation, systems must continue to conduct sampling each month to demonstrate compliance with the source water quality criteria on an ongoing basis. If the criterion has not been met, the system must filter.

Use of Historical Data Base

Some systems may already monitor their source water for total and/or fecal coliform concentration. The resulting historical data base may be sufficient for the Primacy Agency to make the initial determination of whether the system meets the source water quality criteria. The historical data base is considered sufficient for making this determination if:

- The raw water sampling location is upstream of the point of disinfectant application as previously defined.
- The monthly samples represent at least the minimum sampling frequency previously mentioned.
- The sampling period covers at least the previous six months.
- 3.1.2 <u>Turbidity Levels</u>: To avoid filtration, the turbidity of the water prior to disinfection cannot exceed 5 NTU, on an ongoing basis, based on grab samples collected every four hours (or more frequently) that the system is in operation. A system may substitute continuous turbidity monitoring for grab sample monitoring if it validates such measurements for accuracy with grab sample measurements on a regular basis, as specified by the Primacy Agency. If a public water system uses continuous monitoring, it must use turbidity values recorded every four hours (or some shorter regular time interval) to determine whether it meets the turbidity limit for raw water. A system occasionally may exceed the 5 NTU limit and still avoid filtration as long as (a) the Primacy Agency determines that each event occurred because of unusual or unpredictable circumstances and (b) as a result of this event, there have not been more than two such events in the past twelve months the system served water to the public or more than five such events in the past 120 months the system

Validation should be performed at least twice a week based on the procedure outlined in Part 214A in the 16th Edition of Standard Methods. Although the 17th Edition is available, the 16th Edition is that which is referred to in the rule. Improper installation of continuous monitors may allow for air bubbles to enter the monitor resulting in false turbidity spikes. To avoid air bubbles reaching the turbidimeter, the sample tap should be installed below the center line of the pipe and an air release valve may be included on the sample line.

served water to the public. An "event" is defined as a series of consecutive days in which at least one turbidity measurement each day exceeds 5 NTU.

It is important to note that every event, i.e., exceedance of the 5 NTU limit, regardless of whether the system must filter as a consequence, constitutes a violation of a treatment technique requirement. For example, if the turbidity exceeded 5 NTU in at least one measurement each day for three consecutive days, this would constitute one event and one treatment technique violation. If this was the third event in the past 12 months the system served water to the public, or the sixth event in the past 120 months the system had served water to the public, the system would also be required to install filtration. In all cases, the system must inform the Primacy Agency when the turbidity exceeds 5 NTU as soon as possible, but no later than the end of the next business day.

The Primacy Agency should evaluate additional data from the utility to determine the significance of the event with respect to the potential health risk to the community and determine whether a boil water notice is necessary. The additional data may include raw water fecal coliform levels, duration and magnitude of the turbidity excursion, nature of the turbidity (organic or inorganic), disinfectant residual entering the system during the excursion and/or coliform levels in the distribution system following the excursion. Boil water notices are not required under the SWTR, they may be issued at the discretion of the Primacy Agency.

In order to determine if the periods with turbidity greater than 5 NTU are unusual or unpredictable, it is recommended that in addition to the historical turbidity data, the water purveyor should collect and provide to the Primacy Agency current and historical information on flows, reservoir water levels, climatological conditions, and any other information that the Primacy Agency deems relevant. The Primacy Agency will then evaluate this information to determine if the event was unusual or unpredictable. Examples of unusual or unpredictable events include hurricanes, floods and earthquakes. High turbidity events may be avoided by:

 Use of an alternate source which is not a surface water and does not have to meet the requirements of the SWTR.

- Use of an alternate source which is not a surface water and does not have to meet the requirements of the SWTR.
- Use of an alternate source which is a surface water and which does meet the requirements of the SWTR.
- Utilization of stored water to supply the community until the source water quality meets the criteria.

3.2 Disinfection Criteria

3.2.1 <u>Inactivation Requirements</u>

To avoid filtration, a system must demonstrate that it maintains disinfection conditions which inactivate 99.9 percent of <u>Giardia</u> cysts and 99.99 percent of viruses every day of operation except any one day each month. If the disinfection conditions provide less than these inactivations during more than one day of the month, the system is in violation of a treatment technique requirement. If the system incurs such a violation during any two months in the previous 12 months, the system must install filtration, unless one of the violations was caused by unusual and unpredictable circumstances as determined by the Primacy Agency. Systems with three or more violations in the previous 12 months must install filtration regardless of the cause of the violation. To demonstrate adequate inactivations, the system must monitor and record the disinfectant(s) used, disinfectant residual(s), disinfectant contact time(s), pH (for chlorine), and water temperature, and use these data to determine if it is meeting the minimum total inactivation requirements in the rule.

A number of disinfectants are available, including ozone, chlorine, chlorine dioxide and chloramines. The SWTR prescribes CT [C, residual disinfectant concentration (mg/L) x T, contact time (min)] levels for these disinfectants which will achieve different levels of inactivation under various conditions. The disinfectant(s) used to meet the inactivation requirements is identified as the primary disinfectant throughout the remainder of this document.

To determine compliance with the inactivation requirements, a system must calculate the CT value(s) for its disinfection conditions during peak hourly flow once each day that it is delivering water to its customers. For the purpose of calculating CT value, T is the time (in minutes) it

takes the water, during peak hourly flow, to move between the point of disinfectant application and a point where, C, residual disinfectant concentration is measured prior to the first customer. disinfectant concentration is the concentration of the disinfectant (in mq/L) at a point before or at the first customer. Contact time in pipelines must be calculated based on plug flow (i.e., where all water moves homogeneously in time between two points) by dividing the internal volume of the pipeline by the peak hourly flow rate through that pipeline. Contact time within mixing basins, settling basins storage reservoirs, and any other tankage must be determined by tracer studies or an equivalent method as determined by the Primacy Agency. The contact time determined from tracer studies to be used for calculating CT is T_{10} . T_{10} is the detention time corresponding to the time for which 90 percent of the water has been in contact with at least the residual concentration, C. Guidance for determining contact times for basins is provided in Appendix C.

The first customer is the point at which finished water is first consumed. In many cases this will include the treatment plant itself. This definition of first customer pertaining to the point of first consumption assures that the water has received the required disinfection to provide protection from microorganisms for all consumers. Peak hourly flow should be considered as the greatest volume of water passing through the system during any one hour in a consecutive 24 hour period. Thus, it is not meant to be the absolute peak flow occurring at any instant during the day.

Systems with only one point of disinfectant application may determine the total inactivation based on one point of residual measurement prior to the first customer, or on a profile of the residual concentration after the point of disinfectant application. Methods of disinfection measurement are presented in Appendix D. The residual profile and the total inactivation is calculated as follows:

- Measure the disinfectant residual, C, at any number of points within the treatment train.
- Determine the travel time, T, between the point of disinfectant application and the point where C is measured for the first section. For subsequent measurements of "C," T is the

time it takes for water to move from the previous "C" measurement point to this point of measurement.

- Calculate CT for each point of residual measurement (CT_{calc}).
- Determine the inactivation ratio (CT_{sale}/CT_{99 9}) for each section.²
- Sum the inactivation ratios for each section, i.e. $C_1T_1/CT_{99.9} + C_2T_2/CT_{99.9} + C_nT_n/CT_{99.9}$ to determine the total inactivation ratio.

If the total inactivation ratio (sum ($CT_{calc}/CT_{99.9}$)) is equal to or greater than 1.0, the system provides greater than 99.9 percent inactivation of <u>Giardia</u> cysts), and the system meets the disinfection performance requirement. Further explanation of CT calculations is presented in Section 3.2.2.

Systems need only calculate one CT (CT_{calc}) each day, for a point at or prior to the first customer; alternatively they have the option of calculating numerous CTs after the point of disinfectant application but prior to the first customer to determine the inactivation ratio. Profiling the residual gives credit for the higher residuals which exist after the disinfectant is applied but before the first customer. Profiling the residual may not be necessary if one CT is calculated (CT_{calc}), and this exceeds the applicable $CT_{99.9}$. In this case, the system is meeting the disinfection performance requirement. For systems with a very low oxidant demand in the water and long contact times, this approach may be the most practical to use.

For systems with multiple points of disinfectant application, such as ozone followed by chlorine, or chlorine applied at two different points in the treatment train, the inactivation ratio of each disinfectant section prior to the first customer is used to determine the total inactivation ratio. The disinfectant residual of each disinfection

CT_{99,9} is the CT value required to achieve 99.9 percent or 3-log <u>Giardia</u> cyst inactivation for the conditions of pH, temperature and residual concentration for each section. A section is the portion of the system with a measurable contact time between two points of disinfection application or residual monitoring.

section and the corresponding contact time must be measured at some point prior to the subsequent disinfection application point(s) to determine the inactivation ratio for each section, and whether the total inactivation ratio is 1.0 or more. For example, if the first disinfection section provided an inactivation ratio of 2/3 (or 99 percent inactivation) and the second disinfection section provided an inactivation ratio of 1/3 (or 90 percent inactivation), the total inactivation ratio would equal 1.0 (2/3 + 1/3 = 1) indicating that 99.9% inactivation was provided and the disinfection requirements are met. Further explanation of the determination of total inactivation provided is contained in Section 3.2.2.

Maintaining Inactivation Level

The SWTR establishes CTs for chlorine, chlorine dioxide, ozone and chloramines which will achieve 3-log inactivations of Giardia cysts and at least 4-log inactivation of viruses. Appendix E presents CTs for these and other log inactivations. A system must demonstrate compliance with the inactivation requirements based on conditions occurring during peak hourly flow. Since a system generally can only identify peak hourly flow after it has occurred, hourly residual measurements during the day are suggested. If the sampling points are remote, or manpower is limited and collection of hourly grab samples is impractical, continuous monitors may. be installed. In cases where continuous monitors are impractical, the Primacy Agency may establish an acceptable monitoring program on a case-by-case basis; where possible this should be based on historical flow patterns. Measurements for the hour of peak flow can then be used in calculating CT. The pH (for systems using chlorine) and temperature must be determined daily for each disinfection sequence prior to the first customer.

Since the system's inactivation is determined during peak hourly flow, the disinfectant dosage applied to meet CT requirements may not be necessary during lower flow conditions. Continuing to apply a disinfectant dosage based on the peak hourly flow could possibly result in increased levels of disinfectant by-products, including TTHMs and increased costs. Under lower flow conditions, a higher contact time is available and a lower residual may provide the CT needed to meet the inactivation requirements. The system may therefore choose to adjust the

disinfectant dose with changes in flow. The system should, however, maintain a disinfectant residual which will still provide a 3-log inactivation of <u>Giardia</u> cysts and a 4-log inactivation of viruses at non-peak hourly flows. The system should therefore evaluate the residual needed to provide the required inactivation under different flow conditions and set the dosage accordingly. The following provides an example of maintaining the required inactivation.

Example

A 5 mgd non-filtering system disinfecting with free chlorine at one point of application, has a contact time of 165 minutes during a peak flow of 5 MGD. The flow varies from 1 to 5 MGD. The pH and temperatures of the water are 7 and 5 C, respectively. At a residual of 0.9 mg/L, a CT of 148 mg/L-min is required to meet the disinfection requirements. The CT for 0.9 mg/L residual is determined by straight line interpolation between 0.8 mg/L and 1.0 mg/L residuals. Under lower flow conditions, the available contact time is longer and a lower residual would provide the required disinfection. Based on existing contact time and using the appropriate CT tables (in this case, Table E-2) in Appendix E for a 3-log Giardia cyst inactivation, the required disinfection would be provided by maintaining the following chlorine residuals for the indicated flow:

Flow (MGD)	Contact Time (min)	CT (mg/L-min) Required	Free Chlorine Residual (mg/L)
5 ·	165	148	0.9
4	206	145	0.7
3	275	143	0.6
2	412	139	0.4
1	825	139	0.2

This table indicates the variation of residuals needed for the system to provide the required inactivation. For chlorine, the disinfectant residual cannot be adjusted in direct proportion to the flow because the CT needed for disinfection is dependent upon the residual. Since it is not practical to continuously adjust the residual and, since a disinfection level for a 3-log <u>Giardia</u> cyst inactivation must be maintained under all flow conditions, it is suggested that the flow variation at the utility be divided into ranges and the residual needed at

the higher flow rate of each range be maintained for all flows within the range to ensure the required disinfection. The following flow ranges and residuals are suggested for the system:

Flow Range (MGD)	Free Chlorine <u>Residual (mg/L)</u>
1 - 1.9 2 - 3.9	0.4 0.6
4 - 5	0.9

By maintaining these residuals, the utility is ensuring the provision of the required disinfection while minimizing the disinfectant application, which should result in lower disinfection by-products and costs.

Although these residuals will meet the inactivation requirements, maintaining a residual in the distribution system must also be considered. If no other point of disinfection exists prior to the distribution system, the residual for disinfection must be maintained at a level which will also provide a residual throughout the distribution system. The complete range of flows occurring at the plant should be evaluated for determining the required residual. A utility may establish the residual requirements for as many flow ranges as is practical.

The CTs determined from the daily system data should be compared to the values in the table for the pH and temperature of the water, to determine if the required CT has been achieved. Only the analytical methods prescribed in the SWTR, or otherwise approved by EPA, may be used for measuring disinfectant residuals. Methods prescribed in the SWTR are listed in Appendix D. The Appendix also contains a paper which describes monitoring methods for various disinfectants and conditions.

The Primacy Agency should make periodic checks on its utilities to assure that they are maintaining adequate disinfection at non-peak flow conditions.

Meeting the Inactivation Requirement Using Free Chlorine

When free chlorine is used as a disinfectant, the efficiency of inactivation is influenced by the temperature and pH of the water. Thus, the measurement of the temperature and pH for the determination of the CT is required. The SWTR provides the CT requirements for free chlorine at

various temperatures and pHs which may occur in a source water. These values are presented in Table E-1 through Table E-7 in Appendix E. The basis for these values is discussed in Appendix F. For free chlorine, a 3-log inactivation of <u>Giardia</u> cysts will provide greater than a 4-log inactivation of viruses, thus meeting the SWTR inactivation requirements.

As indicated in Table E-2, a raw water temperature of 5 C, a pH of 7.0, and a residual chlorine concentration of 1.4 mg/L require a CT of 155 mg/L-min to provide a 3-log inactivation of <u>Giardia</u> cysts. Therefore, to meet the inactivation requirement under these conditions with one point of residual measurement, a contact time of 111 minutes [(155 mg/L-min)/ (1.4 mg/L)] prior to the first customer would be required.

Meeting the Inactivation Requirement Using Chloramines

Chloramines are a much weaker oxidant than free chlorine, chlorine dioxide and ozone. The CT values for chloramines presented in Table E-12 are based on disinfection studies using preformed chloramines and <u>in vitro</u> excystation of <u>Giardia muris</u> cysts (Rubin, 1988). No safety factor was applied to the laboratory data on which the CT values were based since EPA believes that chloramination, conducted in the field, is more effective than using preformed chloramines.

In the laboratory testing using preformed chloramines, ammonia and chlorine were reacted to form chloramines before the addition of the microorganisms. Under field conditions, chlorine is usually added first followed by ammonia addition further downstream. Also, even after the addition of ammonia, some free chlorine residual may persist for a period of time. Therefore, free chlorine is present for a period of time prior to the formation of chloramines. Since this free chlorine contact time is not duplicated in the laboratory when testing with preformed chloramines, the CT values obtained by such tests may provide conservative values when compared to those CTs actually obtained in the field with chlorine applied before ammonia. Also, other factors such as mixing in the field (versus no mixing in the laboratory) may contribute to disinfection effectiveness. For these reasons, systems using chloramines for disinfection may demonstrate effective disinfection in accordance with the procedure in Appendix G in lieu of meeting the CT values in Appendix E.

If a system uses chloramines and is able to achieve the CT values for 99.9 percent inactivation of Giardia cysts, it is not always appropriate to assume that 99.99 percent or greater inactivation of viruses was also achieved. New data indicate that Hepatitis A virus is more sensitive than Giardia cysts to inactivation by preformed chloramines The CT values required to achieve 99.99 percent (Sobsev, 1988). inactivation of Hepatitis A with preformed chloramines are lower than those needed to achieve 99.9 percent inactivation of Giardia cvsts. These data contrast with other data which indicate that rotavirus is more resistant than Giardia cysts to preformed chloramines (Hoff, 1986). However, rotavirus is very sensitive to inactivation by free chlorine, much more so than Hepatitis A (Hoff, 1986; Sobsey, 1988). If chlorine is applied prior to ammonia, the short term presence of free chlorine would be expected to provide at least 99.99 percent inactivation of rotavirus prior to the addition of ammonia and subsequent formation of Thus, EPA believes it is appropriate to use Hepatitis A data, in lieu of rotavirus data, as a surrogate for defining minimum CT values for inactivation of viruses by chloramines, under the condition that chlorine is added to the water prior to the addition of ammonia.

A system which achieves a 99.9 percent or greater inactivation of <u>Giardia</u> cysts with chloramines can be considered to achieve at least 99.99 percent inactivation of viruses, provided that chlorine is added to the water prior to the addition of ammonia. Table E-13 provides CT values for achieving different levels of virus inactivation. However, if ammonia is added first, the CT values in the SWTR for achieving 99.9 percent inactivation of <u>Giardia</u> cysts cannot be considered adequate for achieving 99.99 percent inactivation of viruses.

Under such cases of chloramine production, the SWTR requires systems to demonstrate through on-site challenge studies, that the system is

CT values in excess of 5,000 are required for a 4-log inactivation of rotavirus by preformed chloramines but no minimum CT values have been determined.

CT values ranging from 0.025 to 2.2 achieve 99 percent inactivation of rotavirus by free chlorine at pH = 6-10 and 4-5°C (Hoff, 1986).

achieving at least a 4-log inactivation of viruses. Guidance for conducting such studies is given in Appendix G. Once conditions for achieving a 4-log inactivation of viruses has been established, the Primacy Agency should require systems to report their disinfection operating conditions on an ongoing basis. These conditions should verify that the system is operating at CT values in excess of that needed to achieve a 4-log virus inactivation or 3-log <u>Giardia</u> cyst inactivation, whichever is higher.

Meeting the Inactivation Requirement Using Chlorine Dioxide

Under the SWTR, the CT values for the inactivation of <u>Giardia</u> cysts using chlorine dioxide are independent of pH. Under the SWTR the only parameter affecting the CT requirements associated with the use of chlorine dioxide is temperature. Table E-8 in Appendix E presents the chlorine dioxide CT values required for the inactivation of <u>Giardia</u> cysts at different temperatures. The basis for these CT values is discussed in Appendix F. Systems which use chlorine dioxide are not required to measure the pH of the disinfected water for the calculation of CT. For chlorine dioxide, a 3-log inactivation of <u>Giardia</u> cysts will generally result in greater than a 4-log virus inactivation, and assure meeting the SWTR inactivation requirements. However, for chlorine dioxide, unlike chlorine where this relationship always holds true, at certain temperatures, the 4-log virus CTs may be higher than the 3-log <u>Giardia</u> cyst CTs.

The Primacy Agency may allow lower CT values than those specified in the SWTR for individual systems based on information provided by the system. Protocols for demonstrating effective disinfection at lower CT values is provided in Appendix G.

As indicated in Tables E-8 and E-9, the CT requirements for chlorine dioxide are substantially lower than those required for free chlorine. However, chlorine dioxide is not as stable as free chlorine or chloramines in a water system and may not be capable of providing the required disinfectant residual throughout the distribution system. In addition, out of concern for toxicological effects, EPA's current guideline is that the sum of the chlorine dioxide, chlorate and chlorite residuals, be less than 1.0 mg/L at all consumer taps. This guideline may be lowered as more health effects data become available. These concerns further reduce the

feasibility of using chlorine dioxide as a secondary disinfectant for distribution systems. Therefore, the use of chlorine dioxide as a primary disinfectant may result in the need for the application of a secondary disinfectant, such as chlorine or chloramines, that will persist in the distribution system and provide the required residual protection.

Meeting the Inactivation Requirement Using Ozone

Another disinfectant to inactivate <u>Giardia</u> cysts and viruses is ozone. As with chlorine dioxide, under the SWTR, the CT values for ozone are independent of pH. Tables E-10 and E-11 present the CT requirements for ozone at different source water temperatures. The basis for the CT values for ozone is given in Appendix F. As for free chlorine, a 3-log <u>Giardia</u> cyst inactivation with ozone will result in greater than a 4-log virus inactivation. Unlike chlorine, for cases where only a 1-log or lower <u>Giardia</u> inactivation is needed with ozone, the CT values for virus inactivation may be higher than the CT for <u>Giardia</u>. The Primacy Agency may allow lower CT values for individual systems based on information provided by the system that demonstrates that CT values lower than those specified in the rule achieve the same inactivation efficiencies (see Appendix G).

Ozone is extremely reactive and dissipates quickly after application. Therefore, a residual⁵ can only be expected to persist a short time

The residual must be measured using the Indigo Trisulfonate Method (Bader & Hoigne, 1981) or automated methods which are calibrated in reference to the results obtained by the Indigo Trisulfonate method, on a regular basis as determined by the Primacy Agency. The Indigo Trisulfonate method is included in the 17th Edition of Standard Methods. This method is preferable to current standard methods because of the selectivity of the Indigo Trisulfonate indicaor in the presence of most interferences found in ozonated waters. The ozone degrades an acidic solution of indigo trisulfonate in a 1:1 proportion. The decrease in absorbance is linear with increasing ozone concentrations over a wide range. Malonic acid can be added to block interference from chlorine. Interference from permanganate, produced by the ozonation of manganese, is corrected by running a blank in which ozone is destroyed prior to addition of the indigo reagent. The samples can be analyzed using a spectrophotometer at a 600 nm wavelength which can detect residuals as low as 2 ug/L or a visual color comparison method which can measure down to 10 ug/L ozone. Although currently available monitoring probes do not use the Indigo Trisulfonate Method, they can

after application. In addition, the application of ozone to water is dependent on mass transfer. For these reasons, the method of CT determination used for the other disinfectants is impractical for ozone, The CT_{caic} must be determined for the ozone contactor alone. The contactor will have some portions where the ozone is applied and other portions of the contactor where ozone is no longer applied, which are referred to as the reactive flow chambers.

For many ozone contactors, the residual in the contactor will vary in accordance with the method and rate of application, the residual will be nonuniform and is likely to be zero in a portion of the contactor. As previously indicated, the CT value is based on the presence of a known residual during a specific contact time. Thus disinfection credit is only provided for the time when a residual is present. Besides the nonuniformity of the residual, monitoring the residual will be difficult because of the ozone's high reactivity and the closed design of the contactors.

In addition to the difficulty in determining the ozone residual for the CT calculation, the contact time will vary between basins depending on their flow configuration. Several types of devices are available for adding ozone to water including porous diffusers, submerged turbines, injector, packed towers and static mixers. Each type of device can be used in either single or multiple chamber contactors. The flow through a single chamber turbine contactor will approximate a completely mixed unit, while flow through a single chamber diffused contactor, or a multiple chamber diffused contactor, will more closely represent plug flow. This variation in flow in different contactors makes the use of T_{10} inappropriate for some contactors.

The differences between ozone contactors and other disinfection systems resulted in the development of several approaches for determining the inactivation provided by ozone, including:

- Evaluation of C and T
- Segregated Flow Analysis (SFA)
- Continuously Stirred Tank Reactor (CSTR)
- Site Specific Evaluation

be calibrated via this method.

The method which is appropriate for a paricular system will depend on system configuration and the required level of inactivation. Another significant difference is that ozone may be applied to provide only a portion of the overall 3-log <u>Giardia</u> cyst and 4-log virus inactivation with the remainder of the inactivation provided by another disinfectant. Appendix O provides details for selecting the appropriate method of evaluation for specific conditions.

The evaluation of C and T involves separate determination of the ozone residual concentration, C, and the contact time, T, in the contactor. C can be determined for individual chambers of a contactor based on the residual measured at several points throughout the chamber, or at the exit of the chamber. The T value can be determined through a tracer study or an equivalent method as approved by the Primacy Agency with air or oxygen applied during testing, using the same feed gas rate as used during operation. Appendix O provides details for the CT approach.

SFA is based on the results of a tracer study used in conjunction with the measured ozone residual to determine the survival of microorganisms exiting the contactor. The survival corresponds to a certain inactivation. Guidelines for this approach are included in Appendix O.

The CSTR approach is applicable for contactors which have a high degree of mixing. Experience has shown that for contactors such as turbine units, the ozone residual is generally uniform throughout the contactor. The ozone residual measured at the exit if the contactor is used in an equation for CSTRs to determine the inactivation provided. Appendix O provides details for conducting CSTR analysis.

Site specific evaluations may include:

- Measurement of an observable parameter to correlate with C
- Mathematical model for disinfection efficiency
- Microbial indicator studies for disinfection efficiency

to more closely determine the inactivation provided in a particular system. Appendix O provides details for applying site specific evaluations.

Summary

Many systems which do not provide filtration will have difficulty in providing the contact time necessary to satisfy the inactivation requirements prior to the first customer. For example, a system using free chlorine at a water temperature of 5 C, a pH of 7.0 and a chlorine residual of 1.4 mg/L would require 111 minutes of contact time to meet the inactivation requirement. Potential options for these systems include:

- Installation of storage facilities to provide the required contact time under maximum flow conditions.
- Use of an alternate primary disinfectant such as ozone or chlorine dioxide which has CT values lower than those required for free chlorine for the required inactivation.

For some systems, the difficulty in obtaining the required inactivation may only be a seasonal problem. A system that has raw water temperatures which reach 20 C during the summer months at a pH of 7.0, may have sufficient contact time to meet the CT of 56 mg/L-min (Table E-5) at a chlorine concentration of 1 mg/L. However, assuming the same pH and chlorine concentration, it may not have sufficient contact time to meet the CT requirement at 5 C, 149 mg/L-min (Table E-2), or at 0.5 C, 210 mg/L-min (Table E-1). Under those conditions, a system could choose to use ozone or chlorine dioxide on a seasonal basis, since they are stronger disinfectants requiring a shorter contact time.

As indicated in Table E-12, the CT values for chloramines may be impractical to attain for most systems. Systems which currently utilize chloramines as a primary disinfectant may need to use either free chlorine, chlorine dioxide or ozone in order to provide the required disinfection. However, systems using chloramines as a primary disinfectant may chose to demonstrate the adequacy of the disinfection. Appendix G presents a method for making this demonstration.

Meeting the Inactivation Requirement Using Alternate Disinfectants
For systems using disinfectants other than chlorine, chloramines,
chlorine dioxide, or ozone, the effectiveness of the disinfectant can be
demonstrated using the protocol contained in Appendix G. The protocol in
Appendix G.3 for batch testing should be followed for any disinfectant

which can be prepared in an aqueous solution and will be stable throughout the testing. For disinfectants which are not stable, the pilot study protocol outlined in Appendix G.4 should be followed.

3.2.2 Determination of Overall Inactivation for Residual Profile, Multiple Disinfectants and Multiple Sources

For systems which apply disinfectant(s) at more than one point, or choose to profile the residual from one point of application, the total inactivation is the sum of the inactivation ratios between each of the points of disinfection or between each of the residual monitoring points, respectively. The portion of the system with a measurable contact time between two points of disinfection application or residual monitoring will be referred to as a section. The calculated CT (CT_{calc}) for each section is determined daily.

The CT needed to fulfill the disinfection requirements is $CT_{99.9}$, corresponding to a 3-log inactivation of <u>Giardia</u> cysts and greater than or equal to a 4-log inactivation of viruses (except for chloramines and sometimes chlorine dioxide as explained in Section 3.2.1). The inactivation ratio for each section is represented by $CT_{caic}/CT_{99.9}$, as explained in Section 3.2.1, and indicates the portion of the required inactivation provided by the section. The sum of the inactivation ratios from each section can be used to determine the overall level of disinfection provided. Assuming inactivation is a first order reaction, the inactivation ratio corresponds to log and percent inactivations as follows:

CT.aic/CTag.g	·	Log Inactivat	ion	Percent Inactivation
0.17	•	0.5 log	, -	68 *
0.33		1 100	; -	90%
0.50		1.5 700	, -	96.8%
0.67	=	2 109	; -	99*
0.83	•	2.5 109	• •	99.7%
1.00	•	3 log	; =	99.9%
1.33	•	4 10	g -	99.99*

 $CT_{99.9}$ can be determined for each section by referring to Tables E-1 through E-13 in Appendix E, using the pH (when chlorine is the disinfectant) and temperatures of the water for the respective sections. These tables present the log inactivation of <u>Giardia</u> cysts and viruses achieved by CTs at various water temperatures and pHs.

Log inactivations are additive, so:

0.5 Log + 1.0 Log = 1.5 Log or

 $0.17CT_{99.9} + 0.33CT_{99.9} = 0.5CT_{99.9}$

If the sum of the inactivation ratios is greater than or equal to one, the required 3-log inactivation of <u>Giardia</u> cysts has been achieved. An inactivation ratio of at least 1.0 is needed to demonstrate compliance with the <u>Giardia</u> cyst inactivation requirements for unfiltered systems.

The total log inactivation can be determined by multiplying the sum of the inactivation ratios (sum $(CT_{celc}/CT_{99.9})$), by three. The total log inactivation can be determined in this way because $CT_{99.9}$ is equivalent to a 3-log inactivation. The total percent inactivation can be determined as follows:

$$y = 100 - 100$$
 Equation (1)

where:

y - % inactivation

x = log inactivation

For example:

 $x = 3.0 \log inactivation$

 $y = 100 - \frac{100}{10^{3.0}} = 99.9 \%$ inactivation

As explained in Section 3.2.1, the CT_{calc} determined for each disinfection section is the product of the disinfectant residual in mg/L and the detention time in minutes through the section at peak hourly flow. However, for many water systems, peak hourly flow will not necessarily occur simultaneously in all sections. The extent to which the occurrence of peak hourly flow will vary between sections of the system depends on

the characteristics of an individual system including its size, storage capacity within the distribution system, the number of sources, and hydraulic capacities between different sections. In order to simplify the determination of peak hourly flow for the system, it should be taken as peak hourly flow in the last section of the system prior to the first customer.

The CT values for all the sections should be calculated for the flow and the residuals occurring during the hour of peak flow in the last section. The most accurate way to determine the flow in a particular section is through the use of a flow meter. However, some sections of the system may not have a flow meter. The following guidelines can be used to determine the flow to be used in calculating CT:

- For sections which do not have meters, the flow should be assumed to be the higher of the two flows occurring in the closest upstream and downstream sections with meters.
- In cases where a section contains a pipeline and a basin with the flow meter located prior to the basin, the metered flow does not represent the discharge rate of the basin. The difference in inlet and discharge rates from a basin will impact the water level in the basin. As explained in Appendix C, falling water levels will result in lower T₁₀ values.
 - To assure that the detention time of a basin is not overestimated, the discharge flow from a basin should be used in lieu of the influent flow, unless the influent flow is higher.
 - To estimate the discharge flow from a basin the closest flow meter downstream of the basin should be used.

The following example presents the determination of the total percent inactivation for multiple points of disinfection, with variation in flow between sections.

Example

A community of 6,000 people obtains its water supply from a lake which is 10 miles from the city limits. Two 0.2 MG storage tanks are located along the 12-inch transmission line to the city. The water is disinfected with chlorine dioxide at the exit from the lake and with chlorine at the discharge from the first and second storage tanks. The

average water demand of the community is 1 MGD with a peak hourly demand of approximately 2 MGD. For the calculations of the overall percent inactivation, the supply system is divided into three sections as shown on Figure 3-1.

Section 1 - from the lake to the discharge from the first storage tank,

Section 2 - from the discharge from the first storage tank to the discharge from the second tank

Section 3 - from the discharge of the second storage tank to the first customer

The overall inactivation is computed daily for the peak hourly flow conditions. Sections 1 and 3 contain flow meters to monitor the water being withdrawn from the lake and the water being delivered to the distribution system as shown on Figure 3-1. On the day of this example calculation, the peak hourly flow in section 3 was 2 MGD. During this hour, water was being withdrawn from the lake at a rate of 1.5 mgd. Considering the placement of flow meters, the flow of 2 mgd measured in section 3 should be used for calculating CT for that section. Since section 2 does not have a flow meter, the meter in section 3 serves as a measure of the discharge from storage tank 2 and should be the flow used in the calculation of CT for section 2. The flow meter in section 1 records the flow through the transmission main which should be used in the calculation However, this meter does not represent the of CT for the pipeline. discharge from storage tank 1. Since the water is being pumped to the distribution system at a higher rate than the flow entering storage tank 1. the flow of 2 mgd measured in section 3 should be used for calculating the CT for storage tank 1.

The pH, temperature and disinfectant residual of the water were measured at the end of each section just prior to the next point of disinfection and the first customer during the hour of peak flow. The water travels through the 12-inch transmission main at 177 ft/min at

1.5 MGD. 6 The detention times of the storage tanks were read off the T_{10} vs. Q plots generated from tracer studies conducted on the storage tanks (see Appendix C). The data for the inactivation calculation are as follows:

	Section 1	Section 2	Section 3
length of pipe (ft)	15,840	26,400	10,560
flow (mgd) pipe tank	1.5 2.0	2.0 2.0	2.0
contact time (min) pipe tank total	89 116 205	111 114 225	45 0 45
disinfectant	chlorine dioxide	chlorine	chlorine
residual (mg/L) temperature (C) pH	0.1 5 8	0.2 5 8	0.4 5 8

This information is then used in conjunction with the $CT_{99.9}$ values in Appendix E to determine the $(CT_{caic}/CT_{99.9})$ in each section as follows: Section 1 - Chlorine dioxide

 CT_{calc} - 0.1 mg/L x 105 minutes = 20.5 mg/L-min

From Table E-8 at a temperature of 5 C and pH = 8, CT_{qq} is 26 mg/L-min

$$CT_{calc}/CT_{gg.g} = \frac{20.5 \text{ mg/L-min}}{26 \text{ mg/L-min}} = 0.79$$

Section 2 - Chlorine

 $CT_{caic} = 0.2 \text{ mg/L} \times 225 \text{ minutes} = 45 \text{ mg/L-min}$

From Table E-2 at a temperature of 5 C and pH = 8, $CT_{99.9}$ is 198 mg/L-min

$$CT_{calc}/CT_{99.9} = \frac{45 \text{ mg/L-min}}{198 \text{ mg/L-min}} = 0.23$$

 $[\]frac{0}{A} = \frac{1.5 \times 10^6 \text{ gal/day}}{(1 \text{ ft}^2 / 4)} \times \frac{1 \text{ ft}^3}{7.48 \text{ gal}} \times \frac{\text{day}}{1440 \text{ min}} = 177 \text{ ft/min}$

Section 3 - Chlorine

CT_{cate} = 0.4 mg/L-min x 45 min = 18 mg/L-min

From Table E-2 at a temperature of 5 C and pH = 8, $CT_{99.9}$ is 198 mg/L-min

$$CT_{caic}/CT_{99.9} = 18 \text{ mg/L-min} = 0.09$$

198 mg/L-min

The sum of $CT_{calc}/CT_{99.9}$ is equal to 1.11, which is greater than 1, therefore, the system meets the requirements of providing a 3-log inactivation of <u>Giardia</u> cysts. The log inactivation provided is:

$$x = 3 \times \frac{CT_{calc}}{CT_{gg,g}} = 3 \times 1.11 = 3.33$$

The percent inactivation can be determined using equation 1.

$$y = 100 - \frac{100}{10^{3/3}} = 100 - \frac{100}{2,138} = 100 - 0.05 = 99.95% inactivation$$

The system meets the requirement of providing a 99.9 percent inactivation of <u>Giardia</u> cysts.

The SWTR also requires that the public be provided with protection from <u>Legionella</u> as well as <u>Giardia</u> cysts and viruses. Inactivation levels have not been set for <u>Legionella</u> because the required inactivation of <u>Giardia</u> cysts will provide protection from <u>Legionella</u>. However, this level of disinfection cannot assure that all <u>Legionella</u> will be inactivated and that no recontamination or regrowth in recirculating hot water systems of buildings or cooling systems will occur. Appendix B provides

Kuchta et al. (1983) reported a maximum CT requirement of 22.5 for a 99 percent inactivation of <u>Legionella</u> in a 21 C tap water at a pH of 7.6-8.0 when using free chlorine. Using first order kinetics, a 99.9 percent inactivation requires a CT of 33.8. Table A-5 presents the CTs needed for free chlorine to achieve a 99.9 percent inactivation of <u>Giardia</u> cysts at 20 C. This table indicates that the CT required for a 3-log inactivation of <u>Giardia</u> at the temperature and pH of the <u>Legionella</u> test ranges from 67 to 108 depending on chlorine residual. These CT's are two to three times higher than that which is needed to achieve a 3 log inactivation of <u>Legionella</u>.

guidance for monitoring and treatment to control <u>Legionella</u> in institutional systems.

The above discussion pertains to a system with one source withsequential disinfection. Another system may blend more than one source, and disinfect one or more of the sources independently prior to blending. System conditions which may exist include:

- All the sources are combined at one point prior to supplying the community but one or more of the sources are disinfected prior to being combined, as shown on Figure 3-2.
- Each source is disinfected individually and enters the distribution system at a different point, as shown on Figure 3-3.

For all systems combining sources, the first step in determining the CT should be to determine the CT_{caic} provided from the point of blending closest to the first customer using the contact time and residual at peak hourly flow for that portion of the distribution system. This corresponds to section D on Figure 3-2 and section E on Figure 3-3. If the CT_{caic} for section D or E provides the required inactivation, no additional CT credit is needed and no further evaluation is required. However, if the CT for section D or E is not sufficient to achieve the required inactivation, then the inactivation ratio $(CT_{caic})/(CT_{99-9})$ should be determined for each section to determine the overall inactivation provided for each source. The total inactivation must be greater than or equal to one for all sources in order to comply with the requirements for 3-log inactivation of Giardia cysts.

On Figure 3-2, sections A, B, C and D contain sampling points a, b, c and d, respectively. The sum of the inactivation ratios for sections A+D, B+D and C+D must each be greater than or equal to one for the disinfection requirements to be met.

The total inactivation for each source on Figure 3-2 should be determined as follows:

Source I

 Determine CT_{cals} for sections A and D based on the residual measurements at sample points a and d, and the travel time through each section under peak hourly flow conditions for the respective section.

- Determine CT_{99} , for the pH and temperature conditions in each section using the tables in Appendix E
- Calculate the inactivation ratios (CT_{calc}/CT_{99.9}) for sections A and D.
- Calculate the sum of the inactivation ratios for sections A and D to determine the total inactivation for source I.
- If the sum of the inactivation ratios is greater than or equal to 1.0, the system has provided the required 3-log <u>Giardia</u> cyst inactivation.

Source II

- Determine CT_{calc} for section B based on the residual measured at sample point b and the travel time through the section under peak hourly flow conditions.
- Determine CT_{59 9} for section B for the pH and temperature conditions in the section using the appropriate tables in Appendix E.
- Calculate the inactivation ratio (CT_{sale}/CT_{99.9}) for section B.
- Add the inactivation ratios for sections B and D to determine the total inactivation for source II.
- If the sum of the inactivation ratios is greater than or equal to 1.0, the system has provided the required 3-log <u>Giardia</u> cyst inactivation for the source.

Source III

- Determine CT_{calc} for section C based on the residual measured at sample point c and the travel time through the section under peak hourly flow conditions.
- Determine CT_{59 5} for section C for the pH and temperature conditions in the section using the appropriate tables in Appendix E.
- Calculate the inactivation ratio (CT_{calc}/CT_{99.9}) for section C.
- Add the inactivation ratios for sections C and D to determine the total inactivation for Source III.

 If the sum of the inactivation ratios is greater than or equal to 1.0, the system has provided the required 3-log <u>Giardia</u> cyst inactivation for the source.

The determination of the total inactivation for each source may require more calculations for systems such as that on Figure 3-3 than on Figure 3-2. On Figure 3-3 sections A, B, C, D, and E contain sampling points a, b, c, d, and e respectively. In order to minimize the calculations needed, the determination of the total inactivation should begin with the source closest to the first customer.

The total inactivation for each source on Figure 3-3 should be determined as follows:

Source III

- Determine CT_{calc} for sections C and E based on the residual measurement at sample points c and e and the detention time in each section under peak hourly flow conditions for the respective section.
- Determine CT₉₉ , for the pH and temperature conditions in each section using the tables in Appendix E.
- Calculate the inactivation ratios (CT_{calc}/CT_{99.9}) for sections C and E.
- Calculate the sum of the inactivation ratios for sections C and E to determine the total inactivation for source III.
- If the sum of the inactivation ratios is greater than or equal to 1.0, the system has provided the required 3-log <u>Giardia</u> cyst inactivation for source III.

Source II

- Determine CT_{calc} for section D based on the residual measured at sample point d and the detention time through the section under peak hourly flow conditions.
- Determine CT_{99 9} for section D for the pH and temperature conditions in the section using the appropriate tables in Appendix E.
- Calculate the inactivation ratio (CT_{calc}/CT_{99.5}) for section D.
- Add the inactivation ratios for sections D and E to determine the overall inactivation.

- "If the sum of the inactivation ratios is greater than or equal to 1.0, the system has provided the required 3-log <u>Giardia</u> cyst inactivation for source II, as well as source I since the water from each of these sources are combined prior to sections D and E.
- If the total inactivation ratio for sections D and E is less than 1.0, additional calculations are needed. Proceed as follows for source II.
- Determine CT_{call} for section B based on the residual measured at sample point b and the detention time through the section under peak hourly flow conditions.
- Determine $CT_{99.9}$ for section B for the pH and temperature conditions in the section using the appropriate tables in Appendix E.
- Calculate the inactivation ratio (CT_{catc}/CT_{99,9}) for section B.
- Add the inactivation ratios for sections B, D and E to determine the total inactivation for source II.
- If the sum of the inactivation ratios is greater than or equal to 1.0, the system has provided the required 3-log <u>Giardia</u> cyst inactivation for the source.

Source I

As noted in the determination of the inactivation provided for source II, if the sum of the inactivation ratios for sections D and E is greater than or equal to 1.0, the system has provided the required 3-log <u>Giardia</u> cyst inactivation. However, if this sum is less than 1.0 additional calculations will be needed to determine the overall inactivation provided for source I. The calculations are as follows:

Source I

- Determine CT for section A based on the residual measured at sample point a and the detention time in the section under peak hourly flow conditions.
- Determine CT_{ses} for section A for the pH and temperature conditions in the section using the appropriate tables in Appendix E.
- Calculate the inactivation ratio (CT_{calc}/CT_{99.9}) for section A.
- Add the inactivation ratios for sections A, D, and E to determine the total inactivation for source I.

If the sum of the inactivation ratios is greater than or equal to 1.0, the system has provided the required 3-log Giardia cyst inactivation for the source.

3.2.3 Demonstration of Maintaining a Residual

The SWTR establishes two requirements concerning the maintenance of a residual. The first requirement is to maintain a minimum residual of 0.2 mg/L entering the distribution system. The second is to maintain a detectable residual throughout the distribution system. The disinfectant used to meet these requirements is identified as the secondary disinfectant throughout the remainder of this document. These requirements are further explained in the following sections.

Maintaining a Residual Entering the Distribution System

To avoid filtration, the disinfectant residual in water entering the distribution system cannot be less than 0.2 mg/l for more than four hours, with one exception noted below. Systems serving more than 3,300 persons must monitor continuously. If there is a failure in the continuous monitoring equipment, the system may substitute grab sampling every four hours for up to five working days following the failure of the equipment. Systems serving 3,300 or fewer people may monitor continuously or take grab samples at the frequencies prescribed below:

System Size by Population	Samples/da
≤500	1
501-1,000	Ž
1,001-2,500	3
2.501-3.300	Ă

*Samples cannot be taken at the same time.

The sampling intervals are subject to Primacy Agency review and approval.

If at any time the residual disinfectant concentration falls below 0.2 mg/l in a system using grab sample monitoring, the system must continue to take a grab sample every four hours until the residual disinfectant concentration is equal to or greater than 0.2 mg/l. For all systems, if the residual concentration is not restored to at least 0.2 mg/l within four hours after a value of less than 0.2 mg/l is observed, the system is

in violation of a treatment technique requirement, and must install filtration. However, if the Primacy Agency finds that the exceedance was caused by an unusual and unpredictable circumstance, the Primacy Agency may choose not to require filtration. EPA expects Primacy Agencies to use this provision sparingly; it is intended to encompass catastrophic events, not infrequent large storm events. In addition, any time the residual concentration falls below 0.2 mg/l, the system must notify the Primacy Agency. Notification must occur as soon as possible, but no later than the end of the next business day. The system also must notify the Primacy Agency by the end of the next business day whether or not the residual was restored within four hours.

Failure of a monitoring or reporting requirement does not trigger a requirement to filter although they are violations.

Maintaining a Residual Within the System

To avoid filtration, the disinfectant residual in the distribution system cannot be undetectable in more than five percent of the samples in a month, for any two consecutive months that the system serves water to the public. Systems may measure HPC instead of disinfectant residual. Sites with HPC concentrations of less than or equal to 500/ml are considered equivalent to sites with detectable residuals for the purpose of determining compliance. Public water systems must monitor for the presence of a disinfectant residual (or HPC levels) at the same frequency and locations as total coliform measurements taken pursuant to the Total Coliform Rule. However, if the Primacy Agency determines, based on site-specific considerations, that a system has no means for having a sample transported and analyzed for HPC by a certified laboratory within the requisite time and temperature conditions (Method 907, APHA, 1985), but that the system is providing adequate disinfection in the distribution system, this requirements does not apply to that system.

For systems which use both surface and ground water sources, the Primacy Agency may allow the system to take disinfectant residual or HPC samples at points other than the total coliform sampling locations if it determines that such points are more representative of treated (disinfected) water quality within the distribution system.

Disinfectant residual can be measured as total chlorine, free chlorine, combined chlorine or chlorine dioxide (or HPC level). The SWTR lists the approved analytical methods for these analyses. For example, several test methods can be used to test for chlorine residual in the water, including amperometric titration, DPD colorimetric, DPD ferrous titrimetric method and iodometric method, as described in the 16th Edition of <u>Standard Methods</u>. Appendix D provides a review and summary of available techniques to measure disinfectant residuals.

If a system fails to maintain a detectable disinfectant residual or an HPC level of less than or equal to 500/ml in more than 5 percent of the samples during a month, for any two consecutive months the system serves water to the public, the system is in violation of a treatment technique requirement. In addition, this system must install filtration unless the Primacy Agency determines that the violation was not due to a deficiency in treatment of the source water (e.g., the violation was due to a deficiency in the distribution system, such as cross-connection contamination or failure in the pipeline).

The absence of a detectable disinfectant residual in the distribution system may be due to a number of factors, including:

- Insufficient chlorine applied at the treatment plant
- Interruption of chlorination
- A change in chlorine demand in either the source water or the distribution system
- Long standing times and/or, long transmission distances

Available options to correct the problem of low disinfectant residuals in distribution systems include:

Routine flushing

Also, portable test kits are available which can be used in the field to detect residual upon the approval of the Primacy Agency. These kits may employ titration or colorimetric test methods. The colorimetric kits employ either a visual detection of a residual through the use of a color wheel, or the detection of the residual through the use of a hand held spectrophotometer.

- Increasing disinfectant doses at the plant
- Cleaning of the pipes (either mechanically by pigging or by the addition of chemicals to dissolve the deposits) in the distribution system to remove accumulated debris which may be exerting a disinfectant demand;
- Flushing and disinfection of the portions of the distribution system in which a residual is not maintained; or
- Installation of satellite disinfection feed facilities within the distribution system.

For systems unable to maintain a residual, the Primacy Agency may determine that it is not feasible for the system to monitor HPC and judge that disinfection is adequate based on site-specific conditions.

Additional information on maintaining a residual in the system is available in the AWWA Manual of Water Supply Practices and Water Chlorination Principles and Practices.

3.2.4 <u>Disinfection System Redundancy</u>

Another requirement for unfiltered water supply systems is disinfection facility redundancy. A system providing disinfection as the only treatment is required to assure that the water delivered to the distribution system is continuously disinfected. The SWTR requires either redundant disinfection equipment with auxiliary power and automatic start-up and alarm; or an automatic shutoff of delivery of water to the distribution system when the disinfectant residual level drops below 0.2 mg/L. In order to fulfill the requirement of providing redundant disinfection facilities, the following system is recommended:

- All components have backup units with capacities equal to or greater than the largest unit on-line.

este.

- A minimum of two storage units of disinfectant which can be used alternately e.g., two cylinders of chlorine gas, two tanks of hypochlorite solution
- Where the disinfectant is generated on-site, such as ozone, backup units with a capacity equal to or greater than that of the largest unit on-line.
- Automatic switchover equipment to change the feed from one storage unit to the other before the first empties or becomes inoperable

- Feed Systems with backup units with capacities equal to or greater than the largest unit on-line.
- An alternate power supply such as a standby generator with the capability of running all the electrical equipment at the disinfection station. The generator should be on-site and functional with the capability of automatic start-up on power failure

Systems providing disinfection may have several different configurations for type and location of disinfectant application. The following guidelines are provided to assist Primacy Agencies and utilities in determining the need for redundancy. Possible disinfection configurations include:

- one disinfectant used for primary and secondary disinfection
 - one point of application
 - multiple points of application
- two different disinfectants used for primary and secondary disinfection

In many cases one disinfectant will be used to fulfill both the total inactivation and residual requirements. One or more application points may be used to accomplish this. When one application point is used to meet both the primary and secondary disinfection requirements, the system is required to include redundant disinfection facilities.

When multiple points of application are used, redundancy is recommended for the disinfection facilities at each point of application which is essential to meet the total inactivation requirements. In addition, to assure the maintenance of a residual entering and throughout the distribution system, either:

- the last point of application prior to the distribution system should have redundancy, or
- the point of application immediately prior to this point should have redundancy and sufficient capacity to assure a residual entering the distribution system.

Systems may also use two different disinfectants, one to fulfill the inactivation requirements and the second to maintain a residual. An

example of this would include a system using ozone as a primary disinfectant and chloramines as a secondary disinfectant. EPA recommends that:

- the disinfection facilities at each point of disinfectant application in the primary system essential in providing the overall inactivation requirements include redundancy, and
- the secondary disinfection facilities include redundancy, unless the disinfectant used for primary disinfection can provide a residual for the distribution system as well. If the primary disinfectant can be used for residual maintenance, the last point of primary disinfectant application should include redundancy and sufficient capacity to assure a residual entering the distribution system.

Appendix I contains more specific information to assist the Primacy Agency in establishing requirements for providing redundant disinfection facilities.

Providing automatic shutoff of water delivery requires approval by the Primacy Agency. The Primacy Agency must determine that this action will not result in an unreasonable risk to health or interfere with fire protection. This determination should include the evaluation of the system configuration to protect against negative pressures in the system, and providing for high demand periods including fire flow requirements. Automatic shutoff should be allowed only if systems have adequate distribution system storage to maintain positive pressure for continued water use.

3.3 SITE-SPECIFIC CONDITIONS

In addition to meeting source water quality criteria and disinfection criteria, nonfiltering systems using surface water supplies must meet the following criteria:

Maintain a watershed control program
 Conduct a yearly on-site inspection

- Determine that no waterborne disease outbreaks have occurred

- Comply with the revised annual total coliform MCL

Comply with TTHM regulations (currently applies to systems serving >10,000 people)

Guidelines for meeting these other criteria are presented in the following sections.

3.3.1 Watershed Control Program

A watershed control program is a surveillance and monitoring program which is conducted to protect the quality of a surface water source. An aggressive and detailed watershed control program is desirable to effectively limit or eliminate potential contamination by human viruses. A watershed program may impact parameters such as turbidity, certain organic compounds, viruses, total and fecal coliforms, and areas of wildlife habitation. However, the program is expected to have little or no impact on parameters such as naturally occurring inorganic chemicals. Limiting human activity in the watershed may reduce the likelihood of animals becoming infected with pathogens and thereby reduce the transmission of pathogens by wildlife. Preventing animal activity near the source water intake prior to disinfection may also reduce the likelihood of pathogen occurrence at the intake.

The effect of a watershed program is difficult to quantify since many variables that influence water quality are beyond the control or knowledge of the water supplier. As a result, the benefit of a watershed control program or specific control measures must in many cases be based on accumulated cause and effect data and on the general knowledge of the impact of control measures rather than on actual quantification. The effectiveness of a program to limit or eliminate potential contamination by human viruses will be determined based on: the comprehensiveness of the watershed review; the ability of the water system to effectively carry

out and monitor the management decisions regarding control of detrimental activities occurring in the watershed; and the potential for the water system to maximize land ownership and/or control of land use within the watershed. According to the SWTR, a watershed control program should include as a minimum:

 A description of the watershed including its hydrology and land ownership

*

ż.

este Este

1

35

- Identification, monitoring and control of watershed characteristics and activities in the watershed which may have an adverse effect on the source water quality
- A program to gain ownership or control of the land within the watershed through written agreements with land owners, for the purpose of controlling activities which will adversely affect the microbiological quality of the water
- An annual report which identifies special concerns in the watershed and how they are being handled, identifies activities in the watershed, projects adverse activities expected to occur in the future and how the utility expects to address them.

Appendix J contains a more detailed guide to a comprehensive watershed program.

In preparing a watershed control program, surface water systems should draw upon the State watershed assessments and nonpoint source (NPS) pollution management programs required by S319 of the Clean Water Act. Information on these programs is available from State water quality agencies or EPA's regional offices. Assessments identify NPS pollutants in water and assess the water quality. Utilities should use the assessments when evaluating pollutants in their watershed. Surface water quality assessments can also be obtained from the lists of waters prepared under S304(1) of the Clean Water Act, and State biennially prepared S305(b) reports.

State NPS management programs identify best management practices (BMPs) to be employed in reducing NPS pollution. These management programs can be incorporated in the watershed program to protect against degradation of the source water quality.

For systems using ground water sources under the influence of surface water, the control measures delineated in the Wellhead Protection (WHP) program encompass the requirements of the watershed control program, and can be used to fulfill the requirements of the watershed control program. Guidance on the content of State Wellhead Protection Programs and the delineation of wellhead protection areas is given in: "Guidance for Applicants for State Wellhead Protection Program Assistance Funds Under the Safe Drinking Water Act," June, 1987, and "Guidelines for Delineation of Wellhead Protection Areas," June, 1987, available from the EPA office of Ground-Water Protection (WH-550G).

As a minimum, the WHP program must:

- Specify the duties of State agencies, local governmental entities and public water supply systems with respect to the development and implementation of Programs;
- Determine the wellhead protection area (WHPA) for each wellhead as defined in subsection 1428(e) based on all reasonably available hydrogeologic information, ground-water flow, recharge and discharge and other information the State deems necessary to adequately determine the WHPA:
- Identify within each WHPA all potential anthropogenic sources of contaminants which may have any adverse effect on the health of persons:
- Describe a program that contains, as appropriate, technical assistance, financial assistance, implementation of control measures, education, training and demonstration projects to protect the water supply within WHPAs from such contaminants;
- Present contingency plans for locating and providing alternate drinking water supplies for each public water system in the event of well or wellfield contamination by such contaminants;
- Consider all potential sources of such contaminants within the expected wellhead area of a new water well which serves a public water supply system; and
- Provide for public participation.

3.3.2 On-site Inspection

The watershed control program and on-site inspection are interrelated preventive strategies. On-site inspection is actually a program which includes and surpasses the requirements of a watershed program. While the watershed program is mainly concerned with the water source, on-site inspection includes some additional requirements for source water quality control and is also concerned with the disinfection facilities. As defined by the EPA, an on-site inspection includes review of the water source, disinfection facilities and operation and maintenance of a public water system for the purpose of evaluating the adequacy of such systems for producing safe drinking water.

The SWTR requires an annual on-site inspection to evaluate the watershed control program and disinfection facilities. The inspection must be performed by a party approved by the Primacy Agency. The inspection should be conducted by competent individuals such as sanitary and civil engineers, sanitarians, and technicians who have experience and knowledge in the operation, maintenance, and design of water systems, and who have a sound understanding of public health principles and waterborne diseases. Guidance for the contents of an inspection are included in the following paragraphs. Appendix K presents guidelines for a sanitary survey which includes and surpasses the requirements of an on-site inspection.

As the first step in determining which SWTR requirements, if any, a source is subject to, EPA recommends that utilities conduct a detailed, comprehensive sanitary survey. Appendix K presents a comprehensive list of water system features that the person conducting the survey should be aware of and review as appropriate. This initial investigation establishes the quality of the water source, its treatment and delivery to the consumer. EPA recommends that this comprehensive evaluation be repeated every three years for systems serving 4,100 people or less and every five years for systems serving more than 4,100 people. Also, under the Total Coliform Rule, ground water systems which take less than 5 coliform samples per month must conduct such sanitary surveys within every 5 or 10 years depending upon whether the source is protected and disinfected.

The annual on-site inspection to fulfill the SWTR requirements should include as a minimum:

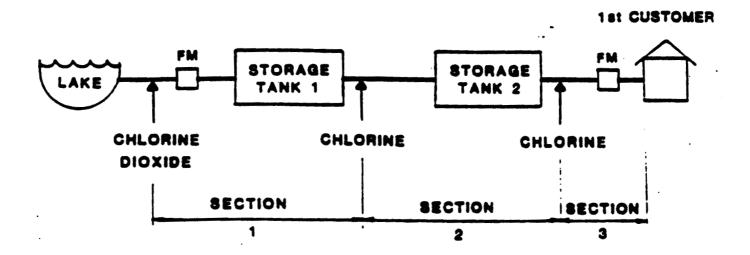


FIGURE 3-1-DETERMINATION OF INACTIVATION FOR MULTIPLE DISINFECTANT APPLICATION TO A SURFACE WATER SOURCE

1. Source Evaluation

- Review the effectiveness of the watershed control program (Appendix J).
- b. Review the physical condition and protection of the source intake.
- c. Review the maintenance program to insure that all disinfection equipment is appropriate and has received regular maintenance and repair to assure a high operating reliability.

2. Treatment Evaluation

- a. Review improvements and/or additions made to disinfection processes during the previous year to correct deficiencies detected in earlier surveys.
- b. Review the condition of disinfection equipment.
- c. Review operating procedures.
- d. Review data records to assure that all required tests are being conducted and recorded and disinfection is effectively practiced (CT calculations should be spot checked to ensure that they were done correctly).
- e. Identify any needed improvements in the equipment, system maintenance and operation, or data collection.

In addition to these requirements, a periodic sanitary survey is recommended for all systems, including those with filtered and unfiltered supplies. The sanitary survey should include the items listed in 1 and 2 above as well as:

3. Distribution System Evaluation

- a. Review the condition of storage facilities.
- b. Determine that the system has sufficient pressure throughout the year.
- c. Verify that system equipment has received regular maintenance.
- d. Review additions/improvements incorporated during the year to correct deficiencies detected in the initial inspection.

- e. Review cross connection prevention program, including annual testing of backflow prevention devices.
- f. Review routine flushing program for effectiveness.
- g. Evaluate the corrosion control program and its impact on distribution water quality.
- h. Review the adequacy of the program for periodic storage reservoir flushing.
- i. Review practices in repairing water main breaks to assure they include disinfection.

4. Management/Operation Evaluation

- a. Review the operations to assure that any difficulties experienced during the year have been adequately addressed.
- b. Review staffing to assure adequate numbers of properly trained and/or certified personnel are available.
- c. Verify that a regular maintenance schedule is followed.
- d. Audit systems records to verify that they are adequately maintained.
- e. Review bacteriological data from the distribution system for coliform occurrence, repeat samples and action response.

3.3.3 No Disease Outbreaks

Under the provisions of the SWTR, a surface water system which does not filter must not have been identified as a source of waterborne disease, or if it has been so identified, the system must have been modified sufficiently to prevent another such occurrence, as determined by the Primacy Agency. If a waterborne disease outbreak has occurred and the outbreak was or is attributed to a treatment deficiency, then the system must install filtration unless the system has upgraded its treatment system to remedy the deficiency which led to the outbreak and the Primacy Agency has determined that the system is satisfying this requirement. If the Primacy Agency has determined the disease outbreak was the result of a distribution system problem rather than a source water treatment deficiency, the system is not required to install filtration.

In order to determine whether the above requirement is being met, the responsible federal, state and local health agencies should be surveyed to obtain the current and historical information on waterborne disease outbreaks which may have occurred within a given system. Whether conducted by the Primacy Agency or submitted by the water purveyor, this information should include:

- 1. Source of the Information:
 - a. Name of agency
 - b. Name and phone number of person contacted
 - c. Date of inquiry
- 2. Outbreak Data
 - a. Known or suspected incidents of waterborne disease outbreaks
 - b. Date(s) of occurrence(s)
 - c. Type or identity of illness
 - d. Number of cases
- 3. Status of Disease Reporting:
 - Changes in regulations; e.g., giardiasis was not a reportable disease until 1985
- 4. If a Disease Outbreak has Occurred:
 - a. Was the reason for the outbreak identified; e.g., inadequate disinfection?
 - b. Did the outbreak occur while the system was in its current configuration?
 - c. Was remedial action taken?
 - d. Have there been any further outbreaks since the remedial action was taken?

If a review of the available information indicates that the system or network for disease reporting is inadequate within the Primacy Agency's area of responsibility, efforts should be made to encourage the appropriate agencies to upgrade the disease reporting capabilities within the area.

3.3.4 Monthly Coliform MCL

To avoid filtration, a system must comply with the MCL for total coliforms, established in the Total Coliform Rule, for at least 11 out of the previous 12 months the system served water to the public on an ongoing basis, unless the Primacy Agency determines that failure to meet this requirement was not caused by a deficiency in treatment of the source water. If the Primacy Agency makes such a determination, the system is . not required to install filtration. The Total Coliform Rule requires systems using surface water or ground water under the influence of surface water which do not filter to collect a sample at or near the first customer each day that the turbidity level exceeds 1 NTU within 24 hours of learning of the result and to analyze the sample for the presence of total coliforms. (If the Primacy Agency determines that it is notpossible for the system to have such a sample analyzed within 24 hours, this time limit may be extended on a case-by-case basis.) This sample may be used to fulfill the routine compliance monitoring requirements of the Total Coliform Rule. The results of the additional sample must be included in determining whether the system is in compliance with the monthly MCL for total coliforms.

3.3.5 <u>Total Trihalomethane (TTHM) Regulations</u>

For the system to continue to use disinfection as the only treatment, it must comply with the total trihalomethane (TTHM) MCL regulation. The current regulation established an MCL for total TTHM of 0.10 mg/L for systems serving a population greater than 10,000. Both the MCL and the system population covered may be reduced in the future, and this should be considered when planning disinfectant application.

One alternative to meet the CT requirements of the SWTR is to increase the disinfectant dose. For many systems, a higher chlorine dose will result in increased formation of TTHMs. Changes in disinfection practice should maintain TTHM levels of less than 0.10 mg/L. In lieu of increasing chlorine dose, use of an alternate disinfectant which produces fewer TTHMs could be considered. Alternate disinfectants include the use of ozone or chlorine dioxide as primary disinfectants with chlorine or chloramines as secondary (residual) disinfectants. It is important to note that EPA also will promulgate regulations for disinfectants and

disinfection by-products which may limit application of some of these disinfectants. EPA recommends that Primacy Agencies keep informed through communication with EPA on interim guidance on how to avoid conflict for systems to comply with both the SWTR and the forthcoming regulations on disinfectants and disinfection by-products. Any changes which appear to not meet the by-product regulations should not be implemented.

4. DESIGN AND OPERATING CRITERIA FOR FILTRATION AND DISINFECTION TECHNOLOGY

4.1 <u>Introduction</u>

To comply with the SWTR, public water systems must include filtration, or some other approved particulate removal technology, in their treatment process unless they are able to satisfy certain conditions. Those conditions include compliance with source water quality criteria and site-specific criteria. Guidance for determining whether these conditions are met is provided in Section 3 of this manual. Systems unable to satisfy these conditions must provide particulate removal and meet criteria pertaining to operation, design and performance. These criteria are specified in part in the definitions of technologies in the SWTR and more specifically as determined by the Primacy Agency.

This section provides guidance both for those water systems which currently do not have filtration equipment and must add it, and for systems which have existing filtration processes. Guidance on additional alternatives for small systems is presented in Appendix L.

This section includes guidance on the following topics:

- a. Filtration Technology: Descriptions, capabilities, design criteria and operating requirements for each technology, and a listing of major factors to be considered in their selection, including raw water quality considerations.
- b. Disinfection: Descriptions of the most applicable disinfection technologies used with filtration systems, and a presentation of the relative effectiveness of these disinfection technologies with respect to inactivation of bacteria, cysts and viruses.
- c. Alternate Technologies: Descriptions of some currently available alternate filtration technologies.
- d. Other Alternatives: Includes a description of some nontreatment alternatives including regionalization and use of an alternate source.

4.2 <u>Selection of Appropriate Filtration Technology</u>

Filtration is generally provided by passing water through a bed of sand, a layer of diatomaceous earth or a combination bed of coarse anthra-

cite coal overlaying finer sand. Filters are classified and named in a number of ways. For example, based on application rate, sand filters can be classified as either slow or rapid; yet these two types of filters differ in many more characteristics than just application rate. They differ in their removal process, bed material, method of cleaning, and operation. Based on the type of bed material, filters can be classified as sand, diatomaceous earth, dual-media (coal-sand) or even multi-media in which a third layer of high density sand is used.

4.2.1 General Descriptions

Current technologies specified by the SWTR are:

- a. Conventional Treatment: A series of processes including coagulation, flocculation, sedimentation and filtration.
- b. Direct Filtration: A series of processes including coagulation (and perhaps flocculation) and filtration, but excluding sedimentation.
- c. Slow Sand Filtration: A process which involves passage of raw water through a bed of sand at low velocity, generally less than 0.4 meters/hour (1.2 ft/hr), resulting in substantial particulate removal by physical and biological mechanisms.
- d. Diatomaceous Earth Filtration: A process that meets the following conditions:
 - A precoat cake of diatomaceous earth filter media is deposited on a support membrane (septum)
 - The water is filtered by passing it through the cake on the septum; additional filter media, known as body feed, is continuously added to the feed water in order to maintain the permeability of the filter cake.

- e. Alternate Technologies: Any filtration process other than those listed above. Available alternate filtration technologies include, but are not limited to:
 - Package Plants¹
 - Cartridge Filters

4.2.2 Capabilities

Filtration processes provide various levels of turbidity and microbial contaminant removal. When properly designed and operated and when treating source waters of suitable quality, the above filtration processes are capable of achieving at least a 2-log (99 percent) removal of <u>Giardia</u> cysts and at least a 1-log (90 percent) removal of viruses without disinfection (Logsdon, 1987b; USEPA, 1988b; Roebeck, 1962). The exception is cartridge filters which may not provide effective virus removal. A summary of the removal capabilities of the various filtration processes is presented in Table 4-1.

As indicated in Table 4-1, conventional treatment without disinfection is capable of achieving up to a 3-log removal of <u>Giardia</u> cysts and up to a 3-log removal of viruses. Direct filtration can achieve up to a 3-log removal of <u>Giardia</u> cysts and up to a 2-log removal of viruses. Achieving the maximum removal efficiencies with these treatment processes requires the raw water to be properly coagulated and filtered. Factors which can adversely affecy removal efficiencies include:

- Raw water turbidities less than 1 NTU
- Cold water conditions
- Non-optimal or no coagulation
- Improper filter operation including:

Depending upon the type of treatment units in place, historical performance and/or pilot plant work, these plants could be categorized as one of the technologies in a-d above at the discretion of the State. Several studies have already indicated that some package plants effectively remove <u>Giardia</u> cysts. If such plants provided adequate disinfection so that the complete treatment train achieves at least a 3-log removal/inactivation of <u>Giardia</u> cysts and a 4-log removal/inactivation of viruses, use of this technology would satisfy the minimum treatment requirements.

- No filter to waste
- Intermittent operation
- Sudden rate changes
- Poor housekeeping
- Operating the filters after turbidity breakthrough

Studies of slow sand filtration have shown that this technology (without disinfection) is capable of providing greater than a 3-log removal of <u>Giardia</u> cysts and greater than a 3-log removal of viruses. Factors which can adversely affect removal efficiencies include:

- Poor source water quality
- Cold water conditions
- Increases in filtration rates
- Decreases in bed depth
- Improper sand size
- Inadequate ripening

Diatomaceous earth (DE) filtration can achieve greater than a 3-log removal of <u>Giardia</u> cysts when sufficient precoat and body feed are used. However, turbidity and total coliform removals are strongly influenced by the grade of DE employed. Conversely, DE filtration is not very effective for removing viruses unless the surface properties of the diatomaceous earth have been altered by pretreatment of the body feed with alum or a suitable polymer. In general, DE filtration is assumed to achieve only a 1-log removal of viruses unless demonstrated otherwise. Factors which can affect the removal of <u>Giardia</u> cysts and viruses include:

- Precoat thickness
- Amount of body feed
- Grade of DE
- Improper conditioning of septum
 - -- improper pretreatment of the body feed

Package plants can be used to treat water supplies for communities as well as for recreational areas, parks, construction camps, ski resorts, military installations and other facilities where potable water is not available from a municipal supply. Operator requirements vary significantly with specific situations. Under unfavorable raw water conditions,

TABLE 4-1 REMOVAL CAPABILITIES OF FILTRATION PROCESSES(1)

	Log Removals		
` <u>Process</u>	Giardia ⁽²⁾ _Cvsts	<u> Yiruses</u>	Total ⁽²⁾ Coliform
Conventional Treatment	2 - 3	$1 - 3^{(3)}$	>4
Direct Filtration	2 - 3	$1 - 2^{(3)}$	1 - 3
Slow Sand Filtration	2 - 3(5)	$1 - 3^{(4)}$	1 - 2
Diatomaceous Earth Filtration	2 - 3 ⁽⁵⁾	1 - 2(2)	1 - 3

Note:

- 1. 2. 3.

- Without disinfection.
 Logsdon, 1987b.
 Roebeck <u>et al</u> 1962.
 Poynter and Slade, 1977.
 These technologies generally achieve greater than a 3-log removal.

package plants could demand full-time attention. Package plants are most widely used to treat surface supplies for removal of turbidity, color and coliform organisms prior to disinfection. They are currently available in capacities up to 6 mgd.

Colorado State University conducted a series of tests on one package plant over a 5-month period during the winter of 1985-86 (Horn and Hendricks, 1986). Existing installations in Colorado had proven effective for turbidity removal, and the tests at the university were designed to evaluate the system's effectiveness in removing coliform bacteria and Giardia cysts from low turbidity, low temperature source waters. The test results showed that the filtration system could remove greater than 99 percent of Giardia cysts for waters which had less than 1 NTU turbidity and less than 5 C temperatures, as long as proper chemical treatment was applied, and the filter rate was 10 gpm/ft² or less. In addition, an alternate water source having a turbidity ranging from 3.9 to 4.5 NTU was used in 12 test runs with coagulant doses ranging from 15 to 45 mg/L. The effluent turbidities from these runs were consistently less than 0.5 NTU.

Surveys of existing facilities indicate that while package plants may be capable of achieving effective treatment, many have not consistently met the interim MCL for turbidity, and in some cases, coliforms were detected in the filtered water (Morand et al., 1980; Morand and Young, 1983). The performance difficulties were primarily the result of the short detention time inherent in the design of the treatment units, the lack of skilled operators with sufficient time to devote to operating the treatment facilities, and the wide-ranging variability in quality of the raw water source. For instance, raw water turbidity was reported to often exceed 100 NTU at one site. Improvements in operational techniques and methods at this site resulted in a substantial improvement in effluent quality. After adjustments were made, the plant was capable of producing a filtered water with turbidities less than 1 NTU, even when influent turbidities increased from 17 to 100 NTU within a 2-hour period, as long as proper coagulation was provided.

One of the major conclusions of these surveys was that package water treatment plants manned by competent operators can consistently remove

turbidity and bacteria from surface waters of a fairly uniform quality. Package plants applied where raw water turbidities are variable require a high degree of operational skill and nearly constant attention by the operator. Regardless of the quality of the raw water source, all package plants require at least a minimum level of maintenance and operational skill and proper chemical treatment if they are to produce satisfactory water quality.

Cartridge filters using microporous filter elements (ceramic, paper or fiber) with pore sizes as small as 0.2 um may be suitable for producing potable water from raw water supplies containing moderate levels of turbidity, algae and microbiological contaminants. The advantage to small systems of these cartridge filters is that, with the exception of disinfectant, no other chemicals are required. The process is one of strictly physical removal of small particles by straining as the water passes through a porous cartridge. Other than occasional cleaning or cartridge replacement, operational requirements are not complex and do not require skilled personnel. However, the SWTR does require each surface water system to be operated by a qualified operator, as determined by the Primacy Agency. Such a system may be suitable for some small systems where, generally, only maintenance personnel are available for operating water supply facilities. However, the use of cartridge filters should be limited to low turbidity source waters because of their susceptibility to For example, manufacturer's guidelines for rapid headloss buildup. achieving reasonable filter run lengths with certain polypropylene filter elements are that the raw water turbidity be 2 NTU or less (USEPA, 1988b).

Long (1983) analyzed the efficacy of a variety of cartridge filters using turbidity measurements, particle size analysis, and scanning electron microscope analysis. The filters were challenged with a suspension of microspheres averaging 5.7 um in diameter which is smaller than a <u>Giardia</u> cyst. The microspheres were applied at a concentration of 40,000 to 65,000 spheres per ml. Ten of 17 cartridge filters removed over 99.9 percent of the microspheres.

In tests using live infectious cysts from a human source, cartridge filters were found to be highly efficient in removing <u>Giardia</u> cysts

(Hibler, 1986). Each test involved challenging a filter with 300,000 cysts at a concentration of 10,000 cysts/ml. The average removal for five tests was 99.86 percent, with removal efficiencies ranging from 99.5 percent to 99.99 percent.

The application of cartridge filters to small water systems using either cleanable ceramic or disposable polypropylene cartridges appears to be a feasible method for removing turbidity and most microbiological contaminants. However, data regarding the ability of cartridge filters to remove viruses are not available. Since disinfection by itself could achieve a 4-log inactivation of viruses, if the cartridge filter removes greater than or equal to 3 logs of Giardia, then the filter plus disinfection would achieve the overall minimum requirements, regardless of whether only negligible Giardia inactivation is achieved (e.g., less than 0.5 log). However, consideration should be given to the feasibility of providing multiple barriers of treatment for each target organism, i.e., some Giardia and virus removal by each barrier (i.e., some removal by filtration and some inactivation by disinfection) as protection in case one of the barriers fails. The efficiency and economics of the process. must be closely evaluated for each situation. Pretreatment in the form of roughing filters (rapid sand or multi-media) or fine mesh screens may be needed to remove larger suspended solids which, if not removed, could cause the rapid buildup of headloss across the cartridges (USEPA, 1988a).

In general, conventional treatment, direct filtration, slow sand filtration and diatomaceous earth filtration can be designed and operated to achieve the maximum removal of the water quality parameters indicated in Table 4-1. However, for the purpose of selecting the appropriate filtration and disinfection technologies and for determining design criteria, these filtration processes should be assumed to achieve a 2-log removal of-Giardia cysts and a 1-log removal of viruses. This conservative approach will assure that the treatment facility has adequate capability to respond to non-optimum performance due to changes in raw water quality, plant upsets, etc. The balance of the required removals and/or inactivation of Giardia cysts and viruses would be achieved through the application of appropriate disinfection.

The performance of alternate technologies such as cartridge filters, and possibly package plants, depending upon the unit under consideration cannot be stated with certainty at this time. Because of these performance uncertainties, pilot studies should be used to demonstrate their efficacy for a given water supply.

4.2.3 Selection

For any specific site and situation, a number of factors will determine which filtration technology is most appropriate. "Among these are: raw water quality conditions, space and personnel availability, and economic constraints. A discussion of the impact of raw water quality on the technology selection is presented here. The impact of site-specific factors and economic constraints is presented in the USEPA document "Technologies and Costs for the Removal of Microbial Contaminants from Potable Water Supplies" (USEPA, 1988b).

Raw Water Quality Conditions

The number of treatment barriers provided should be commensurate with the degree of contamination in the source water. The four technologies specified in the SWTR vary in their ability to meet the performance criteria when a wide range of raw water quality is considered. While the numerical values of raw water quality that can be accommodated by each of the four technologies will vary from site to site, general guidance can be provided. General guidelines for selecting filtration processes, based on total coliform count, turbidity, and color are presented in Table 4-2. It is not recommended that filtration systems other than those listed in Table 4-2 be used when the general raw water quality conditions exceed the values listed, unless it has been demonstrated through pilot testing that the technology can meet the performance criteria under the raw water quality conditions expected to occur at the site.

The filtration processes listed in Table 4-1 are capable of achieving the required performance criteria when properly designed and operated if they are treating a source water of suitable quality (i.e., generally within the ranges indicated in Table 4-2). One of the causes

TABLE 4-2

GENERALIZED CAPABILITY OF FILTRATION SYSTEMS
TO ACCOMMODATE RAW WATER QUALITY CONDITIONS

	General Restrictions		<i>:</i>
<u>Treatment</u>	Total Coliforms (#/100 ml)	Turbidity (NTU)	Color (CU)
Conventional with predisinfection	<20,000(3)	No restrictions (3)	. ~ <75 ⁽²⁾
Conventional without predisinfection	<5,000 ⁽¹⁾	No restrictions ⁽³⁾	<75 ⁽²⁾
Direct filtration with flocculation	<500 ⁽³⁾	<7-14 ⁽¹⁾	<40 ⁽⁴⁾
In-line filtration	<500 ⁽¹⁾	<7-14 ⁽¹⁾	<10(3)
Slow sand filtration	≪8 00 ⁽⁵⁾	<10 ⁽⁵⁾	<5 ⁽³⁾
Diatomaceous earth filtration	<50 ⁽³⁾	<5 ⁽¹⁾	<5 ⁽¹⁾

Notes:

- Depends on algae population, alum or cationic polymer coagulation -- (Cleasby et al., 1984.)
- 2. USEPA, 1971.
- 3. Letterman, 1986.
- 4. Bishop et al., 1980.
- 5. Slezak and Sims, 1984.

of filtration failures is the use of inappropriate technology for a given raw water quality (Logsdon, 1987b). These criteria are general guidelines. Periodic occurrences of raw water coliform, turbidity or color levels in excess of the values presented in Table 4-2 should not preclude the selection or use of a particular filtration technology. For example, the following alternatives are available for responding to occasional raw water turbidity spikes:

- a. Direct Filtration
 - Continuous monitoring and coagulant dose adjustment
 - More frequent backwash of filters
 - Use of presedimentation
- b. Slow Sand Filtration
 - Use of a roughing filter
 - Use of an infiltration gallery
- c. Diatomaceous Earth Filtration
 - Use of a roughing filter
 - Use of excess body feed

For the above alternatives, EPA recommends that pilot testing be conducted to demonstrate the efficacy of the treatment alternative.

The characteristics of each filtration technology are a major factor in the selection process. Significant characteristics include performance capabilities (contaminant removal efficiencies), design and construction requirements, and operation and maintenance requirements. Details regarding each of the four filtration technologies are presented in the following section.

4.3 Available Filtration Technologies

4.3.1 Introduction

As indicated in the preamble to the SWTR, the historical responsibility of the States to establish design and operating criteria for public drinking water plants will continue. The purpose of the following sections is to provide guidance on how the design and operating criteria may need to be changed in order to assure that the performance criteria in the SWTR are met.

The design criteria for the various filtration technologies found in the 1987 edition of <u>Recommended Standards for Water Works</u> (Great Lakes, 1987) are the minimum design criteria that a majority of states are currently following.² These standards are referred to as Ten States Standards in the remainder of this manual. The design criteria contained in the Ten States Standards have not been duplicated here. Rather, the reader is referred to the Ten States Standards directly. EPA recommends the following additions and/or changes to the Ten State Standards in order to assure compliance with the performance criteria of the SWTR.

4.3.2 General

The following recommendations apply to all filtration plants:

- a. All filtration plants should provide continuous turbidity monitoring of the effluent turbidity from each individual filter. If continuous monitoring is impractical, routine monitoring of individual filters is recommended as a minimum.
- b. All filtration systems should be concerned with the peak turbidity levels in the filtered water after backwashing and

Based upon the results of a survey conducted for the American Water Works Association Research Foundation (AWWARF), some 38 states use the Ten States Standards entirely or in modified form (AWWARF, 1986).

Although this is not a requirement of the SWTR, it is recommended because of the possibility that not all filters in a treatment plant will produce the same effluent turbidity. This may be due to a variety of conditions that include bed upsets, failure of media support or underdrain systems, etc. Although the combined effluent from all the filters may meet the turbidity requirements of the SWTR, the turbidity level from an individual filter may substantially exceed the limits. This may result in the passage of Giardia cysts or other pathogens.

Validation should be performed at least twice a week based on the procedure outlined in Part 214A in the 16th Edition of Standard Methods. It should be noted that improper installation of continuous monitors may allow for air bubbles to enter the monitor resulting in false turbidity spikes. To avoid air bubbles reaching the turbidimeter the sample tap should be installed below the center line of the pipe and an air release valve may be included on the sample line.

make every attempt to operate the filters to minimize the magnitude and duration of these turbidity spikes.

Individual filters should be monitored as discussed in Section 4.3.2.a and when excessive turbidity spikes are found, corrective actions taken. During these turbidity peaks, <u>Giardia</u> cysts and other pathogens may be passed into the finished water. There is evidence that a 0.2 to 0.3 NTU increase in the turbidity during the first period of the filter run can be associated with rises in <u>Giardia</u> cyst concentrations by factors of twenty to forty (Logsdon, 1985). Special studies should be conducted to determine the extent of the turbidity spike problems.

There are basically four approaches available for correcting problems with turbidity spikes after backwashing. These are as follows (Bucklin, et al 1988):

- Proper chemical conditioning of the influent water to the filter can minimize the magnitude and duration of these turbidity spikes. This could include proper control of the primary coagulant chemicals such as alum or iron compounds. In some cases filter aids using polymers may be needed to control the turbidity spikes.
- Gradually increasing the filtration rate in increments when placing the filter in operation. Starting the filter at a low flow rate and then increasing the flow in small increments over 10 to 15 minutes has been shown to reduce the turbidity spikes in some cases (Logsdon, 1987).
- Addition of coagulants to the backwash water has also been shown to reduce the extent of turbidity spikes after backwash. Typically the same primary coagulant used in the plant is added to the backwash water. Polymers alone or in combination with the primary coagulant may also be used.
- Filter-to-waste may be practiced where a portion of the filtered water immediately after starting the filter is wasted. This is only possible where the filter system has

For most high rate granular bed filters, there is a period of conditioning, or break-in immediately following backwashing, during which turbidity and particle removal is at a minimum, referred to as the break-in period. The turbidity peaks are thought to be caused by remnants of backwash water within the pores of and above the media passing through the filter, and/or floc breakup during the filter ripening period before it can adequately remove influent turbidity.

provided the necessary valves and piping to allow this procedure. There is some concern whether or not this practice is beneficial. The extra valve operations needed for filter-to-waste can disrupt the filter flow rate to the extent that they create their own turbidity spikes. Some knowledge of the time actually needed for filter-to-waste is also needed before it can be determined that this is an effective procedure for controlling turbidity spikes. If the length of time the filter-to-waste is practiced is less than that before the turbidity spike passes, the disruption caused by the valve operation may actually increase the turbidity spike.

Different plants and the individual filters within the plant may have different turbidity spike characteristics. The four approaches presented above, therefore, must be evaluated on a case-by-case basis. Special studies will be required to identify those filters with the turbidity spike problems and assist in selecting which of the four approaches is best for correcting the problem. It has been generally found that turbidity spikes can be minimized through one or a combination of the first three approaches.

In order to establish filter-to-waste operating guidelines, the following procedure is suggested:

- Review the effluent turbidity data for each filter and determine which filter historically has the highest effluent turbidity.
- Following backwashing of the filter with the poorest performance, place that filter into service and collect grab samples every 5 to 10 minutes for a period of at least 60 minutes.
- Analyze the grab samples for turbidity and determine how long the filter must be in operation before the effluent turbidity drops
 - to less than or equal to 0.5 NTU
 - or 1 NTU in cases where a filtered water turbidity of less than or equal to 1 NTU is allowed.

^{6 :} Continuous turbidity monitoring can be used in place of grab sampling.

Limited information exists on the typical magnitude and duration of peak turbidity levels after backwashing and what levels are considered acceptable to assure that these turbidity spikes are not associated with passage of <u>Giardia</u> cysts. Information from plant scale tests, showing the typical magnitude and duration of these turbidity spikes is available from two plants (Bucklin <u>et al.</u>, 1988). Studies conducted at these plants over a year showed that these peaks occurred within the first few minutes after the filter was placed back in operation, their effects lasted for several hours, and varied in magnitude from 0.08 to 0.35 NTU on average.

For existing plants without provisions for filter-to-waste, the decision to add the necessary piping to provide this capability should be made only after carefully evaluating the other three approaches. If the results of special studies show that the other three options are not effective in minimizing the turbidity spikes then the expense of adding the filter-to-waste capabilities may be justified.

For new plants the capability of filter-to-waste may be required by the Primacy Agency or should be considered. By having this capability, additional flexibility will be available for turbidity spike control. This flexibility may also be useful for other filter maintenance functions such as after media replacement or when heavy chlorination of the filter is needed after maintenance.

4.3.3 Conventional Treatment

Conventional treatment is the most widely used technology for removing turbidity and microbial contaminants from surface water supplies. Conventional treatment includes the pretreatment steps of chemical coagulation, rapid mixing, flocculation and sedimentation followed by filtration. These conventional treatment plants typically use aluminum and iron compounds in the coagulation processes. Polymers may also be used to enhance the coagulation and filtration processes. A flow sheet for a conventional treatment plant is presented on Figure 4-1.

Lime softening is a treatment process used to remove hardness and turbidity from surface waters. Treatment is typically accomplished with conventional process units. The lime softening process removes the

calcium and magnesium from the water by precipitating them as calcium carbonate and magnesium hydroxide. Turbidity levels in the water are also reduced by this process. Lime and possibly soda ash is added to the raw water to raise its pH to a point at which these precipitates are formed and then removed from the water during sedimentation and filtration. Lime softening may be used for the removal of carbonate hardness in the pH range of 9 to 10 through a single stage process. Two-stage lime/soda ash softening at a pH of 10 to 12 can be used for the removal of non-carbonate hardness and magnesium. Two-stage softening includes recarbonation to neutralize the caustic alkalinity, reducing the pH to the range of 8.5 to 9.5. A flow sheet for typical one- and two-stage softening plants is presented on Figure 4-2.

j. .

Each of these three conventional treatment processes uses filtration following sedimentation. Three different types of filters are used. Sand filters, normally found in older plants, use a single media of sand to form a filter bed, and are generally designed with a filtration rate of 2 gpm/ft². Newer plants normally use dual-media or mixed media filters. Dual media filters use a combination of anthracite coal along with a sand to form the filter bed. Mixed media filters use coal, sand, and a third material to form the filter bed. Dual and mixed media filters can be designed to operate at higher filtration rates than sand filters, i.e., 4 to 6 gpm/ft².

Design Criteria

The minimum design criteria in the Ten State Standards for conventional treatment are considered sufficient for the purposes of complying with the SWTR with the following addition:

The criteria for sedimentation should be expanded to include other methods of solids removal including dissolved air flotation. Plate separation and upflow-solids contact clarifiers included in the 1987 Ten State Standards should also be considered.

Operating Requirements

In addition to the operating requirements in the Ten State Standards, a coagulant should be used at all times the treatment plant is

in operation. Conventional and direct filtration plants must be monitored carefully because failure to maintain optimum coagulation can result in poor filter performance and breakthrough of cysts and viruses. Although the detention time provided by the settling basins results in some margin of safety, the loss of coagulation control at the chemical feed or rapid mix points may not be noticed until the poorly coagulated water reaches the filters, after the process has failed. Failure to effectively monitor and control filter operation can result in undetected poor filter performance (Logsdon, 1987a; Logsdon, 1987b).

Effective operation of a conventional treatment plant requires careful monitoring and control of:

- Chemical Feed
- Rapid Mix
- Flocculation
- Sedimentation
- Filtration

For the purposes of the SWTR, the requirements for effective operation of a conventional water treatment plant can be summarized as follows:

a. The application of a coagulant and the maintenance of effective coagulation and flocculation at all times when a treatment plant is in operation. Proper process control

Dependable removal of <u>Giardia</u> cysts can not be guaranteed if a water is filtered without being properly coagulated (Logsdon, 1987b; Al-Ani et al., 1985). This is true even if the raw water turbidity is less than 1 NTU.

As indicated in the preamble to the proposed SWTR, 33 percent of the reported cases of giardiasis in waterborne disease outbreaks were attributed to improperly operated filtration plants.

Some conventional water treatment plants which treat low turbidity source waters (<1 NTU) reportedly discontinue the application of coagulant(s) during periods of low turbidity since the raw water already meets the turbidity MCL. However, studies have shown that cyst removal for low turbidity waters is the most difficult to achieve and requires optimum pretreatment including coagulation to achieve effective removals

procedures should be used at the plant to assure that chemical feeds are adjusted and maintained in response to variations in raw water temperature and turbidity.

- Maintenance of effective filtration will require proper operation procedures to meet the turbidity requirements of the SWTR. Proper operation should include:
 - Proper chemical conditioning of the water ahead of the filter to assure adequate turbidity removal through the filter.
 - Control of the flow rates and elimination of rapid changes in flow rate applied to the filter.
 - Backwashing of filters before the filtered water quality is degraded to the point that the plant fails to meet the turbidity requirements of the SWTR. The criteria on which to base initiation of backwash will have to be determined for each plant. Experience with operation cycles including run times and headloss data may serve as the basis for this site specific criteria.
 - After backwash bringing the clean filters back on line so that excessive turbidity spikes in the filtered water are not created. Section 4.3.2.8 of this manual discusses these turbidity spikes and approaches available to minimize them.
- c. Filters removed from service generally should be backwashed upon start-up. However, in some cases, it may be impractical to backwash filters each time they are removed from service. Accordingly, the Primacy Agency may choose to allow start-up without backwashing under certain conditions on a site-by-site basis. In making this decision, the following should be considered:
 - _ the length of time the filter was off-line
 - performance of the filter while being put on-line
 The filter should be brought back on-line in such a way that
 no turbidity spikes that could be associated with passage of

⁽Al-Ani et al., 1985).

Giardia cysts and other pathogens occur. If problems with turbidity spikes are found when starting up dirty filters, special studies should be used to evaluate if any of the approaches discussed in Section 4.3.2.B of this manual are effective in minimizing the turbidity spikes.

4.3.4 Direct Filtration

A direct filtration plant can include several different pretreatment unit processes depending upon the application. In its simplest form, the process includes only in-line filters preceded by chemical coagulant application and mixing. The mixing step, particularly in pressure filters, can be satisfied by influent pipeline turbulence. In larger plants with gravity filters, an open rapid-mix basin with mechanical mixers typically is used. Figure 4-3 illustrates the unit processes of a typical direct filtration plant.

Another variation of the direct filtration process consists of the addition of a coagulant to the raw water followed by rapid mixing and flocculation, as illustrated on Figure 4-4. The chemically conditioned and flocculated water is then applied directly to a dual- or multi-media filter (USEPA, 1988b).

Design Criteria

The 1987 edition of the Ten State Standards recommends pilot studies to determine most design criteria. For the purposes of implementation of the SWTR this requirement is considered sufficient with the following exception:

a. A coagulant must be used at all times when the treatment plant is in operation.¹⁰

Optimum coagulation is critical for effective turbidity and microbiological removals with direct filtration (Al-Ani et al., 1985).

Operating Requirements

Operating considerations for direct filtration plants are essentially identical to those for conventional treatment plants. The major difference is that a direct filtration plant will not have a clarifier, and may or may not have a flocculation or contact basin. In addition, EPA recommends that all direct filtration plants, both new and existing, be required to make provisions to minimize the break-in time of a filter being put on-line. 11

As with conventional treatment, the initiation of backwashing a filter should first be based on filter effluent turbidity values, then by headloss and run time. Effluent turbidity monitoring equipment should be set to initiate filter backwash at an effluent value of 0.5 NTU or less, in order to meet filtered water quality requirements. Also, any filters removed from service should be backwashed upon start-up. In some cases, it may not be practical to backwash filters every time they are removed from service. This decision should be made by the Primacy Agency on a case-by-case basis, based on the same considerations as for conventional systems.

4.3.5 Slow Sand Filtration

Slow sand filters differ from single-media rapid-rate filters in a number of important characteristics. In addition to the difference of flow rate, slow sand filters:

- a. Function using biological mechanisms as well as physical-chemical mechanisms
- b. Use smaller sand particles
- c. Are not backwashed, but rather are cleaned by removing the surface media
- d. Have much longer run times between cleaning

As with conventional treatment, direct filtration produces a relatively poor quality filtered water at the beginning of filter runs and therefore a filter-to-waste period is recommended. In some cases, the addition of a filter aid or bringing filters on-line slowly will be appropriate (Cleasby et al., 1984).

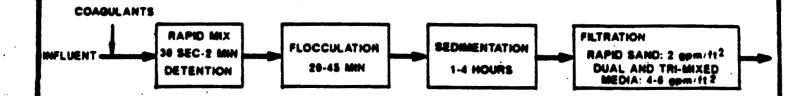
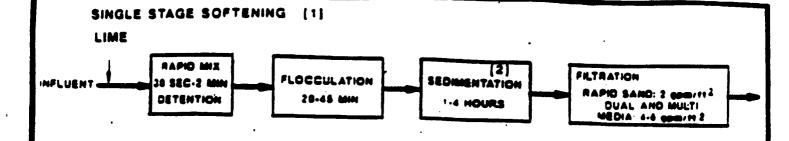



FIGURE 4-1-FLOW SHEET OF A TYPICAL CONVENTIONAL WATER TREATMENT PLANT

- [1] PH RANGE 9-10
- [2] OR ALTERNATE SOLIDS REMOVAL PROCESS

TWO STAGE SOFTENING [1]

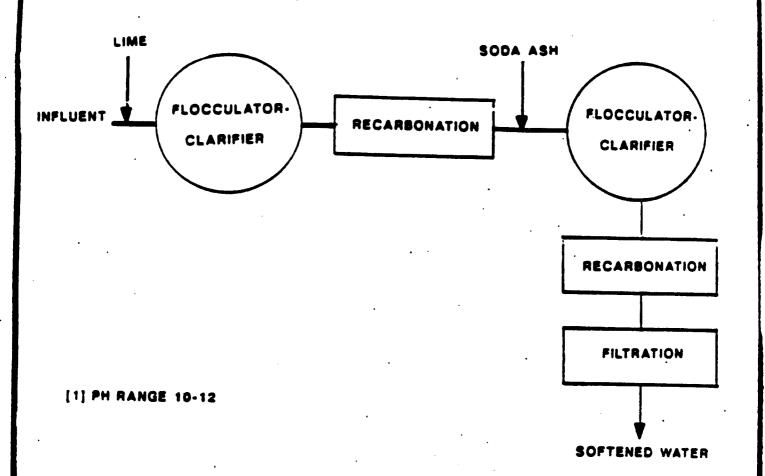


FIGURE 4-2-FLOW SHEET OF TYPICAL SOFTENING TREATMENT PLANTS

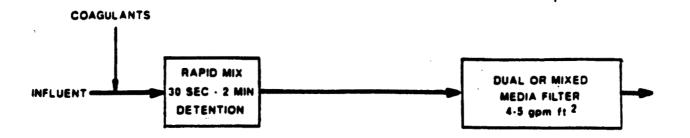


FIGURE 4-3 FLOW SHEET FOR A TYPICAL DIRECT FILTRATION PLANT

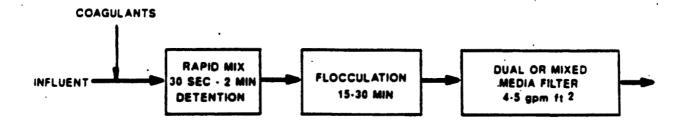


FIGURE 4-4-FLOW SHEET FOR A TYPICAL DIRECT
FILTRATION PLANT WITH FLOCCULATION

e. Require a ripening period at the beginning of each run

Although rapid rate filtration is the water treatment technology used most extensively in the United States, its use has often proved inappropriate for small communities since rapid-rate filtration is a technology that requires skilled operation by trained operators. Slow sand filtration requires very little control by an operator. Consequently, use of this technology may be more appropriate for small systems where source water quality is within the guidelines recommended in Section 4.2.3.

As indicated in this section, slow sand filtration also may be applicable to other source water quality conditions with the addition of pretreatment such as a roughing filter or presedimentation.

Design Criteria

The minimum design criteria presented in the Ten State Standards for slow sand filters are considered sufficient for the purposes of implementation of the SWTR with the following exceptions:

- a. Raw water quality limitations should be changed to reflect the values given in Table 4-2.¹²
- b. The effective sand size should be between 0.15mm and 0.35mm rather than the current 0.30 mm to 0.45 mm. 13

Additional guidance on the design of slow sand filtration is available in the design manual entitled <u>Slow Sand Filtration for Community Water Supplies Technical Paper 24, 1987</u> published by the International

Without pretreatment, limitations exist in the quality of water that is suitable for slow sand filtration (Logsdon, 1987b; Cleasby et al., 1984; Bellamy et al., 1985; Fox et al., 1983).

Significant decreases in total coliform removals were shown at effective sand sizes less than 0.35 mm (Bellamy et al., 1985). As defined in the AWWA Standard for Filtering Material, effective size is the size opening that will pass 10 percent by weight of a sample of filter material.

Reference Centre for Community Water Supply and Sanitation (IRC), P.O. Box 5500, 2280 HM Rijswijk, the Netherlands.

Operating Requirements

Maintenance of a slow sand filter involves two periodic tasks:

a. Removal of the top 2 to 3 cm (0.8 to 1.2 inches) of the surface of the sand bed when the headloss exceeds 1 to 1.5 m. 14

.

32

77

2

b. Replacement of the sand when repeated scrapings have reduced the depth of the sand to approximately one-half of its design depth (Bellamy et al., 1985).

Following scraping, slow sand filters produce poorer quality filtrate at the beginning of a run, and a filter-to-waste or ripening period of one to two days is recommended before use to supply the system. The ripening period is an interval of time immediately after a scraped filter is put back on-line, when the turbidity or particle count results are significantly higher than the corresponding values for the operating filter. During this time, the microorganisms multiply and attain equilibrium in the "schmutzdecke." Filter effluent monitoring results should be used to determine the end of the ripening period. For example, a turbidimeter could be set at 1.0 NTU or less to initiate start of the filter run.

When repeated scrapings of the sand have reduced the depth of the sand bed to approximately one-half of its design depth, the sand should be replaced. Filter bed depths of less than 0.3 to 0.5 m (12 to 20 inches) have been shown to result in poor filter performance (Bellamy et al., 1985). The replacement procedure should include removal of the remaining sand down to the gravel support, the addition of new sand to one half of the design depth and placement of the sand previously removed on top of the new sand.¹⁵

Removal of this top layer of the "Schmutzdecke" should restore the filter to its operational capacity and initial headloss.

This procedure results in clean sand being placed in the bottom half of the filter bed and biologically active sand in the top half reducing the amount of time required for the curing period. It also provides

The amount of time for the biological population to mature in a new sand filter (also called curing) and to provide stable and full treatment varies. The World Health Organization (1980) reported that curing requires a few weeks to a few months. Fox et al., (1983) found that "about 30 days" were required to bring particle and bacterial effluents down to a stable level. All researchers agree that a curing time for a new filter is required before the filter operates at its fullest potential (Bellamy et al., 1985).

4.3.6 Diatomaceous Earth Filtration

Diatomaceous earth (DE) filtration, also known as precoat or diatomite filtration, is appropriate for direct treatment of surface waters for removal of relatively low levels of turbidity and microorganisms.

Diatomite filters consist of a layer of DE about 3 mm (1/8 inch) thick supported on a septum or filter element. The thin precoat layer of DE must be supplemented by a continuous body feed of diatomite, which is used to maintain the porosity of the filter cake. If no body feed is added, the particles filtered out will build up on the surface of the filter cake and cause rapid increases in headloss. The problems inherent in maintaining the proper film of DE on the septum have restricted the use of diatomite filters for municipal purposes, except under certain favorable raw water quality conditions, i.e., low turbidity and good bacteriological quality. Specific upper limits of raw water quality parameters are not well-defined because diatomaceous earth filtration performance depends on the nature, as well as the concentration, of the raw water particles and the grades of diatomite employed. Logsdon (1987b) reported that filtered water turbidities above 1 NTU and short filter runs were observed for several diatomaceous earth plants having maximum raw water turbidities above 20 NTU.

for a complete exchange of sand over time, alleviating potential problems of excessive silt accumulation and clogging of the filter bed (Bellamy et al., 1985).

The minimum design criteria presented in the Ten State Standards for diatomaceous earth filtration are considered sufficient for the purposes of compliance with the SWTR with the following exceptions:

- a. The recommended quantity of precoat is 1 kg/m² (0.2 pounds per square foot) of filter area, and the minimum thickness of the precoat filter cake is 3mm to 5mm (1/8 to 1/5-inch). 16
- b. Treatment plants should be encouraged to provide a coagulant coating (alum or suitable polymer) of the body feed. 17

Operating Requirements

Operating requirements specific to DE filters include:

- Preparation of body feed and precoat
- Verification that dosages are proper
- Periodic backwashing and disposal of spent filter cake
- Periodic inspection of the septum(s) for cleanliness or damage
- Verification that the filter is producing a filtered water that meets the performance criteria

4.

4.3.7 Alternate Technologies

•

The SWTR allows the use of filtration technologies other than those specified above provided that the system demonstrates to the Primacy Agency using pilot studies or other means that the filtration technology when combined with disinfection achieves at least 3-log <u>Giardia</u> cyst and 4-log virus removal/inactivation. Such technologies must also meet the turbidity performance criteria for slow sand filtration. Guidance for

Studies have shown that a precoat thickness of 1 kg/m^2 (0.2 lbs/ft²) was most effective in <u>Giardia</u> cyst removal and that the precoat thickness was more important than the grade size in cyst removal (DeWalle et al., 1984; Logsdon et al., 1981; Bellamy et al., 1984).

Although enhancement of the DE is not required for <u>Giardia</u> cyst removal, coagulant coating of the body feed has been found to significantly improve removals of viruses, bacteria and turbidity. (Brown et al., 1974; Bellamy et al., 1984).

conducting pilot studies to demonstrate this effectiveness is provided in Appendix M of this manual.

Reverse osmosis is a membrane filtration method which is used for desalination and/or the removal of organic contaminants. The treatment process is effective for the removal of <u>Giardia</u> cysts and viruses and no demonstration is necessary.

Alternate filtration technologies which are currently available include, but are not limited to:

- Package Plants
- Cartridge Filters

Package plants in principle are not a separate technology from the preceding technologies. However, in many cases they are different enough in design criteria, and operation and maintenance requirements that they should be considered as an alternate technology. The package plant is designed as a factory-assembled, skid-mounted unit generally incorporating a single, or at most, a few process units. A complete treatment process typically consists of chemical coagulation, flocculation, settling and filtration. Package plants generally can be applied to flows ranging from about 25,000 gpd to approximately 6 mgd (USEPA, 1988b). In cases where the Primacy Agency believes that the design criteria of the package plant corresponds to the design criteria of the processes established earlier in this section (i.e., that the package plant qualifies as conventional or direct filtration), the requirement of pilot testing may be waived.

The application of cartridge filters using either cleanable ceramic or disposable polypropylene cartridges to small water systems may be a feasible method for removing turbidity and some microbiological contaminants, such as <u>Giardia</u> cysts although no data are available regarding their ability to remove viruses. Pilot studies are required to demonstrate the efficacy of this technology for a given supply. However, if the technology was demonstrated to be effective through pilot plant studies at one site, then the technology could be considered to be effective at another site which had similar source water quality conditions. Therefore, pilot plant testing at the new site might not be necessary.

It is important to note that the demonstration of achieving the 3-log <u>Giardia</u> cyst and 4-log virus removal/inactivation requirements includes disinfection. Thus, if a cartridge filter is demonstrated to achieve a 3-log removal of <u>Giardia</u> cysts and it is determined by CTs that the disinfection achieves at least a 4-log virus inactivation, the effectiveness of the technology would be demonstrated. The technology must also maintain turbidities less than 1 NTU in 95 percent of the monthly samples. Meeting this turbidity requirement assures a high probability that turbidity will not interfere with disinfection and that the inactivation efficiencies predicted by the CTs are reliable.

Design Criteria

After any necessary pilot studies are conducted and a successful demonstration of performance has been made, design criteria should be established and approved by the Primacy Agency. Eventually, a sufficiently large data base will become available, making it easier to apply the alternate technologies to other water supplies of similar quality.

Operating Requirements

After any necessary pilot studies are conducted and a successful demonstration of performance has been made, operating requirements should be established and approved by the Primacy Agency.

4.3.8 Nontreatment Alternatives

Under certain circumstances, some systems may have other alternatives available. These alternatives include regionalization and the use of alternate sources.

For small water systems which must provide filtration, a feasible option may be to join with other small or large systems to form a regional water supply system. In addition, alternative water sources located within a reasonable distance of a community which would allow the system to meet the requirements of the SWTR and other applicable drinking water regulations, may be developed to provide a satisfactory solution to a community water quality problem. The availability of alternative ground

water sources will depend upon the size and location of the system and the costs involved.

4.4 Disinfection

4.4.1 General

The SWTR requires that disinfection be included as part of the treatment of surface water for potable use. As noted earlier, EPA recommends that the number of treatment barriers be commensurate with the degree of contamination in the source water in accordance with Table 4-2. For example, as indicated in Table 4-2, when the total coliforms in the source water are greater than 5,000/100 ml, conventional treatment with predisinfection is recommended. However, the selection of appropriate disinfection requires consideration of other factors in addition to than those included in Table 4-2. These considerations include:

- a. Source water quality and the overall removal/inactivation of Giardia cysts and viruses desired.
- b. Likelihood of TTHM formation.
- c. Potential need for an oxidant for purposes other than disinfection including control of taste; odor, iron, manganese, color, etc.

4.4.2 Recommended Removal/Inactivation

The SWTR requires a minimum 3-log removal/inactivation of <u>Giardia</u> cysts and a minimum 4-log removal/inactivation of viruses:

- a. Well-operated conventional treatment plants which have been optimized for turbidity removal can be expected to achieve at least a 2.5-log removal of <u>Giardia</u> cysts.
- b. Well-operated diatomaceous earth, slow sand filtration and direct filtration plants can be expected to achieve at least 2-log removal of <u>Giardia</u> cysts.

EPA recommends that:

a. Conventional filtration systems provide sufficient disinfection to achieve a minimum of 0.5-log Giardia cyst and 2-log virus inactivation.

- Slow sand filtration systems provide sufficient disinfection to achieve a minimum of 2-log <u>Giardia</u> cyst and 2-log virus inactivation.
- c. Systems using diatomaceous earth and direct filtration, or other filtration methods, should provide sufficient disinfection to achieve a minimum of 1-log <u>Giardia</u> cyst and 3-log virus inactivation.

Further guidance on the disinfection level to be provided is contained in Section 5. CT values for achieving these inactivations are presented in Appendix E. As indicated in this Appendix:

- a. A comparison of Tables E-1 through E-6 with Table E-7 indicates that systems which achieve a 0.5-log inactivation of <u>Giardia</u> cysts, using free chlorine, will achieve greater than a 4-log inactivation of viruses.
- b. Ozone and chlorine dioxide are generally more effective at inactivating viruses than <u>Giardia</u> cysts. However, as indicated in Tables E-8 through E-11, there are some conditions under which the disinfection needed to provide the recommended virus inactivation is higher than that needed for the recommended <u>Giardia</u> cyst inactivation. Therefore, a system using ozone or chlorine dioxide for disinfection must check the CT values needed to provide the recommended inactivation of both <u>Giardia</u> cysts and viruses and provide the higher of the two disinfection levels. Systems may demonstrate their efficiency for overall removal/inactivation using the protocol in Appendices G and M.
- c. As indicated in Tables E-12 and E-13, chloramines are much less effective for inactivating <u>Giardia</u> cysts and viruses than the other disinfectants. Also, chloramines may be applied to the system in several ways, either with chlorine added prior to ammonia, ammonia added prior to chlorine or preformed. For systems applying chlorine ahead of ammonia, the required level of disinfection may be determined as follows:
 - determine the CT needed to provide the required inactivation of <u>Giardia</u> and viruses and provide the higher of the two levels or

 follow the protocol in Appendix G to demonstrate effective inactivation to allow lower levels of disinfection.

For systems applying ammonia ahead of chlorine or preformed chloramines, the EPA recommends that the system demonstrate effective virus inactivation according to the protocol in Appendix G, since the CT values for virus inactivation in Table E-13 only apply to the addition of chlorine prior to ammonia.

Although the SWTR requires a minimum of a 3-log removal/inactivation of <u>Giardia</u> cysts and a minimum of a 4-log removal/inactivation of viruses, it may be appropriate for the Primacy Agency to require greater removals/-inactivations depending upon the degree of contamination within the source water.

Rose (1988) conducted a survey of water sources to characterize the level of <u>Giardia</u> cyst occurrence for "polluted" and "pristine" waters. Polluted waters are defined as waters in the vicinity of sewage and agricultural wastes, while pristine waters are those originating from protected watersheds with no significant sources of microbiological contamination from human activities. EPA believes that treatment should be provided to assure less than one case of microbiologically-caused illness per year per 10,000 people. In order to provide this level of protection, 3, 4 or 5-log <u>Giardia</u> cyst removal/inactivation should be provided for the following source water qualities:

Giardia Cyst Removal/Inactivation Required Based^{18, 19}
on Source Water Cyst Concentration

Giardia Inactivation	3-100	<u>4-log</u>	<u>5-log</u>
Allowable daily avg cyst concentration/100 L (geometric mean)	≤1	>1-10	>10-100

¹⁸ Rose, 1988.

^{19 10&}lt;sup>-4</sup> annual risk per person based on consumption of 2 liters of water daily.

According to these guidelines, systems with sewage and agricultural discharges to the source water should provide treatment to achieve an overall 5-log removal/inactivation of Giardia cysts, while the minimum required 3-log removal/inactivation is sufficient for sources with no significant microbiological contamination from human activities. A 4-log removal/inactivation of cysts should be provided for source waters whose level of microbiological contamination is between these two extremes. The location of discharges or other activities polluting the water-supply with respect to the location of the intake should also be considered in determining the level of removal/inactivation needed. For instance, long travel times and substantial dilution of a discharge will lessen the impact of the discharge on the intake water quality, in which case less of an increase in the overall treatment recommended above, would be It is important to note that these levels of treatment for different generalized source water characterizations are presented only as quidelines. The Primacy Agency could develop disinfection requirements based on these or other guidelines. It could also require systems with available resources to conduct raw water monitoring for Giardia cyst concentrations to establish the appropriate level of overall treatment and disinfection needed.

The Primacy Agency may also review the nature of occurrence of <u>Giardia</u>-sized particles in the raw water supply and the association with turbidity occurrence. If it can be demonstrated that a higher degree of removal of particles in the size range of <u>Giardia</u> is accomplished when turbidity levels and associated <u>Giardia</u> levels are elevated, then a log removal credit higher than 3 could be allowed for that particular treatment plant, during such occurrences. This credit should correspond to the log particle removal efficiencies accomplished, as determined by particle counting data, or turbidity data if properly qualified. In all cases, a minimum of 0.5 log reduction of <u>Giardia</u> should be achieved by disinfection in addition to the removal credit allowed for by other treatment.

Until a risk analysis for exposure to viruses is developed, a rough guideline for virus removal/inactivation, can be considered as follows:

- For a 4-log <u>Giardia</u> cyst removal/inactivation, a 5-log virus removal/inactivation is recommended.
- b. For 5-log Giardia removal/inactivation, a 6-log virus removal/inactivation is recommended.

These guidelines assume that virus occurrence in the source water is roughly proportional to <u>Giardia</u> cyst occurrence, and that

- viruses occur at higher concentrations in source waters, or
- are more infectious than Giardia cysts and
- infections from viruses may have more health risk significance than <u>Giardia</u> cysts.

· Based on these assumptions, higher levels of protection are warranted.

To meet the levels of inactivation recommended here, significant changes in the system may be required. To avoid changes in the system which may result in conflicts with future regulations, the Primacy Agency may wish to establish interim disinfection levels to provide protection of the public health prior to the promulgation of the disinfection by-product regulations and then reconsider whether these levels are still appropriate after the disinfection by-product regulations are promulgated. Guidance for establishing interim disinfection requirements is provided in Section 5.5.

4.4.3 Total Trihalomethane (TTHM) Regulations

In addition to complying with disinfection requirements, systems must meet the requirements of the TTHM regulations. Currently, this regulation includes an MCL for TTHMs of 0.10 mg/L for systems which serve greater than 10,000 people. EPA expects to issue new regulations with a lower MCL in the near future. These regulations may also pertain to systems serving less than 10,000 people. Therefore, the selection of an appropriate disinfectant or disinfection strategy must include consideration of current and future regulations.

5. CRITERIA FOR DETERMINING IF FILTRATION AND DISINFECTION ARE SATISFACTORILY PRACTICED

5.1 <u>Introduction</u>

Under the SWTR, new and existing filtration plants must meet specified monitoring and performance criteria in order to assure that filtration and disinfection are satisfactorily practiced. These criteria include:

- Turbidity monitoring requirements
- Turbidity performance criteria
- Disinfection monitoring requirements
- Disinfection performance criteria

The overall objective of these criteria is to provide control of: <u>Giardia</u> cysts; viruses; turbidity; HPC; and <u>Legionella</u> by assuring a high probability that:

- a. Filtration plants are well-operated and achieve maximum removal efficiencies of the above parameters.
- Disinfection will provide adequate inactivation of <u>Giardia</u> cysts, viruses, HPC and <u>Legionella</u>.

5.2 <u>Turbidity Monitoring Requirements</u>

5.2.1 Sampling Location

The purpose of the turbidity requirements for systems which use filtration is to indicate:

- a. <u>Giardia</u> cyst and general particulate removal for conventional treatment and direct filtration
- b. General particulate removal for diatomaceous earth filtration and slow sand filtration
- C. Possible interference with disinfection for all filtration processes

To accomplish the purposes of the turbidity requirements, the SWTR requires that the turbidity samples be representative of the system!s

filtered water. The sampling locations which would satisfy this requirement include:

- Combined filter effluent prior to entry into a clearwell,
- b. Clearwell effluent:
- c. Plant effluent or immediately prior to entry into the distribution system; or
- d. Average of measurements from each filter effluent.

The selection of sampling locations for demonstrating compliance with the turbidity performance criteria is left to the system or the preference of the Primacy Agency.

5.2.2 Sampling Frequency

The turbidity of the filtered water must be determined:

- At least once every four hours that the system is in operation, or
- b. The Primacy Agency may reduce the sampling frequency to once per day for systems using slow sand filtration or filtration treatment other than conventional treatment, direct filtration or diatomaceous earth filtration, if it determines that less frequent monitoring is sufficient to indicate effective filtration performance. For systems serving 500 or fewer people, the Primacy Agency may reduce the sampling frequency to once per day regardless of the type of filtration used if it determines that less frequent monitoring is sufficient to indicate effective filtration performance.

A system may substitute continuous turbidity monitoring for grab sample monitoring if it validates the continuous measurement for accuracy on a regular basis using a protocol approved by the Primacy Agency. EPA recommends that the calibration of continuous turbidity monitors be verified at least twice per week according to the procedures established in Method 214A of the 16th Edition of Standard Methods.¹

Although the 17th Edition of <u>Standard Methods</u> is available, the 16th Edition is referred to in the SWTR. Continuous turbidity monitors must be installed properly to prevent air bubbles from reaching the monitor.

5.2.3 Additional Monitoring

As indicated in Section 4.3.2, EPA recommends that systems equip each filter with a continuous turbidity monitor. This recommendation is not part of the requirements of the SWTR and is not required for establishing compliance. Rather, it is recommended as a tool for systems to use to better monitor their treatment efficiency and to provide a method for detecting a deterioration in filter performance.

If continuous monitoring of each filter effluent cannot be implemented, then EPA recommends that at least the following be conducted on a quarterly basis:

- a. Monitor each filter, either by grab samples or continuous monitors, through the course of a routine cycle of operation, i.e.: from restart to backwash
- b. Visually inspect each filter where appropriate for indications of physical deterioration of the filter

These are general suggestions. The Primacy Agencies are encouraged to work with the systems to determine the best overall monitoring program(s) for their particular filtration plants in order to assess the status of the filter units. Each filter within a system should be maintained so that each filter effluent meets the turbidity performance criteria for the combined filter effluent (i.e., the turbidity limits specified in the SWTR).

5.3 Turbidity Performance Criteria

The SWTR establishes turbidity performance criteria for each of the filtration technologies. As previously indicated, these criteria provide an indication of:

- a. Effective particle and microbial removal
- b. Potential for interference with disinfection

In filtration, effective particle removal depends on both physical and chemical factors. The particles to be removed must be transported to the surface of the media and they must attach to the media. When efficient particle removal does not occur, the deterioration of filter

performance can be due to either physical problems with the filters or problems with the treatment chemistry.

Physical problems which can result in a deterioration of filter performance include:

- a. Media loss
- b. Media deterioration
- c. Mud ball formation
- d. Channeling or surface cracking
- e. Underdrain failure
- f. Cross-connections

In addition, the treatment chemistry has a significant impact on filtration. Specifically, effective particle removal is a function of the:

- a. Raw water chemistry and the changes induced by the chemicals added
- b. Surface chemistry of the particles to be removed
- c. Surface chemistry of the media

Consequently, when a filter experiences particle or turbidity breakthrough prior to the development of terminal headloss, the search for alternatives to correct the problem must include not only an evaluation of the potential physical causes but the treatment chemistry as well. Generally this involves an evaluation of one or more of the following:

- a. Alternate coagulant type and/or dose
- b. Alternate coagulant aid or flocculant aid type and/or dose
- c. Need for an alternate oxidant type and/or dose
- d. Need for a filter aid or alternate dose

5.3.1 Conventional Treatment or Direct Filtration

The <u>minimum</u> turbidity performance criteria for systems using conventional treatment or direct filtration are:

- a. Filtered water turbidity must be less than or equal to 0.5 NTU in 95 percent of the measurements taken every month.
- b. Filtered water turbidity levels of less than or equal to 1 NTU in 95 percent of the measurements taken every month may be permitted on a case-by-case basis if the Primacy Agency determines that the system (filtration with disinfection) is capable of achieving the minimum overall performance requirements of 99.9 percent removal/inactivation of Giardia cysts at the higher turbidity level. Such a determination could be based upon an analysis of existing design and operating conditions and/or performance relative to certain water quality characteristics. The design and operating conditions to be reviewed include:
 - the adequacy of treatment prior to filtration,
 - the percent turbidity removal across the treatment train, and
 - level of disinfection.

Water quality analysis which may also be used to evaluate the treatment effectiveness include particle size counting before and after the filter. Pilot plant challenge studies simulating full scale operation may also be used to demonstrate effective treatment. Depending on the source water quality and system size, the Primacy Agency will determine the extent of the analysis and whether a pilot plant demonstration is needed. For this demonstration, systems are allowed to include disinfection in the determination of the overall performance by the system.²

c. Filtered water turbidity may not exceed 5 NTU at any time.

The Primacy Agency can assume that conventional treatment plants that are meeting the minimum performance criteria are achieving at least a 2.5-log removal of <u>Giardia</u> cysts and at least a 2-log removal of viruses prior to disinfection.³

Recommended protocol for this demonstration is presented in Appendix M.

The literature indicates that well operated conventional treatment plants can achieve up to 3-log reduction of <u>Giardia</u> cysts and viruses (Logsdson, 1987b and Roebeck et al., 1962). Limiting the credit to 2.5-logs for <u>Giardia</u> cysts and 2-logs for viruses provides a margin of safety by requiring more disinfection. This is consistent with the

The Primacy Agency can assume that direct filtration plants that are meeting the minimum performance criteria are achieving at least a 2-log removal of <u>Giardia</u> cysts and a 1-log removal of viruses.⁴

Although the minimum turbidity performance criterion allows for a maximum filtered water turbidity of 0.5 NTU, treatment facilities using conventional treatment or direct filtration, whose raw water supplies have turbidity levels of 1 NTU or less, should be encouraged to achieve filtered water turbidity levels of less than 0.2 NTU.⁵

Primacy Agencies may allow systems which believe that they are actually achieving greater than a 2- or 2.5-log <u>Giardia</u> cyst removal to demonstrate the actual removal achieved using the protocol outlined in Appendix M. It is reasonable to expect that systems using conventional treatment for high turbidity source water (e.g., turbidities in excess of 100 NTU), and which optimize chemical treatment prior to filtration, may be achieving a 3-log or greater <u>Giardia</u> cyst removal if their filter effluent is substantially below the 0.5 NTU turbidity limit. Softening plants using conventional processes and 2-stage treatment processes may also achieve a 3-log <u>Giardia</u> cyst removal/inactivation. The high pH of softening may result in inactivation of <u>Giardia</u> cysts and viruses which can be demonstrated according to the protocol outlined in Appendix G. Appendix M can be used to demonstrate the <u>Giardia</u> cyst removal achieved.

multiple barrier concept.

Literature indicates that well operated direct filtration plants can achieve up to a 3-log removal of <u>Giardia</u> cysts and up to a 2-log removal of viruses (Logsdon, 1987b; Roebeck et al., 1962). Limiting the credit to 2-log for <u>Giardia</u> cysts and 1-log for viruses provides a margin of safety by requiring more disinfection. This is consistent with the multiple barrier concept.

Research has demonstrated that filter effluent turbidities substantially lower than 0.5 NTU are needed to obtain effective removals of <u>Giardia</u> cysts and viruses with low turbidity source waters (Logsdon, 1987b; Al-Ani et al., 1985).

5.3.2 Slow Sand Filtration

For systems using slow sand filtration, the turbidity performance requirements are:

- a. The filtered water turbidity must be less than or equal to 1 NTU in 95 percent of the measurements for each month.
- b. At the discretion of the Primacy Agency, a higher filter effluent turbidity may be allowed for well operated plants (Section 4.3.5) on a case-by-case basis, if there is no interference with disinfection and the turbidity level never exceeds 5 NTU. Noninterference with disinfection could be assumed if the finished water entering the distribution system is meeting the coliform MCL and HPC levels are less than 10/ml during times of highest turbidity.
- c. Filtered water turbidity may not exceed 5 NTU at any time.

Slow sand filtration plants, with appropriate design and operating conditions and which meet the minimum turbidity performance criteria can be considered to be well operated and achieving at least a 2-log removal of <u>Giardia</u> cysts and 2-log removal of viruses without disinfection. Primacy Agencies may allow systems which believe that they are actually achieving greater than a 2-log <u>Giardia</u> cyst removal to demonstrate the actual removal achieved using the protocol outlined in Appendix M.

5.3.3 <u>Diatomaceous Earth Filtration</u>

For systems using diatomaceous earth filtration, the turbidity performance criteria are:

- a. The filtered water turbidity must be less than or equal to 1 NTU in 95 percent of the measurements for each month.
- b. The turbidity level of representative samples of filtered water must at no time exceed 5 NTU.

Diatomaceous earth systems, with appropriate design and operating conditions and which meet the minimum turbidity performance criterion can

As indicated in Section 4, pilot studies have shown that with proper nurturing of the schmutsdecke, operation at a maximum loading rate of 0.2 m/hr will provide optimum removal of <u>Giardia</u> cysts and viruses (Logsdon, 1987b; Bellamy et al., 1985).

be considered to be well operated and achieving at least 2-log removal of <u>Giardia</u> cysts and at least 1-log removal of viruses without disinfection. Systems which believe that they are actually achieving greater than a 2-log <u>Giardia</u> cyst removal may demonstrate the actual removal achieved using the protocol outlined in Appendix M.

5.3.4 Other Filtration Technologies

The turbidity performance criteria for filtration technologies other than those presented above, are the same as for slow sand filtration. The <u>Giardia</u> cyst removal achieved by these systems must be demonstrated to the Primacy Agency. The protocol outlined in Appendix M may be used as a basis for this demonstration.

Reverse osmosis is a membrane filtration method used to remove dissolved solids from water supplies. Desalination is a typical use of the process. Application to potable water treatment is limited to extremely high quality raw water supplies of low turbidity (1 NTU or less), or following pretreatment to produce a supply of low turbidity.

The membrane excludes particles larger than 0.001 to 0.0001 um range, thereby effectively removing bacteria, <u>Giardia</u> cysts and viruses. Credit can be given for at least a 3-log <u>Giardia</u> cyst and 4-log virus removal, with no demonstration. It should be noted that this removal credit assumes the membranes are in tact with no holes in the membranes allowing the passage of organisms.

5.4 Disinfection Monitoring Requirements

Each system must continuously monitor the disinfectant residual of the water as it enters the distribution system and record the lowest disinfectant residual each day. If there is a failure in the continuous monitoring equipment, the system may substitute grab sample monitoring every 4 hours for up to 5 working days following the equipment failure. Systems serving 3300 people or fewer may take grab samples in lieu of continuous monitoring at frequencies as follows:

System Population	Samples/Day
≤500	1
501-1,000	2
1,001 - 2,500	3
2,501 - 3,300	4

The grab samples must be taken at different times during the day, with the sampling intervals subject to Primacy Agency review and approval. If the residual concentration falls below 0.2 mg/L, the system must take another sample within 4-hours and notify the Primacy Agency as soon as possible, but no later than the end of the next business day, even if the residual is restored to 0.2 mg/L or greater within 4 hours. If the residual is not restored to 0.2 mg/L or greater within 4 hours, the system is in violation of a treatment technique requirement. Each system must also measure the disinfectant residual in the distribution system at the same frequency and locations at which total coliform measurements are made pursuant to the requirements in the revised Total Coliform Rule (54 FR 27544; June 29, 1989). For systems which use both surface and ground water sources, the Primacy Agency may allow substitute sampling sites which are more representative of the treated surface water supply.

5.5 Disinfection Performance Criteria

5.5.1 Minimum Performance Criteria Required by the SWTR

For systems which provide filtration, the disinfection requirements of the SWTR are:

- a. Disinfection must be provided to ensure that the total treatment processes of the system (including filtration) achieves at least a 3-log removal/inactivation of Giardia cyst and a 4-log removal/inactivation of viruses. The Primacy Agency must determine what level of disinfection is required for each system to meet this criterion.
- b. The system must demonstrate by continuous monitoring and recording that a disinfectant residual in the water entering the distribution system is never less than 0.2 mg/L for more than 4 hours. If at any time the residual falls below 0.2 mg/L for more than 4 hours the system is in violation. The

system must notify the Primacy Agency whenever the residual falls below 0.2 mg/L before the end of the next business day.

c. The system must demonstrate detectable disinfectant residuals or HPC levels of 500 or fewer colonies/ml in at least 95 percent of the samples from the distribution system each month for any two consecutive months.

5.5.2 Recommended Performance Criteria

Disinfection must be applied to assure that the overall treatment provided achieves at least a 3-log removal/inactivation of <u>Giardia</u> cyst and a 4-log removal/inactivation of viruses. As outlined in Section 5.3, well operated filter plants achieve at least a 2 to 2.5-log removal of <u>Giardia</u> cysts and between a 1 to 2-log removal of viruses. EPA therefore recommends that the Primacy Agencies adopt additional disinfection performance criteria that include:

- a. As a minimum, primary disinfection requirements that are consistent with the overall treatment requirements of the SWTR, or preferably;
- b. Primary disinfection requirements as a function of raw water quality as outlined in Section 4.4.

Recommended Minimum Disinfection

The required minimum primary disinfection is the disinfection needed for the entire treatment process to meet the overall treatment requirement of 3-log <u>Giardia</u> and 4-log virus removal/inactivation. The following table provides a summary of the expected minimum level of treatment performance in well operated filter systems and the recommended level of disinfection.

	Expected Log Removals		Recommended Disinfection (Log Inactivations)	
<u>Filtration</u>	Giardia	Viruses	Giardia	<u>Viruses</u>
Conventional	2.5	2.0	0.5	2.0
Direct	2.0	1.0	1.0	3.0
Slow Sand	2.0	2.0	1.0	2.0
Diatomaceous Earth	2.0	1.0	1.0	3.0

In cases where the system believes that the treatment processes are achieving greater removals than those listed above, the actual removal provided by the processes can be demonstrated through the procedures outlined in Appendix M. However, EPA recommends that, despite the removals demonstrated, systems should provide a minimum of 0.5 log <u>Giardia</u> cyst inactivation to supplement filtration and maintain a second treatment barrier for microorganisms.

Recommended Disinfection as a Function of Raw Water Quality

Although the SWTR requires the overall treatment to provide a minimum of a 3-log <u>Giardia</u> cyst and a 4-log virus removal/inactivation, it may be appropriate for the Primacy Agency to require greater removals/inactivations depending on the degree of contamination in the source water as presented in Section 4.4. Following is a summary of the recommended overall treatment which should be provided based on an estimate of the <u>Giardia</u> cyst concentration in the source water:

Allowable daily avg cyst concentration/100 L	<u><1</u>	≥1-10	>10-100
Giardia cyst Removal/Inactivation	3-log	4-log	5-1og
Virus Removal/Inactivation	4-log '	5-1og	6-log

If a slow sand filtration plant must achieve a 4-log removal/inactivation of <u>Giardia</u> cysts and a 5-log removal/inactivation of viruses, and credit for 2-log <u>Giardia</u> cyst and 2-log virus removal by filtration is granted, disinfection for a 2-log <u>Giardia</u> cyst inactivation and 3-log virus inactivation would be needed to meet the overall removal/inactivation. However, Primacy Agencies may allow systems which use particle size analysis outlined in Appendix M to demonstrate greater than a 2-log <u>Giardia</u> cyst removal to provide less than 2-log <u>Giardia</u> cyst inactivation through disinfection.

5.5.3 Disinfection By-Product Considerations

Although the EPA suggests increased levels of disinfection for various source water conditions, a utility should not implement such a change without considering the potential conflict with the requirements of existing or future disinfection by-product regulations. EPA intends to promulgate National Primary Drinking Water Regulations to regulate levels of disinfectants and disinfection by-products when it promulgates disinfection requirements for ground water systems (anticipated in 1992). EPA is concerned that changes required in utilities' disinfection practices to meet the recommended inactivations for the SWTR might be inconsistent with treatment changes needed to comply with the forthcoming regulations for disinfectants and disinfection by-products. reason. EPA recommends that Primacy Agencies exercise discretion, sensitive to potential disinfection by-product concerns, in determining the level of disinfection needed for filtered systems to meet the overall treatment requirements specified in the rule or recommended based on source water quality.

Until the promulgation of the disinfection by-product regulation, EPA recommends that the Primacy Agency allow more credit for <u>Giardia</u> cyst and virus removal by filtration than otherwise recommended if a) the Primacy Agency determines that a system is not currently at a significant risk from microbiological contamination at the existing level of disinfection and b) less stringent interim disinfection conditions are necessary for the system to modify its disinfection process to optimally achieve compliance with the SWTR as well as the forthcoming disinfection by-product regulations. The following paragraphs outline the recommended disinfection levels for systems meeting the above conditions.

For well-operated conventional filtration plants that meet the minimum turbidity requirements at all times, the Primacy Agency may consider giving the system credit for 3-log <u>Giardia</u> cyst removal (in lieu of the generally recommended 2.5-log credit). Also, for well-operated direct filtration plants, the Primacy Agency may consider giving the system credit for 2.5-log <u>Giardia</u> cyst removal in lieu of the generally

recommended 2.0-log credit. EPA recommends that these additional credits be given for conventional or direct filtration only if:

- a. The total treatment train achieves 1) at least 99 percent turbidity removal, or filtered water turbidities are consistently less than 0.5 NTU, whichever is lower, or 2) a 99.9 percent removal of particles in the size range of 5 to 15 um is demonstrated as outlined in Appendix M: and
- b. The level of heterotrophic plate count (HPC) bacteria in the finished (disinfected) water entering the distribution system is consistently less than 10/ml.

Systems using slow sand filtration or diatomaceous earth filtration may be given interim credit for up to 3-log <u>Giardia</u> cyst removal if the system meets the recommended conditions listed above for conventional systems. Pilot plant studies have demonstrated that these technologies, when well operated, generally achieve at least 3.0-log removals (USEPA, 1988a).

The EPA believes that interim level of disinfection requirements may be appropriate in some cases depending upon source water quality, reliability of system operation and potential increased health risks from disinfection by-products. EPA intends to regulate disinfectants and disinfection by-products in 1992. At this time it will become apparent how systems with disinfection by-product problems can optimally meet the disinfection requirements of the SWTR and the disinfection by-products regulations, concurrently.

For example, a system with a raw water turbidity averaging 20 NTU maintaining a filtered water turbidity less than 0.2 NTU can be granted 3-log <u>Giardia</u> cyst removal credit with no further demonstration.

In cases where the Primacy Agency has a data base which shows a correlation between turbidity and <u>Giardia</u> cysts removal, turbidity may be used in lieu of particle size analysis. Turbidity removal requirements should be set to assure 99.9 percent <u>Giardia</u> cyst removal. A correlation between turbidity and <u>Giardia</u> cyst removal was shown in a study reported by Hendricks et al (1984).

5.5.4 Recommended Disinfection System Redundancy

The SWTR does not require a redundant disinfection system for filtered supplies. However, in order to assure the continuous provision of disinfection to meet the overall removal/inactivation requirements and to maintain a residual entering the distribution system, EPA recommends that redundant disinfection equipment be provided. As contained in the 1987 edition of <u>Ten State Standards</u>, where disinfection is required for protection of the supply, standby equipment is required. Automatic switchover should be provided as needed, to assure continuous disinfectant application.

Recommendations for providing redundant disinfection are outlined in Section 3.2.4 and detailed in Appendix I.

5.5.5 Determination of Inactivation by Disinfection

The desired level of inactivation can be achieved by disinfection at any point in the treatment or distribution system prior to the first customer. Disinfection provided prior to filtration is referred to as pre-disinfection while disinfection after filtration is referred to as post-disinfection. As presented in Section 3.2, the inactivation of Giardia cysts and viruses provided by disinfection are indicated by CT values.

The SWTR defines CT as the residual disinfectant concentration(s) in mg/L multiplied by the contact time(s) in minutes. The contact time is measured from the point of disinfectant application to the point of residual measurement or between points of residual measurement. The inactivation efficiency can be determined by calculating CT at any point along the process after disinfectant application prior to the first customer.

A system may determine the inactivation efficiency based on one point of residual measurement prior to the first customer, or on a profile of the residual concentration after the point of disinfectant application. The residual profile is generated by monitoring the residual at several points between the point(s) of disinfectant application and the first customer. The system can then use the method described in Section 3.2 for determining the total inactivation credit. Profiling the residual allows

for credit of significantly higher residuals which may exist before the water reaches the first customer. Methods for determining various disinfectant residuals are described in Appendix D.

In pipelines, the contact time can be assumed equivalent to the hydraulic detention time and is calculated by dividing the internal volume of the pipeline by the peak hourly flow rate through the pipeline. In mixing basins and storage reservoirs, the hydraulic detention time generally does not represent the actual disinfectant contact time because of short circuiting. The contact time in such chambers should be determined by tracer studies or an equivalent demonstration. The time determined from the tracer study to be used for calculating CT is T_{10} . T_{10} represents the time that 90 percent of the water (and microorganisms within the water) will be exposed to disinfection within the disinfectant contact chamber. Guidance for determining detention time in contact chambers is provided in Appendix C.

The residual disinfectant concentration should be measured daily, during peak hourly flow, for each disinfectant section prior to the first customer in the distribution system. Unless a system knows from experience when peak flow will occur, a system can only identify peak hourly flow after it has occurred. Therefore, EPA suggests that residual measurements be taken every hour. If it is not practical to take grab samples each hour, the system may take grab samples during the period peak flow is expected to occur, or continuous monitors may be used. The measurements taken during the hour of peak flow can then be used to determine the CT for each section ($\mathrm{CT}_{\mathrm{calt}}$). The determination of CTs is explained in Section 3.2.1.

Although the inactivation maintained in the system is determined during peak hourly flow, the disinfectant dosage applied to maintain this inactivation may not be necessary under lower flow conditions. Under lower flow conditions, a higher contact time is generally available and the CT needed to meet the required inactivation may be met with a lower residual concentration. Continuing to apply a disinfectant dosage based on the peak hourly flow may provide more disinfection than is needed, increasing costs and possibly resulting in increased levels of disinfectant by-products. However, the system should also maintain the required

inactivation levels at non-peak hourly flows. The system should therefore evaluate the dose needed to provide the CT necessary for maintaining the required inactivation under different flow conditions and set the dosage accordingly. The following example provides guidelines for determining flow ranges and disinfection levels to maintain the required disinfection.

Example

A 20-mgd direct filtration plant applying free chlorine as a disinfectant has a contact time of 27.5 minutes under peak flow conditions. As noted in Section 5.3, well-operated direct filtration plants achieve 2-log <u>Giardia</u> cyst removal and 1-log virus removal. Therefore, disinfection for 1-log <u>Giardia</u> cyst inactivation and 3-log virus inactivation is recommended. The pH and temperature of the water are 7 and 5 C, respectively. Using Table E-2, a CT of 55 is required to achieve 1-log <u>Giardia</u> cyst inactivation at a residual of 2 mg/L. This level of treatment is more than adequate for 3-log inactivation of viruses requiring a CT of 6, as indicated in Table E-7. However, under low flow conditions the available contact time is longer, and lower residuals are needed to provide the same level of inactivation. Based on the calculated contact time under various flow rates and the CT values in Table E-2, adequate disinfection would be provided by maintaining the following chlorine residuals for the indicated flows:

Flow (MGD)	Contact the (min)	CT90 (mg/L-min) <u>Required</u>	Free Chlorine Residual (mg/L)
20	27.5	55	2.0
15	36	52.5	1,5
10	54	50	1.0
5	108	47	0.5

 ${\rm CT_{90}}$ corresponds to a 1-log inactivation. If a different level of inactivation were needed, CT values for that inactivation would be read from the tables corresponding to the pH and temperature of the water.

 Section 3.2.2 lists the percent inactivations corresponding to log inactivations, i.e., 0.5-log equals 68 percent requiring CT₆₈..

- In cases where the residual, pH or temperature of the water is an intermediate value not reported in the tables, linear (straight-line) interpolation may be used.
- For example, in the above listing, 0.5 mg/L residuals are not included in the Appendix E tables. The CT_{90} value was determined by interpolating between the ≤ 0.4 mg/L value of 46 mg/L-min and the 0.6 mg/L value of 48 mg/L-min.
- CT values for intermediate pH and temperature values may also be interpolated; or
- The CT values for the higher pH or lower temperature listed in the table may be used instead of interpolation.
- CT_{99 9} tables in the SWTR can be used to calculate the CT required to achieve any log inactivation by:

The variation in CT required with respect to the residual for chlorine makes it impractical for the utility to continually change the disinfectant dose as the flow changes. Therefore, EPA suggests that the flow variation at the utility be divided into ranges and the residual needed at the higher flow of the range be maintained for all flows within the range to assure adequate disinfection. The following flow ranges and residuals at the given pH and temperature are suggested for this plant:

Flow Range (MGD)	Free Chlorine Residual (mg/L)
5-10	1.0
10-15	1.5
15-20	2.0

In this way, the utility is assuring the provision of the required disinfection while minimizing the disinfectant costs and possibly lowering disinfection by-products.

Although these residuals will meet the required CT, maintaining a residual in the distribution system must also be considered. If there is no other point of disinfection prior to the distribution system, the residual for disinfection must be maintained at a level which will also

provide a residual throughout the distribution system. The complete range of flows occurring at the plant should be evaluated for determining the required residual. The utilities may establish the residual needs for as many flow ranges as is practical.

The Primacy Agency should make periodic checks to assure that the utility is maintaining adequate disinfection at both peak and non-peak flow conditions.

In contrast to this close control of disinfectant addition and CT monitoring, for filtered systems which have long detention times and regularly exceed the CT requirements for the inactivation needed, it may be unnecessary for the system to calculate CTs each day of operation. Unlike unfiltered systems where CTs must be calculated each day, for filtered systems, monitoring the residual at the end of the contact time may be sufficient to indicate that the required disinfection is provided. However, this results in much higher CTs in the summer than is needed, which adds to costs and possibly unnecessary increased production of disinfection by-products. The following example outlines one scenario for which this would apply.

Example

:

A utility disinfects with chlorine ahead of a reservoir prior to direct filtration. The Primacy Agency may give a well-operated direct filtration plant credit for 2-log <u>Giardia</u> cyst removal and 1-log virus removal. Therefore, 1-log <u>Giardia</u> cyst and 3-log virus inactivation through disinfection is needed. For free chlorine, the CTs for 1-log <u>Giardia</u> cyst inactivation exceed the CTs for 3-log virus inactivation. Therefore, CTs for <u>Giardia</u> cyst inactivation are the controlling CTs. The following water quality conditions occur in the reservoir during the year:

pH 7 - 7.5
Temperature (° C) 5 - 20
Chlorine residual (mg/L) 0.2 - 0.8

The required CT for chlorine increases with:

- increasing residual,
- increasing pH, and
- decreasing temperature

Thus, for a residual of 0.8 mg/L the CT needed for a 1-log <u>Giardia</u> cyst inactivation is as follows:

ДH	<u> Temperature (C)</u>	CT ₉₀ mg/L-min
7.5	5	58 (Table E-2)
7	20	18 (Table E-5)

Tracer studies conducted on the reservoir indicated a T_{10} of 150 minutes at the system's maximum flow. For the maximum CT of 58 mg/L-min required, the minimum residual needed to meet this requirement is 0.4 mg/L, calculated as:

$$\frac{58 \text{ mg/L-min}}{150 \text{ min}} = 0.4 \text{ mg/L}$$

At a residual of 0.4 mg/L, CT_{90} is 55 mg/L-min. Thus, any residual \geq 0.4 mg/L will provide the needed disinfection throughout the year and the Primacy Agency may require the system to report only the residual maintained, reducing the effort needed to determine effective disinfection. Maintaining this residual in the summer, however, provides much higher CTs than needed, possibly resulting in unnecessary costs and increased disinfection by-products.

Meeting the Recommended Inactivation Using Free Chlorine

As previously indicated in Section 3.2.1, the effectiveness of free chlorine as a disinfectant is influenced by both the temperature and pH of the water and by the concentration of chlorine. The inactivation of Giardia cysts by free chlorine at various temperatures and pHs are presented in Appendix E (Table E-1 through Table E-6). The CT values for the inactivation of viruses by free chlorine are presented in Table E-7.

To determine whether a system is meeting these inactivations, the free chlorine residual, pH and temperature must be measured, at one point or several points prior to the first customer, where contact time(s) is measured. The contact time should be determined from the point of application of the disinfectant to the point(s) where the residual is measured for determining CTs prior to the first customer. The CTs

actually achieved in the system should then be compared to the values in the table for the pH and temperature of the water at the point(s) of residual measurement. Guidance on calculating the CT for chlorine is presented in Section 3.2.1.

Meeting the Recommended Inactivation Using Chlorine Dioxide

10.

Ţ.

7

CT values for the inactivation of <u>Giardia</u> cysts by chlorine dioxide are presented in Table E-8 and the CT values for the inactivation of viruses are presented in Table E-9. As shown in Tables E-8 and E-9, the only parameter affecting the CT requirements for chlorine dioxide is temperature. However, the disinfection efficiency of chlorine dioxide may be significantly increased at higher pHs. Since the CT values in Tables E-8 and E-9 were based on data at pH 7 and 6, respectively, and chlorine dioxide appears to be more effective at higher pHs, systems with high pHs may wish to demonstrate that CT values lower than those presented in Tables E-8 and E-9 may achieve the desired level of inactivation.

Chlorine dioxide residuals are short-lived. Therefore, sampling and residual analysis at various points in the treatment process downstream of the point of application may be necessary to establish the last point at which a residual is present. Subsequent sampling and residual analyses conducted upstream of this point can be used to determine the CT credit by using the demonstrated detention time between the point of application and the sampling location. Methods for calculating CT values are presented in Section 3.2. Systems using chlorine dioxide may conduct pilot studies to demonstrate effective disinfection in lieu of calculating CT, or for determining that lower CT values than those in Appendix E are appropriate. Guidelines for conducting these studies are presented in Appendix G.

Meeting the Recommended Inactivation using Ozone

CT values for the inactivation of <u>Giardia</u> cysts by ozone are presented in Table E-10 for various temperatures and inactivation rates. As indicated in this table, the CTs required for inactivation with ozone are substantially lower than those required for free chlorine. This reflects the fact that ozone is a more powerful disinfectant. The CT requirements for inactivation of viruses using ozone are presented in Table E-11. In cases where only a 1-log or lower <u>Giardia</u> cyst inactivation is needed, the CT values for virus inactivation may be higher than

the CTs for <u>Giardia</u> cysts. Because of the reactivity of ozone, it is unlikely that a residual will exist for more than a few minutes. As a result, the application of a persistent disinfectant such as chlorine or chloramines is needed to maintain the required disinfectant residual in the distribution system. Guidance for calculating CT values for ozone are presented in Section 3.2.1 and Appendix O. In lieu of calculating the CT for an ozone contactor or demonstrating that lower CTs are effective, the disinfection efficiency can be demonstrated through pilot studies as presented in Appendix G.

Meeting the Recommended Inactivation Requirements using Chloramines CT values for the inactivation of Giardia cysts by chloramines are presented in Table E-12. The high CT values associated with the use of chloramines may be unachievable for some systems. In these cases. chlorine, ozone, or chlorine dioxide should be used for primary disinfection, and chloramines for residual disinfection, as necessary. Table E-13 presents CT values for the inactivation of viruses with chloramines. This table is only applicable for indicating virus inactivation efficiencies if chlorine is added prior to ammonia. Systems which add ammonia prior to chlorine or ammonia and chlorine concurrently, can determine viral inactivation efficiencies using the protocol given in Appendix G. systems applying chloramines to meet the virus inactivation requirements, EPA recommends that they also monitor for HPC in the finished water, as presented in Section 5.6. Systems also may demonstrate effective disinfection with chloramines in lieu of calculating CT, or to determine that lower CT values than those indicated in Appendix E are appropriate. The protocols outlined in Appendix G can be used for this demonstration. Further guidance on chloramines is given in Section 3.2.1.

Meeting the Inactivation Requirement Using Ultraviolet (UV) Radiation

Ultraviolet radiation is a method of disinfection which can be applied to meet the virus inactivation requirements of the SWTR.

UV disinfectant dose, expressed in terms of UV intensity and exposure time/unit area (mW-sec/cm²) incorporates the elements of the CT concept and therefore can be considered as analogous or equivalent to a CT value. UV disinfection usually employs commercially available units

designed to deliver doses of 25 to 35 mW-sec/cm². The dose can be increased by reducing water flow rate and/or by adding additional units in series. UV disinfection efficiency differs from that of chemical disinfectants in that it is not affected by water temperature. UV radiation does not effectively penetrate solids and is absorbed by certain dissolved substances. Therefore, turbidity and other water quality factors are important determinants of UV disinfection efficiency, and UV should be applied after turbidity removal.

CT values for the inactivation of <u>Giardia</u> cysts by <u>UV</u> are not included in Appendix E. The results of two studies (Rice and Hoff, 1981; Carlson <u>et al</u>, 1985) indicate that <u>Giardia</u> cysts are extremely resistant to inactivation by <u>UV</u> with doses greater than 60 mW-sec/cm² causing less than 80% inactivation. Because <u>UV</u> appears to be very ineffective for <u>Giardia</u> cyst inactivation and in the absence of sufficient data showing the doses needed to inactivate 0.5 to 3.0 logs of cysts, <u>UV</u> must be used in combination with other disinfectants to provide evidence of effective cyst inactivation.

CT values for the inactivation of viruses by UV are presented in Table E-14. Units used for UV disinfection should be equipped with failsafe devices that will provide automatic shutdown of water flow if UV dose decreases to levels lower than those specified in Table E-14.

Meeting the Inactivation Requirement Using Alternate Disinfectants For system using disinfectants other than chlorine, chloramines, chlorine dioxide, or ozone, the effectiveness of the disinfectant can be demonstrated using the protocol contained in Appendix G. The protocol in Appendix G.3 for batch testing should be followed for any disinfectant which can be prepared in an aqueous solution and will be stable throughout the testing. For disinfectants which are not stable, the pilot study protocol outlined in Appendix G.4 should be followed.

Examples for Determining the Disinfection to be Provided

Recommended 0.5-log Giardia. 2-log Virus Inactivation
 A community of 70,000 uses a river as its drinking water source.
 Ozonation prior to a conventional treatment plant is used to treat the

water. The source has a protected watershed with limited human activity and no sewage discharge. The river water has the following water quality characteristics:

Turbidity 10 - 200 NTU

Total estimated Giardia cyst level <1/100 /L

pH 7.0 - 7.5

Temperature 5 - 15

The treatment plant has a design capacity of 15 mgd and treats an average flow of 10 mgd. A three chamber ozone contactor precedes the rapid mix. Alum and polymer are added as a coagulant and coagulant aid, respectively. The finished water turbidity at the plant is maintained within the range of 0.1 to 0.2 NTU. Chloramines are applied after the filters, but prior to the clearwells, to maintain a residual entering and throughout the distribution system.

Based on the raw water quality and source water protection, an overall 3-log <u>Giardia</u> cyst and 4-log virus removal/inactivation is appropriate for this water source. However, as noted in Section 5.3, Primacy Agencies may credit well operated conventional filtration plants with 2.5-log <u>Giardia</u> cyst removal and 2-log virus removal. Therefore, disinfection for 0.5-log <u>Giardia</u> cysts and 2-log viruses is recommended to meet the overall treatment requirements of the SWTR.

On the day of this example calculation, the peak hourly flow rate of the plant was 13 mgd. The contact time of the ozone basin, T_{10} determined from tracer study data is 6 minutes for this flow. The water had a pH of 7 and a temperature of 5 C on the day of the calculation. For ozone under these conditions of pH and temperature, the following CTs are needed for the required inactivation (Tables E-10, E-11):

 0.5-log Giardia
 2-log virus

 CT
 0.3
 0.6

The CT values indicate that viruses are the controlling parameter for disinfection and the overall inactivation provided will be calculated based on viruses. The overall virus inactivation provided by the ozone contactor is determined as follows:

Average

Chamber	Residual C (mg/L)	T ₁₀ (minutes)	(mg/L)	CT _{99 9} CT (mg/L-min.)	cate/CT ₉₉ 9
1	0.1	2	0.2	0.9	0.22
2	0.2	2	0.4	0.9	0.44
3	0.2	2	0.4	0.9	0.44

The sum of $CT_{calc}/CT_{99.9}$ is 1.1. This corresponds to more than a 3-log virus inactivation determined as 3 X $CT_{calc}/CT_{99.9} = 3$ X 1.1 = 3.3-log. Therefore, the system exceeds the recommended inactivation.

2) Recommended 1-log Giardia Cyst. 2-log Virus Inactivation

A 2 MGD slow sand filtration plant treating reservoir water, fed by mountain streams with no nearby wastewater discharges, provides drinking water for a community of 8,000 people. The water quality at the intake has the following water quality characteristics:

Turbidity	5 - 10 NTU
Total coliforms	Not measured
Total estimated <u>Giardia</u> cyst level	<1/100 L
рН	6.5 - 7.5
Temperature	5 - 15 C

The filtered water turbidity ranges from 0.6 - 0.8 NTU. Considering the source water quality and plant performance, an overall 3-log <u>Giardia</u> cyst and 4-log virus removal/inactivation is considered sufficient for this system. As noted in Section 5.3, the Primacy Agency may credit slow sand plants with 2-log <u>Giardia</u> cyst and 2-log virus removal. Therefore disinfection for 1-log <u>Giardia</u> cyst and 2-log virus inactivation is recommended for the system to meet the overall treatment requirements.

Chlorine is added prior to the clearwells to provide disinfection. The clearwells have a capacity of 80,000 gallons. A one mile, 16-inch transmission main transports the water from the treatment plant to the first customer. The inactivation provided is determined daily for the peak hourly flow conditions. Tracer studies have been conducted to determine the T_{10} for the clearwells for different flow rates. For the purposes of calculating the inactivation the system is divided into two sections.

Section 1 - clearwell

Section 2 - transmission main

The flowrate at peak hourly flow from the clearwell was 1.5 mgd on the day of this example. At this flowrate, the T_{10} of the clearwell is 67 minutes, as determined from the results of the tracer studies. At this flowrate, water travels through the transmission main at 99 ft/min. The data for the calculation of the inactivation is as follows:

	Section 1	Section 2
length of pipe (ft) contact time (min)	0	5280
contact time (min) pipe	0	53
basin	67	0
total disinfectant	chlorine	53 chlorine
residual (mg/L)	1.0	0.6
temperature C pH	7.5	7.5

For free chlorine, a 1-log <u>Giardia</u> cyst inactivation provides greater than a 4-log virus inactivation; therefore, <u>Giardia</u> cyst inactivation is the controlling parameter, and the inactivation provided is determined based on <u>Giardia</u> cysts. The calculation is as follows:

Section 1 - Chlorine

 $CT_{calc} = 1.0 \text{ mg/L} \times 67 \text{ minutes} = 67 \text{ mg/L-min}$

From Table E-2, at a temperature of 5 C and a pH of 7.5, $CT_{99\ 9}$ is 179 mg/L-min

$$CT_{calc}/CT_{99.9} = 67 \text{ mg/L-min} = 0.37$$

179 mg/L-min

Section 2 - Chlorine

 $CT_{cais} = 0.6 \text{ mg/L} \times 53 \text{ minutes} = 32 \text{ mg/L-min}$

From Table E-2, at a temperature of 5 C and a pH of 7.5, $CT_{99.9}$ is 171 mg/L-min

$$CT_{caic}/CT_{99.9} = \frac{32 \text{ mg/L-min}}{171 \text{ mg/L-min}} = 0.19$$

The sum of $CT_{calc}/CT_{99.9}$ is equal to 0.56. This is equivalent to a 1.7-log Giardia cyst inactivation determined as 3-log x $CT_{calc}/CT_{99.9}$ = 3 x 0.56 =

1.7-logs. Therefore, the system exceeds the disinfection recommended to meet the overall treatment requirements.

3) Recommended 2-log Giardia Cvst, 4-log Virus Inactivation

A community of 30,000 people uses a reservoir treated by direct filtration for its water supply. The reservoir is fed by a river which receives the discharge from a wastewater treatment plant 10 miles upstream of the reservoir. The reservoir water quality is as follows:

-A

Turbidity 5 - 15 NTU

Total coliforms 100 - 1000/100 ml

Total estimated <u>Giardia</u> cyst level 5/100 L

pH 6 - 7

Temperature 5 - 15 C

Based on the source water quality, an overall removal/inactivation of 4-log Giardia cyst and 5-log virus is recommended as outlined in Section 4.4.

The source water flows by gravity to a 3 MG storage reservoir prior to pumping to the water treatment plant. Chloramines are produced by first adding chlorine then ammonia to the water within the inlet of the storage reservoir. Chlorine dioxide is added to the filtered water prior to the clearwells. Chloramines are applied after the clearwells to maintain a residual in the distribution system. The system design flow is 8 mgd with an average flow of 5 mgd. For the calculation of the overall inactivation, the system is divided into 2 sections.

Section 1 - the storage reservoir and the transmission to the treatment plant

Section 2 - the clearwells

The overall inactivation for the system is computed daily at the peak hourly flow conditions. The pH, temperature, and disinfectant residual is measured at the end of each section prior to the next point of disinfectant application and the first customer. The flow is measured in the transmission main entering the plant and exiting the clearwells. On the day of this example calculation, the peak hourly flow was 6 mgd in the transmission mains entering and leaving the plant. If the flowrates were different, the T_{10} corresponding to the respective flowrate would be used

in the calculation. Guidance for determining CTs when flowrates vary within a system is given in Section 3.2. The water velocity through the 20-inch transmission main is 256 ft/min at a flow of 6 mgd. Tracer studies were conducted on the storage reservoir and clearwells. As determined from the testing the detention times, T_{10} , of the basins at a flow of 6 mgd are 380 and 130 minutes for the storage reservoir and clearwells, respectively. The data for the calculation of inactivation is as follows:

	Section 1	Section 2
length of pipe (ft) contact time (min)	4500	0
pipe basin	18	0
total	380 398	130 130
disinfectant	chloramines	chlorine dioxide
residual (mg/L) temperature C	1.5 5	0.2
рН	ž	ž

For each of the disinfectants used, the following CTs are needed for 2-log Giardia and 4-log virus inactivation for the pH and temperature conditions of the system.

	CT for 2-log <u>Giardia</u>	CT for 4-log Virus
chloramines	1430	1988
chlorine dioxide	17	33.4

The CT required for the virus inactivation is higher than that needed for <u>Giardia</u> inactivation for each of the disinfectants. Since the viruses are the controlling parameter, the inactivation calculation will be based on the viruses. The calculation is as follows:

<u>Section 1 - Chloramines</u>

 $CT_{calc} = 1.5 \text{ mg/L} \times 398 \text{ minutes} = 597 \text{ mg/L-min}$

From Table E-13, at a temperature of 5 C and a pH of 7, $CT_{99.99}$ is 1988 mg/L-min

 $CT_{cals}/CT_{gg} = 597 \text{ mg/L-min} = 0.3$

1988 mg/L-min

Section 2 - Chlorine Dioxide

 $CT_{calc} = 0.2 \text{ mg/L} \times 130 \text{ minutes} = 26 \text{ mg/L-min}$

From Table E-9, at a temperature of 5 C and a pH of 7, $CT_{99.99}$ is 33.4 mg/L-min

5

e e

$$CT_{calc}/CT_{gg.gg} = \frac{26 \text{ mg/L-min}}{33.4 \text{ mg/L-min}} = 0.78$$

The sum of $CT_{calc}/CT_{99.99}$ is equal to 1.08, which is equivalent to a 4.3-log inactivation of viruses, determined as follows:

$$x = 4-\log x \frac{c\tau_{calc}}{c\tau_{gg,gg}} = 4 \times 1.08 = 4.3-\log s$$

Therefore, the system provides sufficient disinfection to meet the overall recommended treatment performance.

5.6 Other Considerations

Monitoring for heterotrophic plate count (HPC) bacteria is not required under the SWTR. However, such monitoring may provide a good operational tool for:

- Measuring microbial breakthrough
- Evaluating process modifications
- Detecting loss of water main integrity
- Detecting bacterial regrowth conditions within the distribution system
- Determining interference with the coliform measurements (AWWA, 1987)

Therefore, EPA recommends routine monitoring for HPC in the plant effluent and within the distribution system whenever the analytical capability is available in-house or nearby. Systems which do not have this capability should consider using a semi-quantitative bacterial water sampler kit, although this is not acceptable for compliance monitoring.

As discussed in the preamble to the SWTR, EPA believes that it is inappropriate to include HPC as a treatment performance criterion in the rule since small systems would not have in-house analytical capability to conduct the measurement, and they would need to send the samples to a private laboratory. Unless the analysis is conducted rapidly, HPC may multiply and the results may not be representative.

EPA recommends an HPC level of less than 10/ml in the finished water entering the distribution system and levels of less than 500/ml throughout the distribution system.

Legionella is another organism which is not included as a treatment performance criterion. Inactivation information on Legionella is limited. EPA believes that treatment which complies with the SWTR will remove and/or inactivate substantial levels of Legionella which might occur in source waters, thereby reducing chances that Legionella will be transported through the system and reducing the possibility that growth might occur in the distribution system or hot water systems within homes and institutions. Since Legionella are similar in size to coliform organisms, removals by filtration should be similar to those reported for total coliforms. In addition, the available disinfection information indicates that the CT requirements for inactivation of Legionella are lower than those required for the inactivation of Giardia cysts. EPA recognizes, that regardless of the treatment provided, some Legionella may enter plumbing and air conditioning systems and subsequently multiply (Muraca et al., 1986). EPA believes that these concerns are best addressed through quidance contained in Appendix B.

6. REPORTING

6.1 Reporting Requirements for Public Water Systems Not Providing Filtration

The SWTR requires unfiltered systems to prepare monthly reports for the Primacy Agency to determine compliance with the requirements for:

- source water fecal and/or total coliform levels
- source water turbidity levels
- disinfection level
- disinfectant residual entering the distribution system
- disinfectant residuals throughout the distribution system.

The monthly reports must be prepared and submitted to the Primacy Agency within 10 days after the end of the month. The utility must maintain a daily or monthly data log used to prepare the monthly reports. Tables 6-1 through 6-5 are examples of daily data sheets which the utilities may find useful for logging the data needed to prepare reports for the Primacy Agency.

Table 6-6 presents a concise format which can be used by the system for the monthly reports to the Primacy Agency. Tables 6-3 and 6-4 must also be submitted with the monthly report. After the initial 12 months of reporting, the Primacy Agency may remove the requirement for reporting the information contained in Table 6-3 if it is satisfied that the system is computing compliance with the CT requirements correctly. The individual sample results summarized in the monthly reports should be kept on file at the utility for a minimum of 5 years.

In addition to the monthly reporting requirements for source water quality conditions and disinfection information, systems with unfiltered supplies are also required to submit annual reports for the watershed control program and the on-site inspection, within 10 days after the end of the federal fiscal year.

The Primacy Agency will review the reports to determine whether the system is in compliance. A possible report format for the watershed control program is:

- 1. Summarize all activities in the watershed(s) for the previous year.
- 2. Identify activities or situations of actual and potential concern in the watershed(s).
- 3. Describe how the utility is proceeding to address activities creating potential health concerns.

EPA recommends that the Primacy Agency submits the annual watershed reports to the State Water Quality Managers. The reports will be useful in updating statewide assessments and management programs.

The SWTR requires each system to provide the Primacy Agency with a report of the on-site inspection unless the inspection is conducted by the Primacy Agency. EPA suggests that:

- 1. A report of the inspection containing the findings, suggested improvements and dates by which to complete improvements is to be prepared following the initial system review. When and how system has resolved problems identified in the previous report should also be included.
- To lessen the burden on utilities, a report containing results of the general survey should be submitted in subsequent years.

In addition to these reporting requirements, the SWTR requires that the reporting requirements of the Total Trihalomethane Regulation and the Coliform Rule also be met.

Records of waterborne disease outbreaks also must be maintained. In the event of a waterborne disease outbreak, as defined in part 141.2 of the SWTR, the Primacy Agency must be notified by the end of the next business day.

The report of the outbreak should contain:

- 1. Date of occurrence
- 2. Type of illness
- 3. Number of cases
- 4. System conditions at the time of the outbreak, including disinfectant residuals, pH, temperature, turbidity, and bacteriological results.

The records of an outbreak should be maintained permanently or until filtration is installed.

6.2 Reporting Requirements for Public Water Systems Using Filtration

The SWTR requires filtered water systems to submit monthly reports to the Primacy Agency for determination of compliance with the requirements for:

- treated water turbidity
- disinfectant residual entering the distribution system
- disinfectant residuals throughout the distribution system

Tables 6-7 and 6-8 present a format which the utility can use as a daily data log and to submit monthly reports to the Primacy Agency.

Recommended Reporting Not Required by the SWTR

The Primacy Agency may also want filtered water systems to report some information associated with recommendations made in this manual which are not requirements of the SWTR. EPA recommends that filtered water systems:

- 1. Report the log inactivation of <u>Giardia</u> cysts and viruses, required by the Primacy Agency.
- 2. Report point of application for all disinfectants used.
- 3. Report the daily CT(s) used to calculate the log inactivation of <u>Giardia</u> cysts and viruses.
- 4. If more than one disinfectant is used, report the CT(s) and inactivation(s) achieved for each disinfectant and the total percent inactivation achieved.
- 5. Note any difference between the measured CT(s) and the CT required to meet the overall minimum treatment performance requirement specified by the Primacy Agency.

Tables 6-3 and 6-4 can be used to maintain the records necessary for numbers 2 through 5.

This information can be used to determine the disinfection level maintained by the system to assure that the overall removal/inactivation required is maintained.

The Primacy Agency may make provisions to minimize the reporting requirements for systems with reservoirs, large amounts of storage or long transmission mains which provide a long disinfectant contact time. Since these systems typically provide inactivation in excess of that needed, the Primacy Agency may require the system only to report the minimum daily residual at the end of the disinfectant contact time. The CT maintained can then be estimated based on this residual and the contact time under the system design flow. This method of CT determination will eliminate the need for the system to determine the contact time under maximum flow conditions each day.

SOURCE WATER QUALITY CONDITIONS FOR UNFILTERED SYSTEMS (For system use only)

Moeth Year			System/Treatment Plant PWSID		<u> </u>	
					Turbidity M	leasurements
			2		3	
			n Meesurements		Maximum	Turbidity
	No. of Si		No. of Samples Me	ecting Specified Limits	Turbidity	"Event"
Date	Fecal	Total	Fecal(<= 20/100 mL)	Total (< = 100/100 mL)	(NTU)	rYes or No-
1			<u> </u>	<u>'</u>	<u> </u>	
2						
3					:	
4						
5						
6						
7						
8					 	
9					 	
10						
11						
12					<u> </u>	
13					 	
14					ļ	
15					 	
16						
17						
18					<u> </u>	
19		·····		 		<u> </u>
20						
21						
22		•		<u> </u>	i	
23						<u> </u>
24					ļ	
25					 	
26						
27						
· 28					!	
29						•
30					i	
31						
	. [Maximum daily turbid	ity =NTU
Totals:				<u> </u>	Total number of turbs.	iny "events" =

- Notes:
 - 1. Samples are taken from the source water immediately prior to the first disinfection point included in the CT determination
 - 2. As specified in 40 CFR 141.74(b)(1), a fecal or total coliform sample must be taken on each day that the system operates and a source water turbidity measurement exceeds 1 NTU.
 - 3. For each day that the maximum turbidity exceeds 5 NTU, the date should also be entered for the day that the State was minded of this exceedance, e.g., "7.3-22 Apr".
 - 14. A "yes" response is required each day the maximum turbidity exceeds 5 NTU and the previous day did not. This is indicated of the beginning of a turbidity "event". The total number of "yes" responses equals the number of turbidity "events on the second of the beginning of a turbidity "events of turbidity events of turbidit

TABLE 6-2

LONG-TERM SOURCE WATER QUALITY CONDITIONS FOR UNFILTERED SYSTEMS (For system use only)

			PWSID	,	•		
						Measurements	
	No. of S		Measurements .	eting Specified Limits	Days with Turbidity	Number of Turbidity	
Month	Fecal	Total	Fecal(< = 20/100 mL)		>5 NTU	Events	
January							
				٠	•		
February				.			
•							
March					,		
April							
May						<u>!</u>	
June				·			
July					•		
						<u> </u>	
August							
					<u> </u>	<u> </u>	
September	Ì			·			
October	·				· · ·	!	
October							
November							
	-	•		•			
December						<u> </u>	
				·	Total:	1 '	

Month			System/Treatm	ent Plant			
Year		•	PWSID				
Disinfectan	/Sequence of Application						
	3 Disinfectant Concentration,	3 Disinfectant Contact Time,	4 CTcalc	3, 5	3 Water Temp.	6	
Date	C (mg/L)	T (min.)	(=CxT)	pH	(deg. C)	CT99.9	(CTcalc/CT99 9
1							
2							
3						-	
4							
5							·
6							
7				 			
8							
9				<u> </u>			
10							ļ
11							<u> </u>
12							
13							
14							
15							<u> </u>
16							
17							
18					•		ļ
19 20						<u> </u>	<u> </u>
21							
23							
25				 			
26				 			
27							ļ
28				·	•		
29							
30				ļ			
31			<u> </u>	L	· · · · · · · · · · · · · · · · · · ·		<u> </u>
				1	Prepared by		

- 1. To be included in the monthly report for at least 12 months after the initiation of reporting. After that time, the Primacy Agency may no longer require this form.
- 2. Use a separate form for each disinfectant/sampling site. Enter disinfectant and sequence position, e.g., "ozone/1st" or "ClO2/3rd".
- 3. Measurement taken at peak hourly flow.
- 4. CTcalc = $C (mg/L) \times T (min.)$.
- 5. Only required if the disinfectant is free chlorine.
- 6. From Tables 1.1 1.6, 2.1, and 3.1, 40 CFR 141.74(b)(3).

TABLE 64

DISINFECTION INFORMATION FOR UNFILTERED SYSTEMS - MONTHLY REPORT TO PRIMACY AGENCY

Month .		System/Treatment Plant PWSID								
Tear_	l Minimum Disinfectant Residual at Point-of-Entry to	(C	· Tcelc/C		(from T	able 6-	- 1	2	3 SUM (CTcalc/CT99.9) <1	
Date	Distribution System (mg/L)	İst	2nd	3rd	4th	5th	6th	SUM (CTcalc/CT99.9)	(Yes of No)	
1		1							•	
2										
3										
4									•	
5	•	<u> </u>								
6										
7										
8		<u> </u>								
9										
10		1	<u> </u>							
11										
12 .			<u> </u>	<u> </u>						
13	•								•	
14		1				L				
15										
16									,	
17										
18										
19		1			<u> </u>					
20										
21										
22			Γ		L				,	
23										
24	•							•		
25		Ī					1	•		
26										
27										
28										
29			1				1			
30		†				1	1 1			
31		1								
· ·								Propered by		

Notes:

- 1. If less than 0.2 mg/L, the lowest level and duration of the period must be reported, e.g., "0.1-3 hrs.".
- 2. To determine SUM (CTcalc/CT99.9), add (CTcalc/CT99.9) values from the first disinfectant sequence to the last.
- 3. If SUM (CTcalc/CT99.9) <1, a treatment technique violation has occurred, and a "yes" response must be entered.

.

			TABLE 6-5		·
	DISTRIBUTION SYS	TEM DISINFECTANT R MONTH	ESIDUAL DATA FOR U ILY REPORT TO PRIMA		TERED SYSTEMS
Mont	·	•	System/Treatment Plant		•
Ycar			PWSID		••
Date	No. of Sites Where Disinfectant Residual was Measured (=a)	No. of Sites Where no Disinfectant Residual Measured, but HPC Measured (=b)	No. of Sites Where Disinfectant Residual Not Detected, no HPC Measured (=c)	No. of Sites Where Disinfectant Residual Not Detected, HPC > 500/ml (=d)	No. of Sites Where Disinfectant Residual Not Measured, HPC > 500 ml (=e)
1					"
2		·			•
3		 			
4			<u> </u>		
5		 		<u> </u>	
7			 		<u> </u>
8					
9		 			•
10		 			
11					
12			 	 	
13				 	
14 !					
15					
16					
17					
18					
19					
20					
21					
22			·		
23					
24					
25				•	•
26					·
27					
28					
29					
30					
31					·
otal a	ı =	b=	c =	d= ·	

_				
	b=	c =	d= ·	e=
V	= (c+d+e)/(a=b)x100 =	- (++)/	(+) x 100 =	<u> </u>
		Presend	by	
	•	-	ate .	

			REPORT TO PRIM				
34			ETERMINATION -		ERED STSTEMS		
Month	•		estment Plant				į
1 44							
Source Water Quality Conditi	ons						
A. Cumulative number of mo	onths for wh						
For source water coli							
For turbidity monitori	ing (No. of mo	nths)			<i>:</i>	1
1							
B. Colisorm Criteria		M- a	. C. C				
		Fecal	of Samples Total			esting Specified Limits	· · · · · ·
Previous 6 months':	. w=	rece		· •	Fecal (< = 20/100 mL)	Total (<= 100/1	WML
Percentage of samples	<= 20/10	0 mL fecal	coliforms. F = v/w	z 100 = 1	\$		
Percentage of samples			•			• •	
Is F < 90% ?: Yes:				-			
					•	•	
C. Turbidity Criteria							
Maximum turbidity le	•	-	-				
Enter the month 120 r						1	
i			Exceedances Since L				
	Beginnin	Date	Duration (days)		Date Reported		
							
Disinfection Criteria					•		
A. Point-of-Entry Minimum	Disinfectant	Residual C	riteria				
		Da	ys the Residual was	<0.2 mg/1]	
	Day		Duration of Low Le	vel (hrs.)	Data Reported	1	
					to Primacy Agency	ĺ	
•						·	
			·				
B. Biron II. I. a			•				
B. Distribution System Disinf			4 	· · · ·	a andrewa a serv		
The value of a, b, c, d			-	SFR 141,7	Э (b)(2)(ш)(A)-(E):		
• =, b =, • V = c + d + e			·				
4 + b	. * 1w = .		. **				
For previous month, V	· ·	•			•		
To provide labella, v		~					
C. Disinfection Requirement	Criteria					•	
		(CTcalc/C	T99.9) for any SUN	A (CTcalc	(CT99.9) <1 (from Tabl	a 6-4):	
If none, enter "none".		•	• • • • • • • • • • • • • • • • • • • •	•		•	
	Date	SUM (CT	calc/CT99.9)				
						•	
İ							
						•	
				Prepare	d by		
			ļ	r	Date		
			Ĺ				
			• •		bether compliance with		
1				•	vious 6-month cumulative	ss, the current	
month's.	, and totals !	from the ea	rliest of 6 previous r	nonths.	•		

TABLE 6-7

DAILY DATA SHEET FOR FILTERED SYSTEMS (For system use only)

Mont	th		System/Treatment Filtration Technol PWSID	•				
	l Minimum Disinfectant Residual		Maximum Filtered		2 bidity	3	4 No. of Turbidity	5 No. of Turbidity
! !	at Point-of-Entry to	Filter	Combined Filter	Clearwell	Plant	No. of Turbidity	Measurements <=	Measurements
Date	Distribution System (mg/L)		Effluent	Effluent	EMuent	Measurements	Specified Limit	· > 5 NTU
2						•		
3		ļ		<u> </u>				
4		<u> </u>	·					
5		<u> </u>						
6		 						
7		ļ		ļ				
8 1		 					<u> </u>	
9		 					<u> </u>	
10	<u> </u>	-						
11		 			<u> </u>		 	
12		 			ļ		 	
13					 		• •	
15		-	<u> </u>		ļ	<u> </u>	<u> </u>	
16		 						
17 1		 						
18								<u> </u>
19 1		 					 	
20		 		 		!		
21		 		<u> </u>		<u> </u>	 	
22				<u> </u>				
23	:	 						
24						: -		
25		 					 	
26		 						
27				†			†	
28					<u> </u>			
29		-						
30					t —			
31				†				
		<u> </u>	<u> </u>		Totals:			

Notes:

- 1. For multiple disinfectants, this column must only be completed for the last disinfectant added prior to entering the distribution system. If less than 0.2 mg/L, the duration of the period must be reported, e.g., "0.1-3 hrs".
- 2. For systems using conventional treatment, direct filtration, or technologies other than slow sand or diatomaceous earth filtration, turbidity measurements may be taken at the combined filter effluent, clearwell effluent, or plant effluent prior to entry into the distribution system. The turbidity may also be measured for each individual filter with a separate sheet maintained for each
- 3. For continuous monitors count each 4-hour period as I sample.
- 14. Depending on the filtration technology employed, the number of turbidity samples meeting the following levels must be recorded: conventional treatment or direct filtration-0.5 NTU, slow sand filtration-1 NTU, distoraceous earth filtration-1 NTU. The State may specify alternate performance levels for conventional treatment or direct filtration, not exceeding 1 NTU, and slow sand filtration, not exceeding 5 NTU, in which case the number of turbidity measurements meeting these levels must be recorded.
- 5. In recording the number of turbidity measurements exceeding 5 NTU, the turbidity values should also be recorded. c 2 165 6.2.8.0

						1 784			
			•				RIMACY AGENCY FO		
1			(ion – filtered sys		
Month			•	System/Tree	tment Pla	at			
Year _		 .		Type of Filt	ratioa				
				Turbidity Li					
				PWSID					
ł									
Turbid	ity Perfo	rmance Crit	eria						•
				bidity measus	rements =	·			
"									
B To	tel aumb	or of filtered	l water tur	hidiry massur	rements th	at are less	than or equal to the spec	ا لمانان	limbe
				yed =		a. 210 1000	men or edges to the shor	11	umas
101	me intre	KION (SCHNO	ogy empic	, 					
_					.	:6-41!-	-! 	,	- 100
C. Th	e percent	age of turb	dity measu	rements meet	ting the sp	ecnied mu	nits = B/A x 100 =	/_	x 100 =\$
_				_					
D. Re	cord the	date and tur				s exceedin	ig 5 NTU: If none, enter	r "none	16 ⁻ .
			Date	Turbidi	ry, NTU	1			
]			
]			•
						1			
					 	•			
Disinfe	ction Per	formance C	riteria						•
				tant Residual	Criteria				
A. FU	mv-01-5m	iry william		CEIR RESIDUEL	CIMEIM				
		Minimum	D:-:- (a Davidual I	T	124:-:	Disinfectant Residual		1000
		1		It Kesidual		1			Minimum Disinfectant Residual
		at Point-of	•			at Point-			at Point-of-Entry
	Date	to Distribu	tion System	n (mg/L)	Date	to Distrib	oution System (mg/L)		eate to Distribution System (mg/L)
	1				11			2	21
	2			·	12			2	22
	3				13			2	23
	4				14			2	24
	5				15		· · · · · · · · · · · · · · · · · · ·	2	25
	6				16			2	26
	7				17				27
	8				18				28
	9								
					19				29
	10				20	<u> </u>		H	30
								3	31
				Days the Re					
			Day	Duration of	Low Lev	el (hrs.)	Date Reported to Prima	cy Age	ency
									
									
B Dia	•=:hei===	fuma - Dia	:	esidual Crite	.!.				
B. DIS						·c . 4 · 4	OFF 141 35 61/01/11/1		
						ilied in 40) CFR 141.75 (b)(2)(iii)	a)-(c) :	•
				_, d =,		•			
	V =	c + d + e	x 100 =		*				
		a + b							
	For prev	ious month.	. v =	\$					
							Prepared by		
							Date		

7. COMPLIANCE

7.1 Introduction

This section provides guidance on when and how the requirements of the SWTR will go into effect, including determinations made by Primacy Agencies.

7.2 SYSTEMS USING A SURFACE WATER SOURCE (NOT GROUND WATER UNDER THE DIRECT INFLUENCE OF SURFACE WATER)

The SDWA requires, within 18 months following the promulgation of a rule, that Primacy Agencies promulgate any regulations necessary to implement that rule. Under S1413, these rules must be at least as stringent as those required by EPA. Thus, Primacy Agencies must promulgate regulations which are at least as stringent as the SWTR by December 30, 1990. By December 30, 1991, each Primacy Agency must determine which systems will be required to filter. If filtration is required, it must be installed within 18 months following the determination or by June 29, 1993, whichever is later. In cases where it is not feasible for a system to install filtration in this time period, the Primacy Agency may allow an exemption to extend the time period (see Section 9).

If a Primacy Agency fails to comply with this schedule for adopting the criteria and applying them to determine who must filter, systems must comply with the "objective" or self-implementing criteria (i.e., the requirements that are clear on the face of the rule and do not require the exercise of Primacy Agency discretion). Unfiltered supplies must comply beginning December 30, 1991 and filtered supplies beginning June 29, 1993.

Monitoring requirements for unfiltered systems must be met beginning December 30, 1990 unless the Primacy Agency has already determined that filtration is necessary. This coincides with the Agency's requirement to promulgate regulations for making filtration decisions by that date under the SDWA. Primacy Agencies may specify which systems should conduct the monitoring necessary to demonstrate compliance with the criteria for avoiding filtration. For some systems where an historical data base exists, and where it is apparent that the system would exceed the source

water quality criteria (or that some other criteria would not be met, such as an adequate watershed control program), no monitoring may be necessary for the Primacy Agency to determine that filtration is required. If a particular system (and/or the Primacy Agency) knows that it cannot meet the criteria for avoiding filtration, there is no reason to require that system to conduct the source water monitoring prior to the formal decision by the Primacy Agency that filtration is required. This is true because the only purpose of that monitoring would be to demonstrate whether or not the criteria to avoid filtration are being met.

In reviewing the data for determining which systems must filter, the Primacy Agency will have to decide on a case-by-case basis the conditions which will require filtration. For example, a system may not meet the specified CT requirements for the first few months of monitoring and upgrades its disinfection to meet the CT requirements in subsequent months. In this case, the Primacy Agency could conclude that the system will be able to meet this criterion for avoiding filtration. The time periods specified for in the criteria to avoid filtration (e.g., six months for total coliforms, one year and ten years for turbidity and one year for CT requirements) do not begin until December 30, 1991 unless the Primacy Agency specifies an earlier date.

Beginning December 30, 1991 the requirements for avoiding filtration specified in S141.71(a) and (b) and the requirements of S141.71(c) and S141.72(a) go into effect unless the Primacy Agency already has determined that filtration is required. Beginning December 30, 1991, if a system fails to meet any one of the criteria for avoiding filtration, even if the system were meeting all the criteria up to that point, it must install filtration and comply with the requirements for filtered systems including the general requirements in S141.73 and the disinfection requirements in S141.72(b), within 18 months of the failure. Whenever a Primacy Agency determines that filtration is required, it may specify interim requirements for the period prior to installation of filtration treatment.

Following the determination that filtration is required, the system must develop a plan to implement its installation. The plan must include consideration for the following:

÷

- Providing uninterrupted water service throughout the transition period
- Siting for the future facility
- Financing options and opportunities
- Scheduling of design and construction

Systems which are unable to install filtration within the specified time frame may apply for an exemption to extend the period for installing filtration.

Table 7-1 summarizes the requirements for the SWTR for unfiltered systems noting conditions which require the installation of filtration. It is important to note that only treatment technique violations trigger the requirement to install filtration while violations of monitoring, reporting or analytical requirements do not. The monitoring requirements for unfiltered supplies are presented in Section 3 and the reporting requirements are presented in Section 6.

All systems with filtration in place must meet the treatment technique requirements specified in S141.73 (filtration criteria) and S141.72(b) (disinfection criteria), and the monitoring and reporting requirements specified in S141.74(c) and S141.75(b), respectively, beginning June 29, 1993. Table 7-2 summarizes the SWTR requirements for filtered systems, including conditions needed for compliance with treatment requirements. Monitoring requirements for filtered supplies are enumerated in Section 5 and reporting requirements are presented in Section 6.

7.3 Compliance Transition with Current NPDWR Turbidity Requirements

The current (interim) NPDWR for turbidity under S141.13 (MCL requirements) and S141.22 (monitoring requirements) will apply for unfiltered systems until December 30, 1991 unless the Primacy Agency determines that filtration is required. In cases where filtration is required, the interim NPDWR applies until June 29, 1993 or until filtration is installed, whichever is later. Unfiltered supplies will also be

subject to the turbidity monitoring requirements of S141.74(b)(2) beginning December 30, 1990 coincidently with the interim requirements. Beginning June 29, 1993, the turbidity performance criteria for filtered systems (S141.73), and the monitoring requirements under S141.74 will apply.

7.4 Systems Using a Ground Water Source Under the Direct Influence of Surface Water

Part of the Primacy Agency's program revisions to adopt the SWTR must include procedures for determining, for each system in the Primacy Agency served by a ground water source, whether that source is under the direct influence of surface water. By June 29, 1994 and June 29, 1999, each Primacy Agency must determine which community and non-community public water supplies, respectively, use ground water which is under the direct influence of surface water. EPA recommends that these determinations be made in conjunction with related activities required by other regulations (e.g., sanitary surveys pursuant to the final coliform rule, vulnerability assessments pursuant to the volatile organic chemicals rule. the forthcoming disinfection requirements for ground water systems). In addition. EPA-approved wellhead protection programs required under the Safe Drinking Water Act Section 1428 may contain methods and criteria for determing zones of contribution, assessments of potential contamination, and management of sources of contamination. These programs may be used as a partial basis for the vulnerability assessment and for making the determination of (a) whether a system is under the direct influence of surface water and (b) if direct influence is determined, whether there is adequate watershed control to avoid filtration. Guidelines for developing and implementing a wellhead protection program are found in "Guidelines for Applicants for State Wellhead Protection Program Assistance Funds under the Safe Drinking Water Act" (U.S. EPA, 1987a).

A system using a ground water source under the influence of surface water that does not have filtration in place must begin monitoring and reporting in accordance with \$141.74(b) and \$141.75(a), respectively, to determine whether it meets the criteria for avoiding filtration beginning December 30, 1990 or six months after the Primacy Agency determines that

TABLE 7-1
REQUIREMENTS FOR UNFILTERED SYSTEMS

Requirement	Criteries	Monitoring	Required [P])	Triggers (2)	Retification Primacy Agency	Public (3)
Unfiltered Supplies (S141.71)				•		
a) Source Water Quality Conditions						
1) Fecal Coliform Total Coliform	- 29/190mi 199/190mi	frequency based on population		<pre><90% of samples from past 6 mos < criterion</pre>	monthly report	tio .
2) Turbidity	SATU	continuous or grab/4 brs	<smtu< td=""><td>>SATU unless "event"</td><td>next business day</td><td>Yes</td></smtu<>	>SATU unless "event"	next business day	Yes
b) Site-Specific Conditions						
li) Disinfection for 3-log <u>Giardia</u> cyst & 4-log virus inactivation (S141-72(a))	CT _{99,9}	daily at peak flow except for one day per menth	2criterien daily consecutive menths (4)	violation for >1 of 12	menthly report	Yes .
Redundant Disinfection	•	•		_		
Components (\$141.72(a)(2))				components not in place	annual report of on-site inspection	Yes ,
Disinfectant Residual entering the system (S141.72(3)(1))	0. 2 mg/1	continuous; systems <3300 population- grab samples	not <0.2 mg/ł for > 4 hours	violation if <0.2 mg/l for > 4 hours unless Primacy Agency determines unusual and unpredictable	next business day if <0.2mg/t for any period of time	Yes (II <0.2 mg/L for >4 hours)
(ii) Disinfectant Residuat in the Distribution System (S141.72(a)(4))	detectable residual or HPC <500/ml	(5)sample location & frequency based on population, approved by State	detectable in > 95% of monthly samples for any two con-	violation unless failure is not caused by defic- iency in source wate treatment secutive months		Yes

TABLE 7-1
REQUIREMENTS FOR UNFILTERED SYSTEMS (Continued)

Requirement	Criteries	Menitoring	Required [0]) Compliance	Triggers [2]	Notification Primacy Agency	Public (3)
'2) Watershed Control Program	in place	activities in watershed		insufficient program as determined by Primacy Agency	annual report	
3) On-site Inspection	annusi	watershed program & disinfection system		insufficient program as determined by frimacy Agency	annual report	•
4) Waterborne Disease Outbreak	no outbreaks recorded	public health	No outbreak with current configuration and source	outbreak with current configur- ation and source	next business day	Yes
5) Total Coliform Rute	<pre></pre>	frequency based on population	meet criterien each menth	> criterion for >1 of 12 consecutive menths unless failure is not caused by a deficiency in source water treatment	monthly report	
6) Total Tribalomethane Regulation	0.10 mg/t for systems serving >10,000	quarterly		> criterion based on annual average		

lotes:

- E. Mon-compliance results in a treatment technique violation.
- 2. Failure to install filtration within 18 months after failure to meet unfiltered supply criteria results in a treatment technique violation.
- 3. in local newspaper within 14 days of violation and mail notice with bill or by itself within 45 days of violation.
- 4. Violation may be allowed for 2 of 12 consecutive months if the Primacy Agency determines one violation to be caused by unusual and unpredictable circumstances.
- 5: Primacy Agency may determine whether adequate disinfection is provided.

TABLE 7-2
REQUIREMENTS FOR FILTERED SYSTEM

				Betification		
Reavisement	<u> Criteries</u>	Monitoring	Compliance (1)	Primacy Agency	Public (2)	
Filtered Supplies (S141.73)		•				
a) Conventional or Direct Filtration	0.5 MTU (up to 1 MTU) ⁽⁴⁾	continuous or grab/4 brs	95% monthly samples < MCL none > 5 NTU	menthly report	Yes	
b) Slow sand Filtration	1 MTU (up to 5 MTU) ⁽⁴⁾	continuous or grab/4 brs (one/day) ⁽⁴⁾	95% monthly samples < MCL none > 5 MTU	menthly report	Yes	
c) Diatomacrous Earth fillration	1 MTU	continuous or grab/4 hrs	95% menthly samples < 1 MTU none > 5 MTU	monthly report	Yes	
d) Other Technologies	1 MTU up (10 5 MTU) ⁽⁴⁾	continuous or grab/4 brs (mmo/day)(4)	95% monthly samples < MCL hone > 5 MIN	menthly report	Yes	

TABLE 7-2
REQUIREMENTS FOR FILTERED SYSTEM (Continued)

Resultament.		Criteries	Menitering	Compliance (1)	Primacy Agency	Public (2)
Disinfection for Filtered Supplies (S141.72(b))		•				
1)	Supplement filtration to meet Overail Treatment	•	•	•	as specified	Yes
21)	Disinfectant Residual Entering System ·.	0.2 mg/L .	continuous; systems < 3300 population-grab samples	not < 0.2 mg/L for > 4 hrs	nezt business day	Yes
3i)	Disinfectant Residual in Distribution System	detectable residual or HPC <500/ml(3)	sample location & frequency based on population approved by State	net < MCL in > 5% of monthly samples for 2 consecutive months	menthly report	Yes

Hotes:

- 1. Hon-compliance results in a treatment technique violation.
- 2. In local newpaper within 14 days of violation and mail notice with bill or by iteself within 45 days of violation.

 3. Primary Agency may determine whether adequate displaction is assuided.
- 3. Primacy Agency may determine whether adequate disinfection is provided.
 4. If Primacy Agency exercises discretion.

the ground water source is under the influence of surface water, whichever is later. Within 18 months following the determination that a system is under the influence of surface water, the Primacy Agency must determine, using the same criteria that apply to systems using a surface water source, whether the system must provide filtration treatment. As for systems using a surface water source, the Primacy Agency must evaluate the data on a case-by-case basis to determine conditions which will trigger the need for filtration.

Beginning December 30,1991 or 18 months after the determination that a system is under the direct influence of surface water, whichever is later, the criteria for avoiding filtration in \$141.71(a) and (b) and the requirements for unfiltered systems in S141.71(c) and S141.72(a) go into effect, unless the Primacy Agency has determined that filtration is As with systems using a surface water source, subsequent failure to comply with any one of the criteria for avoiding filtration requires the installation of filtration treatment. Thus, beginning December 30, 1991 or 18 months after the Primacy Agency determines that a system is using a ground water source under the direct influence of surface water, whichever is later, a system which fails to meet any one of the criteria to avoid filtration must install filtration and comply with the requirements for filtered systems within 18 months of the failure or by June 29, 1993, whichever is later. As for unfiltered systems, systems under the direct influence of surface water may apply for an exemption to extend the time period for installing filtration.

Any system using a ground water source that the Primacy Agency determines is under the direct influence of surface water and that already has filtration in place at the time of the Primacy Agency determination must meet the treatment technique, monitoring and reporting requirements for filtered systems beginning June 29, 1993 or 18 months after the Primacy Agency determination, whichever is later.

7.5 Responses for Systems not Meeting SWTR Criteria

7.5.1 Introduction

Systems which presently fail to meet the SWTR criteria may be able to upgrade the system's design and/or operation and maintenance in order to achieve compliance. The purpose of this section is to present options which may be followed to achieve compliance.

7.5.2 Systems Not Filtering

Systems not filtering must meet the criteria to avoid filtration beginning December 30, 1991 and on a continuing basis thereafter or install filtration. Systems not filtering can be divided into two categories:

- A. Those systems not currently meeting the SWTR criteria but with the ability to upgrade to meet them.
- B. Those systems not able to meet the SWTR criteria by December 30, 1991. If the installation of filtration is not possible by June 29, 1993 the system may request an exemption and take interim measures to provide safe water to avoid violation of a treatment technique requirement.

Systems in Category A

Example A - Response Situation

<u>Condition</u>: System is not meeting the source water fecal and/or total coliform concentrations but has not received judgment on the adequacy of its watershed control.

Response Options:

- Monitor for fecal coliforms rather than total coliforms if this is not already done. Fecal coliforms are a direct indicator of fecal contamination where total coliforms are not. If total coliform levels are exceeded but fecal levels are not, the system meets the criteria.
- Take appropriate action in the watershed to assure fecal and total coliform concentrations are below the criteria, such as elimination of animal activity near the source water intake.

Example B - Response Situation

<u>Condition</u>: System meets the source water quality criteria, watershed control requirements, and is maintaining a disinfectant residual within the distribution system, but is not able to meet the CT requirements due to lack of contact time prior to the first customer.

Response Options:

- Increase the application of disinfectant while monitoring THM levels to ensure they remain below the MCL.
- Add additional contact time through storage to obtain an adequate CT.
- Apply a more effective disinfectant such as ozone.

Systems in Category B

Example A - Response Situation

<u>Condition</u>: System meets the source water turbidity but not the fecal coliform requirements. A sewage treatment plant discharges into the source water. A determination has been made that the system does not have adequate watershed control.

Response Options:

- Purchase water from a nearby surveyor or use an alternate source such as ground water if available.
- Take steps to install filtration, applying for an exemption (time delay) as presented in Section 9 where appropriate.

Example B

<u>Condition</u>: The source water exceeds a turbidity of 5 NTU for more than two periods in a year under normal weather and operating conditions.

Response Options:

- Purchase water from a nearby purveyor or use an alternate source such as ground water if available.
- Take steps to install filtration, applying for an exemption (time delay) as presented in Section 9 where appropriate.

In the interim prior to adoption of either of the above options, certain protective measures may be appropriate. One protective measure which can be used would be the issuance of a public notice to boil all water for consumption during periods when the turbidity exceeds 5 NTU. If such a notice is issued, the utility should continue sampling the distribution system for chlorine residual and total coliforms, and initiate measurement of HPCs in the distribution system. These data and the raw water turbidity should be used to determine when to lift the boil water notice.

The notice could be lifted when:

- The historical (prior to high turbidity) disinfectant residual concentration is reestablished in the distribution system;
- The total coliform requirements are met:
- The HPC count is less than 500/ml; and
- The turbidity of the raw water is less than 5 NTU.

7.4.3 Systems Currently Filtering

Systems which are currently filtering must meet the SWTR criteria within 48 months of the SWTR to be in compliance, after which the criteria must be continually met for the system to be in compliance.

Example A - Response Situation

<u>Condition</u>: A direct filtration plant is treating a surface water which is not compatible with this treatment process. The system is not achieving its required turbidity performance or disinfection criteria.

Response Options:

- Optimize coagulant dose.
- Reduce filter loading rates.
- Evaluate the effect on performance of installing flocculation and sedimentation ahead of the filters.

Example B - Response Situation

<u>Condition</u>: A filtration plant is using surface water which is compatible with its treatment system. The system is not achieving disinfection performance criteria required by the Primacy Agency to achieve a 1-log inactivation of <u>Giardia</u> cysts; however, it is meeting the requirements of the Total Coliform Rule.

Response Options:

- Increase disinfectant dosage(s).
- Install storage facilities to increase disinfectant contact time.
- Ensure optimum filtration efficiency by:
 - Use of a filter aid.
 - Reduction in filter loading rates.
 - More frequent backwashing of filters.

The Primacy Agency may grant additional removal credit for optimum filtration.

EPA intends to promulgate National Primary Drinking Water Regulations to regulate levels of disinfectants and disinfectant by-product when it promulgates disinfection requirements for ground water systems (anticipated in 1992). EPA is concerned that changes required in utilities' disinfection practices to meet the required inactivations for the SWTR might be inconsistent with treatment changes needed to comply with the forthcoming regulations for disinfectants and disinfection by-products. For this reason, the EPA is allowing Primacy Agencies discretion in determining the level of disinfection required for filtered systems to meet the overall treatment performance requirements specified in the rule or recommended based on source water quality.

During the interim period, prior to promulgation of the disinfection by-product regulation, EPA recommends that the Primacy Agency allow more credit for <u>Giardia</u> cyst and virus removal than generally recommended. This interim level is recommended in cases where the Primacy Agency determines that a system is not currently at a significant risk from microbiological concerns at the existing level of disinfection and that

a deferral is necessary for the system to upgrade its disinfection process to optimally achieve compliance with the SWTR as well as the forthcoming disinfection by-product regulations. Section 5.5.3 presents some guidelines for establishing interim disinfection requirements.

8. PUBLIC NOTIFICATION

The SWTR specifies that the public notification requirements of the Safe Drinking Water Act (SDWA) and the implementing regulations of 40 CFR Paragraph 141.32 must be followed. These regulations divide public notification requirements into two tiers. These tiers are defined as follows:

- 1. Tier 1:
 - a. Failure to comply with MCL
 - b. Failure to comply with prescribed treatment technique
 - c. Failure to comply with a variance or exemption schedule
- 2. Tier 2:
 - Failure to comply with monitoring requirements
 - b. Failure to comply with a testing procedure prescribed by a NPDWR
 - c. Operating under a variance/exemption. This is not considered a violation but public notification is required.

The SWTR classifies violations of Sections 141.70, 141.71(c), 141.72 and 141.73 (i.e., treatment technique requirements as specified in Section 141.76) as Tier 1 violations and violations of Section 141.74 as Tier 2 violations. Violations of 141.75 (reporting requirements) do not require public notification.

There are certain general requirements which all public notices must meet. All notices must provide a clear and readily understandable explanation of the violation, any potential adverse health effects, the population at risk, the steps the system is taking to correct the violation, the necessity of seeking alternate water supplies (if any) and any preventative measures the consumer should take. The notice must be conspicuous, not contain any unduly technical language, unduly small print or similar problems. The notice must include the telephone number of the owner or operator or designee of the public water system as a source of additional information concerning the violation where appropriate. The notice must be bi- or multilingual if appropriate.

In addition, the public notification rule requires that when providing information on potential adverse health effects in Tier 1 public

notices and in notices on the granting and continued existence of a variance or exemption, the owner or operator of a public water system must include certain mandatory health effects language. For violations of treatment technique requirements for filtration and disinfection, the mandatory health effects language is:

Microbiological Contaminants

The United States Environmental Protection Agency (EPA) sets drinking water standards and has determined that microbiological contaminants are a health concern at certain levels of exposure. If water is inadequately treated, microbiological contaminants in that water may cause disease. Disease symptoms may include diarrhea, cramps, nausea, and possibly jaundice and any associated headaches, and fatigue. These symptoms, however, are not just associated with disease-causing organisms in drinking water, but also may be caused by a number of factors other than your drinking water. EPA has set enforceable requirements for treating drinking water to reduce the risk of these adverse health effects. Treatment such as filtering and disinfecting the water removes or destroys microbiological contaminants. Drinking water which is treated to meet EPA requirements is associated with little to none of this risk and should be considered safe.

Further, the owner or operator of a community water system must give a copy of the most recent notice for any <u>Tier 1 violations</u> to all new billing units or hookups prior to or at the time service begins.

The medium for performing public notification and the time period in which notification must be sent varies with the type of violation and is specified in Section 141.32. For Tier 1 violations (i.e., violations of Sections 141.70, 141.71, 141.72 and 141.73), the owner or operator of a public water system must give notice:

- 1. By publication in a local daily newspaper as soon as possible but in no case later than 14 days after the violation or failure. If the area does not have a daily newspaper, then notice shall be given by publication in a weekly newspaper of general circulation in the area, and
- 2. By either direct mail delivery or hand delivery of the notice, either by itself or with the water bill not later than 45 days after the violation or failure. The Primacy Agency may waive this requirement if it determines that the owner or operator has corrected the violation within the 45 days.

Although the SWTR does not specify any acute violations, the Primacy Agency may specify some Tier 1 violations as posing an acute risk to human health; for example these violations may include:

- 1. A waterborne disease outbreak in an unfiltered supply.
- 2. Turbidity of the water prior to disinfection of an unfiltered supply or the turbidity of filtered water exceeds 5 NTU at any time.
- 3. Failure to maintain a disinfectant residual of at least 0.2 mg/l in the water being delivered to the distribution system.

For these violations or any others defined by the Primacy Agency as "acute" violations, the system must furnish a copy of the notice to the radio and television stations serving the area as soon as possible but in no case later than 72 hours after the violation. Depending upon circumstances particular to the system, as determined by the Primacy Agency, the notice may instruct that all water should be boiled prior to consumption.

Following the initial notice, the owner or operator must give notice at least once every three months by mail delivery (either by itself or with the water bill), or by hand delivery, for as long as the violation or failure exists.

There are two variations on these requirements. First, the owner or operator of a community water system in an area not served by a daily or weekly newspaper must give notice within 14 days after the violation by hand delivery or continuous posting of a notice of the violation. The notice must be in a conspicuous place in the area served by the system and must continue for as long as the violation exists. Notice by hand delivery must be repeated at least every three months for the duration of the violation.

Secondly, the owner or operator of a <u>noncommunity water system</u> (i.e., one serving a transitory population) may give notice by hand delivery or continuous posting of the notice in conspicuous places in the area served by the system. Notice must be given within 14 days after the violation. If notice is given by posting, then it must continue as long

as the violation exists. Notice given by hand delivery must be repeated at least every three months for as long as the violation exists.

For Tier 2 violations (i.e., violations of 40 CFR 141.74, analytical and monitoring requirements) notice must be given within three months after the violation by publication in a daily newspaper of general circulation, or if there is no daily newspaper, then in a weekly newspaper. In addition, the owner or operator shall give notice by mail (either by itself or with the water bill) or by hand delivery at least once every three months for as long as the violation exists. Notice of a variance or exemption must be given every three months from the date it is granted for as long as it remains in effect.

If the area is not served by a daily or weekly newspaper, the owner or operator of a community water system must give notice by continuous posting in conspicuous places in the area served by the system. This must continue as long as the violation does or the variance or exemption remains in effect. Notice by hand delivery must be repeated at least every three months for the duration of the violation or the variance of exemption.

For noncommunity water systems, the owner or operator may give notice by hand delivery or continuous posting in conspicuous places; beginning within 3 months of the violation or the variance or exemption. Posting must continue for the duration of the violation or variance or exemption and notice by hand delivery must be repeated at least every 3 months during this period.

The Primacy Agency may allow for owner or operator to provide less frequent notice for minor monitoring violations (as defined, by the Primacy Agency if EPA has approved the Primacy Agency's substitute requirements contained in a program revision application).

To provide further assistance in preparing public notices, several examples have been provided. However, each situation is different and may call for differences in the content and tone of the notice. All notices must comply with the general requirements specified above.

Example 1 - Tier 1 Violation-Unfiltered Supply

Following is an example of a Tier 1 violation which may be considered by the Primacy Agency to pose an acute risk to human health.

A system which does not apply filtration experiences a breakdown in the chlorine feed systems and the switchover system fails to activate the backup systems. A number of hours pass before the operator discovers the malfunction. The operator, upon discovery of the malfunction, contacts the local television and radio stations and announces that the public is receiving untreated water. The announcement may read as follows:

We have just received word from the Aswan Water Board that a malfunction of the disinfection system has allowed untreated water to pass into the distribution system. Thus, this system providing drinking water is in violation of a treatment technique requirement. The United States Environmental Protection Agency (EPA) sets drinking water standards and has determined that microbiological contaminants are a health concern at certain levels of exposure. If water is inadequately treated, microbiological contaminants in that water may cause disease. Disease symptoms may include diarrhea, cramps, nausea, and possibly jaundice and any associated headaches, and fatigue. These symptoms, however, are not just associated with disease-causing organisms in drinking water, but also may be caused by a number of factors other than your drinking water. EPA has set enforceable requirements for treating drinking water to reduce the risk of these adverse health effects. Treatment such as filtering and disinfecting the water removes or destroys microbiological contaminants. Drinking water which is treated to meet EPA requirements is associated with little to none of this risk and should be considered safe.

The temporary breakdown in disinfection may have allowed microorganisms to pass into the distribution system. The operation of the system has been restored so that no further contamination of the distribution system will occur. Any further changes will be announced.

Additional information is available at the following number: 235-WATER.

A direct mailing of the notice is provided within 45 days of the occurrence.

Example 2 - Tier 1 Violation-Unfiltered Supply

Following is an example of a Tier 1 violation which may be considered by the Primacy Agency to pose an acute risk to human health.

A system supplies an unfiltered surface water to its customers. During a period of unusually heavy rains caused by a hurricane in the area, the turbidity of the water exceeds 5 NTU. The turbidity data during which the heavy rains occur is as follows:

Day 1 NTU	Day 2 NTU	Day 3 NTU	Day 4 NTU	Day 5 NTU
0.4	0.8	0.7	0.7	7.6
0.4	0.5	0.4	7.6	3.1
0.5	0.5	0.4	11.3	2.7
0.7	0.4	0.5	9.6	0.7
1.1	0.4	0.4	7.2	. 0.8
0.9	0.6	0.6	5.0	0.5

The following public notice was prepared and submitted to the local newspaper, television and radio stations within 72 hours of the first turbidity exceedence of 5 NTU.

The occurrence of heavy rains in our watershed is causing a rise in the turbidity of the drinking water supplied by Fairfax. Water Company.

Turbidity is a measurement of particulate matter in water. It is of significance in drinking water because irregularly shaped particles can both harbor microorganisms and interfere directly with disinfection which destroys microorganisms. While the particles causing the turbidity may not be harmful or even visible at the concentrations measured, the net effect of a turbid water is to increase the survival rate of microorganisms contained in the water. This is of concern because several diseases are associated with waterborne microorganisms.

Because of the high turbidity levels, the Fairfax system is in violation of a treatment requirement set by the Environmental Protection Agency (EPA).

The United States Environmental Protection Agency (EPA) sets drinking water standards and has determined that microbiological contaminants are a health concern at certain levels of exposure. If water is inadequately treated, microbiological contaminants in that water may cause disease. Disease symptoms may include diarrhea, cramps, nausea, and possibly jaundice and any associated headaches, and fatigue. These symptoms, however, are not just associated with disease-causing organisms in drinking water, but also may be caused by a number of factors other than your drinking water. EPA has set enforceable requirements for treating drinking water to reduce the risk of these adverse health effects. Treatment such as filtering and disinfecting the water removes or destroys microbiological contaminants. Drinking water which is treated to

meet EPA requirements is associated with little to none of this risk and should be considered safe.

In order to protect yourself from illness, all water from the Fairfax system used for drinking, cooking and washing dishes should be boiled at a rolling boil for one minute.

The system is being closely monitored and a notice will be issued when the water returns to an acceptable quality and no longer needs to be boiled.

The utility continues sampling the distribution system for chlorine residual and total coliforms, and initiates measurement of the HPCs in the distribution system. The notice is lifted when all the following are met:

- The historical (prior to high turbidity) disinfectant residual concentration is reestablished in the distribution system.
- The total coliform requirements are met.
- The HPC count is <500/ml.
- The turbidity of the raw water is less than 5 NTU.

The Primacy Agency most decide whether the turbidity event was unusual or unpredictable and whether filtration should be installed.

Example 3 - Tier 1 Violation - Filtered Supply

A conventional treatment plant is treating a surface water. A malfunctioning alum feed system resulted in an increase of the filter effluent turbidities. The effluent turbidity was between 0.5 and 1.0 NTU in 20 percent of the samples for the month. The utility issued a notice which was published in a local daily newspaper within 14 days after the violation. The notice read as follows:

During the previous month, the Baltic Water Treatment Plant experienced difficulties with the chemical feed system. The malfunctions caused an effluent turbidity level above 0.5 NTU in 20 percent of the samples for the month. The current treatment standards require that the turbidity must be less than 0.5 NTU in 95 percent of the monthly samples. The Baltic drinking water system has thus been in violation of a treatment technique requirement.

The United States Environmental Protection Agency (EPA) sets drinking water standards and has determined that microbiological

contaminants are a health concern at certain levels of exposure. If water is inadequately treated, microbiological contaminants in that water may cause disease. Disease symptoms may include diarrhea, cramps, nausea, and possibly jaundice and any associated headaches, and fatigue. These symptoms, however, are not just associated with disease-causing organisms in drinking water, but also may be caused by a number of factors other than your drinking water. EPA has set enforceable requirements for treating drinking water to reduce the risk of these adverse health effects. Treatment such as filtering and disinfecting the water removes or destroys microbiological contaminants. Drinking water which is treated to meet EPA requirements is associated with little to none of this risk and should be considered safe.

The chemical, feed and switchover components of the system have been repaired and are in working order and turbidity levels are meeting the standard. It is unlikely that illness will result from the turbidity exceedences previously mentioned because continuous stringent disinfection conditions were in effect and the system was in compliance with other microbiological drinking water standards pertaining to microbiological contamination. However, a doctor should be contacted in the event of illness. For additional information call, 1-800-726-WATER.

9. EXEMPTIONS

9.1 Overview of Requirements

Section 1416 of the Safe Drinking Water Act allows a Primacy Agency to exempt any public water system within its jurisdiction from any treatment technique requirement imposed by a national primary drinking water regulation upon a finding that:

- Due to compelling factors (which may include economic factors), the public water system is unable to comply with the treatment technique requirement;
- 2. The public water system was in operation on the effective date of the treatment technique requirement or, for a system that was not in operation by that date, only if no reasonable alternative source of drinking water is available to the new system; and
- The granting of the exemption will not result in an unreasonable risk to health.

If a Primacy Agency grants a public water system an exemption, the Agency must prescribe, at the time the exemption is granted, a schedule for:

- 1. Compliance (including increments of progress) by the public water system with each treatment technique requirement with respect to which the exemption was granted; and
- 2. Implementation by the system of such control measures as the Primacy Agency may require during the period the exemption is in effect.

Before prescribing a schedule, the Primacy Agency must provide notice and opportunity for a public hearing on the schedule. The schedule prescribed must require compliance by the public water system with the treatment technique requirement as expeditiously as practicable, but in no case later than one year after the exemption is issued (except that, if the system meets certain requirements, the final date for compliance may be extended for a period not to exceed three years from the date the exemption is granted). For systems serving less than 500 service

connections, and meeting certain additional requirements, the Primacy Agency may renew the exemption for one or more additional two-year periods.

Under the SWTR, no exemptions are allowed from the requirement to provide disinfection for surface water systems, but exemptions are available to reduce the degree of disinfection required. Exemptions from the filtration requirements are available. The following sections present guidelines for evaluating conditions under which exemptions are appropriate.

9.2 Recommended Criteria

Ź

In order to obtain an exemption from the SWTR, a system must meet certain minimum criteria to assure no unreasonable risk to health. These should be applied before looking at other factors such as economics. Recommended minimum criteria for assuring no unreasonable risk to health exists are listed below.

Systems which do not provide filtration

- Practice disinfection to achieve at least a 2-log inactivation of <u>Giardia</u> cysts; or comply with the disinfection requirements for the distribution system as defined in Section 141.72(b) of the SWTR.
- Comply with the monthly coliform MCL; or provide bottled water (or another alternate water source) or point of use treatment devices for their customers in which representive samples comply with all the MCL National Primary Drinking Water Regulations.

EPA recommends that in order to obtain an extension to the initial 1 year exemption period in addition to the required elements in Section 1416, the system would need to be in compliance with the monthly coliform MCL, satisfy the above disinfection criteria and not have any evidence of waterborne disease outbreaks attributable to the system at the end of that first exemption period. If at any point during the extended exemption period the system did not meet these conditions, the exemption should be withdrawn and the system should be subject to an enforcement action.

Systems which provide filtration

- Practice disinfection to achieve at least a 0.5 log inactivation of <u>Giardia</u> cysts; or comply with the disinfection requirements for the distribution system as defined in Section 141.72 of the rule.
- Comply with the monthly coliform MCL; or provide bottled water (or another alternate water source) or point of use treatment devices for their customers in which representive samples comply with all the MCL National Primary Drinking Water Regulations.
- Take all practical steps to improve the performance of its filtration system.

In order to obtain an extension to the initial exemption period, in addition to the required elements in Section 1416, the system should be in compliance with the coliform MCL, satisfy the above disinfection criteria and not have any evidence of waterborne disease outbreaks attributable to the treatment system at the end of that first exemption period. If at any point during the extended exemption period the system did not meet these conditions, the exemption should be withdrawn and the system should be subject to an enforcement action. In addition, the system must continue to be taking steps to improve the performance of its filtration system to achieve the criteria specified in the SWTR.

Once these minimum requirements are applied, the Primacy Agency should look at the other factors as described in Sections 9.3, 9.4, and 9.5.

9.3 Compelling Factors

Compelling factors are often associated with small systems. The major compelling factor tends to be economic. In some cases the compelling factor may not be solely economic, but rather the contractual and physical infeasibility of having a required treatment installed within the time period specified in the regulation. For example, it may not be feasible for a very large system to install filtration by June 1993 if required. In such cases exemptions are also appropriate. Additional considerations for small systems are presented in Appendix L.

If system improvements necessary to comply with the SWTR incur costs which the Primacy Agency determines pose an economic barrier to acquisition of necessary treatment, the system fulfills the criteria of demonstrating a compelling hardship which makes it unable to meet the treatment requirements. In such cases, the EPA believes it is reasonable to grant an exemption if the system also meets the criteria in 9.4 and 9.5.

The USEPA document, "Technologies and Costs for the Removal of Microbial Contaminants from Potable Water Supplies," contains costs associated with available treatment alternatives (USEPA, 1988b). Costs found in this document, or those generated from more site-specific conditions, can be used as the basis for determining the ability of a system to afford treatment. The total annual water production costs per household for a system can be estimated based on the household water usage and the production costs per thousand gallons. As estimated in the above cited USEPA document, each cent per thousand gallons of treated water is approximately equivalent to \$1 per year per household if a household water usage of 100,000 gallons per year is assumed.\(^1\) This estimate will need to be adjusted according to water usage for cases where the household usage differs from 100,000 gallons per year.

The following examples are presented to provide guidance in estimating costs for a system to upgrade its system or install filtration. This cost information could be used for determining whether a system might be eligible for an exemption.

Example 1

1

A water system which supplies an average daily flow of 0.05 mgd to a small urban community receives its water supply from a lake. The system currently provides disinfection with chlorine but does not provide filtration. The system reviewed its source water quality and found the characteristics to be as follows:

This is the national average residential household consumption reported in: Final Descriptive Summary - 1986 Survey of Community Water Systems. October 23, 1987. USEPA: Office of Drinking Water.

Total coliforms Turbidity .Color 1,000/100 ml 10 - 13 NTU 6 - 9 CU

Based upon the criteria in the SWTR, this source requires filtration and a review of the water quality criteria presented in Table 4-2 indicates that the treatment technique best suited to these source conditions is conventional treatment. A conventional package treatment plant with a capacity of 0.068 MGD may be purchased and put on line at a cost of \$277/household-year not including real estate, piping or raw water pumping costs which may be significant depending on the plant location.² EPA has estimated that, on average, these costs might add another 50% depending on site specific factors (USEPA, 1989)

Thus the cost estimate for implementing filtration indicates that the <u>increase</u> in the average annual household water bill would be approximately \$277 plus the cost of real estate, piping, and raw water pumping as needed. The incomes of people in the community and the current water bills can be reviewed by the Primacy Agency along with these estimated costs to determine if an undue economic hardship is incurred by these treatment methods. Upon determination that an economic hardship is incurred, the Primacy Agency may grant an exemption from filtration, provided that the system can assure the protection of the health of the community. However, if the water supply system for a nearby community meets the drinking water standards <u>and</u> there is the ability to hook up to that system, an exemption generally should not be granted unless such costs also presented an economic hardship.

Example 2

A large urban community, with a median annual income of \$25,000 per family, is supplied with water from lakes and reservoirs. The community places an average daily demand of 3 mgd on the supply system. The watershed of the system is moderately populated and used for farming and

Table VI-3 ("Technologies and Costs for the Removal of Microbial Contaminants From Potable Water Supplies," USEPA, 1988b) lists the total costs as 277.4 cents/1000 gal. Estimated costs for real estate, piping and raw water pumping as a function of site specific conditions are available in Table E-1, E-2, and E-3 of this same document.

grazing. The system currently provides filtration using diatomaceous earth filtration and disinfection with chloramines.

A review of the source and finished water quality was conducted to evaluate the plant's performance. The source water quality was determined to be:

Total coliforms 30 - 40/100 ml Turbidity 2 - 3 NTU Color 1 - 2 CU

Diatomaceous earth is therefore an acceptable filtration method.³ However, review of the finished water showed that a residual in the distribution system is only maintained 80 percent of the time. In addition to this, coliforms were detected in 10 percent of the samples taken over the twelve month period. Inspection of the chlorination equipment showed the equipment is deteriorated. Review of the monthly reports showed that the coliforms appeared in the distribution system shortly after the chlorinators malfunctioned. This observation led to the conclusion that new disinfection facilities were needed.

The source water quality and available contact time after disinfection were then used to determine the most appropriate disinfectant for the system. As described in Section 5.5, ozone, chlorine or chlorine dioxide can be used as primary disinfectants given these conditions. A preliminary review of costs for applying the various disinfectants showed chlorine to be the most economical at a cost of \$2.8/household/year (USEPA, 1988b). This cost does not include backup equipment; however, even with providing duplicate equipment doubling this cost to \$5.6/household/ year, the improvement incurs minimal cost and the Primacy Agency should not grant the system an exemption based on economic hardship.

As determined from Table 4-2 of Section 4.

Table VI-12 (USEPA, 1988b) lists a total cost of 2.8 cents/1000 gal for a plant capacity of 5.85 mgd.

(2.8 cents) (\$1/household-year) = \$2.8/household-year) (1.000 gal) (cents/1000 gal)

9.4 Evaluation of Alternate Water Supply Sources

Systems which would incur very high costs for installing a required treatment to comply with the SWTR, should evaluate the possibility of using an alternate source. These alternate sources include:

- The use of ground water
- Connection to a nearby water purveyor
- Use of an alternate surface water supply

When considering the use of ground water, the purveyor must determine the capacity of the underlying aquifer for supplying the demand. The water quality characteristics of the aquifer must be evaluated to determine what treatment may be needed to meet existing standards. The cost of the well construction and treatment facilities must then be determined and converted into a yearly cost per household.

The connection to a nearby purveyor involves contacting the purveyor to determine their capacity and willingness to supply the water. Once it has been determined that the alternate source meets all applicable drinking water standards, the cost of the transmission lines, distribution system, and other facilities (e.g. disinfection, repumping, etc.) must then be determined and amortized into a yearly cost per household.

If the cost for using an alternate source is found by the Primacy Agency to present an economic hardship, and the purveyor can demonstrate that there will be no unreasonable risk to health, the Primacy Agency may grant an exemption to the SWTR for the purveyor and develop a schedule of compliance.

9.5 Protection of Public Health

Systems which apply for an exemption from the SWTR must demonstrate to the Primacy Agency that the health of the community will not be put at risk by the granting of such an exemption. A system should be able to provide adequate protection for the public health by meeting the minimum suggested EPA requirements in Section 9.2. However, a Primacy Agency may specify additional measures or criteria a system must meet to protect public health, depending on the particular circumstances. Systems with currently unfiltered surface water supplies which fail to meet the source

water quality criteria will be required to install filtration as part of their treatment process. However, it may take 3 to 5 years or more before the filtration system can be designed, constructed and begin operation, thereby justifying the granting of an exemption. During this period, possible interim measures which the system could take to further satisfy the Primacy Agency's concern include one or more of the following:

- a. Use of higher disinfectant dosages without exceeding the TTHM MCL (even for systems not currently subject to this MCL)
- b. Installation of a replacement or additional disinfection system which provides greater disinfection efficiency and which can be integrated into the new filtration plant
- c. Increasing the monitoring and reporting to the Primacy Agency
- d. Increasing protection of the watershed
- e. Increasing the frequency of sanitary surveys
- f. Temporarily purchasing water from a nearby water system
- g. For small systems, temporary installation of a mobile filtration (package) plant
- h. Increasing contact time by rerouting water through reservoirs

In some cases systems may be able to increase their disinfection dosages during the interim period to provide additional protection against pathogenic organisms. This alternative should be coupled with a requirement for increased monitoring for coliforms, HPC and disinfectant residual within the distribution system. However, disinfectant dosage should not be increased if this would result in a violation of the TTHM MCL, even for systems not currently subject to this MCL.

Systems which are planning to install filtration may be able to utilize a more efficient disinfectant that can later be integrated into the filter plant. Currently ozone and chlorine dioxide are considered to be the most efficient disinfectants.

For all systems which do not meet the source water quality criteria and must install filtration, EPA recommends that during the interim period the Primacy Agency increase its surveillance of the system and require

increased monitoring and reporting requirements to assure adequate protection of the public health.

Any required increases in watershed control and/or on-site inspections will not alleviate the need for more stringent disinfection requirements and increased monitoring of the effectiveness of the system employed. Their purpose would be to identify and control all sources of contamination so that the existing system will provide water of the best possible quality.

For some systems, it may be possible to purchase water from a nearby system on a temporary basis. This may involve no more than the use of existing interconnections or it may require the installation of temporary connections.

Trailer mounted filtration units (package plants) are sometimes available from state agencies for emergencies or may be rented or leased from equipment manufacturers.

Systems may also be required to supply bottled water or install point-of-entry (POE) treatment devices. For the reasons listed below, these alternatives should only be utilized if the previously mentioned alternatives are not feasible:

- In many states bottled water is subject only to the water quality requirements of the FDA as a beverage and not to the requirements of the Safe Drinking Water Act.
- Point-of-entry treatment devices are not currently covered by performance or certification requirements which would assure their effectiveness or performance.

If the installation of POE devices is required, the selection of the appropriate treatment device should be based upon a laboratory or field scale evaluation of the devices. A guide for testing the effectiveness of POE units in the microbiological purification of contaminated water is provided in Appendix N.

Several issues arise with the use of POE devices. These include establishing who or what agency (1) has the responsibility for ensuring compliance with standards; (2) retains ownership of the treatment units; (3) performs monitoring, analyses and maintenance; and (4) manages the

treatment program and maintains insurance coverage for damage and liability. It should also be considered that there is no significant increase in risk over centrally treated water.

These issues should be borne in mind when POE as a treatment alternative is being considered.

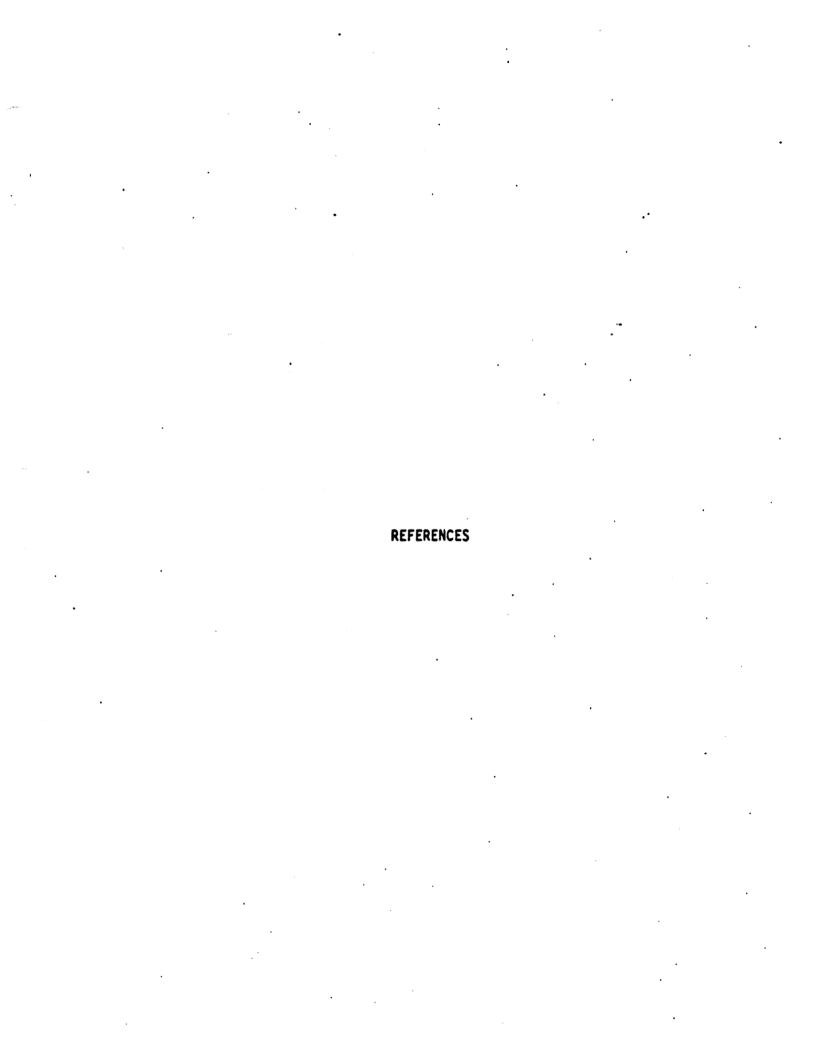
Systems with currently unfiltered surface water supplies which meet the source water quality criteria, but do not meet one or more of the other requirements for watershed control, sanitary survey, compliance with annual coliform MCL or disinfection by-product regulation(s), will be required to install filtration unless the deficiencies can be corrected within 48 months of promulgation of the SWTR. Interim protection measures include those previously listed.

12.3-1467 1

.2

Systems with currently unfiltered surface water supplies which meet the source water quality criteria and the site specific criteria but which do not meet the disinfection requirements, will be required to install filtration unless the disinfection requirements (adequate CT and/or disinfection system redundancy) can be met. During the interim period, available options include:

- a. Temporary installation of a mobile treatment plant
- b. Temporary purchase of water from a nearby purveyor
- c. Increased monitoring of the system
- d. Installation of temporary storage facilities to increase the disinfectant contact time


Currently filtered supplies which fail to meet the turbidity or disinfection performance criteria presented in Section 5 will be required to evaluate and upgrade their treatment facilities in order to attain compliance. During the interim period available options for improving the finished water quality include:

- a. Use of a filter aid to improve filter effluent turbidities
- Increased disinfectant dosages
- c. The addition of an alternate disinfectant is an option after the disinfection by-products rule is promulgated

- d. Reduction in filter loading rates with subsequent reduction in plant capacity
- e. Installation of temporary storage facilities to increase disinfectant contact time

9.6 Notification to EPA

The SDWA requires that each Primacy Agency which grants an exemption notify EPA of the granting of this exemption. The notification must contain the reasons for the exemption, including the basis for the finding that the exemption will not result in an unreasonable risk to public health and document the need for the exemption.

REFERENCES

Ali-Ani, M.; McElroy, J. M.; Hibler, C. P.; Hendricks, D. W. Filtration of <u>Giardia</u> Cysts and other Substances, Volume 3: <u>Rapid Rate Filtration</u>. EPA-600/2-85-027, U.S. Environmental Protection Agency, WERL, Cincinnati, Ohio, April, 1985.

American Public Health Association; American Water Works Association; Water Pollution Control Federation. Standard Methods for the Examination of Water and Wastewater, 16th ed., pp. 134-6, 298-310, 827-1038, 1985.

American Public Health Association; American Water Works Association; Water Pollution Control Federation. <u>Standard Methods for the Examination of Water and Wastewater</u>, 17th ed., 1989.

American Water Works Association. Manual of Water Supply Practices and Water Chlorination Principles and Practices, 1973.

American Water Works Association Research Foundation (AWWARF). A Summary of State Drinking Water Regulations and Plan Review Guidance. June, 1986.

Bader, H.; Hoigne, J. Determination of Ozone in Water by the Indigo Method, Water Research 15; 449-454, 1981.

Bellamy, W. D.; Lange, K. P.; Hendricks, D. W. Filtration of <u>Giardia</u> Cysts and Other Substances. Volume 1: <u>Diatomaceous Earth Filtration</u>. EPA-600/2-84-114, U.S. Environmental Protection Agency, Cincinnati, Ohio, 1984.

Bellamy, W. D.; Silverman, G. P.; Hendricks, D. W. Filtration of <u>Giardia</u> Cysts and Other Substances. Volume 2: <u>Slow Sand Filtration</u>. EPA-600/2--85-026, U.S. Environmental Protection Agency, MERL, Cincinnati, Ohio, April, 1985.

Bishop, S.; Craft, T. F.; Fisher, D. R.; Ghosh, M.; Prendiville, P.W.; Roberts, K. J.; Steimle, S.; Thompson, J. The Status of Direct Filtration, Committee Report. J.AWWA, 72(7):405-411, 1980.

Bouwer, H. Ground Water Hydrology. McGraw Hill Book Co., New York, pp. 339-356, 1978.

Brown, T. S.; Malina, J. F., Jr.; Moore, B. D. Virus Removal by Diatomaceous Earth Filtration - Part 1 & 2. J.AWWA 66(2):98-102, (12):735-738, 1974.

Bucklin, K.; Amirtharajah, A.; Cranston, K. Characteristics of Initial Effluent Quality and Its Implications for the Filter-to-Waste Procedure. AWWA Research Foundation Report. November, 1988.

- Carlson, D.A.; Seabloom, R.W.; DeWalle, F.D.; Wetzler, T.F.; Evgeset, J.; Butler, R.; Wangsuthachart, S.; Wang, S. Ultraviolet Disinfection of Water for Small Water Systems. EPA/600/2-85-092, U.S. Environmental Protection Agency, Water Engineering Research Laboratory, Drinking Water Research Division, Cincinnati, Ohio, September, 1985.
- Clark, R.M.; Regli, S. A Mathematical and Statistical Analysis for the Inactivation of <u>Giardia lamblia</u> by Free Chlorine. Submitted to the Journal of Environmental Science Engineering, 1989.
- Clark, R.; Regli, S.; Black, D. Inactivation of <u>Giardia lamblia</u> by Free Chlorine: A Mathematical Model. Presented at AWWA Water Quality Technology Conference. St. Louis, Mo., November 1988.
- Cleasby, J. L.; Hilmoe, D. J.; Dimitracopoulos, C. J. Slow-Sand and Direct In-Line Filtration of a Surface Water. J.AWWA, 76(12):44-55, 1984.
- DeWalle, F. B.; Engeset, J.; Lawrence, W. Removal of <u>Giardia lamblia</u> Cysts by Drinking Water Plants. EPA-600/S2-84-069, United States Environmental Protection Agency, MERL, Cincinnati, Ohio, May 1984.
- Fox, K. R.; Miltner, R. J.; Logsdon, G. S.; Dicks, D. L.; Drolet, L. F. Pilot Plant Exploration of Slow Rate Filtration. Presented at the AWWA Annual Conference Seminar, Las Vegas, Nevada, June 1983.
- Fujioka, R.; Kungskulniti, N.; Nakasone, S. Evaluation of the Presence Absence Test for Coliforms and the Membrane Filtration Method for Heterotrophic Bacteria. AWWA Technology Conference Proceedings, November, 1986.
- Geldreich, E. Personal communication to Linda Averell, Malcolm Pirnie Engineers, Paramus, New Jersey, July 1989.
- Great Lakes-Upper Mississippi River Board of State Public Health and Environmental Managers Committee. <u>Recommended Standards for Water Works</u>, 1987 Edition.
- Hendricks, D.; Al-Ani, M.; Bellamy, W.; Hibler, C.; McElroy, J. Surrogate Indicators for Assessing Removal of <u>Giardia</u> Cysts, AWWA Water Quality Technology Conference, 1984.
- Hoff, J. C. <u>Inactivation of Microbial Agents by Chemical Disinfectants</u>. EPA-600/S2-86-067, U.S. Environmental Protection Agency, Water Engineering Research Laboratory, Drinking Water Research Division, Cincinnati, Ohio, September 1986.
- Hoffbuhr, J. W.; Blair, J.; Bartleson, M.; Karlin, R. Use of Particulate Analysis for Source and Water Treatment Evaluation. AWWA Water Quality Technology Conference Proceedings, November 1986.
- Horn, J. B.; Hendricks, D. W. Removals of <u>Giardia</u> Cysts and other Particles from Low Turbidity Waters Using the Culligan Multi-Tech Filtra-

- tion System. Engineering Research Center, Colorado State University, Unpublished, 1986.
- Joost, R. D.; Long, B. W.; Jackson, L. Using Ozone as a Primary Disinfectant for the Tucson CAP Water Treatment Plant, presented at the IOA/PAC Ozone Conference, Monroe, MI, 1988.
- Kuchta, J. M.; States, S. J.; McNamara, A. M.; Wadowsky, R. M.; Yee, R. B. Susceptibility of <u>Legionella pneumophila</u> to Chlorine in Tap Water. Appl. Environ. Microbiol., 46(5): 1134-1139, 1983.
- Letterman, R. D. The Filtration Requirement in the Safe Drinking Water Act Amendments of 1986. U.S. EPA/AAAS Report, August 1986.
- Logsdon, G. S.; Symons, J. M.; Hoye, Jr., R. L.; Arozarena, M. M. Alternative Filtration Methods for Removal of <u>Giardia</u> Cysts and Cyst Model. J.AWWA, 73:111-118, 1981.
- Logsdon, G.; Thurman, V.; Frindt, E.; Stoecker, J. Evaluating Sedimentation and Various Filter Media for Removal of <u>Giardia</u> Cysts. J. AWWA, 77:2:61, 1985.
- Logsdon, G. S. Report for Visit to Carrollton, Georgia, USEPA travel report, February 12, 1987a.
- Logsdon, G. S. Comparison of Some Filtration Processes Appropriate for <u>Giardia</u> Cyst Removal. USEPA Drinking Water Research Division; Presented at Calgary <u>Giardia</u> Conference, Calgary; Alberta, Canada, February 23-25, 1987b.
- Long, R. L. Evaluation of Cartridge Filters for the Removal of <u>Giardia lamblia</u> Cyst Models from Drinking Water Systems. J. Environ. Health, 45(5):220-225, 1983.
- Markwell, D. D., and Shortridge, K. F. Possible Waterborne Transmission and Maintenance of Influenza Viruses in Domestic Ducks. Applied and Environmental Microbiology, Vol. 43, pp. 110-116, January, 1981.
- Morand, J., M.; C. R. Cobb; R. M. Clark; Richard, G. S. Package Water Treatment Plants, Vol. 1, A performance Evaluation. EPA-600/2-80-008a, USEPA, MERL, Cincinnati, Ohio, July 1980.
- Morand, J. M.; Young, M. J. Performance Characteristics of Package Water Treatment Plants, Project Summary. EPA-600/52-82-101, USEPA, MERL, Cincinnati, Ohio, March, 1983.
- Muraca, P.; Stout, J. E.; Yu, V. L. Comparative Assessment of Chlorine, Heat, Ozone, and UV Light for Killing <u>Legionella pneumophila</u> Within a Model Plumbing System. Appl. Environ. Microbiol., 53(2):447-453, 1987.
- Notestine, T., Hudson, J. Classification of Drinking Water Sources as Surface or Ground Waters. Final Project Report. Office of Environmental

Health Programs. Washington Department of Social and Health Services, August 1988.

Poynter, S. F. B.; Slade, J. S. The Removal of Viruses by Slow Sand Filtration, Prog. Wat. Tech. Vol. 9, pp. 75-88, Pergamon Press, 1977. Printed in Great Britain.

Randall, A.D. Movement of Bacteria From a River to a Municipal Well - A Case History. American Water Works Association Journal. Vol. 62, No. 11, p.716-720., November 1970.

Rice, E.W.; Hoff, J.C. Inactivation of Giardia lamblia cysts by Ultraviolet Radiation. Appl. Environ. Microbiol. 42: 546-547, 1981.

Robeck, G. G.; Clarke, N. A.; Dostal, K. A. Effectiveness of Water Treatment Processes in Virus Removal. J. AWWA, 54(10):1275-1290, 1962.

Robson, C.; Rice, R.; Fujikawa, E.; Farver, B. Status of U.S. Drinking Water Treatment Ozonation Systems, presented at IOA Conference, Myrtle Beach, SC, December 1988.

Rose, J. <u>Cryptosporidium</u> in Water; Risk of Protozoan Waterborne Transmission. Report prepared for the Office of Drinking Water, U.S. EPA, Summer, 1988.

Rubin, A. Factors Affecting the Inactivation of <u>Giardia</u> Cysts by Monochloramine and Comparison with other Disinfectants. Water Engineering Research Laboratory, Cincinnati, OH, March 1988a.

Rubin, A. "CT Products for the Inactivation of <u>Giardia</u> Cysts by Chlorine, Chloramine, Iodine, Ozone and Chlorine Dioxide" submitted for publication in J. AWWA, December 1988b.

Slezak, L.; Sims, R. The Application and Effectiveness of Slow Sand Filtration in the United States. J.AWWA, 76(12):38-43, 1984.

Sobsey, M. Detection and Chlorine Disinfection of Hepatitus A in Water. CR-813-024. EPA Quarterly Report. December 1988.

Stolarik, G.; Christie, D. Projection of Ozone C-T Values Los Angeles Aqueduct Filtration Plant, 1988.

- U. S. Environmental Protection Agency, Office of Drinking Water, Criteria and Standards Division. Manual for Evaluating Public Drinking Water Supplies, 1971.
- U. S. Environmental Protection Agency, Office of Drinking Water. Public Notification Handbook for Drinking Water Suppliers, May 1978.
- U. S. Environmental Protection Agency, Office of Ground Water Protection. Guidelines for Applicants for State Wellhead Protection Program Assistance Funds Under the SDWA, June 1987a.

- U. S. Environmental Protection Agency, Office of Ground Water Protection. Guidelines for Delineation of Wellhead Protection Area, June 1987b.
- U. S. Environmental Protection Agency, Office of Drinking Water. Workshop on Emerging Technologies for Drinking Water Treatment, April, 1988a.
- U. S. Environmental Protection Agency, Office of Drinking Water. Technologies and Costs for the Removal of Microbial Contaminants from Potable Water Supplies, October, 1988b.

World Health Organization Collaborating Center. Slow Sand Filtration of Community Water Supplies in Developing Countries. Report of an International Appraiser Meeting, Nagpur, India, Bulletin Series 16, September 15-19, 1980.

APPENDIX A

EPA CONSENSUS METHOD FOR GIARDIA CYST ANALYSIS

To begin the workgroups on testing, Jay Vasconcelos gave a slide presentation about the testing method used in the Region 10 Laboratory. The following pages and Appendix C summarize his talk.

Methods of Testing for Ciardia in Water

(Ceorge (Jay) isconcelos, Regional Microbiologist, Region 10 Laboratory, Manchester, Washington)

· • • .

Background:

Although recent development of an excystation technique by Drs. Bingham, Meyer, Rice and Schaefer could in future lead to developing cultural methods, at this time no reliable methods exist for culturing <u>Giardia</u> cysts from water samples. At present, the only practical method for determining the presence of cysts in water is by direct microscopic examination of sample concentrates.

Microscopic detection in water-sample concentrates isn't an ideal process. Finding and identifying the cysts relies almost entirely on the training, skill, experience and persistence of the examiner. (And it is a skill not widespread among water-supply laboratories.) But despite its limitations, microscopic identification is currently the best method we have.

Years ago, the basic assumption was made that in order to find <u>Giardia</u> cysts in water, some form of sample concentration was necessary. As <u>early</u> as 1950, labs were using membrane filters with a porosity of 0.45 μm . With few exceptions, these attempts were unsuccessful. The center for Disease Control has tried particulate filtration, with diatomaceous earth as the medium. This removed the cysts from the water, but the cysts couldn't be separated from the particles of diatomaceous earth.

With the recent increase in the incidence of waterborne giardiasis, further efforts have been made to improve the detection method. An ideal method would be one that recovers all cysts in a water sample rapidly, cheaply and simply; allows rapid detection, identification and quantification; and provides information on the viability of and/or infectivity potential of cysts detected.

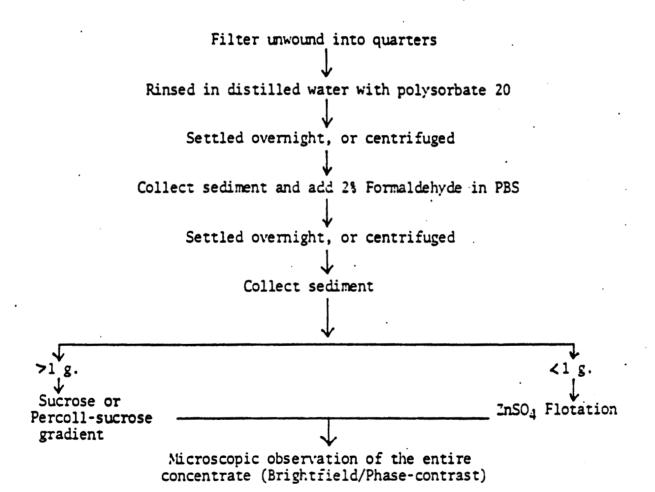
Unfortunately, no such method exists. The methods presently available can be broadly separated into two general stages: primary concentration and processing (see Table 1 on next page), and detection and identification (see Table 2 on next page).

Methods of Testing for Giardia in Water (Continued...)

TABLE 1:	DRIMARY	CONCENTRATION	AND	PROCESSING METHOD	•
146 - 1	PRIDATI	COUPERINALION	707	LACESSING MEINOR	

	METHOD	INVESTIGATOR (S)	RESULTS
ı.	Memorane Filtration		
	Cellulosic (47mm-0.45um)	Chang & Kabler USPHS, 1956	Generally unsucessful
	Polycerpinate (293mm-5um)	Pyper, Dufrain & Henry Eng 1982, (unpublished)	Passing 1 gal/min # 10 PSI. 15-1800 gal total.
2.	Particulate Filtration (Glatomaceous earth, sand, etc.)	Shaw et al. 1977 Juranex, 1979	Generally good removal but poor eluation
j.	Algae (Foerst) Centrifuge	Holman <u>et al</u> , 1983 DHAS, washington	Good rapid recovery, but limited in field use.
4.	Anighic and Cationic Exchange Resins	Brewer, Wright State UN. (unpublished)	Generally unsucessful
5.	Epoxy-Finerglass Balston Tuce Filters (10"-Bum)	Riggs, CDHS Lab, Berkley, CA (unpublished)	Overall recovery 20-801
	Microporous Yarnwoven Depth. Filters (7 & lum orion & polyprolylene)	Jatubowski, Erickson, 1979 & 1980, EPA-Cincinnati	Recovery 3-15% Extraction ave. 58%
7.	Pellican Cassette System	Millipore Corp. (unpublished)	May be useful for processing filter washings
8.	Filterwashing Apparatus	Duwalle, U. of Wash., 1982 (unpublished)	Claims 752 recovery from orion filters

TABLE 2: DETECTION METHODS


	METHOD	INVESTIGATORS(S)	RESULTS
1.	Immunofluorescen DFA	Riggs, CSDHS Lab, Berkley, CA 1983	Good prep., Cross Rx
	IFA	Sauch, EPA-Cincinnati Riggs, CSOS	Still under study
	Monoclanel Antibodies	Riggs, CSDHS Sauch, EPA-Cincinnati (unpublished)	Still under study
2.	ELISA Method	Hungar, J. Hopkins MO, 1983	Feces samples only
3.	. Brichtfield/Phase Contrast	EPA Consensus method	ûngarng

Methods of Testing for Giardia in Water (Continued...)

Copies of Table 1 and Table 2 are also shown in Appendix C, along with further detail about the methods.

EPA Consensus Nethod:

In September, 1980, the EPA convened a workshop on Giardia methodology in Cincinnati. Its main purpose was to identify the best available methodology, and to agree on a reference method. The five labs in attendance recognized that any proposed method would be based in large part on opinions and personal preferences rather than on hard data, but that agreeing on a consensus method would promote uniformity and provide a basis for future comparisons. Our lab has modified the EPA consensus method slightly for our use. This method is outlined below.

APPENDIX B
INSTITUTIONAL CONTROL OF LEGIONELLA

APPENDIX B INSTITUTIONAL CONTROL OF LEGIONELLA

Legionella is a genus name for bacteria commonly found in Take and river waters. Some species of this genus have been identified as the cause of the disease legionellosis. In particular, Legionella pneumophila has been identified as the cause of Legionnaires disease, the pneumonia form of legionellosis and with Pontiac Fever, a nonpneumonia disease. Outbreaks of legionellosis are primarily associated with inhalation of water aerosols or, less commonly, with drinking water containing Legionella bacteria with specific virulence factors not yet identified. Foodborne outbreaks have not been reported (USEPA, 1985).

As discussed in this document, treatment requirements for disinfection of a municipal water supply are thought to provide at least a 3 log reduction of Legionella bacteria (see Section 3.2.2). recontamination may occur in the distribution system due to cross connections and during installation and repair of water mains. It has been hypothesized that the low concentrations of Legionella entering buildings due to these sources may colonize and regrow in hot water Although all of the criteria required for systems (USEPA, 1985). colonization are not known, large institutions, such as hospitals, hotels, and public buildings with recirculating hot water systems seem to be the most susceptible. The control of Legionella in health care institutions, such as hospitals, is particularly important due to the increased susceptibility of many of the patients. The colonization and growth of Legionella in drinking water primarily occurs within the consumer's plumbing systems after the water leaves the distribution system. Therefore, the control of these organisms must be the consumer's responsibility. This appendix is intended to provide guidance to these institutions for the detection and control of the Legionella bacteria.

B.1 MONITORING

It is suggested that hospitals, and other institutions with potential for the growth of Legionella, conduct routine monitoring of

their hot water systems at least quarterly.¹ The analytical procedures for the detection of these organisms can be found in Section 912.I "Legionellaceae" of the 16th edition of Standard Methods. Samples should be taken at, or closely following, the hot water storage reservoir and from a number of shower heads. It is recommended that showers with the least frequent usage be included in the sampling program. Follow-up testing is suggested for all positive indications prior to the initiation of any remedial measures. If the the presence of Legionella is confirmed, then remedial measures should be taken. Although the regrowth of Legionella is commonly associated with hot water systems, hot and cold water interconnections may provide a pathway for cross contamination. For this reason, systems detecting Legionella in hot water systems should also monitor their cold water systems.

B.2 TREATMENT

. 1

Because the primary route of exposure to <u>Legionella</u> is probably inhalation, rather than ingestion, it is recommended that disinfection procedures include an initial shock treatment period to disinfect shower heads and hot water taps where the bacteria may colonize and later become airborne. The shock treatment period should also include disinfection of hot water tanks. After this time, a point-of entry treatment system can be installed to provide continual disinfection of the hot water system.

170°

<u>س</u>يو ي

B.2.1 Initial Disinfection

The most applicable method for the initial disinfection of shower heads and water taps is heat eradication. The fittings can be removed and held at temperatures greater than 60 C for at least 24 hours. Disinfection of fittings can also be achieved by soaking or rinsing with a strong chlorine solution. When soaking the fittings, a minimum chlorine strength of 50 mg/L should be used for a period of no less than 3 hours. Rinsing

Monitoring frequency based on the reported rate of Legionella regrowth observed during disinfection studies (USEPA, 1985).

with chlorine should be performed with more concentrated solutions. Care must be taken not to corrode the finished surface on the fittings. Commercially available bleaches, for example, are typically 5.25 percent chlorine by weight.

B.2.2 Long-Term Disinfection

Heat - Numerous studies have shown that increasing the hot water temperature to 50 - 70 C over a period of several hours may help to reduce and inhibit Legionella populations. However, some instances of regrowth after 3 to 6 months have been reported. In these cases, the authors have concluded that a periodic schedule of short-term temperature elevation in the hot water may be an effective control against legionellosis (USEPA, 1985; Muraca, 1986). Disinfection by this method also requires periodic flushing of faucets and shower heads with hot water. Although heat eradication is easily implemented and relatively inexpensive, a disadvantage is the potential need for periodic disinfection. The potential for scalding from the unusually hot water also exists (USEPA, 1985; Muraca, et al. 1986).

Chlorination - Several studies have suggested that a free chlorine residual of 4 mg/L will eradicate <u>Legionella</u> growth. There is, however, a possibility for recontamination in areas of the system where the chlorine residual drops below this level. A stringent monitoring program is therefore required to ensure that the proper residual is maintained throughout the system and under varying flow conditions. It may also be necessary to apply a large initial chlorine dose to maintain the 4 mg/L residual. This may cause problems of pipe corrosion and, depending on water quality, high levels of trihalomethanes (THMs).

Ozone - Ozone is the most powerful oxidant used in the potable water industry. One study indicated that an ozone dosage of 1 to 2 mg/L was sufficient to provide a 5 log reduction of Legionella (Muraca, et al. 1986). Ozone is generated by passing a high voltage current of electricity through a stream of dry air or oxygen. The use of high voltage electricity requires proper handling to avoid creating hazardous conditions. The ozone is applied by bubbling the ozone containing gas through the water in a chamber called a contactor.

One of the disadvantages of this system is its complexity. It requires a dry air or oxygen source, a generator, and a contactor sized to provide 2 to 5 minutes of contact time and an ambient ozone monitor. All materials in contact with the ozone must be constructed of special ozone resistant materials to prevent leakage. Leak detection is also required because of the toxic nature of ozone and possible explosive conditions if pure oxygen is used for generation.

Another disadvantage of ozonation is the rapid decomposition of ozone residuals. The half-life of ozone in drinking water is typically around 10 minutes. This makes it difficult, if not impossible, to maintain a residual throughout the water system and may require the use of a supplementary disinfectant such as chlorine or heat. For these reasons it is not thought that ozonation is viable for institutional applications.

<u>Ultraviolet Irradiation</u> - Ultraviolet (UV) light, in the 254 nanometer wavelength range can be used as a disinfectant. UV systems typically contain low-pressure mercury vapor lamps to maximize output in the 254 nm range. Water entering the unit passes through a clear cylinder while the lamp is on, exposing bacteria to the UV light. Because UV light can not pass through ordinary window glass, special glass or quartz sleeves are used to assure adequate exposure.

The intensity of UV irradiation is measured in microwatt-seconds per square centimeter (uW-s/cm2). Several studies have shown a 90 percent reduction of Legionella with a UV dosage of 1000 - 3000 uW-s/cm2, compared to 2000 to 5000 uW-s/cm2 for <u>E. coli</u>, <u>Salmonella</u> and <u>Pseudomonas</u> (USEPA, 1985). In another study, a 5 log reduction of <u>Legionella</u> was achieved at 30,000 uW-s/cm2; and the reduction was more rapid than with both ozone and chlorine disinfection (Muraca, et al. 1986).

a. 3

1 P

The major advantage of UV disinfection is that it does not require the addition of chemicals. This eliminates the storage and feed problems associated with the use of chlorine, chlorine dioxide and chloramines. In addition, the only maintenance required is periodic cleaning of the quartz sleeve and replacement of bulbs. UV monitors are available which measure the light intensity reaching the water and provides a signal to the user when maintenance is required. These monitors are strongly suggested for any application of UV irradiation for disinfection. It should be noted,

however, that these monitors measure light intensity which may not be directly related to disinfection efficiency. The UV lamps should therefore not be operated past the manufacturers use rating even with a continuous UV monitor installed.

Another disadvantage of UV disinfection, as with ozonation, is that a residual is not provided. A supplementary disinfectant may therefore be required to provide protection throughout the system. In addition, turbidity may interfere with UV disinfection by blocking the passage of light to the microorganisms.

B.3 OTHER CONTROL METHODS

In addition to chemical and heat disinfection, there are system modifications which can be made to inhibit <u>Legionella</u> growth. Many institutions have large hot water tanks heated by coils located midway in the tank. This type of design may result in areas near the bottom of the tank which are not hot enough to kill <u>Legionella</u>. Designing tanks for more even distribution of heat may help limit bacterial colonization. In addition, sediment build-up in the bottom of storage tanks provides a surface for colonization. Periodic draining and cleaning may therefore help control growth. Additionally, other studies have found that hot water systems with stand-by hot water tanks used for meeting peak demands, still tested positive for <u>Legionella</u> despite using elevated temperature (55 C) and chlorination (2 ppm) (Fisher-Hoch, et al. 1984.) Stringent procedures for the cleaning, disinfection and monitoring of these stagnant tanks should be set up and followed on a regular basis.

In another study, it was reported that black rubber washers and gaskets supported <u>Legionella</u> growth by providing habitats protected from heat and chlorine. It was found, after replacement of the black rubber washers with Proteus 80 compound washers, that it was not possible to detect <u>Legionella</u> from any of the fixtures (Colbourne, et al. 1984).

**

B.4 CONCLUSIONS

Legionella bacteria have been identified as the cause of the disease legionellosis, of which the most serious form is Legionnaires Disease. Although conventional water treatment practices are sufficient to provide disinfection of Legionella, regrowth in buildings with large hot water heaters, and especially with recirculating hot water systems, is a significant problem. This problem is of particular concern to health care institutions, such as hospitals, where patients may be more susceptible to the disease.

This guideline suggests a program of quarterly monitoring for <u>Legionella</u>. If the monitoring program suggests a potential problem with these organisms, a two stage disinfection program is suggested consisting of an initial period of shock treatment followed by long term disinfection.

Four methods of disinfection for the control of <u>Legionella</u> were presented in this appendix; heat, chlorination, ozonation, and ultraviolet irradiation. All four of the methods have proven effective in killing <u>Legionella</u>. Ultraviolet irradiation and heat eradication are the suggested methods of disinfection due, primarily, to advantages in monitoring and maintenance. However, site specific factors may make chlorination or ozonation more feasible for certain applications. In addition, it is recommended that all outlets, fixtures and shower heads be inspected and all black rubber washers and gaskets replaced with materials which do not support the growth of <u>Legionella</u> organisms.

One problem associated with the application of point-of-entry treatment systems is the lack of an approved program for certifying performance claims. However, the National Sanitation Foundation (NSF), Ann Arbor, MI an unofficial, non-profit organization, does have a testing program to verify disinfection efficiencies and materials of construction. Certification by the NSF, or other equivalent organizations, is desirable when selecting a treatment system.

APPENDIX C

DETERMINATION OF DISINFECTANT CONTACT TIME

APPENDIX C DETERMINATION OF DISINFECTANT CONTACT TIME

As indicated in Section 3, for pipelines, <u>all</u> fluid passing through the pipe is assumed to have a detention time equal to the theoretical or mean residence time at a particular flow rate. However, in mixing basins, storage reservoirs, and other treatment plant process units, utilities will be required to determine the contact time for the calculation of CT through tracer studies or other methods approved by the Primacy Agency.

For the purpose of determining compliance with the disinfection requirements of the SWTR, the contact time of mixing basins and storage reservoirs used in calculating CT should be the detention time at which 90 percent of the water passing through the unit is retained within the basin. This detention time was designated as T_{10} according to the convention adopted by Thirumurthi (1969). A profile of the flow through the basin over time can be generated by tracer studies. Information provided by these studies is used for estimating the detention time, T_{10} , for the purpose of calculating CT.

This appendix is divided into two sections. The first section presents a brief synopsis of tracer study methods, procedures, and data evaluation. In addition, examples are presented for conducting hypothetical tracer studies to determine the T_{10} contact time in a clearwell. The second section presents a method of determining T_{10} from theoretical detention times in systems where it is impractical to conduct tracer studies.

C.1 <u>Tracer Studies</u>

C.1.1 Flow conditions

Although detention time is proportional to flow, it is not generally a linear function. Therefore, tracer studies are needed to establish detention times for the range of flow rates experienced within each disinfectant section.

As discussed in Section 3.2, a single flow rate may not characterize the flow through the entire system. With a series of reservoirs,

clearwells, and storage tanks flow will vary between each portion of the system.

In filter plants, the plant flow is relatively uniform from the intake through the filters. An increase or reduction in the intake pumping capacity will impart a proportional change in flow through each process unit prior to and including the filters. Therefore, at a constant intake pumping rate flow variations between disinfectant sections within a treatment plant, excluding clearwells, are likely to be small, and the the design capacity of the plant, or plant flow, can be considered the nominal flow rate through each individual process unit within the plant. Clearwells may operate at a different flow rate than the rest of the plant, depending on the pumping capacity.

Ideally, tracer tests should be performed for at least four flow rates that span the entire range of flow for the section being tested. The flow rates should be separated by approximately equal intervals to span the range of operation, with one near average flow, two greater than average, and one less than average flow. The flows should also be selected so that the highest test flow rate is at leaste 91 percent of the highest flow rate expected to ever occur in that section. Four data points will assure a good definition of the section's hydraulic profile.

The results of the tracer tests performed for different flow rates should be used to generate plots of T_{10} vs. Q for each section in the system. A smooth line is drawn through the points on each graph to create a curve from which T_{10} may be read for the corresponding Q at peak hourly flow conditions. This procedure is presented in Section C.1.8.

It may not be practical for all systems to conduct studies at four flow rates. The number of tracer tests that are practical to conduct is dependent on site-specific restrictions and resources available to the system. Systems with limited resources can conduct a minimum of one tracer test for each disinfectant section at a flow rate of not less than 91 percent of the highest flow rate experienced at that section. If only one tracer test is performed, the detention time determined by the test may be used to provide a conservative estimate in CT calculations for that section for all flow rates less than or equal to the tracer test flow rate. T_{10} is <u>inversely</u> proportional to flow rate, therefore, the T_{10} at a

flow rate other than that which the tracer study was conducted (T_{105}) can be determined by multiplying the T_{10} from the tracer study (T_{107}) by the ratio of the tracer study flow rate to the desired flow rate, i.e.,

$$T_{10S} = T_{10T} \times Q_T/Q_D$$
 where

 $\begin{array}{ll} T_{10S} = T_{10} \text{ at system flow rate} \\ T_{10T} = T_{10} \text{ at tracer flow rate} \\ Q_{T} = \text{tracer study flow rate} \\ Q_{0} = \text{system flow rate} \end{array}$

The most accurate tracer test results are obtained when flow is constant through the section during the course of the test. Therefore, the tracer study should be conducted at a constant flow whenever practical. For a treatment plant consisting of two or more equivalent process trains, a constant flow tracer test can be performed on a section of the plant by holding the flow through one of the trains constant while operating the parallel train(s) to absorb any flow variations. Flow variations during tracer tests in systems without parallel trains or with single clearwells and storage reservoirs are more difficult to avoid. In these instances, T_{10} should be recorded at the average flow rate over the course of the test.

C.1.2 Other Tracer Study Considerations

In addition to flow conditions, detention times determined by tracer studies are dependent on the water level in the contact basin. This is particularly pertinent to storage tanks, reservoirs, and clearwells which, in addition to being contact basins for disinfection are also often used as equalization storage for distribution system demands. In such instances, the water levels in the reservoirs vary to meet the system demands. The actual detention time of these contact basins will also vary depending on whether they are emptying or filling.

For some process units, especially sedimentation basins which are operated at a near constant level, that is, flow in equals flow out, the detention time determined by tracer tests is valid for calculating CT when the basin is operating at water levels greater than or equal to the level at which the test was performed. If the water level during testing is

higher than the normal operating level, the resulting concentration profile will predict an erroneously high detention time. Conversely, extremely low water levels during testing may lead to an overly conservative detention time. Therefore, when conducting a tracer study to determine the detention time, a water level at or slightly below, but not above, the normal minimum operating level is recommended.

For many plants, the water level in a clearwell or storage tank varies between high and low levels in response to distribution system demands. In such instances, in order to obtain a conservative estimate of the contact time, the tracer study should be conducted during a period when the tank level is falling (flow out greater than flow in). This procedure will provide a detention time for the contact basin which is also valid when the water level is rising (flow out less than flow in) from a level which is at or above the level when the T_{10} was determined by the tracer study. Whether the water level is constant or variable, the tracer study for each section should be repeated for several different flows, as described in the previous section.

For clearwells which are operated with extreme variations in water level, maintaining a CT to comply with inactivation requirements may be impractical. Under such operating conditions, a reliable detention time is not provided for disinfection. However, the system may install a weir to ensure a minimum water level and provide a reliable detention time.

Systems comprised of storage reservoirs that experience seasonal variations in water levels may perform tracer studies during the various seasonal conditions. For these systems, tracer tests should be conducted at several flow rates and representative water levels that occur for each seasonal condition. The results of these tests can be used to develop hydraulic profiles of the reservoir for each water level. These profiles can be plotted on the same axis of T_{10} vs. Q and may be used for calculating CT for different water levels and flow rates.

Detention time may also be influenced by differences in water temperature within the system. For plants with potential for thermal stratification, additional tracer studies are suggested under the various seasonal conditions which are likely to occur. The contact times determined by the tracer studies under the various seasonal conditions

should remain valid as long as no physical changes are made to the mixing basin(s) or storage reservoir(s).

As defined in Section 3.2.2, the portion of the system with a measurable contact time between two points of disinfection or residual monitoring is referred to as a section. For systems which apply disinfectant(s) at more than one point, or choose to profile the residual from one point of application, tracer studies should be conducted to determine T_{10} for each section containing process unit(s). The T_{10} for a section may or may not include a length of pipe and is used along with the residual disinfectant concentration prior to the next disinfectant application or monitoring point to determine the CT_{calc} for that section. The inactivation ratio for the section is then determined. The total inactivation and log inactivation achieved in the system can then be determined by summing the inactivation ratios for all sections as explained in Section 3.2.2.

For systems that have two or more units of identical size and configuration, tracer studies only need to be conducted on one of the units. The resulting graph of T_{10} vs. flow can be used to determine T_{10} for all identical units.

Systems with more than one section in the treatment plant may determine T_{10} for each section

- by individual tracer studies through each section, or
- by one tracer study across the system

If possible, tracer studies should be conducted on each section to determine the T_{10} for each section. In order to minimize the time needed to conduct studies on each section, the tracer studies should be started at the last section of the treatment train prior to the first customer and completed with the first section of the system. Conducting the tracer studies in this order will prevent the interference of residual tracer material with subsequent studies.

However, it may not always be practical for systems to conduct tracer studies for each section because of time and manpower constraints. In these cases, one tracer study may be used to determine the T_{10} values

for all of the sections at one flow rate. This procedure involves the following steps:

- Add tracer at the beginning of the furthest upstream disinfection section.
- 2. Measure the tracer concentration at the end of each disinfection section.
- 3. Determine the T_{10} to each monitoring point as outlined in the data evaluation examples presented in Section C.1.7.
- 4. Subtract T_{10} values of each of the upstream sections from the overall T_{10} value to determine the T_{10} of each downstream section.

This approach is valid for a series of two or more consecutive sections as long as all process units within the sections experience the same flow condition. This approach is illustrated by Hudson (1975) in which step-dose tracer tests were employed to evaluate the baffling characteristics of flocculators and settling basins at six water treatment plants. At one plant, tracer chemical was added to the rapid mix, which represented the beginning of the furthest upstream disinfection section in Samples were collected from the flocculator and settling basin outlets and analyzed to determine the residence-time characteristics for each section. Tracer measurements at the flocculator outlet indicated an approximate T_{10} of 5 minutes through the rapid mix, interbasin piping and flocculator. Based on tracer concentration monitoring at the settling basin outlet, an approximate T_{10} of 70 minutes was determined for the combined sections, including the rapid mix, interbasin piping, flocculator, and settling basin. The flocculator T_{10} of 5 minutes was subtracted from the combined sections' T_{10} of 70 minutes, to determine the T_{10} for the settling basin alone, 65 minutes.

This approach may also be applied in cases where disinfectant application and/or residual monitoring is discontinued at any point between two or more sections with known T_{10} values. These T_{10} values may be summed to obtain an equivalent T_{10} for the combined sections.

For ozone contactors, flocculators or any basin containing mixing, tracer studies should be conducted for the range of mixing used in the

process. In ozone contactors, air or oxygen should be added in lieu of ozone to prevent degradation of the tracer. The flow rate of air or oxygen used for the contactor should be applied during the study to simulate actual operation. Tracer studies should then be conducted at several air/oxygen to water ratios to provide data for the complete range of ratios used at the plant. For flocculators, tracer studies should be conducted for various mixing intensities to provide data for the complete range of operations.

C.1.3 Tracer Study Methods

This section discusses the two most common methods of tracer addition employed in water treatment evaluations, the step-dose method and the slug-dose method. Tracer study methods involve the application of chemical dosages to a system and tracking the resulting effluent concentration as a function of time. The effluent concentration profile is evaluated to determine the detention time, T_{in} .

While both tracer test methods can use the same tracer materials and involve measuring the concentration of tracer with time, each has distinct advantages and disadvantages with respect to tracer addition procedures and analysis of results.

The step-dose method entails introduction of a tracer chemical at a constant dosage until the concentration at the desired end point reaches a steady-state level. Step-dose tracer studies are frequently employed in drinking water applications for the following reasons:

- the resulting normalized concentration vs. time profile is directly used to determine, T_{10} , the detention time required for calculating CT
- very often, the necessary feed equipment is available to provide a constant rate of application of the tracer chemical

One other advantage of the step-dose method is that the data may be verified by comparing the concentration versus elapsed time profile for samples collected at the start of dosing with the profile obtained when the tracer feed is discontinued.

Alternatively, with the slug-dose method, a large instantaneous dose of tracer is added to the incoming water and samples are taken at the exit of the unit over time as the tracer passes through the unit. A disadvantage of this technique is that very concentrated solutions are needed for the dose in order to adequately define the concentration versus time profile. Intensive mixing is therefore required to minimize potential density-current effects and to obtain a uniform distribution of the instantaneous tracer dose across the basin. This is inherently difficult under water flow conditions often existing at inlets to basins. Other disadvantages of using the slug-dose method include:

- the concentration and volume of the instantaneous tracer dose must be carefully computed to provide an adequate tracer profile at the effluent of the basin
- the resulting concentration vs. time profile cannot be used to directly determine T_{10} without further manipulation
- a mass balance on the treatment section is required to determine whether the tracer was completely recovered

One advantage of this method is that it may be applied where chemical feed equipment is not available at the desired point of addition, or where the equipment available does not have the capacity to provide the necessary concentration of the chosen tracer chemical. Although, in general, the step-dose procedure offers the greatest simplicity, both methods are theoretically equivalent for determining T_{10} . Either method is acceptable for conducting drinking water tracer studies, and the choice of the method may be determined by site-specific constraints or the system's experience.

C.1.4 Tracer Selection

An important step in any tracer study is the selection of a chemical to be used as the tracer. Ideally, the selected tracer chemical should be readily available, conservative (that is, not consumed or removed during treatment), easily monitored, and acceptable for use in potable water supplies. Historically, many chemicals have been used in tracer studies that do not satisfy all of these criteria, including potassium permanganate, alum, chlorine, and sodium carbonate. However, chloride and fluoride are

the most common tracer chemicals employed in drinking water plants that are nontoxic and approved for potable water use. Rhodamine WT can be used as a fluorescent tracer in water flow studies in accordance with the following guidelines:

- Raw water concentrations should be limited to a maximum concentration of 10 mg/L.
- Drinking water concentations should not exceed 0.1 ug/L.
- Studies which results in human exposure to the dye must be brief and infrequent.
- Concentrations as low as 2 ug/L can be used in tracer studies because of the low detection level in the range of 0.1 to 0.2 ug/L.

The use of Rhodamine B as a tracer in water flow studies is not recommended by the EPA.

The choice of a tracer chemical can be made based, in part, on the selected dosing method and also on the availability of chemical feeding equipment. For example, the high density of concentrated salt solutions and their potential for inducing density currents, usually precludes chloride and fluoride as the selected chemical for slug-dose tracer tests.

Fluoride can be a convenient tracer chemical for step-dose tracer tests of clearwells because it is frequently applied for finished water treatment. However, when fluoride is used in tracer tests on clarifiers, allowances should be made for fluoride that is absorbed on floc and settles out of water (Hudson, 1975). Additional considerations when using fluoride in tracer studies include:

- it is difficult to detect at low levels
- many states impose a finished water limitation of 1 mg/L
- the federal secondary and primary drinking water standards (MCLs) for fluoride are 2 and 4 mg/L, respectively

The use of fluoride is only recommended in cases where the feed equipment is already in place for safety reasons.

In instances where only one of two or more parallel units is tested, flow from the other units would dilute the tracer concentration prior to leaving the plant and entering the distribution system. Therefore, the impact of drinking water standards on the use of fluoride and other tracer chemicals can be alleviated in some cases.

C.1.5 Tracer Addition

The tracer chemical should be added at the same point(s) in the treatment train as the disinfectant to be used in the CT calculations.

C.1.5.1 Step-dose Method

The duration of tracer addition is dependent on the volume of the basin, and hence, its theoretical detention time. In order to approach a steady-state concentration in the water exiting the basin, tracer addition and sampling should usually be continued for a period of two to three times the theoretical detention time (Hudson, 1981). It is not necessary to reach a steady state concentration in the exiting water to determine T_{10} , however, it is necessary to determine tracer recovery. It is recommended that the tracer recovery be determined to identify hydraulic characteristics or density problems. Generally, a 90 percent recovery is considered to provide reliable results for the evaluation of T_{10} .

In all cases, the tracer chemical should be dosed in sufficient concentration to easily monitor a residual at the basin outlet throughout the test. The required tracer chemical concentration, is generally dependent upon the nature of the chosen tracer chemical, including its background concentration, and the mixing characteristics of the basin to be tested. Recommended chloride doses on the order of 20 mg/L (Hudson, 1975) should be used for step-method tracer studies where the background chloride level is less than 10 mg/L. Also, fluoride concentrations as low as 1.0 to 1.5 mg/L are practical when the raw water fluoride level is not significant (Hudson, 1975). However, tracer studies conducted on systems suffering from serious shortcircuiting of flow may require substantially larger step-doses. This would be necessary to detect the tracer chemical and to adequately define the effluent tracer concentration profile.

C.1.5.2 Slug-dose Method

The duration of tracer measurements using the slug-dose method is also dependent on the volume of the basin, and hence, its theoretical detention time. In general, samples should be collected for at least twice the basin's theoretical detention time, or until tracer concentrations are detected near background levels. In order to get reliable results for T_{10} values using the slug-dose method, it is recommended that the total mass of tracer recovered be approximately 90 percent of the mass applied. This guideline presents the need to sample until the tracer concentration recedes to the background level. The total mass recovered during testing will not be known until completion of the testing and analysis of the data collected. The sampling period needed is very site specific. Therefore, it may be helpful to conduct a first run tracer test as a screen to identify the appropriate sampling period for gathering data to determine T_{10} .

Tracer addition for slug-dose method tests should be instantaneous and provide uniformly mixed distribution of the chemical. Tracer addition is considered instantaneous if the dosing time does not exceed 2 percent of the basin's theoretical detention time (Marske and Boyle, 1973). One recommended procedure for achieving instantaneous tracer dosing is to apply the chemical by gravity flow through a funnel and hose apparatus. This method is also beneficial because it provides a means of standardization, which is necessary to obtain reproducible results.

The mass of tracer chemical to be added is determined by the desired theoretical concentration and basin size. The mass of tracer added in slug-dose tracer tests should be the minimum mass needed to obtain detectable residual measurements to generate a concentration profile. As a guideline, the theoretical concentration for the slug-dose method should be comparable to the constant dose applied in step-dose tracer tests, i.e., 10 to 20 mg/L and 1 to 2 mg/L for chloride and fluoride, respectively. The maximum mass of tracer chemical needed is calculated by multiplying the theoretical concentration by the total basin volume. This is appropriate for systems with high dispersion and/or mixing. This quantity is diluted as required to apply an instantaneous dose, and minimize density effects. It should be noted that the mass applied is not

likely to get completely mixed throughout the total volume of the basin. Therefore, the detected concentration might exceed theoretical concentrations based on the total volume of the basin. For these cases, the mass of chemical to be added can be determined by multiplying the theoretical concentration by only a portion of the basin volume. An example of this is shown in Section C.1.7.2 for a slug-dose tracer study. In cases where the tracer concentration in the effluent must be maintained below a specified level, it may be necessary to conduct a preliminary test run with a minimum tracer dose to identify the appropriate dose for determining T_{10} without exceeding this level.

C.1.6 Test Procedure

In preparation for beginning a tracer study, the raw water background concentration of the chosen tracer chemical must be established. The background concentration is essential, not only for aiding in the selection of the tracer dosage, but also to facilitate proper evaluation of the data.

The background tracer concentration should be determined by monitoring for the tracer chemical prior to beginning the test. The sampling point(s) for the pre-tracer study monitoring should be the same as the points to be used for residual monitoring to determine CT values. The monitoring procedure is outlined in the following steps:

- If the tracer chemical is normally added for treatment, discontinue its addition to the water in sufficient time to permit the tracer concentration to recede to its background level before the test is begun.
- Prior to the start of the test, regardless of whether the chosen tracer material is a treatment chemical, the tracer concentration in the water is monitored at the sampling point where the disinfectant residual will be measured for CT calculations.
- If a background tracer concentration is detected, monitor it until a constant concentration, at or below the raw water background level is achieved. This measured concentration is the baseline tracer concentration.

Following the determination of the tracer dosage, feed and monitoring point(s), and a baseline tracer concentration, tracer testing can begin.

Equal sampling intervals, as could be obtained from automatic sampling, are not required for either tracer study method. However, using equal sample intervals for the slug-dose method can simplify the analysis of the data. During testing, the time and tracer residual of each measurement should also be recorded on a data sheet. In addition, the water level, flow, and temperature should be recorded during the test.

C.1.6.1 Step-dose Method

At time zero, the tracer chemical feed will be started and left at a constant rate for the duration of the test. Over the course of the test, the tracer residual should be monitored at the required sampling point(s) at a frequency determined by the overall detention time and site specific considerations. As a general guideline, sampling at intervals of 2 to 5 minutes should provide data for a well-defined plot of tracer concentration vs. time. If on-site analysis is available, less frequent residual monitoring may be possible until a change in residual concentration is first detected. As a guideline, in systems with a theoretical detention time greater than 4 hours, sampling may be conducted every 10 minutes for the first 30 minutes, or until a tracer concentration above the baseline level is first detected. In general, shorter sampling intervals enable better characterization of concentration changes: therefore, sampling should be conducted at 2 to 5-minute intervals from the time that a concentration change is first observed until the residual concentration reaches a steady-state value. A reasonable sampling interval should be chosen based on the overall detention time of the unit being tested.

If verification of the test is desired, the tracer feed should be discontinued, and the receding tracer concentration at the effluent should be monitored at the same frequency until tracer concentrations corresponding to the background level are detected. The time at which tracer feed is stopped is time zero for the receding tracer test and must be noted. The receding racer test will provide a replicate set of measurements which can be compared with data derived from the rising tracer concentration versus time curve. For systems which currently feed the tracer chemical,

the receding curve may be generated from the time the feed is turned off to determine the background concentration level.

C.1.6.2 Slug-dose Method

At time zero for the slug-dose method, a large instantaneous dose of tracer will be added to the influent of the unit. The same sampling locations and frequencies described for step-dose method tests also apply to slug-dose method tracer studies. One exception with this method is that the tracer concentration profile will not equilibrate to a steady state concentration. Because of this, the tracer should be monitored frequently enough to ensure acquisition of data needed to identify the peak tracer concentration.

Slug-dose method tests should be checked by performing a material balance to ensure that all of the tracer fed is recovered, or, mass applied equals mass discharged.

C.1.7 Data Evaluation

Data from tracer studies should be summarized in tables of time and residual concentration. These data are then analyzed to determine the detention time, T_{10} , to be used in calculating CT. Tracer test data from either the step or slug-dose method can be evaluated graphically, numerically, or by a combination of these techniques.

C.1.7.1 Step-dose Method

The graphical method of evaluating step-dose test data involves plotting a graph of dimensionless concentration versus time and reading the value for T_{10} directly from the graph at the appropriate dimensionless concentration. Alternatively, the data from step-dose tracer studies may be evaluated numerically by developing a semi-logarithmic plot of the dimensionless data. The semi-logarithmic plot allows a straight line to be drawn through the data. The resulting equation of the line is used to calculate the T_{10} value, assuming that the correlation coefficient indicates a good statistical fit (0.9 or above). Scattered data points from step-dose tracer tests are discredited by drawing a smooth curve through the data.

An illustration of the T_{10} determination will be presented in an example of the data evaluation required for a clearwell tracer study.

C.1.7.2 Slua-dose Method

Data from slug-dose tracer tests is analyzed by converting it to the mathematically equivalent step-dose data and using techniques discussed in Section C.1.7.1 to determine T_{10} . A graph of dimensionless concentration versus time should be drawn which represents the results of a slug-dose tracer test. The key to converting between the data forms is obtaining the total area under the slug-dose data curve. This area is found by graphically or numerically intergrating the curve. The conversion to step-dose data is then completed in several mathematical steps involving the total area.

A graphical technique for converting the slug-dose data involves physically measuring the area using a planimeter. The planimeter is an instrument used to measure the area of a plane closed curve by tracing its boundary. Calibration of this instrument to the scale of the graph is required to obtain meaningful readings.

The rectangle rule is a simple numerical intergration method which approximates the total area under the curve as the sum of the areas of individual rectangles. These rectangles have heights and widths equal to the residual concentration and sampling interval (time) for each data point on the curve, respectively. Once the data has been converted, T_{10} may be determined in the same manner as data from step-dose tracer tests.

Slug-dose concentration profiles can have many shapes, depending on the hydraulics of the basin. Therefore, slug-dose data points should not be discredited by drawing a smooth curve through the data prior to its conversion to step-dose data. The steps and specific details involved with evaluating data from both tracer study methods are illustrated in the following examples.

Example for Determining Tio in a Clearwell

Two tracer studies employing the step-dose and slug-dose methods of tracer addition were conducted for a clearwell with a theoretical detention time, T, of 30 minutes at an average flow of 2.5 MGD. Because fluoride is added at the inlet to the clearwell as a water treatment chemical, necessary feed equipment was in place for dosing a constant

concentration of fluoride throughout the step-dose tracer test. Based on this convenience, fluoride was chosen as the tracer chemical for the step-dose method test. Fluoride was also selected as the tracer chemical for the slug-dose method test. Prior to the start of testing, a fluoride baseline concentration of 0.2 mg/L was established for the water exiting the clearwell.

Step-dose Method Test

For the step-dose test a constant fluoride dosage of 2.0 mg/L was added to the clearwell inlet. Fluoride levels in the clearwell effluent were monitored and recorded every 3 minutes. The raw tracer study data, along with the results of further analyses are shown in Table C-1.

The steps in evaluating the raw data shown in the first column of Table C-1 are as follows. First, the baseline fluoride concentration, 0.2 mg/L, is subtracted from the measured concentration to give the fluoride concentration resulting from the tracer study addition alone. For example, at elapsed time = 39 minutes, the tracer fluoride concentration, C, is obtained as follows:

$$C = C_{measured} - C_{baseline}$$

$$= 1.85 \text{ mg/L} - 0.2 \text{ mg/L}$$

$$= 1.65 \text{ mg/L}$$

This calculation was repeated at each time interval to obtain the data shown in the third column of Table C-1. As indicated, the fluoride concentration rises from 0 mg/L at t=0 minutes to the applied fluoride dosage of 2 mg/L, at t=63 minutes.

The next step is to develop dimensionless concentrations by dividing the tracer concentrations in the second column of Table C-1 by the applied fluoride dosage, Co = 2 mg/L. For time = 39 minutes, C/Co is calculated as follows:

$$C/Co = (1.65 \text{ mg/L})/(2.0 \text{ mg/L})$$

= 0.82

The resulting dimensionless data, presented in the fourth column of Table C-1, is the basis for completing the determination of T_{10} by either the graphical or numerical method.

TABLE C-1 CLEARWELL DATA--STEP-DOSE TRACER TEST (1, 2, 3)

	Fluoride Concentration		
t. minutes	Measured. mg/L	<u>Tracer.mg/L</u>	Dimensionless. C/Co
0	0.20	0	0 .
3	0.20	0	0
6	0.20	0	0
9	0.20	0	0
12	0.29	0.09	0.045
15	0.67	0.47	0.24
18	0.94	0.74	0.37
21	1.04	0.84	0.42
24	1.44	1.24	0.62
27	1.55	1.35	0.68
30	1.52	1.32	0.66
33	1.73	1.53	0.76
36	1.93	1.73	0.86
39	1.85	1.65	0.82
42	1.92	1.72	0.86
45	2.02	1.82	0.91
48	1.97	1.77	0.88
51	1.84	1.64	0.82
54	2.06	1.86	0.93
57	2.05	1.85	0.92
60	2.10	1.90	0.95
63	2.14	1.94	0.96

Notes:

- Baseline conc. = 0.2 mg/L, fluoride dose = 2.0 mg/L Measured conc. = Tracer conc. + Baseline conc. Tracer conc. = Measured conc. Baseline conc.

In order to determine T_{10} by the graphical method, a plot of C/Co vs. time should be generated using the data in Table C-1. A smooth curve should be drawn through the data as shown on Figure C-1.

 T_{10} is read directly from the graph at a dimensionless concentration (C/Co) corresponding to the time for which 10 percent of the tracer has passed at the effluent end of the contact basin (T_{10}). For step-dose method tracer studies, this dimensionless concentration is C/Co = 0.10 (Levenspiel, 1972).

 T_{10} should be read directly from Figure C-1 at C/Co = 0.1 by first drawing a horizontal line (C/Co = 0.1) from the Y-axis (t = 0) to its intersection with the smooth curve drawn through the data. At this point of intersection, the time read from the X-axis is T_{10} and may be found by extending a vertical line downward to the X-axis. These steps were performed as illustrated on Figure C-1, resulting in a value for T_{10} of approximately 13 minutes.

For the numerical method of data analysis, several additional steps are required to obtain T_{10} from the data in the fourth column of Table C-1. The forms of data necessary for determining T_{10} through a numerical solution are $\log_{10}(1\text{-C/Co})$ and t/T, the elapsed time divided by the theoretical residence time. These are obtained by performing the required mathematical operations on the data in the fourth column of Table C-1. For example, recalling that the theoretical detention time, T, is 30 minutes, the values for \log_{10} (1-C/Co) and t/T are computed as follows for the data at t = 39 minutes:

$$log_{10}(1-C/Co) = log_{10} (1-0.82)$$

$$= log_{10} (0.18)$$

$$= -0.757$$

$$t/T = 39 min/30 min = 1.3$$

This calculation was repeated at each time interval to obtain the data shown in Table C-2. These data should be linearly regressed as $\log_{10}(1-C/C0)$ versus t/T to obtain the fitted straight-line parameters to the following equation:

FIGURE C-1
C/Co vs. Time
Graphical Analysis for T10

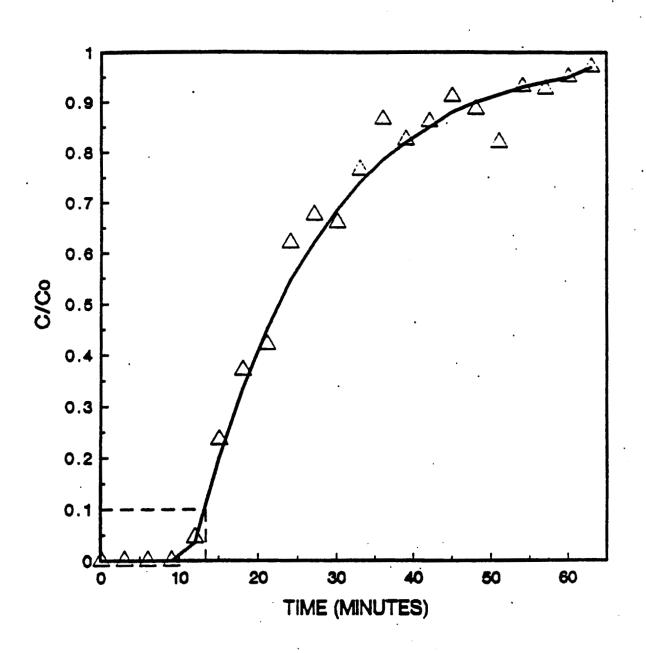


TABLE C-2

DATA FOR NUMERICAL DETERMINATION OF T₁₀

<u>t/</u> I	log ₁₀ (1-C/Co)
0	Ö
0.1	0
0.2	0
0.3	0
0.4	-0.020
0.5	-0.116
0.6	-0.201
0.7	-0.237
0.8	-0.420
0.9	-0.488
1.0	-0.468
1.1	-0.629
1.2	-0.870
1.3	-0.757
1.4	-0.854
1.5	-1.046
1.6	-0.939
1.7	-0.745
1.8	-1.155
1.9	-1.125
2.0	-1.301
2.1	-1.532

$$\log_{10}(1-C/Co) = m(t/T) + b$$
 (1)

In equation 1, m and b are the slope and intercept, respectively, for a plot of $\log_{10}(1-C/Co)$ vs. t/T. This equation can be used to calculate T_{10} , assuming that the correlation coefficient for the fitted data indicates a good statistical fit (0.9 or above).

A linear regression analysis was performed on the data in Table C-2, resulting in the following straight-line parameters:

Although these numbers were obtained numerically, a plot of $\log_{10}(1-C/Co)$ versus t/T is shown for illustrative purposes on Figure C-2 for the data in Table C-2. In this analysis, data for time = 0 through 9 minutes were excluded because fluoride concentrations above the baseline level were not observed in the clearwell effluent until t = 12 minutes.

Equation 1 is then rearranged in the following form to facilitate a solution for T_{10} :

$$T_{10}/T = (\log_{10} (1 - 0.1) - b)/m$$
 (2)

In equation 2, as with graphical method, T_{10} is determined at the time for which C/Co = 0.1. Therefore, in equation 2, C/Co has been replaced by 0.1 and t (time) by T_{10} . To obtain a solution for T_{10} , the values of the slope, intercept, and theoretical detention time are substituted as follows:

$$T_{10}/30$$
 min. $= (log_{10}(1 - 0.1) - 0.251)/(-0.774)$
 $T_{10} = 12$ minutes

In summary both the graphical and numerical methods of data reduction resulted in comparable values for T_{10} . With the numerical method, T_{10} was determined as the solution to an equation based on the

straight-line parameters to a linear regression analysis of the tracer study data instead of an "eyeball" estimate from a data plot.

Slua-dose Method Test

A slug-dose tracer test was also performed on the clearwell at a flow rate of 2.5 mgd. A theoretical clearwell fluoride concentration of 2.2 mg/L was selected. The fluoride dosing volume and concentration were determined from the following considerations:

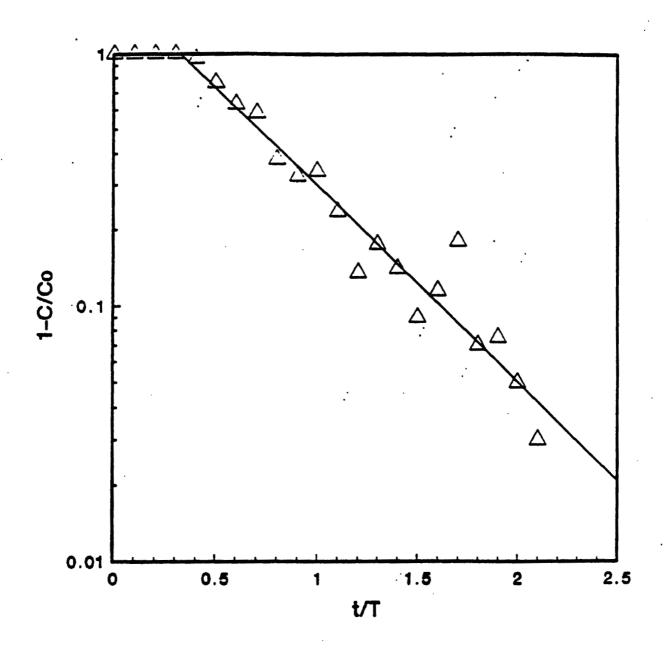
Dosina Volume

- The fluoride injection apparatus consisted of a funnel and a length of copper tubing. This apparatus provided a constant volumetric feeding rate of 7.5 liters per minute (L/min) under gravity flow conditions.
- At a flow rate of 2.5 mgd, the clearwell has a theoretical detention time of 30 minutes. Since the duration of tracer injection should be less than 2 percent of the clearwell's theoretical detention time for an instantaneous dose, the maximum duration of fluoride injection was:

Max. dosing time = 30 minutes x .02 = 0.6 minutes

- At a dosing rate of 7.5 L/min, the maximum fluoride dosing volume is calculated to be:

. Max. dosing volume = $7.5 \text{ L/min.} \times 0.6 \text{ minutes} = 4.5 \text{ L}$


For this tracer test, a dosing volume of 4 liters was selected, providing an instantaneous fluoride dose in 1.8 percent of the theoretical detention time.

Fluoride Concentration

- The theoretical detention time of the clearwell, 30 minutes, was calculated by dividing the clearwell volume, 52,100 gallons or 197,200 liters, by the average flow rate through the clearwell, 2.5 mgd.
- Assuming the tracer is completely dispersed throughout the total volume of the clearwell, the mass of fluoride required to achieve a theoretical concentration of 2.2 mg/L is calculated as follows:

Fluoride mass (initial) = 2.2 mg/L x 197,200 L x $\frac{1}{1000}$ mg = 434g

FIGURE C-2 1-C/Co vs. t/T Numerical Analysis for T10

Slope, m = -0.774Intercept, b = 0.251 The concentration of the instantaneous fluoride dose is determined by dividing this mass by the dosing volume, 4 liters:

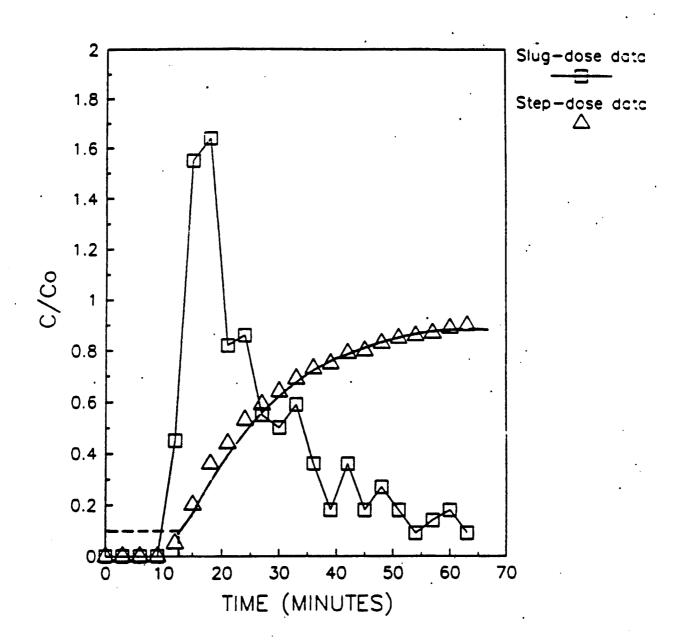
Fluoride concentration =
$$\frac{434 \text{ g}}{4 \text{ L}}$$
 = 109 g/L

Fluoride levels in the exit to the clearwell were monitored and recorded every 3 minutes. The raw slug-dose tracer test data are shown in Table C-3.

The first step in evaluating the data for different times is to subtract the baseline fluoride concentration, 0.2 mg/L, from the measured concentration at each sampling interval (Table C-3). This is the same as the first step used to evaluate step-dose method data and gives the fluoride concentrations resulting from the tracer addition alone, shown in the third column of Table C-3. As indicated, the fluoride concentration rises from 0 mg/L at t = 0 minutes to the peak concentration of 3.6 mg/L at t = 18 minutes. The exiting fluoride concentration gradually recedes to near zero at t = 63 minutes. It should be noted that a maximum fluoride concentration of 2.2 mg/L is based on assuming complete mixing of the tracer added throughout the total clearwell volume. However, as shown in Table C-3, the fluoride concentrations in the clearwell effluent exceeded 2.2 mg/L for about 6 minutes between 14 and 20 minutes. These higher peak concentrations are caused by the dispersion of tracer throughout only a portion of the total clearwell volume. tracer concentration is needed in the effluent because of local or federal regulations, the mass to be added should be decreased accordingly.

The dimensionless concentrations in the fourth column of Table C-3 were obtained by dividing the tracer concentrations in the third column by the clearwell's theoretical concentration, Co = 2.2 mg/L. These dimensionless concentrations were then plotted as a function of time, as is shown by the slug-dose data on Figure C-3. These data points were connected by straight lines, resulting in a somewhat jagged curve.

The next step in evaluating slug-dose data is to determine the total area under the slug-dose data curve on Figure C-3. Two methods exist for finding this area -- graphical and numerical. The graphical method is


TABLE C-3 CLEARWELL DATA -- SLUG-DOSE TRACER TEST (1,2,3)

	Fluoride Concentration			
t. minutes	Measured, mg/L	<u>Iracer. mg/L</u>	Dimensionless, C/Co	
0	0.2	0	0	
3	0.2	0	Ō	
6	0.2	Ō	. Ŏ	
6 9	0.2	. Ŏ	Ŏ	
12	1.2	ĭ	0.45	
15	3.6	3.4	1.55	
18	3.8	3.6	1.64	
21	2.0	1.8	0.82	
24	2.1	1.9	0.86	
27	1.4	1.2	0.55	
30	1.3	1.1	0.50	
33	1.5	1.3	0.59	
36	1.0	·0.8	0.36	
39	0.6	0.4	0.18	
42	1.0	0.8	0.36	
45	0.6	0.4	0.18	
48	0.8	0.6	0.27	
51	0.6	0.4	0.18	
. 54	0.4	0.2	0.09	
57	0.5	0.3	0.14	
60	0.6	0.4	0.18	
. 63	0.4	0.2	0.09	

Notes:

- Measured conc. = Tracer conc. + Baseline conc.
 Baseline conc. = 0.2 mg/L, fluoride dose = 109 g/L, theoretical conc. = 2.2 mg/L
 Iracer conc. = Measured conc. Baseline conc.

FIGURE C-3
C/Co vs. Time
Conversion of Slug-to Step-Dose Data

based on a physical measurement of the area using a planimeter. This involves calibration of the instrument to define the units conversion and tracing the outline of the curve to determine the area. The results of performing this procedure may vary depending on instrument accuracy and measurement technique. Therefore, only an illustration of the numerical technique for finding the area under the slug-dose curve will be presented for this example.

The area obtained by either the graphical or numerical method would be similar. Furthermore, once the area is found, the remaining steps involved with converting the data to the step-dose response are the same.

Table C-4 summarizes the results of determining the total area using a numerical integration technique called the rectangle rule. The first and second columns in Table C-4 are the sampling time and fluoride concentration resulting from tracer addition alone, respectively. The steps in applying these data are as follows. First, the sampling time interval, 3 minutes, is multiplied by the fluoride concentration at the end of the 3-minute interval to give the incremental area, in units of milligram minutes per liter. For example, at elapsed time, t=39 minutes, the incremental area is obtained as follows:

Incremental area = sampling time interval x fluoride conc.

- = (39-36) minutes x 0.4 mg/L
- = 1.2 mg-min/L

This calculation was repeated at each time interval to obtain the data shown in the third column of Table C-4.

If the data had been obtained at unequal sampling intervals, then the incremental area for each interval would be obtained by multiplying the fluoride concentration at the <u>end</u> of each interval by the time duration of the interval. This convention also requires that the incremental area be zero at the first sampling point, regardless of the fluoride concentration at that time.

As is shown in Table C-4, all incremental areas were summed to obtain 59.4 mg-min/L, the total area under the slug-dose tracer test curve. This number represents the total mass of fluoride that was

detected during the course of the tracer test divided by the average flow rate through the clearwell.

To complete the conversion of slug-dose data to its equivalent step-dose response requires two additional steps. The first involves summing, consecutively, the incremental areas in the third column of Table C-4 to obtain the cumulative area at the <u>end</u> of each sampling interval. For example, the cumulative area at time, t = 27 minutes is found as follows:

Cumulative area =
$$0 + 0 + 0 + 0 + 3 + 10.2 + 10.8 + 5.4 + 5.7 + 3.6$$

= 38.7 mg-min/L

The cumulative areas for each interval are recorded in the fourth column of Table C-4.

The final step in converting slug-dose data involves dividing the cumulative area at each interval by the total mass applied. Total area based on applied mass is calculated as follows:

Total area mass applied/average flow = 434 g x 1000
$$mg/6,570$$
 L g min = 66.1 $mg-min$

For time = 39 minutes, the resulting step-dose data point is calculated as follows:

The result of performing this operation at each sampling interval is the equivalent step-dose data. These data points are shown in the fifth column of Table C-4 and are also plotted on Figure C-3 to facilitate a graphical determination of T_{10} . A smooth curve was fitted to the step-dose data as shown on the figure.

 T_{10} can be determined by the methods illustrated previously in this example for evaluating step-dose tracer test data. The graphical method illustrated on Figure C-3 results in a reading of T_{10} = 15 minutes.

TABLE C-4

EVALUATION OF SLUG-DOSE DATA

t. minutes	Fluoride. mg/L	Incremental Area. mg-min/L	Cumulative Area. mg-min/L	Equivalent Step-Dose <u>Data</u>
0	0	0	0	0
3	0	0 .	0	0
6	0	0	0	0
• 9	0	0	0	. 0
12	1	3	3	0.05
15	3.4	10.2	13.2	0.22
18	3.6	10.8	24.0	0.40
21	1.8	5.4	29.4	0.49
24	1.9	5.7	35.1	0.59
27	1.2	3.6	38.7	0.65
30	1.1	3.3	42.0	0.71
33	1.3	3.9	45.9	0.77
36	0.8	2.4	48.3	0.81
39	0.4	1.2	49.5	0.83
42	0.8	2.4	51.9	0.87
45	0.4	1.2	53.1	0.89
48	0.6	1.8	54.9	0.92
51	0.4	1.2	56.1	0.94
54	0.2	0.6	56.7	0.95
57	0.3	0.9	57.6	0.97
60	0.4	1.2	58.8	0.99
63	0.2	+ .0.6	59.4	1.00

Total Area = 59.4

C.1.7.3 Additional Considerations

In addition to determining T_{10} for use in CT calculations, slug-dose tracer tests provide a more general measure of the basin's hydraulics in terms of the fraction of tracer recovery. This number is representative of short-circuiting and dead space in the unit resulting from poor baffling conditions and density currents induced by the tracer chemical. A low tracer recovery is generally indicative of inadequate hydraulics. However, inadequate sampling in which peaks in tracer passage are not measured will result in an under estimate of tracer recovery. The tracer recovery is calculated by dividing the mass of fluoride detected by the mass of fluoride dosed.

The dosed fluoride mass was calculated previously and was 434 grams. The mass of detected fluoride can be calculated by multiplying the total area under the slug-dose curve by the average flow, in appropriate units, at the time of the test. The average flow in the clearwell during the test was 2.5 mgd or 6,570 L/min. Therefore, the mass of fluoride tracer that was detected is calculated as follows:

Detected fluoride mass = total area x average flow
=
$$59.4 \frac{\text{mg-min}}{\text{L}} \times \frac{1 \text{ g}}{1000 \text{ mg}} \times 6,570 \frac{\text{L}}{\text{min}}$$

= 390 g

Tracer recovery is than calculated as follows:

Fluoride recovery - detected mass/dosed mass x 100-

= 90 %

This is a typical tracer recovery percentage for a slug-dose test, based on the experiences of Hudson (1975) and Thirumurthi (1969).

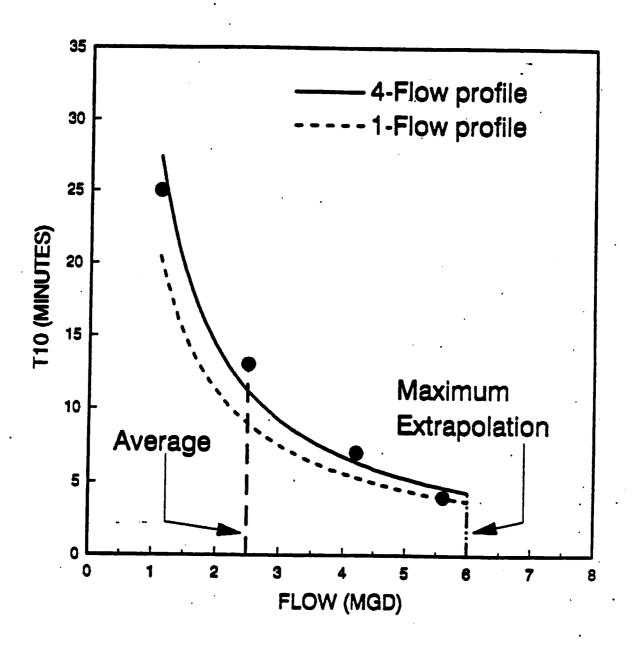
C.1.8 Flow Dependency of I10

For systems conducting tracer studies at four or more flows, the T_{10} detention time should be determined by the above procedures for each of the desired flows. The detention times should then be plotted versus flow. For the example presented in the previous section, tracer studies

were conducted at additional flows of 1.1, 4.2, and 5.6 MGD. The T_{10} values at the various flows were:

Flow	I_{10}
1.1 2.5	²⁵
4.2	7
5.6	4

 T_{10} data for these tracer studies were plotted as a function of the flow, Q, as shown on Figure C-4.


If only one tracer test is performed, the flow rate for the tracer study should be not less than 91 percent of the highest flow rate experienced for the section. The hydraulic profile to be used for calculating CT would then be generated by drawing a line through points obtained by multiplying the T_{10} at the tested flow rate by the ratio of the tracer study flow rate to each of several different flows in the desired flow range.

For the example presented in the previous section, the clearwell experiences a maximum flow at peak hourly conditions of 6.0 mgd. The highest tested flow rate was 5.6 mgd, or 93 percent of the maximum flow. Therefore, the detention time, $T_{10}=4$ minutes, determined by the tracer test at a flow rate of 5.6 mgd may be used to provide a conservative estimate of T_{10} for all flow rates less than or equal to the maximum flow rate, 6.0 mgd. The line drawn through points found by multiplying $T^{10}=4$ minutes by the ratio of 5.6 mgd to each of several flows less than 5.6 mgd is also shown on Figure C-4 for comparative purposes with the hydraulic profile obtained from performing four tracer studies at different flow rates.

C.2 <u>Determination of T₁₀ Without Conducting a Tracer Study</u>

In some situations, conducting tracer studies for determining the disinfectant contact time, T_{10} , may be impractical or prohibitively expensive. The limitations may include a lack of funds, manpower or equipment necessary to conduct the study. For these cases, the Primacy Agency may allow the use of "rule of thumb" fractions representing the

FIGURE C-4
Detention Time vs. Flow

ratio of T_{10} to T_{10} , and the theoretical detention time, to determine the detention time, T_{10} , to be used for calculating CT values. This method for finding T_{10} involves multiplying the theoretical detention time by the rule of thumb fraction, T_{10}/T , that is representative of the particular basin configuration for which T_{10} is desired. These fractions provide rough estimates of the actual T_{10} and are recommended to be used only on a limited basis.

Tracer studies conducted by Marske and Boyle (1973) and Hudson (1975) on chlorine contact chambers and flocculators/settling basins, respectively, were used as a basis in determining representative T_{10}/T values for various basin configurations. Marske and Boyle (1973) performed tracer studies on 15 distinctly different types of full-scale chlorine contact chambers to evaluate design characteristics that affect the actual detention time. Hudson (1975) conducted 16 tracer tests on several flocculation and settling basins at six water treatment plants to identify the effect of flocculator baffling and settling basin inlet and outlet design characteristics on the actual detention time.

C.2.1 <u>Impact of Design Characteristics</u>

The significant design characteristics include: length-to-width ratio, the degree of baffling within the basins, and the effect of inlet baffling and outlet weir configuration. These physical characteristics of the contact basins affect their hydraulic efficiencies in terms of dead space, plug flow, and mixed flow proportions. The dead space zone of a basin is basin volume through which no flow occurs. The remaining volume where flow occurs is comprised of plug flow and mixed flow zones. The plug flow zone is the portion of the remaining volume in which no mixing occurs in the direction of flow. The mixed flow zone is characterized by complete mixing in the flow direction and is the complement to the plug flow zone. All of these zones were identified in the studies for each contact basin. Comparisons were then made between the basin configurations and the observed flow conditions and design characteristics.

The ratio T_{10}/T was calculated from the data presented in the studies and compared to its associated hydraulic flow characteristics. Both studies resulted in T_{10}/T values which ranged from 0.3 to 0.7. The results

of the studies indicate how basin baffling conditions can influence the T_{10}/T ratio, particularly baffling at the inlet and outlet to the basin. As the basin baffling conditions improved, higher T_{10}/T values were observed, with the outlet conditions generally having a greater impact than the inlet conditions.

As discovered from the results of the tracer studies performed by Marske and Boyle (1973) and Hudson (1975), the effectiveness of baffling in achieving a high T_{10}/T fraction is more related to the geometry and baffling of the basin than the function of the basin. For this reason, T_{10}/T values may be defined for three levels of baffling conditions rather than for particular types of contact basins. General guidelines were developed relating the T_{10}/T values from these studies to the respective baffling characteristics. These guidelines can be used to determine the T_{10} values for specific basins.

C.2.2 Baffling Classifications

The purpose of baffling is to maximize utilization of basin volume. increase the plug flow zone in the basin, and minimize short circuiting. Some form of baffling at the inlet and outlet of the basins is used to evenly distribute flow across the basin. Additional baffling may be provided within the interior of the basin (intra-basin) in circumstances requiring a greater degree of flow distribution. Ideal baffling design reduces the inlet and outlet flow velocities, distributes the water as uniformly as practical over the cross section of the basin, minimizes mixing with the water already in the basin, and prevents entering water from short circuiting to the basin outlet as the result of wind or density current effects. Three general classifications of baffling conditions -poor, average, and superior -- were developed to categorize the results of the tracer studies for use in determining T_{10} from the theoretical detention time of a specific basin. The T_{10}/T fractions associated with each degree of baffling are summarized in Table C-5. Factors representing the ratio between T,, and the theoretical detention time for plug flow in pipelines and flow in a completely mixed chamber have been included in Table C-5 for comparative purposes. However, in practice the theoretical T_{10}/T values of 1.0 for plug flow and 0.1 for mixed flow are seldom

TABLE C-5 BAFFLING CLASSIFICATIONS

Baffling Condition	I ₁₀ /I	Baffling Description
Unbaffled (mixed flow)	0.1	None, agitated basin, very low length to width ratio, high inlet and outlet flow velocities
Poor	0.3	Single or multiple unbaffled inlets and outlets, no intra-basin baffles
Average	0.5	Baffled inlet or outlet with some intra- basin baffles
Superior	0.7	Perforated inlet baffle, serpentine or perforated intra-basin baffles, outlet weir or perforated launders
Perfect (plug flow)	1.0	Very high length to width ratio (pipeline flow), perforated inlet, outlet, and intrabasin baffles

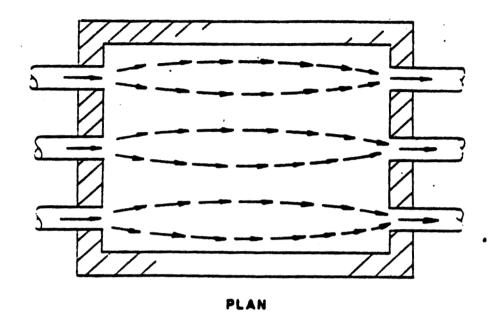
achieved because of the effect of dead space. Conversely, the T_{10}/T values shown for the intermediate baffling conditions already incorporate the effect of the dead space zone, as well as the plug flow zone, because they were derived empirically rather than from theory.

As indicated in Table C-5, <u>poor</u> baffling conditions consist of an unbaffled inlet and outlet with no intra-basin baffling. <u>Average</u> baffling conditions consist of intra-basin baffling and either a baffled inlet or outlet. <u>Superior</u> baffling conditions consist of at least a baffled inlet and outlet, and possibly some intra-basin baffling to redistribute the flow throughout the basin's cross-section.

The three basic types of basin inlet baffling configurations are: a target-baffled pipe inlet, an overflow weir entrance, and a baffled submerged orifice or port inlet. Typical intra-basin baffling structures include: diffuser (perforated) walls; launders; cross, longitudinal, or maze baffling to cause horizontal or vertical serpentine flow; and longitudinal divider walls, which prevent mixing by increasing the length-to-width ratio of the basin(s). Commonly used baffled outlet structures include free-discharging weirs, such as sharpcrested and V-notch, and submerged ports or weirs. Weirs that do not span the width of the contact basin, such as Cipolleti weirs, should not be considered baffling as their use may substantially increase weir overflow rates and the dead space zone of the basin.

C.2.3 Examples of Baffling

Examples of these levels of baffling conditions for rectangular and circular basins are explained and illustrated in the following section. Typical uses of various forms of baffled and unbaffled inlet and outlet structures are also illustrated.


The plan and section of a rectangular basin with <u>poor</u> baffling conditions, which can be attributed to the unbaffled inlet and outlet pipes, is illustrated on Figure C-5. The flow pattern shown in the plan view indicates straight-through flow with dead space occurring in the regions between the individual pipe inlets and outlets. The section view reveals additional dead space from a vertical perspective in the upper inlet and lower outlet corners of the contact basin. Vertical mixing also occurs as

bottom density currents induce a counter-clockwise flow in the upper water layers.

The inlet flow distribution is markedly improved by the addition of an inlet diffuser wall and intra-basin baffling as shown on Figure C-6. However, only average baffling conditions are achieved for the basin as a whole because of the inadequate outlet structure -- a Cipolleti weir. The width of the weir is short in comparison with the width of the basin. Consequently, dead space exists in the corners of the basin, as shown by the plan view. In addition, the small weir width causes a-high weir overflow rate, which results in short circuiting in the center of the basin.

Superior baffling conditions are exemplified by the flow pattern and physical characteristics of the basin shown on Figure C-7. The inlet to the basin consists of submerged, target-baffled ports. This inlet design serves to reduce the velocity of the incoming water and distribute it uniformly throughout the basin's cross-section. The outlet structure is a sharpcrested weir which extends for the entire width of the contact basin. This type of outlet structure will reduce short circuiting and decrease the dead space fraction of the basin, although the overflow weir does create some dead space at the lower corners of the effluent end. These inlet and outlet structures are by themselves sufficient to attain superior baffling conditions; however, maze-type intra-basin baffling was included as an example of how this type of baffling aids in flow redistribution within a contact basin.

The plan and section of a circular basin with <u>poor</u> baffling conditions, which can be attributed to flow short circuiting from the center feed well directly to the effluent trough is shown on Figure C-8. Short circuiting occurs in spite of the outlet weir configuration because the center feed inlet is not baffled. The inlet flow distribution is improved somewhat on Figure C-9 by the addition of an annular ring baffle at the inlet which causes the inlet flow to be distributed throughout a greater portion of the basin's available volume. However, the baffling conditions in this contact basin are only <u>average</u> because the inlet center feed arrangement does not entirely prevent short circuiting through the upper levels of the basin.

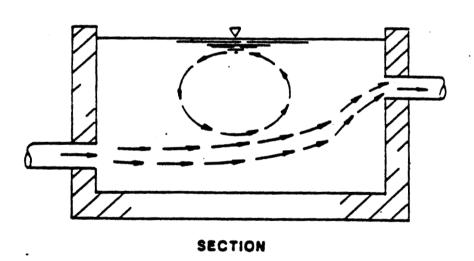
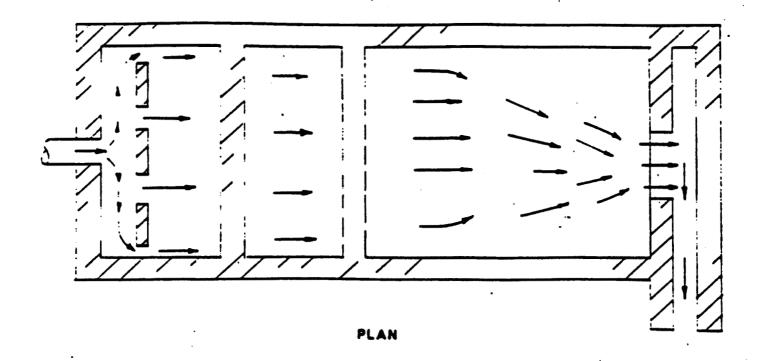



FIGURE C-5 POOR BAFFLING CONDITIONS -- RECTANGULAR CONTACT BASIN

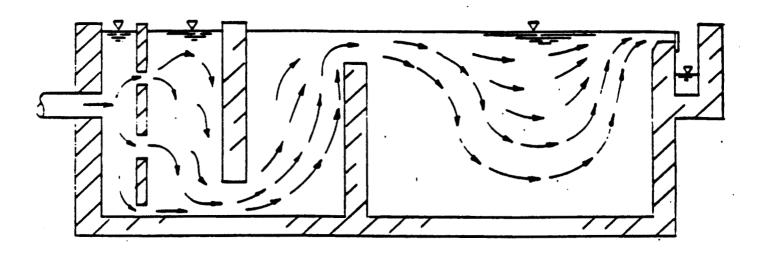
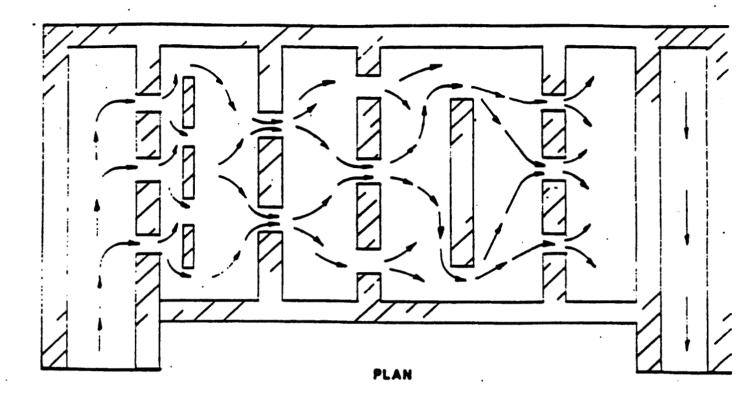



FIGURE C-6 AVERAGE BAFFLING CONDITIONS -- RECTANGULAR CONTACT BASIN

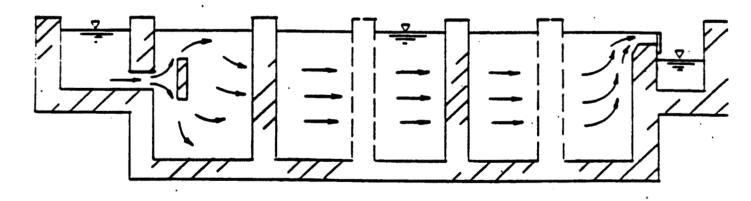
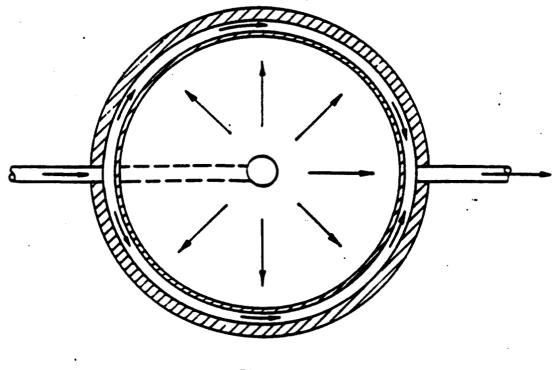



FIGURE C-7 SUPERIOR BAFFLING CONDITIONS -- RECTANGULAR CONTACT BASIN

PLAN

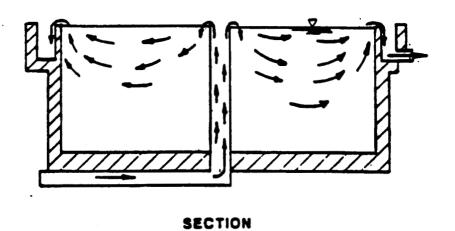
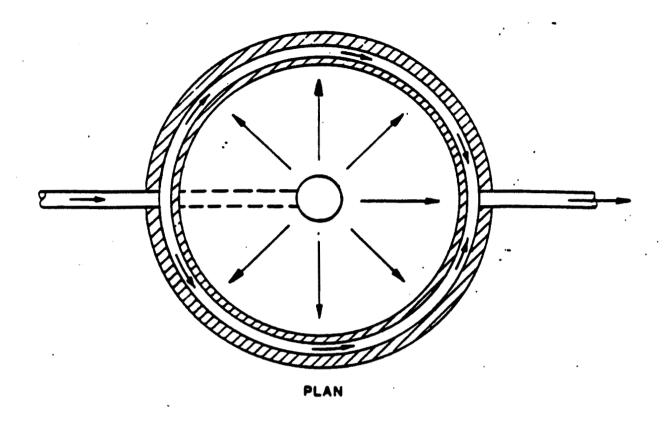



FIGURE C-8 POOR BAFFLING CONDITIONS --CIRCULAR CONTACT BASIN

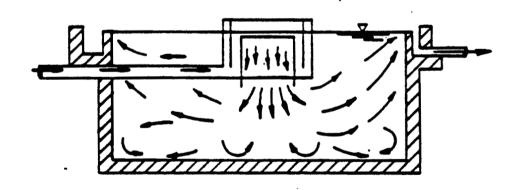


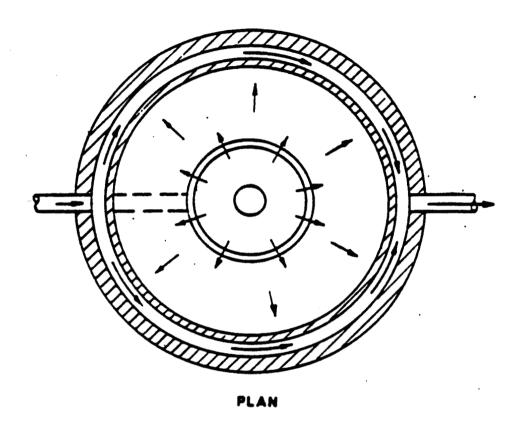
FIGURE C-9 AVERAGE BAFFLING CONDITIONS - - CIRCULAR CONTACT BASIN

Superior baffling conditions are attained in the basin configuration shown on Figure C-10 through the addition of a perforated inlet baffle and submerged orifice outlet ports. As indicated by the flow pattern, more of the basin's volume is utilized due to uniform flow distribution created by the perforated baffle. Short circuiting is also minimized because only a small portion of flow passes directly through the perforated baffle wall from the inlet to the outlet ports.

C.2.4 Additional Considerations

Flocculation basins and ozone contactors represent water treatment processes with slightly different characteristics from those presented in Figures C-5 through C-10 because of the additional effects of mechanical agitation and mixing from ozone addition, respectively. Studies by Hudson (1975) indicated that a single-compartment flocculator had a T_{10}/T value less than 0.3, corresponding to a dead space zone of about 20 percent and a very high mixed flow zone of greater than 90 percent. In this study, two four-compartment flocculators, one with and the other without mechanical agitation, exhibited T_{10}/T values in the range of 0.5 to 0.7. This observation indicates that not only will compartmentation result in higher T10/T values through better flow distribution, but also that the effects of agitation intensity on T_{10}/T are reduced where sufficient Therefore, regardless of the extent of agitation, baffling exists. baffled flocculation basins with two or more compartments should be considered to possess average baffling conditions $(T_{10}/T=0.5)$, whereas unbaffled, single-compartment flocculation basins are characteristic of poor baffling conditions $(T_{10}/T = 0.3)$.

Similarly, multiple stage ozone contactors are baffled contact basins which show characteristics of average baffling conditions. Single stage ozone contactors should be considered as being poorly baffled. However, circular, turbine ozone contactors may exhibit flow distribution characteristics which approach those of completely mixed basins, with a T_{10}/T of 0.1, as a result of the intense mixing.


In many cases, settling basins are directly connected to the flocculators. Data from Hudson (1975) indicates that poor baffling conditions at the flocculator/settling basin interface can result in

backmixing from the settling basin to the flocculator. Therefore, settling basins that have integrated flocculators without effective inlet baffling should be considered as poorly baffled, with a T_{10}/T of 0.3, regardless of the outlet conditions, unless intra-basin baffling is employed to redistribute flow. If intra-basin and outlet baffling is utilized, then the baffling conditions should be considered average with a T_{10}/T of 0.5.

Filters are special treatment units because their design and function is dependent on flow distribution that is completely uniform. Except for a small portion of flow which shortcircuits the filter media by channeling along the walls of the filter, filter media baffling provides a high percentage of flow uniformity and can be considered superior baffling conditions for the purpose of determining T_{10} . As such, the T_0 value can be obtained by subtracting the volume of the filter media, support gravel, and underdrains from the total volume and calculating the theoretical detention time by dividing this volume by the flow through the filter. The theoretical detention time is then multiplied by a factor of 0.7, corresponding to superior baffling conditions, to determine the T_{10} value.

C.2.5 Conclusions

The recommended T_{10}/T values and examples are presented as a guideline for use by the Primacy Agency in determining T_{10} values in site specific conditions and when tracer studies cannot be performed because of practical considerations. Selection of T_{10}/T values in the absence of tracer studies was restricted to a qualitative assessment based on currently available data for the relationship between basin baffling conditions and their associated T_{10}/T values. Conditions which are combinations or variations of the above examples may exist and warrant the use of intermediate T_{10}/T values such as 0.4 or 0.6. As more data on tracer studies become available, specifically correlations between other physical characteristics of basins and the flow distribution efficiency parameters, further refinements to the T_{10}/T fractions and definitions of baffling conditions may be appropriate.

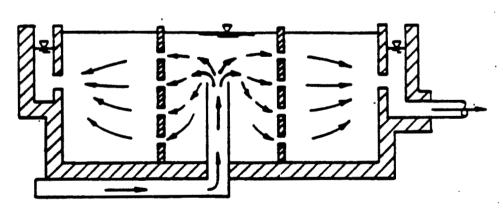


FIGURE C-10 SUPERIOR BAFFLING CONDITIONS - - CIRCULAR CONTACT BASIN

References

Hudson, H. E., Jr.: "Residence Times in Pretreatment", J. AWWA, pp. 45-52, January, 1975.

Hudson, H. E., Jr.. <u>Water Clarification Processes: Practical Design and Evaluation</u>, Van Nostrand Reinhold Company, New York, 1981.

Levenspiel, O.. Chemical Reaction Engineering, John Wiley & Sons, New York, 1972.

Marske, D. M. and Boyle, J. D.. "Chlorine Contact Chamber Design - A Field Evaluation", Water and Sewage Works, pp. 70-77, January, 1973.

Thirumurthi, D.. "A Break-through in the Tracer Studies of Sedimentation Tanks", J. WPCF, pp. R405-R418, November, 1969.

APPENDIX C:

CONCENTRATING, PROCESSING, DETECTING AND IDENTIFYING GIARDIA CYSTS IN WATER

The following pages contain background information supporting Jay Vasconcelos' talk, "Methods of Testing for Grandia in Water." Please see the summary of this talk (pp.14 through 16) for further information, and for an outline of the modified EPA Consensus Method.

	*1ETHOD	INVESTIGATOR (S)	RESULTS
1.	Membrane Filtration		••
	Cellulosic (47mm-0.45µm)	Chang and Kabler USPHS, 1956	Generally unsuccessful
	Polycarhinate (293mm-5µm)	Pyper, DuFrain and Henry Eng 1982, (unpublished)	Passing 1 gal/min at 10-PSI. 15-1800 gal total
2.	Particulate Filtration (diatomaceous earth, sand, etc.)	Shaw et al, 1977 Juranek, 1979	Generally good removal but poor eluation
3.	Algae (Foerst) Centrifuge	Holman et al, 1983 DHHS, Washington	Good rapid recovery, but limited in field use
4.	Anionic and Cationic Exchange Resins	Brewer, Wright State UN. (unpublished)	Generally unsuccessful .
5.	Epoxy-Fiherglass Balston Tube Filters (10"-8µm)	Riggs, CDHS Lab, Berkley, CA (unpublished)	Overall recovery 20-80 percent
۴.	Microporous Yarnwoven Depth. Filters The And Dum orlon and polyprolylene)	Jakubowski, Erickson, 1979 and 1980, EPA-Cincinnati	Recovery 3-15 percent Extraction ave. 58 percent
7.	Pellican Cassette System	Millipore Corp. (unpublished)	May be useful for processing filter washings
8.	Filterwashing Apparatus	DuWalle, U. of Wash., 1982 (unpublished)	Claims 75 percent recovery from orlon filters

PRIMARY COMCENTRATION AND PROCESSING METHODS

1. MEMBRANE FILTER (MF) METHODS

a. Celulosic (mixed esters of cellulose)

- Chang and Kabler in 1955
 First to use MF for cyst recovery. Recovered 20-42 percent at cyst concentration of 3, 5, and 10 cyst/gal. no cyst found at 1 cyst/gal.
- Method was used in 1965 Colorado outbreak (Moore, et al, 1969) using 2 liter size water samples from 10 sites. No cysts were detected. Use of cellulosic filters have generally not been successful in demonstrating cysts in drinking water.

b. Polycarbonate (PC) Filters

- 1. Luchtel and Golleages in 1980 used 293 mm, 5.0 um pore size nucleopore (PC) filters to concentrate formalin-fixed. G. lamblia cysts from 20 L tap water samples. Recovery rates of approximately 75 percent were reported.
- Pyper of DuFrain and Henry Engineers claim good recovery with same nucleopore filter at a flow rate of 1 gal./min., not over 10 PSI, passing 15-1800 gal. in just over 24 hours.
- c. Even with these claims by Pyper and Luchtel, the MF Method has only once (Aspen, 1965) been successful in demonstrating cysts in water--probably because:
 - 1. Inability to process a sufficient volume.
 - Inability to remove systs from filter.
 - Cysts weren't present at time of sampling during or after outbreak.

· 2. PARTICULATE FULTRATION

- a. SAMD CDC (Shaw, 1977) used high-vol filtration through swimming pool sand filter (280,000 gal. total over 10 days) was backflushed into 55 gal. drums and coagulated w/alum. Concentration fed to beagle puppies and after treatment (cheesecloth to wire screening to 30 µm MF to centrifuge) was examined microscopically. First time cysts observed in water supply after concentration.
- b. Diatomaceous earth (DE) CDC (Juranek, 1979) used DE to remove cysts from seeded water. Problem was that cysts couldn't be removed from DE particles. Brewer (1983) claims 5.2-31.1 percent recovery from DE backwash. Retention through 3 forms (celite 505, HyFlo-Superce) and celite 550) at cyst concentration ranging from 6-16,000 cyst/L. Figurery range between 66-100 percent.

?. A'.GAE CENTRIFUGE

- a. Was found to recover more cysts (10X) than a series of MF-filters and nylon screens: 5 vs. 1 day by MF.
- b. May be impractical in field because of power requirement.
- c. If used in lab, 1 large single sample collected in the field could miss cyst.

生

d. May find application for concentration cysts from orlon filter washings.

4. ANIONIC AND CATIONIC EXCHANGE RESINS (Brewer - unpublished)

- a. Based on hypothesis that cysts could be attracted to charged surfaces, cysts have a charge of approximately 25mV at pH 5.5 which increases in electro-negativity as the pH rises to 8.0.
- b. Charge attraction techniques have been used for concentration of both bacteria and viruses in water.
- c. Five exchange resins were tested:
 - (1. 40 percent recovery from anionic Dowex 1-XY columns
 - (2. 38 percent recovery from cationic Dowex 50W-X8 columns
- d. Compared to parallel tests w/diatomaceous earth, exchange resins less efficient in retention.

5. BALSTON EPOYY-FIBERGLASS TUBE FILTERS

- a. Riggs of CSHD, Viral and Rick. Lab., can filter 500 gallons drinking water thru 10" 8 µm Balston tube filter.
- b. Backflushes w/1 L 3 percent beef extract or solution of 0.5 percent potassium citrate.
- c. Concentration is centrifuged w/40 percent potassium citrate and middle layer filtered thru $5~\mu$ polycarbonate filters.
- d. Uses direct immunofluorescence antibody technique for detection and identification.
- e. Claims 20-80 percent efficiency in collection, preprocessing and ID.

6. MICROPOROUS YARNHOVEN DEPTH FILTERS

- a. In 1976 EPA developed a concentration-extraction method involving Targe volumes of water thru microporous yarnwoven orlon-fiber filters.
- b. This method has been tenatively adopted as the "method of choice" "" concentrating cysts from water supplies.

- c. Since initial studies which showed only 3-15 percent recovery with a mean of 6.3 percent and a 58 percent extraction rate, several changes have been made which may have increased the retention rate to >20 percent.
 - 1. Gone from 7 to 1 µm porsity filter
 - 2. Limited the rate of flow to 1/2 gallon/min
 - Limited the pressure head to 10 PSI
 - 4. Have gone to polyproylene filters in lieu of orlon
- d. It was the first method successfully used to detect cysts in the distribution system of a community water supply.
- e. Is the recommended filter to be used by the EPA consensus method.

7. PELLICAN CASSETTE SYSTEM

- a. Is a plate and frame style holder which accepts both ultra thin and depth type filters.
- h. Has from 0.5 to 25 ft² of filter area.
- c. Has not been investigated thoroughly but has had some success in virus concentration.
- d. Its main application for cyst recovery may lay with the processing of filter washings.

8. FILTERWASHING APPARATUS

- a. This is a proposed device by DuWalle, 1982 from U. of W., for unwinding the fibers from the filter cartridge while repeatedly brushing and squeezing them while in a bath solution.
- 5. Bath could contain either a surfactant or pH controlled solution.
- c. Potential claims are as high as 75 percent extraction of cysts from the fibers.

	TABLE 2:	DETECTION METHODS	•
	METHOD	INVESTIGATOR(S)	RESULTS
	1. Immunofluorescence a. DFA	Riggs, CSDHS Lab, Berkley, CA 1983	Good prep Cross Rx
•	b. IFA	Sauch, EPA-Cincinnati Riggs, CSDS	Still under study
	c. Monoclonal Antibodies	Riggs, CSDHS Sauch, EPA-Cincinnati (unpublished)	Still under study
C4)	2. ELISA Method	Hungar, J. Hopkins MD, 1983	Feces samples only
U4 /	3. Brightfield/Phase Contrast	EPA Consensus method	Ongoing

DETECTION METHODS

1.a. DIRECT FLUORESCENT ANTIBODY (DRA) TECHNIQUE

- 1. Riggs has produced a high titer purified immune sera to <u>Giardia lamblia</u> cysts in guinea pigs and laheled it with Fluorecein isothio cyanate. Sera is purified thru NH₄OH and DEAE sefadex fractionation.
- 2. Obtained cross reactions with <u>Chilomastix mesnili</u> cysts but claims it can be easily distinguished from <u>Giardia</u> by its smaller size.

1.b. INDIRECT FLUORESCENT ANTIBODY (IFA) TECHNIQUE

- Sauch using IFA with immune sera from rabbits (unpurified). It is reacted with commercially available fluorescent-labeled goat anti-rabbit gamma globulin.
- 2. Some cross-reactions with certain algal cells.

1.c. MONOCLONAL ANTIBODIES

- 1. Using clones of hybridoma cell lines obtained by fusing mouse myeloma cells with spleen cells from mice (BALB/c) immunized with <u>G. lamblia</u> trophozoites.
- Produced eight monoclonal antibodies evaluated by IFA against both trophs and cysts.
 - a. 3/8 stained the ventral disk
 - b. 2 stained the nuclei
 - c. 2 stained cytoplasmic granules
 - d. 2 stained membrane components.
- 3. Variability in staining may be due to differences in stages of encystment.
- 4. Preliminary results indicate nonoclonal ABs may give rapid and specific ID of cysts.
- 5. Rx may be too specific, not reacting with all human forms of \underline{G} . lamblia may have to go to polyclonal ABs.

2. ELISA METHOD

- a. Hungar at John Hopkins (unpublished) has produced a detection method by ELISA using a intact "sandwich" technique in 96-well microtiter plates.
- b. Using antisera from 2 different animals (may present problem).
- c. Need a minimum of 12 cysts/well for color Rx.

APPENDIX D

ANALYTICAL REQUIREMENTS OF THE SWTR AND A SURVEY OF THE CURRENT STATUS OF RESIDUAL DISINFECTANT MEASUREMENT METHODS FOR ALL CHLORINE SPECIES AND OZONE

APPENDIX D ANALYTICAL REQUIREMENTS

Only the analytical method(s) specified in the SWTR, or otherwise approved by EPA, may be used to demonstrate compliance with the requirements of the SWTR. Measurements of pH, temperature, turbidity, and residual disinfectant concentrations must be conducted by a party approved by the Primacy Agency. Measurements for total coliforms, fecal coliforms, and heterotrophic bacteria as measured by the heterotrophic plate count (HPC), must be conducted by a laboratory certified by the Primacy Agency or EPA to do such analysis. Until laboratory certification criteria are developed for the analysis of HPC and fecal coliforms, any laboratory certified for total coliform analysis is acceptable for HPC and fecal coliform analysis. The test methods to be used for various analyses are listed below:

- (1) Fecal coliform concentration Method 908C (MPN Procedure), 908D (Estimation of Bacterial Density), or 909C (Membrane Filter Procedure) as set forth in <u>Standard Methods for the Examination of Water and Wastewater</u>, American Public Health Association, 16th edition.
- (2) Total coliform concentration Methods 908A, B, D (MPN Procedure) or 909A, B (Membrane Filter Procedure) as set forth in Standard Methods for the Examination of Water and Wastewater, American Public Health Association, 16th edition; Autoanalysis Colilert (EPA refers to this as Minimal Medium ONPG-MUG Method), as set forth in Applied and Environmental Microbiology, American Society for Microbiology, Volume 54, No. 6, June 1988. pp. 1595-1601.
- (3) Heterotorphic Plate Count Method 907A (Pour Plate Method), as set forth in <u>Standard Methods for the Examination of Water and Wastewater</u>, American Public Health Association, 16th edition.
- (4) Turbidity Method 214A (Nephelometric Method) as set forth in Standard Methods for the Examination of Water and Wastewater, American Public Health Association, 16th edition.
- (5) Residual disinfectant concentration Residual disinfectant concentrations for free chlorine and combined chlorine must be measured by Method 408C (Amperometric Titration Method), Method 408D (DPD Ferrous Titrimetric Method), Method 408E (DPD Colormetric Method), or Method 408F (Leuco Crystal Violet

Method) as set forth in Standard Methods for the Examination of Water and Wastewater, American Public Health Association, 16th edition. Disinfectant residuals for free chlorine and combined chlorine may also be measured by using DPD colorimetric test kits if approved by the Primacy Agency. Disinfectant residuals for ozone must be measured by the Trisulfonate Method (Bader, H., Hoigne, "Determination of Ozone in Water by the Indigo Method; A Submitted Standard Method;" Ozone Science and Engineering, Vol. 4, pp. 169-176, Pergamon Press Ltd., 1982), or automated methods which are calibrated in reference to the results obtained by the Indigo Trisulfonate Method, on a regular basis, as determined by the Primacy Agency. This method is described in section of the manual. (Note: This method is included in the 17th edition of <u>Standard Methods for the</u> Examination of Water and Wastewater, American Public Health Association; the Idiodometric Method in the 16th edition may not be used.) Disinfectant residuals for chlorine dioxide must be measured by Method 410B (Amperometric Method) or Method 410C (DPD Method) as set forth in Standard Methods for the Examination of Water and Wastewater, American Public Health Association, 16th edition.

- (6) Temperature Method 212 as set forth in <u>Standard Methods for the Examination of Water and Wastewater</u>, American Public Health Association, 16th edition.
- (7) pH Method 423 as set forth in <u>Standard Methods for the Examination of Water and Wastewater</u>, American Public Health Association, 16th edition.

References

Edberg et al, "National Field Evaluation of a Defined Substrate Method for the Simultaneous Enumeration of Total Coliforms and <u>Escherichia Coli</u> from Drinking Water: Comparison with the Standard Multiple Tube Fermentation Method," Applied and Environmental Microbiology, Volume 54, pp. 1595-1601, June 1988.

PREFACE

disinfectant measurement method for all chlorine species and ozone" will be included in the final document. It has not been included here for the However, the publication is available from the AWWA The AWWA paper entitled "A survey of the current status of residual Customer Services Department, 6666 W. Quincy Avenue, Denver, Co. 80235; Telephone (303) 794-7711. The document publication number is 90529. sake of brevity.

This document is also available from the The above publication summarizes the AWWA Research foundation's 816 page publication entitled " Disinfectant Residual Measurement Methods", customer services department listed above. publication number 90528.

A SURVEY OF THE CURRENT STATUS OF RESIDUAL DISINFECTANT MEASUREMENT METHODS FOR ALL CHLORINE SPECIES AND OZONE

by

Gilbert Gordon
Department of Chemistry
Miami University
Oxford, OH 45056

William J. Cooper Drinking Water Résearch Center Florida International University Miami, Florida 33199

> Rip G. Rice Rice, Incorporated Ashton, Maryland 20861

Gilbert E. Pacey Department of Chemistry Miami University Oxford, Ohio 45056

Prepared for:

AWWA Research Foundation 6665 W. Quincy Avenue Denver, CO 80235

November 1987

Published by the American Water Works Association

DISCLAIMER

This study was funded by the American Water Works Association Research Foundation (AWWARF). AWWARF assumes no responsibility for the content of the research study reported in this publication, or for the opinions or statements of fact expressed in the resort. The mention of tradenames for commercial products does not represent or imply the approval or endorsement of AWWARF. This report is presented solely for informational purposes.

Although the research described in this document has been funded in part by the United States Environmental Protection Agency through a Cooperative Agreement, CR-811335-01, to AWWARF, it has not been subjected to Agency review and therefore does not necessarily reflect the views of the Agency and no official endorsement should be inferred.

Copyright > 1987
by
American Water Works Association Research Foundation
Printed in U.S.

FOREWORD

This report is part of the on-going research program of the AWWA Research Founcation. The research described in the following pages was funded by the Founcation in behalf of its members and subscribers in particular and the water supply industry in general. Selected for funding by AWWARF's Board of Trustees, the project was identified as a practical, priority need of the incustry. It is hoped that this publication will receive wide and serious attention and that its findings, conclusions, and recommendations will be applied in communities throughout the United States and Canada.

The Research Foundation was created by the water supply industry as its center for cooperative research and development. The Foundation itself does not conduct research; it functions as a planning and management agency, awarding contracts to other institutions, such as water utilities, universities, engineering firms, and other organizations. The scientific and tachnical expertise of the staff is further enhanced by industry volunteers who serve on Project Advisory Committees and on other standing committees and councils. An extensive planning process involves many hundreds of water professionals in the important task of keeping the Foundation's program responsive to the practical, operational needs of local utilities and to the general research and development needs of a progressive industry.

All aspects of water supply are served by AWWARF's research agenca: resources, treatment and operations, distribution and storage, water quality and analysis, economics and management. The ultimate purpose of this effort is to assist local water suppliers to provide the highest possible quality of water, economically and reliably. The Foundation's Trustees are pleased to offer this publication as contribution toward that end.

This project raviewed all disinfectant residual measurement methods for free chlorine, chloramines, ozone and chlorine dioxide with special attention to interferences that could be experienced by the water utility industry. Recommendations, practical guidance, and cautions on the selection of appropriate residual measurement techniques are summarized (Please see Preface for information on full report).

::i

versme d. dilbert

Chairman, Board of Trustees AWWA Research Foundation James F. Manwaring, P.E.

Trecutive Director
AWWA Research Foundation

PREFACE

This document summarizes the AWWA Research Foundation's 815 page publication "Disinfectant Residual Measurement Methods." That publication (Publication Number 90523) can be ordered from the AWWA Customer Services Department, 6566 W. Quincy Avenue, Denver, CD 80235; telephone, (303) 794-7711.

The purpose of this summary document is to provide the water utility laboratory analyst with guidance in selecting disinfectant residual measurement methods. Either this document or the full report is recommended as a companion to Standard Methods for the Examination of Water and Wastewater.

ACXNOWLEDGEMENTS

The authors wish to express their appreciation to the American Water Works Association - Research Foundation for the opportunity to carry out this detailed review of the literature.

Furthermore, the authors would like to pay tribute to the really important people -- all those who did the original work and made this secondary source of information possible.

Finally, the authors wish to express their appreciation to the memoers of the Project Advisory Committee:

- Mark Carter, Ph.D.
 Rocky Mountain Analytical Laboratories
- 2) J. Donald Johnson, Ph.D. University of North Carolina
- 3) Lacwn A. Moore
 Drinking Water Research Division--EPA
- 4) R. Rhodes Trussell, Ph.D.
 James M. Montgomery Consulting Engineers, Inc.

G.G.

W.J.C.

R.G.R

G.E.P.

EXECUTIVE SUMMARY

BACKGROUND

The objective of this Report is to review and summarize all disinfectant residual measurement techniques currently available for free chlorine (along with the various chloramines), combined chlorine, chlorite ion, chlorine dioxide, and ozone. chlorate ion.

to chlorine disinfection (1). The analytical chemistry for these when compared with chlorine is even more complex and less readily Carried and ozone are gaining considerable favor research (2-5) and detailed evidenced by various surveys dioxide out in various laboratories (6-10). chlorine both Presently. disinfectants understood as alternatives

thloric acid (11-12). Consequently, chlorace fon, chlorite fon and/or hypochlorous acid frequencly will be found occur-or unreacced starting materials. These materials are strong chlorate ion, chlorine gas and/or hypochlorite ion and suiat the site of its use by reactions involv-WAYS Bany ü ring as by-products or unreacted starting materials. agents which are very reactive and behave furic acid or hydrochloric acid (11-12). dioxide is manufactured chlorine dioxide itself. ing sodium chlorite. hypochlorite Chlorine oxidizing ion.

today using ozone, and less faction. The large majorplane. for residual ozone in warer are applicable in the ozone contactor(s) or at their ozone is never present in the distribution system; however, Yany use ozone as a chemical oxidant. Many iion also are using ozone, in the same a chemical oxidant. of them are applying ozone solely for disinfection. Jacer treatment plants use ozone as a chemical oxi more than 2,000 vacer treatment plants in che disinfection Analyses in the treatment plant, either ozone for oxidation. its by-produces may be. Residual lancs applying VACET chemical Are than half outlets. only for

analytical often suggestions for the improvement of test procedures have liceracure to be available. This Report is sined at providing such a review along There have been numerous attempts to evaluate the relative advantages and disadvantages associated with the measurement of free and combined chlorine. Different criteria are frequently used for the evaluation of the analytical with guidance and recommendations as to what criteria water utilities should use techniques based on circumstances by category. the ignored. No comprehensive and objective review of in selecting residual monitoring Put. Beasurements gone largely appears

OBJECTIVES

- cechniques available for free chlorine -- taking into account residual measurement and summerize all of chloramines. To review the roles currently ij
- residual measurement techniques combined chlorine To review and summarize all available for currently 7

- 3. To briefly review the present understanding of the chlorineammonia chemistry and in particular, in relationship to the measurement of chlorine and combined chlorine.
- To review and summarize all residual measurement techniques currently available for chlorine dioxide, chlorite ion and chlorate ion.
- 5. To review and summarize the analytical procedures currently used by operating water utilities to control ozone treatment processes, considering disinfection as well as the many oxidative applications of ozone in water treatment applications.

13

- 6. To discuss common interferences associated with the measurement of each of the disinfectants/oxidants described above (free chlorine, combined chlorine, chlorite ion, chlorine dioxide, chlorate ion, and ozone).
- 7. To provide guidance and recommendation for water utilities in selecting residual monitoring techniques for each of the above disinfectants/oxidants.
- 8. To recommend future research for development of monitoring and analytical methods to improve accuracy, and reduce time and cost requirements for the measurement of the above disinfectants.

In the full report, we present as complete as possible an examination of the world-wide body of literature on analytical methods used by the water utility industry in order to elaborate on the various problems, advantages, disadvantages and known interferences for each of the currently used analytical methods.

Foremost in our objectives has been a better understanding of the reliability of various measurements which have been carried out. Since there are inherent limitations in all measurements, it becomes apparent that there are specific needs for some indication of the reliability of the result, i.e., what is the precision and accuracy of the reported value, and are these acceptable?

The volatility of most of the disinfectants makes sampling and sample handling a major contributor to imprecision and inaccuracies. "Standard additions" is a questionable technique; it should be avoided if possible, since the pipetting and dilution process causes potential loss of disinfectant.

The relative usefulness of each method, along with descriptions of known interferences such as turbidity, organic matter, ionic materials, solids, color, buffering capacity, as well as the nature of the sample and the time between collection of the sample and the actual analysis, are described in this report. It must be emphasized, however, that almost invariably each of the methods described is based on the total oxidizing capacity of the solution being analyzed and is readily subject to interferences from the presence of other potential oxidizing agents and/or intermediates from concomitant chemical reactions. Under ideal conditions some of the methods are accurate to better

than ±1%--especially in the absence of common interferences--whereas other methods are almost semi-quantitative in nature with many common species interfering with both the precision and accuracy of the measurements.

We have also included chlorate ion as a residual species in that only recently have reliable analytical methods begun to appear in the literature (5.6.10). We also report on the chemistry of the chlorine-ammonia system and the associated breakpoint reactions, because one of the most common inteferences in the measurement of free chlorine is monochloramine.

The most important development for this report has been the decision to include a preliminary section describing an "idealized" analytical method. The need for this section became apparent as our writing progressed describing each of the analytical methods for chlorine. Specific items included in this "idealized" method are accuracy, precision, reproduciblity, lack of interferences, ease of use of the method, lack of false positive values, and so forth.

The benefit of the "idealized" analytical method is to allow individual comparisons and to allow the choice between various methods based on individual method shortcomings. For example, a particular method might have as its only difficulty interference by manganese and iron. In many circumstances, this type of interference might be a major problem. However, should the water supply under consideration not have any manganese or iron, it is quite likely that the method might be very usable--and as a matter of fact well might be the best method of choice.

In other cases, speed of analysis rather than potential interferences (or choice of some other important characteristic) might be the guiding factor in choosing an analytical method. In this way rational choices can be made based on potential and/or real difficulties and/or interferences and as compared to an "idealized" method -- rather than a possibly controversial existing method.

Table I has been constructed as a quick reference guide to the available methods for the determination of water disinfection chemicals and byproducts. Included are pertinent analytical characteristics such as detection limits, working range, interferences, accuracy and precision estimates. The current status of the method, as gleaned from this report, is given. The necessary operator skill level is given to aid the laboratory manager in assessing the manpower requirements for a particular method. Additional information concerning the reasons for the current status is contained in the Recommendation Section of the Executive Summary and the complete report.

As each of the methods is described in detail in the full report, specific conclusions are drawn--along with appropriate recommendations--by comparing the method against the "idealized" analytical method for that species.

One additional benefit of this direct comparison is the possibility of adding or subtracting a method to the list of <u>Standard Methods for the Examination of Water and Wastewater</u> (13), based on a rational set of criteria. It should also be possible in the future to decide on the viability of various methods based on their meeting specific criteria rather than based only on comparisons between analytical laboratories (and personalized subjective reactions to the various methods themselves

TABLE I. CHARACTERISTICS AND COMPARISONS OF ANALYTICAL METHODS®

TYPE OF TEST	Species† MEASURED DIRECTLY	DETECTION LIMIT (mg/L)		EXPECTED ACCURACY (± %)	EXPECTED PRECISION (± %)	PEAET SKITT.
FREE CHLORINE			•			
"Ideal"	Cl ₂ + HOC1/OC1-	0.001	0.001 - 10	0.5	0.1	1
UV/VISIBLE	Cl ₂ + HOCl/OCl-	- 1	1 - 100	NR	NR	3
Continuous	C1 ₂ + HOC1/OC1-	1.5	1.5 - 300	NR	. NR	3
AMPEROMETRIC	TITRATION:				•	
Forward	Cl ₂ + HOC1/OC1-	0.0018 ¹ 0.02 - 0.03		nf nf	NF 3 - 50	2 2
Back	Cl ₂ + HOC1/OC1-	0.002	> 10	3 - 50	nf	2
Continuous	C1 ₂ + HOC1/OC1-	0.005	> 10	NR	1.0	2/3
IODOMETRIC TI	TRATION:					
Standard	(Total Chlorine)	0.073	0.1 - 10	NR	nr	2
		0.354	0.5 - 10	NR	NR ·	2
DPD .						
FAS Tit'n	Cl ₂ + HOCl/OCl-	0.0043	0.01 - 10	NF	2 - 7	1
		0.0114	0.01 - 10	NF	2 - 7	1
Color'mtrc	Cl ₂ + HOC1/OC1-	0.015	0.01 - 10	1 - 15	1 - 14	1
Steadifac	Cl ₂ + HOC1/OC1	0.01	0.01 - 10	NF	NR ·	1/2
LCV						
Black and Whittle	Cl ₂ + HOCl/OCl-	0.01	0.25 - 3	NF	NR	. 1
Whittle & Lapteff	Cl ₂ + HOCl/OCl-	0.01	0.25 - 10	NR	0 - 10	2

TABLE I. CHARACTERISTICS (cont'd)

STABI REAGENT	PRODUCTS	INTERFERENCES	pH RANGE	FIELD TEST	AUTOMATED	CURRENT
5 YRS	> 1 DAY	NONE	Independent	YES	YES	RECOMMENDED
NA	NA	ClNH ₂ - Cl ₃ N backgnd Abs	pH Dependent	Ю	NO	RECOMMENDED (LAB TEST)
NA	NA	ClNH ₂ - Cl ₃ N	pH Dependent	NO	YES -	CONT'D STUDY
1-2 yrs 1-2 yrs	NA NA	ClNH ₂ - Cl ₃ N ClNH ₂ - Cl ₃ N	pH Dependent	YES YES	YES YES	RECOMMENDED RECOMMENDED
1-2 yrs	NA	CINH ₂ - Cl ₃ N	pH Dependent	YES	YES .	RECOMMENDED
1-2 yrs	NA	ClNH ₂ - Cl ₃ N	pH Dependent	YES	YES	RECOMMENDED
1 yr	10 min	All oxidizing species	pH Dependent	NO	NO	RECOMMENDED (LAB TEST)
1 yr	10 min or less	All oxidizing species	pH Dependent	NO	МО	RECOMMENDED (LAB TEST)
powder stable ⁶ powder	30 min 30 min	ClNH ₂ - Cl ₃ N oxid species ClNH ₂ - Cl ₃ N	Requires buffer Requires	NO NO	NO NO	RECOMMENDED (LAB TEST) RECOMMENDED
stable ⁴ powder stable ⁴	30 min	oxid species ClNH ₂ - Cl ₃ N oxid species	buffer Requires buffer	YES	МО	(LAB TEST) RECOMMENDED
powder stable	30 min	ClNH ₂ - Cl ₃ N oxid species	Requires buffer	YES	NO	(FIELD TEST) RECOMMENDED (FIELD TEST)
months	NR	ClNH ₂ - Cl ₃ N oxid species	Requires buffer	YES	NO .	ABANDON
months	NR.	Oxidizing species	Buffering	YES	NO	RECOMMENDED (LAB TEST)

TABLE I. CHARACTERISTICS AND COMPARISONS OF ANALYTICAL METHODS® (cont'd)

TYPE OF TEST	Species† MEASURED DIRECTLY	DETECTION LIMIT (mg/L)	RANGE ACC	ECTED URACY ± %)	EXPECTED PRECISION (± %)	TEAET SKITT.
FACTS	•				•	
Color'mtre	Cl ₂ + HOCl/OCl-	0.1	0.25 - 10 5	- 20	1 - 11	1
Spect'photo	C1 ₂ + HOC1/OC1-	0.012	0.05 - 10	NF	NR	1
METHYL ORANGE	Cl ₂ + HOCl/OCl-	NR	NR	NR	NR.	2
O-TOLIDINE	Cl ₂ + HOCl/OCl-	NR	NR	NR ·	NR.	1
3,3'-DIMETHYL	NAPHTHIDINE	-				
	Cl ₂ + HOCl/OCl-	0.05	NR	NR	2 - 6	2/3
O-DIANISIDINE	Cl ₂ + HOC1/OC1-	0.1	NR	NR	श्रह	2/3
CHEMILUMINESC	ENCE					
Hydrogen Peroxide	Cl ₂ + HOCl/OCl-	NR	NR	MR	NR	3
Luminol	oct-	0.0007	NR .	NR	NR	3
Lophine	OCL-	0.14	0.2 - 20	NR	NR	3
ELECTRODE MET	HODS				•	
Membrane	HOCL	0.004	0.04 - 1	NR	1.6	3
Bare-wire	Cl ₂ + HOC1/OC1-	0.1	0.1 - 3	NR	1 - 25	3
Potent'mtrc	Cl ₂ + HOC1/OC1-	0.005	0.01 - 1	l - 6	7 - 10	2
AgI Volt'mtre	Cl ₂ + HOCl/OCl	0.01	0.1 - 10	NR	NR	3

TABLE I. CHARACTERISTICS (cont'd)

7	STAB EAGENT		RODUCTS	INTERFERENCES	pH RANGE	FIELD TEST	AUTOMATED	CURRENT STATUS
	2 years			Oxidizing Cl ₂ species	Buffering critical	YES	NO	RECOMMENDED
	2 years			Oxidizing Cl ₂ species	Buffering critical	YES	мо	RECOMMENDED
	NF		NF	Oxidizing species	Buffering required	YES	NO	ABANDON
	NF		NF	Oxidizing species	Buffering required	YES	МО	ABANDON
	NF	15	-20 min	Oxidizing species	NR	NO	жо	ABANDON
	NF	55	min	Oxidizing species	NR	NO	NO	ABANDON
	NR	<1	sec	None	Independent	NO	POSSIBLE	ABANDON
	NR	<1	sec	Oxidizing species	pH Dependent	NO	POSSIBLE	CONT'D STUDY
	NR	<1	sec	None	pH Dependent	ио	YES	CONT'D STUDY
	NA		NA	Oxidizing Gas species	Dependent POS on pH	SIBLE	POSSIBLE	CONT'D STUDY
	NA		MA	Oxidizing species, Cl	NR POS	SIBLE	POSSIBLE	CONT'D STUDY
3	months		NA	Oxidizing species Cl	pH Dependent	YES	YES	RECOMMENDED
	NA		NA	Oxidizing species, Cl		SIBĹE	POSSIBLE	CONT'D STUDY

TABLE I. CHARACTERISTICS AND COMPARISONS OF ANALYTICAL METHODS® (cont'd)

TYPE OF TEST	Species! MEASURED DIRECTLY	DETECTION LIMIT (mg/L)		EXPECTED ACCURACY (± 1)	EXPECTED PRECISION (± %)	SKILL LEVEL
TOTAL CHLORINE		·				
"Ideal"	Cl ₂ + HOC1/OC1- NH ₂ Cl NHCl ₂ NCl ₃	0.001	0.001 - 1	0 0.5	0.1	1
AMPEROMETRIC	TITRATION:					
Forward .	Cl ₂ + HOC1/OC1- NH ₂ Cl NHCl ₂ NCl ₃ Cl ₂ + HOC1/OC1- NH ₂ Cl NHCl ₂ NCl ₃		> 10 2 > 10	nf nf	NF 3 - 50	2
Back	Cl ₂ + HOCl/OCl- NH ₂ Cl NHCl ₂ NCl ₃	0.002	> 10	3 - 50	NF	2
Continuous	Cl ₂ + HOC1/OC1- NH ₂ Cl NHCl ₂ NCl ₃	0.005	> 10	NR.	1.0	2/3
IODOMETRIC TI	TRATION:					
Standard	Cl ₂ + HOCl/OCl- NH ₂ Cl NHCl ₂ NCl ₃ Cl ₂ + HOCl/OCl- NH ₂ Cl NHCl ₂ NCl ₃	0.073	0.1 - 10 0.5 - 100	NR NR	NR NR	2
DPD	•					•
FAS Tit'n	Cl ₂ + HOCl/OCl ⁻ NH ₂ Cl NHCl ₂ NCl ₃	0.0043	0.01 - 10	NF	2 - 7	1
	Cl ₂ + HOCl/OCl ² NH ₂ Cl NHCl ₂ NCl ₃	0.114	0.01 - 10	NF	2 - 7	1
Color'mtrc	Cl ₂ + HOCl/OCl- NH ₂ Cl NHCl ₂ NCl ₃	0.0015	0.01 - 10	1 15	1 - 14 -	1
LCV						
Black & Whittle	Cl ₂ + HOCl/OCl- NH ₂ Cl NHCl ₂ NCl ₃	0.005	0.25 - 3	n f	4 - 10	1

TABLE I. CHARACTERISTICS (cont'd)

STABI	LITY PRODUCTS			FIELD		CURRENT
REAGENT	FRODUCIS	INTERFERENCES	PH RANGE	TEST	AUTOMATED	STATUS
5 YRS	> 1 DAY	NONE	Independent of pH	YES	YES	RECOMMENDED
1 - 2 yrs	NA	Oxidizing Species	pH Dependent	YES	YES	RECOMMENDED
1 - 2 yrs	NA	Oxidizing Species	pH Dependent	YES	YES	RECOMMENDED
1 - 2 yrs	AK .	Oxidizing Species	pH Dependent	YES	YES	RECOMMENDED
1 - 2 yrs	NA	Oxidizing Species	pH Dependent	YES	YES	RECOMMENDED
1 yr	10 min	All oxidizing species	pH Dependent	. 10	NO	RECOMMENDED (LAB TEST)
1 yr	10 min	All oxidizing species	pH Dependent	NO	NO	RECOMMENDED (LAB TEST)
powder	30 min	Oxidizing	Requires	NO	NO	RECOMMENDED
stable powder stable	30 min	Species Oxidizing Species	buffer Requires	YES	NO	(LAB TEST) RECOMMENDED
powder stable	30 min	Oxidizing Species	buffer Requires buffer	YES	NO	(FIELD TEST) RECOMMENDED (FIELD TEST)
						•
months	NR	Oxidizing Species	Requires buffer	YES	NO	ABANDON

TABLE I. CHARACTERISTICS AND COMPARISONS OF ANALYTICAL METHODS (cont'd)

TYPE OF TEST	Species† MEASURED DIRECTLY	DETECTION LIMIT (mg/L)	RANGE ACC	ECTED URACY ± %)	EXPECTED PRECISION (± %)	SKILL.
Whittle & Lapteff	Cl ₂ + HOC1/OC1 ⁻ NH ₂ Cl NHCl ₂ NCl ₃	0.01	0.25 - 10	NF	4 - 10	2
FACTS	•					
Color'mtrc	Cl ₂ + HOC1/OC1 NH ₂ Cl NHCl ₂ NCl ₃	0.1	0.25 - 10	5 - 20	1 - 11	1
Spect'photo	Cl ₂ + HOC1/OC1- NH ₂ C1 NHCl ₂ NCl ₃	0.012	0.05 - 10	NF	:TR	1
ELECTRODE MET	HODS					
Pot'metric	Cl ₂ + HOCl/OCl- NH ₂ Cl NHCl ₂ NCl ₃		0.01 - 1	1 - 6	7 - 10	2
MONOCHLORAMINE®					•	
"Ideal"	NH ₂ Cl	0.001	0.001 - 10	0.5	0.1	1
UV/VISIBLE	NH ₂ Cl	- 1	1 - 100	NR	NR	3
AMPEROMETRIC 1	CITRATION:	•				•
Forward	NH ₂ Cl	NR	> 10	NF	0 - 10	2
Back	NH ₂ Cl	NR	> 10	nf	nf	2
DPD						
FAS Tit'n	NH ₂ Cl	NR (0.01 - 10	NF	2 - 7	1
Color'mtre	NH ₂ Cl	NR (0.01 - 10	NF	5 - 75	i

TABLE I. CHARACTERISTICS (cont'd)

STAB: REAGENT	PRODUCTS	INTERFERENCES	PH RANGE	FIELD TEST	AUTOMATED	CURRENT
months	NR	Oxidizing Species	Buffering	YES	NO	RECOMMENDEDD (LAB TEST)
2 YRS	30 min at high Cl ₂	Oxidizing Species	Buffering critical	YES	NO .	RECOMMENDED
2 YRS	30 min at high Cl ₂	Oxidizing species	Buffering critical	YES	NO	RECOMMENDED
3 months	NA NA	Oxidizing Species, Cl	pH Dependent	YES	YES	RECOMMENDED
5 YRS	> 1 DAY	NONE	Independent	YES	YES	RECOMMENDED
NA	NA.	Cl ₂ NH - Cl ₃ N backgnd Abs	pH Dependent	NO .	Ю	RECOMMENDED (LAB TEST)
1-2 yrs	.NA	Cl ₂ NH - Cl ₃ N	pH Dependent	YES	YES	RECOMMENDED
1-2 yrs	NA	Cl ₂ NH - Cl ₃ N	pH Dependent	YES	YES	RECOMMENDED
powder stable ⁶ powder stable ⁶	30 min	ClNH ₂ - Cl ₃ N oxid species ClNH ₂ - Cl ₃ N oxid species	Requires buffer Requires buffer	NO YES	NO	RECOMMENDED (LAB TEST) RECOMMENDED (FIELD TEST)

TABLE I. CHARACTERISTICS AND COMPARISONS OF ANALYTICAL METHODS® (cont'd)

TYPE OF TEST (METHOD)	Species! MEASURED DIRECTLY	DETECTION LIMIT (mg/L)		CXPECTED CCURACY (± %)	EXPECTED PRECISION (± %)	EXEL SKILL
LCV .						
Whittle & Lapteff	NH ₂ Cl	NR	0.25 - 10	NF	0 - 43	2
ELECTRODE METHOD)S				•	
Silver iodide Voltammetric	NH₂C1	NR	0.1 - 10	NR	NR	3
DICHLORAMINE®						
"Ideal"	NHC12	0.001	0.001 - 10	0.5	0.1	1
UV/VISIBLE	NHC12	- 1	1 - 100	. NR	NR	3
AMPEROMETRIC TIT	RATION:					
Forward	NHC12	NR	> 10	NF	0	2
Back	NHC12	NR	> 10	3 - 50) NF	2
DPD						
FAS Tit'n	NHC12	NR	0.01 - 10	NF	NF	1
Color'mtre	NHC12	NR	0.01 - 10	NF	0 - 100	1
LCV						
Whittle & Lapteff	NHC12	NR	0.25 - 10	NF	10 - 150	2

TABLE I. CHARACTERISTICS (cont'd)

STAB: REAGENT	PRODUCTS	INTERFERENCES	ph RANGE	FIELD TEST AU	TOMATED	CURRENT
months	N R	Oxidizing species	Requires buffer	YES	NO	RECOMMENDED (LAST EAL)
NA	NA	Oxidizing species	Requires buffer	POSSIBLE .	POSSIBLE	CONT'D STUDY
5 YRS	> 1 DAY	NONE	Independent of pH	YES	YES	CEDNEMMODES
NA.	NA	ClNH ₂ & Cl ₃ N backgnd Abs	pH Dependent	•	NO	RECOMMENDED (LAS TEST)
1-2 yrs	NA	CINH ₂ & Cl ₃ N	pH Dependent	YES	YES	RECOMMENDED
1-2 yrs	NA	ClnH ₂ & Cl ₃ N	pH Dependent	YES	YES	CECCMMENDED
powder stable ⁶ powder stable ⁶	30 min	ClNH ₂ & Cl ₃ N oxid species ClNH ₂ & Cl ₃ N oxid species	Requires buffer Requires buffer	NO YES	ио	RECOMMENDED (LAB TEST) RECOMMENDED (FIELD TEST)
months	NR	Oxidizing species	Requires buffer	YES.	NO	RECOMMENDEDD (LAB TEST)

TABLE I. CHARACTERISTICS AND COMPARISONS OF ANALYTICAL METHODS® (cont'd)

TYPE OF TEST	Species† MEASURED DIRECTLY	DETECTION LIMIT (mg/L)		XPECTED CCURACY (± %)	EXPECTED PRECISION (± %)	SKILL.
Trichloramine°	•					
"Ideal"	NC13	0.001	0.001 - 10	0.5	0.1	1
UV/VISIBLE	NC13	NR	NR	NR.	NR	3
AMPEROMETRIC TI	TRATION:			٠	·• •	
Forward	NC13	NR	> 10	NF	5 - 100	2
DPD			•			
FAS Tit'n	NC1,	NR	0.01.10			_
	. •		0.01 - 10	NR	NR.	1
Color'mtrc	NC1,	· NR	0.01 - 10	MR	ास । -	1
LCV						
Whittle & Lapteff	NC13	NR	0.25 - 10	NR	MR	. 2
CHLORINE DIOXIDE				•	•	
"Ideal"	C10 ₂	0.001	0.001 - 10	0.5	0.1	1
IODOMETRIC	C10 ₂	0.002	0.002 - 95	1 - 2	1 - 2	2
AMPEROMETRIC	Cl0 ₂ 10	0.012	0.02 - ??	1 - 15	1 • 15	3
DPD	C10210-11	0.008	0.008 - 20	10	7 - 15	2
υν						. •
Manual	C10 ₂	0.05	0.05 - 500	5	5	. 2
FIA	C102	0.25	0.25 - 142	2	1	1 .

TABLE I. CHARACTERISTICS (cont'd)

STABI REAGENT	PRODUCTS	INTERFERENCES		FIELD TEST	AUTOMATED	CURRENT STATUS
5 YRS	> 1 DAY	NONE	Independent	YES	YES	RECOMMENDED
NA	NA.	ClNH ₂ - Cl ₂ NH backgnd Abs HOC1/OCL	pH Dependent	NO	.10	RECOMMENDED (LAB TEST)
1-2 yrs	NA	ClNH ₂ - Cl ₂ NH	pH Dependent	NO	YES	RECOMMENDED (LAB TEST)
powder stable	30 min	ClNH ₂ - Cl ₂ NH oxid species	buffer	ЯО	МО	RECOMMENDED (LAB TEST)
powder stable ⁶	30 min	ClNH ₂ - Cl ₂ NH oxid species	Requires buffer	YES	NO	RECOMMENDED (LAB TEST)
months	NR .	Oxidizing species	Requires buffer	YES	NO	RECOMMENDED (LAB TEST)
5 YRS	> 1 DAY	NONE	Independent	YES	YES	RECOMMENDED
1 YR	Subject to oxidation	Oxidizing species	2 - 5	NO	NO	NOT RECOMMENDED
good	Subject to oxidation	Metal ions & nitrite ion	7	NO	NO	CURRENTLY USED
solid stable ⁶	< 30 min	Oxidizing species	7	МО	NO	NOT RECOMMENDED
none	none	Other UV absorbers.	Independent	% 0	YES	RECOMMENDED (LAB TEST)
none	none	none	Independent	NO	YES	RECOMMENDED (LAB TEST)

TABLE I. CHARACTERISTICS AND COMPARISONS OF ANALYTICAL METHODS (cont'd)

TYPE OF TEST	Species† MEASURED DIRECTLY	DETECTION LIMIT (mg/L)	RANGE AC	PECTED CURACY (± %)	EXPECTED PRECISION (± 1)	-SKILL*
ACVK12	C10 ₂ .	0.04	0 - 25	NR	Ν̈́R	1
CHLOROPHENOL RED	C102	0.003	0.003 - 1	10	· 5	1
o-Tolidine	C10 ₂	0.1	NR .	MR	NR.	1
INDIGO BLUE	C10 ₂	0.01	NR	NR	1.5	1
CHEMILUMINESCENCE	. .					
Luminol	C102	0.3	0.3 - 1	NR	8	1
GDFIA13	C10 ₂	0.005	0.005 - 74	2	1	1
ELECTROCHEM.						
Pt Microelec.	C102 + C102-	1.3	NR	7	MR.	2/3
Vit. Carbon	C10 ₂	32	NR ·	NR	· NR	3
Voltam. Mem.	C10 ₂	0.25	NR	NR	NR	2
Rotating Volt. Membrane	ClO ₂	0.30	0.30 - 3	NR	6.4	2/3
CHLORITE ION						
"Ideal"	C10 ₂ -	0.001	0.001 - 10	0.5	0.1	, 1
AMPEROMETRIC	•					
Iodometric	C10 ₂ -	0.05	0.05 - 95	5	5	2
IODOMETRIC	•			•		
Sequential	C10 ₂ -	0.011	> 1	1	1	3
Modified	C10 ₂ -	0.3	0.5 - 20	0.5	1 - 3	3
DPD	C10 ₂ -	0.01	0.01 - 10	5	5	2

TABLE I. CHARACTERISTICS (cont'd)

STAB:	PRODUCTS	INTERFERENCES	PH RANGE	FIELD TEST	AUTOMAT	CURRENT ED STATUS
NR	NR	minimal	8.1 - 8.4	70	NO	CONT'D STUDY
6 months	NR	unknown	7	YES	70	NOT RECOMMENDED
NR	NR	Oxidizing species	NR	%0	ХО	CEGMENMODES TOK
good	good	0, 01,	> 4	МО	МО	CEGREMMODER TOK
1 DAY	< 1 sec	NR	NR	NO	70	NOT RECOMMENDED
1 DAY	< 1 sec	Cl ₂	> 12	Ю	YES	CONT'D STUDY
none	none	C10 ₂ -	5 - 5.5	70	МО .	CONT'D STUDY
none	none	C10 ₂ -	3.5 - 7	NO	ио	CONT'D STUDY
none	none	HOC1	7.8	NO	NO	CONT'D STUDY
none	none	HOC1	5 - 5.5	NO	NO ·	CONT'S STUDY
5 YRS	> 1 DAY	NONE	Independent	YES .	YES	RECOMMENDED
1 YR	Subject to oxidation	Oxidizing species	2 - 5	ио	NO .	NOT RECOMMENDED
good	Subject to oxidation	Metal ions & nitite ion	7	NO	МО	RECOMMENDED AT HIGH CONC.
good	Subject to oxidation	Metal ions & nitite ion	2	NO	NO	CONT'D STUDY
Solid stable	< 30 min	Oxidizing species	7	NO	NO	NOT RECOMMENDED

TABLE I. CHARACTERISTICS AND COMPARISONS OF ANALYTICAL METHODS® (cont'd)

TYPE OF TEST	Species the MEASURED DIRECTLY	DETECTION LIMIT (mg/L)		XPECTED CCURACY (± %)	EXPECTED PRECISION (± %)	ZXILL.
CHLORATE ION					•	•
"Ideal"	C103-	. 0.001	0.001 - 10	0.5	0.1	1
IODOMETRIC						
Sequential	c103-	0.064	> 1	2	-2 - 5	3
Modified .	c10 ₃ -	0.3	0.3 - 20	1	1 - 3	3
FIA	C103-	0.08	0.08 - 0.8	3.5	.	. 2
DPD	C10 ₃ -	0.01	0.01 - 10	5	5	2
OZONE		•				
"Ideal"	0,3	0.01	0.01 - 10	0.5	0.1	:
IODOMETRIC	0,	0.002	0.5 - 100	1 - 35	1 • 2	2
ARSENIC BACK TITRATION	03	0.002	0.5 - 65	1 - 5	1 - 2	2
FACTS	o ₃ .	0.02	0.5 - 5	5 - 20	1 - 5	2
DPD	0,	0.1	0.2 - 2	5 - 20	5	2
INDIGO				Α.		
Spect'photo	0,	0.001	0.011	1	0.5	1
		0.006	0.055	1	0.5	1
		0.1	> 0.3	1	0.5	1

TABLE I. CHARACTERISTICS (cont'd)

STAB REAGENT	PRODUCTS	INTERFERENCES	PH RANGE	FIELD TEST	AUTOMATE	CURRENT STATUS
5 YRS	> 1 DAY	NONE	Independent	YES	YES	RECOMMENDED
good	Subject to oxidation	Metal ions & nitrite ion	7	МО	-	RECOMMENDED AT HIGH CONC.
good	Subject to oxidation	Metal ions & nitrite ion	2	NO	70	YCUTS D'INOD
1 year	1 day	Oxidizing species	< 1	NO		USED AFTER ALL ClO ₂ ClO ₂ GCNE
Solid stable ⁶	< 30 min	Oxidizing species	7	МО	NO	CEGREMOSER TOX
5 YRS	> 1 DAY	none	Independent	YES	YES	RECOMMENDED
1 YR	subject to oxidation	All ozone by products and oxidants	< 2	NO	NO	ABANDON
1 YR	subject to oxidation	Oxidizing species	6.8	NO	70	CONT'D STUDY
2 YRS	no fading first 5 min	Oxidizing species	6.6	NO	NO	NOT RECOMMENDED
Solid stable	< 30 min	Oxidizing species	6.4	МО	NO :	NOT RECOMMENDED
good	good	Cl ₂ , Mn ions Br ₂ I ₂	2	NO	YES	RECOMMENDED
good	good	Cl ₂ , Mn ions Br ₂ I ₂	2	NO	YES	RECOMMENDED
good	good	Cl ₂ , Mn ions Br ₂ I ₂	2	NO	YES	RECOMMENDED

TABLE I. CHARACTERISTICS AND COMPARISONS OF ANALYTICAL METHODS (cont'd)

TYPE OF TEST	Species MEASURED DIRECTLY	DETECTION LIMIT (mg/L)		EXPECTED ACCURACY (± %)	EXPECTED PRECISION (± 1)	SKILL.
INDIGO (cont'd)	•					•
Visual	03	0.1	0.01 - 0.3	1 5	· 5	1
			> 0.1	5	5	1 .
GDFIA	03	0.03	0.03 - 0.4 other rang possible		0.5	2
LCV	0,	0.005	NR	NR.	NR	1
ACVK	0,	0.25	0.05 - 1	NR.	भर	1
o-TOLIDINE	03	NOT QUANT	ITATIVE	NR	::R	. 1
BISTERPYRIDINE	03	0.004	0.05 - 20	2.7	2.1	3
CARMINE INDIGO	0,	< 0.5	NR	NR	MR	1
ELECTROCHEM						
Amperometric	Total oxidants	- 1	NR	5	5	2
Amperometric iodometric	Total Oxidants	- 0.5	NR	5	5	2
Bare electrode	03	0.2	NF	5	5	2
Membrane elect.	0,	0.062	NF	. 5	5	1
Differential Pulse Dropping Mercury	0,	NR	NR	NR	NR	3
Differential Pulse Polar- ography	03	0.003	NR	NR	NR	3
Potentiometric		NR	NR	NR	NR	1

TABLE I. CHARACTERISTICS (cont'd)

STAI REAGENT	PRODUCTS	INTERFERENCES	PH RANGE	FIELD TEST	AUTOMATED	CURRENT STATUS
good	good	Cl ₂ , Mn ions Br ₂ I ₂	2	YES	NO	RECOMMENDED
good	good	Cl ₂ , Mn ions Br ₂ I ₂	2	YES	ИО	RECOMMENDED
good	good	Cl ₂ at > lmg/L	2	%O	YES	COMPARISON STUDIES NEEDED
Stable	Stable	52- 503- Cr*	2	NO	ио	צכנדב כ'דוס
NR	NR	Mn > 1 mg/L Cl ₂ > 10 mg/L	2	70	NO	CONT'D STUDY
NR	NR	Metal ions, NO ₂ -	2	YES	ХО	ABANDON
Good	Good	Cl ₂ .	< 7	NO	YES	RECOMMENDED (LAB TEST)
NR	NR	NR	2	NO	70	צכטדו כידמסי
				,	•	
none	NA	Oxidizing species	2	NO	YES .	RELATIVE MONITORING
1 YR	Subject to oxidation	Oxidizing species	4 - 4.5	NO	NO NO	T RECOMMENDED
none	NR	NR	NR	NO	YES	CONT'D STUDY
none	NR	NR	NR	NO P	OSSIBLE	CONT'D STUDY
none	NR	NR.	NR	NO	NO	RESEARCH LAB
none	NR	NR	4	NO	NO .	CONT'D STUDY
none	NR	NR.	NR	NO	YES	CONT'D STUDY

TABLE I. CHARACTERISTICS AND COMPARISONS OF ANALYTICAL METHODS

TYPE OF TEST . (METHOD)	Species† MEASURED DIRECTLY	DETECTION LIMIT (mg/L)	WORKING RANGE (mg/L)	EXPECTED ACCURACY (± 1)	EXPECTED PRECISION (± 1)	SKILL.
טט	03	0.02	> 0.02	0.514	0.5	1
ISOTHERMAL PRESSURE CHANGE	03	4 x 10-5	4 × 10 ^{-\$} -	10 0.5	0.5	1
OZONE GAS PHASE			,	•	•	
"Ideal"	03	1	1 - 50,000	1	1	1
w	0,	0.5	0.5 - 50,0	00 2	2.5	1/2
Stripping Absorption Iodometry	03	0.002	0.5 - 100	1 - 35	1 - 2	2
Chemiluminescence	03	0.005	0.005 - 1	7	5 .	1/2
Gas phase titrati	on O ₃	0.005	0.005 - 30	8	3.5	2
Rhodamine B/ Gallic Acid	0,	0.001	NR	NR.	5	:
Amperometry	03	NR	NR	NR	NR .	:

for page numbers in the full report, refer to the Alphabetical Index direct determination of the species measured without interferences.

direct determination of the species measured without interferences

^{*} Operator Skill Levels: 1 - minimal, 2 - good technician,

^{3 -} experienced chemist

NA Not applicable

NR Not reported

NF Not found

¹ Using research grade electrochemical equipment

² Using commercial titrator

³ Spectrophotometric endpoint detection

⁴ Visual endpoint detection.

⁵ Using test kit

⁶ Liquid reagent is unstable

⁷ Stablility is very dependent on the purity of the 2-propanol used

TABLE I. CHARACTERISTICS (cont'd)

STAB REAGENT	PRODUCTS	INTERFERENCES	pH RANGE	FIELD TEST	AUTOMATE	CURRENT D STATUS
none	NA	Other Absorber	Independent	МО	YES	ESTABLISH MOLAR ABSORB- TIVITY
none	good	none	Independent	NO	YES	COMPARISON STUDY
none	none	none	Independent .	YES	YES	RECOMMENDED
none	none	none	NA	YES	YES	RECOMMENDED
good	good	SO ₂ NO ₂	NA	YES	NO	ABANDON
stable	< 1 sec	none	NA	YES	YES	RECOMMENDED
stable	stable	none	NA	YES	NO N	OT RECOMMENDED
problems		NR	NA	YES 1	POSSIBLE N	OT RECOMMENDED
none	none	NR.	NA	YES	YES N	OT RECOMMENDED

⁸ Total Chlorine is all chlorine species with +1 oxidation state

⁹ Very little actual work has been carried out on selective determination of chloramines. The values reported are from extrapolated studies that had objectives other than the selective determination of chloramines. Most methods are indirect procedures which are not recommended

¹⁰ Indirect method

^{11 1/5} of ClO₂ determined

¹² Acid chrome violet potassium (ACVK)

¹³ Gas diffusion flow injection analysis (GDFIA)

¹⁴ Based on current molar absorbtivity and proper sample handling tecniques. Current best estimates of molar absorbtivity of 2900-3300 give a possible error of > 10%.

Taken from Gordon, Cooper, Rice, and Pacey, AWWA-RF Review on "Disinfectant Residual Measurements Methods" (1987)

Chapter 4 (Indexed Reference Citations) has been included in this report in order to assist readers in locating particular papers of interest. The 48 categories for chlorine, chloramines, and the oxy-chlorine species, along with the additional 60 categories for ozone, should make the task of finding individual papers of interest considerably less cumbersome. Papers which describe several methods have been included in each of the appropriate categories. All together, the 1,400 references cited in Chapters 1-3 number more than 2,000 individual citations when distributed in the indexed form of Chapter 4.

Chapter 5 is an alphabetical listing of the individual references citations. Finally, a detailed Index has been included in order to assist readers in locating subjects of specific interest. We hope the readers will find these additional chapters as useful as have we in preparing this report.

RECOMMENDATIONS

General Statements on Comparisons.

There have been and will continue to be reports of methods comparison. One of the most important considerations for a method is accuracy, i.e. the ability of the method to determine the correct concentration of a disinfectant in solution. An equally important consideration is precision, i.e. how well does the analytical method reproducibly measure the same concentration. Frequently experiments are conducted to determine the "equivalency" of the methods. From such results, methods may be found to be equivalent, but the only analytical considerations tested were accuracy, as judged by a Referee Method, and precision, judged for each method based on the experimental design.

No considerations were given to specificity or analyst preference. Yet one of the most difficult tasks in the area of disinfection analytical methods development is comparison testing. It is recommended that a protocol be developed to initiate comparison of the disinfectants. This protocol should include all of the factors delineated in the "Ideal Method" and should be undertaken in both laboratory controlled conditions and at selected water treatment plants around the country.

Chlorine Chemistry.

Clearly, the conversion to moles, equivalents, or normality from units of mg/L (as Cl₂) or mg/L (as other oxidants) can easily be confused (and confusing). Our recommendation is that all oxidizing agents be reported in molar units (M) and, if necessary, in mg/L of that oxidizing agent as measured (i.e. mg/L (as Cl₂) or mg/L (as Cl₂) or mg/L (as Cl₂). Furthermore, we recommend that oxidizing equivalents per mole of oxidant be reported to minimize additional potential confusion. For example, when Cl₂ is reduced to Cl₂, this corresponds to one equivalent/mole; on the other hand, when Cl₂ is reduced to Cl₁, this corresponds to five equivalents/mole. A summary of molecular weights and oxidizing equivalents for the various chlorine species, oxychlorine species and ozone is given in Table II.

TABLE II. EQUIVALENT WEIGHTS FOR CALCULATING CONCENTRATIONS ON THE BASIS OF MASS.

Species	Molecular Weight g/mol	Electrons Transferred	Equivalent Weight g/eq
Chlorine	70.906	2	35.453
Monochloramine	51.476	.2	25.738
Dichloramine	85.921	4	21.480
Trichloramine	120.366	. 6	20.061
Chlorine dioxide	67.452	. 1	67.452
Chlorine dioxide	67.452	5	13.490
Chlorite ion	67.452	4	16.863
Chlorate ion	83.451	6	. 13.909
Ozone	47.998	2	23.999
Ozone	47.998	6 .	8.000

Several mechanisms have been proposed for the decomposition of dichloramine, but the complete mechanism at the breakpoint has not been resolved. Clearly, the chemistry is complicated and varies markedly with solution composition. A detailed understanding of the specific reactions involved requires a detailed knowledge of the concentration of all chloramine species in the system.

Nitrogen-containing organic compounds may be present in surface water and ground-vater. Because of analytical complexities, very few detailed studies have been undertaken to determine the individual compounds present and the concentration at which they exist. Kjeldahl nitrogen analysis is used frequently, but this does not provide any detailed information with regard to individual compounds. The area of organic nitrogen and the determination of specific compounds in natural waters is one of the increasing interest and requires considerably more research in characterization and methods development.

Ultraviolet Methods.

In general, because the molar absorptivities are quite low for chlorine and chloramine species, ultraviolet methods are not considered useful in routine monitoring of chlorine residuals. In addition to the low molar absorptivities, there is often background absorbance that may interfere with the measurement in various natural waters. However, these measurements are of use in standardizing the chlorine species in distilled waters and are often used in experimental work

related to chlorine speciation. This method does have considerable potential for the determination of relatively high concentrations of halogens, particularly in relatively clean water. This method might find use in monitoring chlorine species in water treatment plants. However, with a more elaborate multiwavelength spectrophotometer and computer-controlled spectral analysis, it might be possible to analyze several halogens simultaneously.

It is also possible that additional methods using permeable membranes could be developed for the simultaneous determination of chlorine species in aqueous solution. Additional work is necessary in this area. Although the molar absorptivities of the species is not of a magnitude as to lend it to the routine determination of the dilute (less than $10^{-8}\,$ M) chlorine and chlorine-ammonia species, it is potentially helpful in determining the concentration of standard solutions. Absorption spectrophotometric analysis has and will continue to be very important in the area of chlorine chemistry. It can be used in the unambiguous determination of relatively high concentrations of the species in relatively pure water.

Continuous Amperometric Titration Method.

Interferences appear to be reduced using the continuous amperometric method because the reagents are added to the sample just prior to contacting the indicating electrode. Thus, when compared to the amperometric titration, the amount of interference by iodate ion, bromate ion, copper(II), iron(III), and manganese(IV) is reduced by approximately one-tenth. No reports appear to be available in the literature on the determination of mixed oxidants using the amperometric method. Such experiments need to be carried out. In addition, faw experiments have been reported which clearly demonstrate that the electrodes remain uncontaminated for drinking water or waste water systems. In the absence of such comparisons, the accuracy of any electrode procedure may be questionable.

However, the amperometric titration determination of chlorine species remains the standard for routine laboratory measurements. Given proper analyst training and experience, the commercially available instrumentation is sensitive and precise. This method should remain as the method for laboratory use and accuracy comparisons. It requires more analyst experience than colorimetric methods, but can be relied on to give very accurate and precise measurements. It should be noted that care must be exercised when using one titrator for the measurement of both free and combined chlorine. Small quantities of iodide ion can lead to errors when differentiating between free and combined chlorine. Careful rinsing with chlorine demand free water (CDFW) is a must! Additional development of automated back-titration equipment with the goal of lowering the limit of detection and improving the reproducibility would be highly beneficial.

Iodometric Titration Method.

The iodometric titration is useful for determining high concentrations of total chlorine. The most useful range is 1 mg/L (as Cl₂) or greater. It is a common oxidation-reduction titration analytical method and provides a reference procedure for total chlorine. Although not necessarily used routinely, most laboratories use it as a reference method and it is not likely ever to be eliminated from use.

Colorimetric Methods.

It is reported in <u>Standard Methods</u> (13) that nitrogen trichloride can be measured using the DPD method: however, the method has not been confirmed by independent investigations and should be used only as a qualitative method. Additional research is necessary to determine the effectiveness of the DPD method for nitrogen trichloride. The effect of the presence of mercuric chloride in the reagents for minimizing the breakthrough of monochloramine into the free chlorine reading with the DPD method has been shown. It is very important that the addition of mercuric chloride to the buffer be followed to minimize the direct reaction of monochloramine with DPD. This phenomenon is not thoroughly understood. This effect should be studied more thoroughly and the principle may be applicable to all of the colorimetric methods.

The use of thioacetamide was evaluated for monochloramine (using DPD-Steadifac). It was shown under these conditions to eliminate any positive inteference in the free residual measurement. These results are not as yet understood, but the implication is that the chemistry of oxidation is different for monochloramine and free chlorine. These results suggest that more work is necessary to better define the reactions involved, and this may lead to a more usable analytical procedure. This procedure is recommended for use in waters that are suspected to be relatively high in combined chlorine.

The DPD-Ethyl Acetate Extraction Procedure is a modification of the DPD chemistry. The method is based on the oxidation of iodide ion by active chlorine followed by extraction of the iodine species into ethyl acetate. This procedural modification may be of use in the determination of total residual chlorine in both the field and laboratory. Additional work is necessary before it can be used to any great extent. It does not appear to offer substantial advantages to the already well tested colorimetric method for laboratory measurements.

The DPD methods have become the most widely used procedures for the measurement of chlorine. This is not likely to change. The DPD color reagent, in liquid form, has been shown to be quite unstable and is not recommended for use. It is sensitive to oxidation by oxygen and thus requires a control measurement. Clearly, it is better to use dry reagents.

Leuco Crystal Violet, LCV.

No studies have been reported that examine the interference of chlorine dioxide and/or ozone in the LCV method. It is anticipated that these oxidants would interfere in the method, and studies should be conducted to quantify these potential interferents.

Syringaldazine; FACTS.

A study using syringaldazine in a continuous method to differentiate free from combine chlorine has been reported. It was concluded that it could be used and was useful in controlling free chlorination. Further work would have to be conducted to use this or any colorimetric method in continuous analyzers.

Chemiluminescence.

Several papers have appeared that detail the reaction of hydrogen peroxide and hypochlorous acid and the resulting chemiluminescence. The mechanism has been relatively well established and the chemiluminescence is thought to occur as a result of the formation of singlet oxygen. The light emitted is red (635 nm), and occurs most readily in alkaline solution. This reaction is rather insensitive to low concentrations and is not suitable for the determination of hypochlorous acid in aqueous solution. However, the studies that have been reported can serve as a guide for those interested in pursuing other methods for the determination of hypochlorous acid by chemiluminescence. It is not sensitive enough to be considered as an analytical method for chlorine in water treatment.

A study has been reported that details the use of luminol for the measurement of hypochlorite ion. The optimum pH for analysis was between 9.0 and 11.0 Luminol also has been used for the determination of hydrogen peroxide. 4,5,6,7,-tetramethoxyluminol is 30 % more sensitive than luminol. Either of these compounds may be more sensitive in the determination of free chlorine. As these compounds have not been tried it appears that additional studies are necessary. From the limited data available, it appears that this reaction has considerable promise as an analytical method. It may very well be the most sensitive method to date.

It is reported that lophine, in a reaction with hypochlorize ion, produces light. Very few details were given in the study for this reaction. It appears that lophine also may be good as a chemiluminescence reaction system for free chlorine. Additional work should be undertaken to better characterize the details of this reaction.

Luminol and some of its derivatives, or lophine, may be well suited for the very sensitive measurements of chlorine species. Additional research should be undertaken to develop the use of chemiluminescence for use in the determination of chlorine in water. The potential exists for rapid, simple, and specific methods for chlorine and possibly other oxidants. With the advent of fiber optic sensors and their application in chemiluminescence methods, this technology will be important in the future.

Fluorescence.

The use of rhodamine B has been reported as a low level fluorometric method for the determination of bromine. This method is qualitatively specific for bromine, although chlorine will react to decrease the fluorescence. The advantage of this method is that it is capable of determining oxidants at very low concentrations. This method could be applied to chlorine analysis by first using the free chlorine to oxidize the bromide ion to bromine. an irreversible reaction, followed by the determination of bromine. This method was not developed fully and very little work has been undertaken since the first publication. It does appear to have considerable potential and future research in the area of methods development should not exclude additional work on this fluorometric procedure.

Other Electrode Methods.

Additional studies are required to better understand the limitations of membrane electrode methods. It appears that they may have prominent roles to play in chlorine residual measurements in the future.

In a series of experiments carried out for the determination of frae chlorine in tap water, it was observed that there was a statistically significant difference between the results of the amperometric titration and the membrane electrodes. It was thought to be a problem in the membrane electrodes. However, on reconsideration, it is possible that the electrodes were actually giving a free chlorine reading and the amperometric titration was reading the sum of free and organically combined chlorine. The study was conducted on water which is relatively high in organic nitrogen. It is possible that considerable chlorine is present as organically combined chlorine and interferes in the amperometric titration procedure, but does not interfere with the membrane electrode measurements. This question must be resolved. Carefully designed experiments to expicitly resolve these differences would be most appropriate.

There have been no reports of experiments using bare-electrode amperometric analyzers where other oxidants such as chlorine dioxide, chlorite ion, chlorate ion or ozone have been tested with the bare-electrode. Additional studies are required to expand these bare-electrode amperometric studies to quantitate interferences with oxidants other than those tested, and to expand to other natural waters.

Since the accuracy of the potentiometric electrodes is affected, if temperature corrections are not used, it is recommended that temperature be either controlled or measured simultaneously. Additional independent measurements of accuracy should be undertaken for the potentiometric electrodes.

It appears that the potentiometric electrode can be used for the determination of total residual oxidant. It is suitable for continuous measurements and appears to give results that are acceptable when compared to the amperometric titrator.

General Summary and Recommendations for Chlorine.

In comparing all of the methods to the "Ideal Method" we find that none come very close to our ideal standard. Continued development of the various methods will, however, come closer and closer to the ideal.

For the present, the amperometric titration techniques will remain the laboratory standard used for the basis of comparisons of accuracy. These methods, with proper precautions can differentiate between the common inorganic chorine/chlorine ammonia species, and in general suffer from as few interferences as any of the methods.

Of the three common colorimetric procedures, DPD, LCV, and FACTS, the DPD is by far the most commonly used method. From the available literature it is clear that the DPD procedure has a number of weaknesses. In particular, the colored product is a free radical which limits the stability of the colored reaction product. The direct reaction with monochloramine, to form a product identical

to the reaction with free chlorine, is also a drawback. This problem can be reduced by the addition of thioacetamide. Liquid reagent instability precludes their use in most cases; care should be taken to determine blanks fraquently.

The present LCV method that appears in <u>Standard Methods</u> (13) is outdated and has been substantially improved upon by Whittle and Lapteff (14). This method allows for the differentiation of the common free and combined inorganic chlorine species. However, because only one comparison study has been conducted, additional collaborative testing is recommended.

The FACTS test procedure appears to be very useful for the determination of free chlorine in the presence of relatively high concentrations of combined inorganic chlorine. A severe drawback of the FACTS test procedure is the insolubility of the syringaldazine in either 2-propanol or water. This leads to difficulties in reagent preparation, and presumably to the color stability problem encountered at the higher concentrations of chlorine (greater than $6-3~{\rm mg/L}$ (as ${\rm Gl}_2$)). Although a method for the use of the FACTS test for total chlorine has been reported, it should be tested further.

Electrode methods have been developed employing several different concepts. The membrane electrodes appear to have potential as specific methods for hypochlorous acid. Common interferences are other nonionized molecules such as chlorine dioxide and ozone. Potentiometric electrodes for the determination of total chlorine are improving in both detection limit and stability. These electrodes appear to have promise in the area of process control. Their inclusion as methods for routine-use in the laboratory and field is warranted.

Both fluorescence and chemiluminescence methods also show promise for the specific determination of free chlorine at very low concentrations. Within this area of spectrofluorometric methods, there is considerable work yet to be initiated. Continued development work is warranted and recommended in this promising area.

From the review of analytical procedures for the determination of chlorine in aqueous solution, it is readily apparent that only a few of the methods are used routinely. Nevertheless, there is certain to be a continued interest in developing new and better methods of analysis. We would strongly recommend that new methods be presented in terms of the "Ideal Method" and that whenever possible, comparisons with real samples and interlaboratory comparisons be made.

Flow injection analytical techniques are becoming very common. Continued development should lead to the automation of many colorimetric and fluorometric analytical methods for the measurement of free and combined chlorine and its various species in water. With the current emphasis on automation, the methods that are to be developed and those already developed can readily exceed present standards of accuracy and precision. Automation will also lead to operator independent methods and should lead to improvements in process control and monitoring.

Chlorine Analytical Methods Comparative Studies.

The reader is cautioned against accepting the results of any or all of the above tests without some reservations. Where possible we have tried to add com-

ments, parenthetically, based upon our knowledge of the field. It is very important in reviewing data from comparison tests that the analyst be aware of the objectives of the comparison testing. For example, a test may be judged unacceptable because of an unacceptable lower limit of detection that is beyond the need for concern for other investigators.

In general when testing several test procedures it is important to identify the objective of the testing. Equally important is the use of the data. In reporting the results of the above tests, it should be kept in mind that many manufacturers of chemicals for analytical methods and Test Kits change their procedures as a result of the testing. The concerned analyst needs to determine if the results are still valid. This change is not necessarily applicable to other studies where the chemistry of an analytical method is examined. In general, the more the test studies chemistry and not merely the test procedures, the more applicable the results are for future reference.

Another area of confusion concerns precision and accuracy. An analytical method may be judged acceptable based on the precision of the results, while the same method may give poor accuracy. These statistical parameters are separate and must be tested using different experimental designs. Comparisons with the "Ideal Method" would require that both be at acceptable levels.

In general, there is a lack of comprehensive studies to better understand the chemistry associated with the individual test procedures. Investigations of this nature are necessary on a continuing basis, because of the advances in analytical instrumentation and our-continued improvements in understanding the details of the underlying chemistry.

Chlorine Dioxide Analytical Methods.

. .

The iodometric method is a questionable method even for carefully controlled research laboratory chlorine dioxide standards. In real samples where a large number of potential interferences can exist, the method is destined to produce erroneous results. Never, more species specific methods are better choices.

Any method which determines concentrations by difference is potentially inaccurate and subject to large accumulative errors-both in terms of accuracy and precision. The subtraction of two large numbers to produce a small number means that the errors associated with those large numbers are propagated to the small number. The result in many cases is that the error is larger than the smaller number, therefore, giving meaningless information. Methods such as this, which obtain values by differences, should be avoided.

The DPD method uses the difference method in the evaluation of concentrations. The direct measurement of species by means of a more reliable and accurate method to determine chlorine dioxide is needed. The same questions raised about the DPD method for chlorine also apply here.

Ultraviolet spectrophotometry, utilizing continuous flow automated methods, has a great potential for accurate and precise measurements with the added advantage of ease of operation and high sample throughput. Flow injection analysis methods (FIA) should be carefully evaluated against existing methods for accuracy and precision. The method should be field tested and the potential

problem of membrane reliability should be evaluated for long term operations.

detection must be carried out. utilized. Additional bench studies using continuous flow methods with chemiluminescent ction must be carried out. The superior selectivity of this method needs to rilized. Comparison lab testing and field study should be carried out.

Chlorite/Chlorate Ion Analytical Methods.

recommended because it is unreliable. lodometric/amperometric methods are indirect recommended: 77 DPD mechod for chlorice determinations of chlorice ton can not

skills are preferred. ABBE 4100 ion. The method should be used with caution on low chan experience and accuracy resulting. containing eccuracy resulting. The method requires considerable operator skill and ience to obtain good precision and accuracy for samples containing less lag/L chlorite ion or chlorate ion. The method should be field tested The iodometric OFTIET and/or greater methods Wascowater. sequential methods appear to be than 1 mg/L chlorite ion or chlorate ion with good precision ion or chlorate ion. The method should be field tested using both high and low ratios of chlorate ion to chlorite although direct methods requiring less level 4.5 samples of workable specialized samples

detailed effects of various potential interferences need to be evaluated. iodometric method for the direct analysis of chlorite ion and chlorate ion. Interlaboratory comparisons should ğ carried 200

The argentometric titration method is to be recommended only for relatively high concentrations of oxy-chlorine species (10-100 mg/L) but may be very useful in establishing inter-laboratory bench mark comparisons at these high concentracion ranges. Z such comparisons are currently available.

malonic interfering species. developed possibly using various masking agents such as glycine, exalic acid. lonic acid, and nitrite ion to initially remove other possible exy-halogen terfering species. The method appears to be very promising in that it can be A highly precise, automated FIA method for low level chlorate ion directly decermine low level chlorace ion concentrations. needs

Difficulties With Ozone Measurements: Need For Ideal Method.

products decermine the mechanism of aqueous ozone decomposition and the various highly reactive intermediates, is imperative in mination of dissolved residual ozone products with many organic and volacility mechanism 02000 a consequence of the nature of ozone, such as hydrogen peroxide and COTAL from solution. Be thods analytical of aqueous ozone oxidants 878 methods (15). modifications בו and inorganic contaminants the solution. **.** is very difficult. reaction of ozone and its decomposition the like are also measured. In this context it should be noted that of chlorine residual its continuous Inerefore. and the potential role of ב A detailed knowledge of order ozone decomposition WACET. self-decomposition. mechods which the accurately decer.

making ozone Iodometry can be used as an in an unbuffered porassium aqueous 90000 measurements example iodide (16). solution. °£ Iodide Che difficulties The PH ion is oxidized to iodine chen is adjusted to encountered ۲۰۰۶ 5

modifications has been demonstrated to be totally satisfactory. stoichiometry (17). peroxide have been implicated specifically as factors affecting the ozone/iodine techniques, and reaction time. The pH during the initial ozone/lodide ton reaction and the pH during the lodine determination have been shown to markedly alter the ozone/lodine stoichiometry. The formation of lodate ion and hydrogen to a starch end point. The ozone/iodine stoichiometry for this reaction has been found to range from 0.65 to 1.5. Factors affecting the stoichiometry include: 41 Ch buffer composition, buffer concentration, iodide and point acid and the point. decection, pH. Modifications in the lodine determination liberated iodine is titrated with sodium and Factors affecting the back-citration techniques. ion concentration, sampling include None of these chiosulface changes

ozone, with method there is apparent confusion over the molar absor accuracy of the methods. be tween one method has been accepted as the Referee trees several different methods can crea The biggest difficulty in interpreting the existing ozone literature is that **.** is apparent confusion over the molar absorptivity for aqueous values ranging from 2900 to 3600 M⁻¹cm⁻¹ (16). The method most can create false often used for comparative purposes Method. conclusions Therefore.

other potential interferences, decomposition products, and samples origina from various sources. Finally, automation, while not an absolute necessity, HOIJ characteristics should be available. Because of the against an "Ideal Method". analytical factors may reevaluated, considering the recent information about All analytical methods reported, particularly those of early vintage. 020ne Method we selectivity and ideal nature of a method for ozone determination. procedures. not have decomposition chac propose 178 been considered during Certainly. desired for an ozone method. and the ozonation process itself. This "Ideal Method" would that the difficulties of more detailed information and comparisons existing and future methods be compared development incorporate all establishing taking into account oxidative **0**, Some of originating original

Ozone Measurement: Gas Phase.

analytical methods dependent unrealistic to gas phase and residual by monitoring a number of parameters. improvements in filtration, these parameters, The many uses of ozonation in the treatment of drinking water are controlled However. 9 but before addition of a thods must be developed that will accurately measure ozone in the residual ozone in the aqueous phase. At this point it is believe that one single method will be acceptable for both sample 5 design of and its measurement 15 18 accurate accurate determination of gas phase must be developed that will accurately **VeTy 90020** clear VACOR that residual disinfectant for the distribution controls only disinfection conducted after Dissolved residual ozone is only the cost, purification systems is efficiency. ozone. SATECY

from solution to the gas methods employed for gas determine Iodometry, UV the amount absorption and chemiluminescence phase, or of ozone present in generator phase measurements (16). Each the amount בות ב exit gases, when stripped of these has 5 chree contactor been commo

These techniques of monitoring concentrations in contactor exhaust gases are quite promising as a method of controlling the production of adequate quantities of ozone. This provides considerable savings in electrical energy costs for ozone generation. Direct inter-comparisons of the various gas phase measurement techniques are needed in order to evaluate accuracy.

Determination of stripped ozone in the gaseous state was reported in the 16th Edition of Standard Methods (13) for measuring ozone dissolved in water. However, in addition to the procedure being subject to the same limitations of UV absorption and chemiluminescence procedures in aqueous solution, the effects of the gas stripping process itself must be taken into consideration.

Although the iodometric stripping/aqueous absorption method has been approved in <u>Standard Methods</u> (13), we question the accuracy of the method. All evidence would suggest that the method is problematic. Even though the impurities are substantially left behind by the stripping, the actual procedure and the continual decomposition of ozone does introduce inaccuracies into this method. This method can be used as a relative measure of ozone for control purposes.

This basic stripping approach followed by absorption in aqueous solution (and colorimetric measurement) may deserve to be studied further. However, the biggest potential problem appears to be that at high concentrations of ozone the colorimetric compounds may react by a mechanism different from that used for residual ozone measurements. Research should be concentrated on the reagents that have already exhibited ozone selectivity.

Iodometry (Aqueous Phase).

If the performance of ozone in a specific treatment application is not dependent only on the ozone, but is instead a collective function of its reactive decomposition products as well, then iodometry can give a representative and reproducible reading of the total oxidants. For example, most European drinking water treatment plants employing ozonation as the primary disinfectant, have relied on iodometric measurements as the basis for insuring adequate disinfection, attaining a residual "ozone" level of 0:4 mg/L in the first contact chamber and maintaing this level for at least four minutes).

However, it is now abundantly clear that the 0.4 mg/L value is a measure of the amount of total oxidants present, and not necessarily ozone alone. Therefore, either the absolute level of ozone required to attain the expected degree of disinfection is lower than 0.4 mg/L over the required period of time, or some of the decomposition/oxidation products formed upon ozonation also have disinfecting properties, or both. Clearly, detailed experiments need to be carried out to demonstrate the efficacy of disinfection by the decomposition products of ozone. Similar efficacy data for ozone decomposition products could be developed for other uses of ozone (e.g., chemical oxidation) when measurement of residual ozone levels must be made to control the process. Such data would help to justify the continued use of iodometry to measure "total oxidants", rather than only ozone.

Historically, iodometry has been used as the reference method for determining ozone, and against which other analytical procedures have been

"standardized". It is now quite clear that because of its lack of selectivity, the use of iodometry should be limited to that of only a control procedure. In terms of ozonation processes, measurement-for control purposes-of the production rate of ozone generators and bacterial disinfection/viral inactivation may be based upon iodometry, provided the user recognizes the many limitations of the method. The reevaluation of this method must be carried out with the specific goal being to define when the method is reliable and the situations where it is not accurate.

Many authors have tactfully pointed out the many disadvantages of iodometry, leaving it to the reader to decide whether or not to use the procedure. In a detailed comparison of eight analytical methods for the determination of residual ozone it was concluded (16):

"No iodometric method is recommended for the determination of ozone in aqueous solution because of the unreliability of the method and because of the difficulty of the comparison of results obtained with minor modifications in the iodometric method itself."

Arsenic(III) Direct Oxidation.

In the direct oxidation of arsenic(III), ozone reacts with inorganic arsenic(III) at pH 4-7, the pH is adjusted to 6.5-7 and the excess arsenic(III) species is back-titrated with standard iodine to a starch end point. Values for residual ozone determined by the arsenic direct oxidation method and by the indigo method agreed within 6% of the UV values. The primary advantages of the arsenic direct oxidation procedure are minimal interferences, good precision in the hands of experienced operators, and apparently good overall accuracy. This procedure continues to be recommended along with the indigo method. Additional comparisons of this method should be made with the indigo method under various conditions.

Syringaldazine, FACTS.

The FACTS procedure, which was developed for the selective determination of free available chlorine (hypochlorous acid + hypochlorite ion) in the presence of combined chlorine (chloramines), has been adapted for the determination of residual ozone (19). In this procedure, an aqueous solution of ozone is added to a solution of potassium iodide, and the liberated iodine is added to a 2-propanol solution of syringaldazine at pH 6.5. The resulting color is measured spectrophotometrically at 530 nm.

The FACTS procedure has the major advantage of providing a spectrophotometric procedure for the determination of ozone. However, the major limitations of the FACTS method are still those of the iodometric procedure. Due to the observed changes in slope and intercept which are problems caused by the interferences, self-decomposition of ozone, and stoichiometry, this method could be reviewed in order to fully evaluate its potential usefulness. However, considering the other colorimetric methods that are available further development of the FACTS method does not seem to give any promise of the improved selectivity that is needed.

N, N-Diethyl-p-phenylenediamine, DPD.

The DPD procedure is based on the ozone oxidation of iodide ion present in excess phosphate buffer at pH 6.4 to produce iodine, which then oxidizes the DPD cation to a pink Wurster cation which is measured spectrophotometrically, or titrated. The interferences include all oxidants capable of oxidizing iodide ion to iodine, including ozone decomposition products, halogens, and manganese oxides (20).

One advantage of the DPD method is that determinations can be made by ferrous ammonium sulfate (FAS) titrimetry, spectrophotometrically or by a color comparator. Ozone concentrations of less than or equal to 2 mg/L can be determined colorimetrically. Clearly, the procedure requires the difference of differences and is limited by the same factors which limit indometry, specifically the presence of materials which can oxidize indide ion to indine.

Although evaluation of this procedure versus the standard ultraviolet and indigo procedures would seem to be necessary to make a more educated decision about the continued use or abandonment of this method, the recommendation is that other colorimetric methods are considerably more reliable than DPD. Therefore development or testing is neither recommended nor considered necessary at this time.

Indigo Trisulfonate.

The indigo method is subject to fewer interferences than most colorimetric methods and fewer interferences than all iodometric procedures (21-23). At pH 2, chlorite, chlorate, and perchlorate ions, and hydrogen peroxide do not decolorize Indigo Reagent when observed within a few hours and when the concentrations of the interferents are within a factor of 10 of that of the ozone to be determined.

Ozone decomposition products and the products of ozonolysis of organic solutes do not appear to interfere. However, chlorine, bromine, and iodine do cause some interference, as do the oxidized forms of manganese. The addition of malonic acid to the samples will mask the interference of chlorine.

For the Indigo Trisulfonate Method, it should be noted that when the ultraviolet absorption method is used to standardize the indigo method (or any method) for ozone, the choice of molar absorptivity is very critical. It is recommended that the equations of Hoigné continue to be used since they are based on a molar absorptivity of 2950 M⁻¹cm⁻¹. If and when a different value for molar absorptivity is reported and confirmed, the (calibration) equations would have to be appropriately changed. In this manner, all current measurements using the indigo method would continue to be comparable.

The advantages of the indigo procedure is that it is based on a measure of discoloration which is rapid and stoichiometric. This analytical procedure is recommended for use over any other procedure for the determination of residual ozone. Its primary attributes are its sensitivity, selectivity, accuracy, precision, speed, and simplicity of operation.

The gas diffusion flow injection analysis (GD-FIA) procedure eliminates the interference of oxidized forms of manganese, and markedly reduces the interference of chlorine (24). Other than interference of chlorine which can be reduced to zero by addition of malonic acid, there are no known interferences to the determination of ozone by this GD-FIA procedure using the indigo method.

The primary advantages of the GD-FIA procedure are its. accuracy, selectivity, lack of interferences, reproducibility, and rapidity. Thus, the method is well suited for laboratory research studies and for use as an automated analytical procedure.

More studies should be conducted with specific gas-permeable membranes, particularly with respect to repeated and/or continuous exposure to ozone solutions. The use of FIA equipment in a process control environment also must be evaluated. The GD-FIA indigo procedure might well be adopted as the analytical method of choice.

o-Tolidine

The o-tolidine method (addition of 1-2 drops of o-tolidine solution to ozone-containing water to develop the yellow color) is very simple, and easily adapted to field color comparators, suitable for unskilled analysts. However, this advantage cannot compensate for the lack of quantitation of the method, nor for the carcinogenicity of the reagent (o-tolidine). The recommendation is to abandon this method.

Carmine Indigo.

The carmine indigo procedure has been used in Canadian water works plants for the past 15 years. The ozone containing water is titrated with a solution of carmine indigo until a faint blue color persists indicating that all of the ozone has been destroyed. Specific interferences are unknown, but any oxidant capable of decolorizing the carmine indigo dye most likely will interfere.

Effects of interferents should be determined, as should precision, accuracy, and effects of reagent storage and pH. The method should be studied in direct comparison with other methods, such as the indigo and UV absorption methods. Automation of this method could lead to improved selectivity for ozone.

Amperometry.

With bare electrode amperometers, either the solution or the electrode is rotated to establish a diffusion layer, and the electrical current measured is directly proportional to the concentration of dissolved oxidant (25). Commercial amperometric analyzers give satisfactory results provided there is no oxidant other than ozone present in the sample. In many situations they provide adequate monitoring of total oxidant. The bare electrode system has good sensitivity, and is applicable as a continuous nonselective monitor for ozone. When other oxidants such as chlorine, chlorine dioxide, bromine, and iodine are present, the technique has difficulties. The exact nature and magnitude of these interferences requires additional research.

Due to the accumulation of surface impurities at the electrode surfaces, all bare amperometric electrode systems are subject to loss of sensitivity with use. With uncovered electrode surfaces, fouling has been observed to be a significant problem as was the case in earlier tests with oxygen electrodes. Additionally, the response is influenced by numerous surface-active agents and also halogens and oxygen.

An improvement in the development of amperometric methods for ozone analysis has been the application of gas-permeable membranes for increasing selectivity and preventing electrode fouling (26-27). These Teflon membrane electrodes exhibit less than 2% interference (in terms of current response) from bromine, hypobromous acid, chlorine dioxide, hydrogen peroxide, nitrogen trichloride, and hypochlorous acid (26-27).

This type of amperometric membrane sensor needs to be developed further based on the exhibited selectivities. The most disturbing attribute is the temperature dependence. If different membranes could maintain selectivity while minimizing the temperature effect, this type of sensor could become highly recommended.

The application of positive voltage potentials and the use of polymeric membranes that are selectively permeable to gases has enhanced the opportunity for selective measurement of ozone. This is a very significant improvement over bare amperometric electrodes as well as most older colorimetric/spectrophotometric and titrimetric methods. With an applied voltage of +0.6 V (vs SCE) at the cathode, only the most powerful oxidizing agents can overcome the "resistance" of this anodic voltage and cause electron flow cathodically through the electrochemical circuit. This general approach should continue to be used in future electrochemical developments.

Other Electrochemical Methods.

In the differential pulse polarography procedure (DPP), a predetermined amount of phenylarsine oxide (PAO) is added in excess to an ozone solution to reduce the levels of dissolved ozone present. Excess PAO then is measured quantitatively by pulse polarography. The DPP method may under some circumstances be useful in the research laboratory. The prospects of its use in the plant or field are not as promising since a higher degree of operator skill is required.

Potentiometry involves the cathodic reduction of dissolved ozone. The diffusion-limiting current measured is proportional to the concentration of ozone in the water. Further evaluation of potentiometric systems may be in order. However, the fundamental problems of electrode fouling must be addressed. Perhaps a combination of membranes and potentiometric detection would produce a promising system for ozone determinations. The system appears to have modest potential for development.

Ultraviolet Measurements.

Ultraviolet absorption measurements also can be used for residual aqueous ozone at 258-260 nm. There is uncertainty with respect to the molar absorptivity for aqueous ozone. In the literature, values ranging from 2900 to

critical to 3600 M-1cm-1 are reported. work to verify this value is strongly recommended. 5 future use and calibration uses of the UV methods. This uncertainty in the molar absorptivity is Clearly.

in principle an absolute method for the determination of ozone, which is not dependent upon calibration or standardization against other analytical methods. Therefore, it can be used for calibration of other analytical methods for ozone. gaseous and aqueous phases. If the molar absorptivity for ozone is known unambigiously, UV absorption to the determination of ozone, and is applicable 6 Beasurement

Physical Methods.

decermination decomposition ozone is rmination of molecular ozone, but is applicable to measurement only in phase. However, the higher the concentration of ozone in the gas phase accurate the method appears to be, since a greater temperature differented. Potential interference have not been reported. calorimetric 0 calibration-independent. ozone (AH - 144.41 KJ/mole). method **1**4 based ij 9 the e cechnique The calorimetric determination enchalpy is specific 0 che s phase, the

dosages. generacors. cedures. The method has been shown to particularly for the measurement of ozone in the gases exiting ozones. Therefore, the procedure can be used to monitor applied ozone Additional detailed interlaboratory comparisons need to be carried incerlaboratory comparisons need to be carried agree with iodometric and S uojacioses

constant temperature. When this reaction is carried out isothermally closed vessel, the increase in pressure of the contained gas is proportional the ozone concentration. In principle, this procedure achieves a tot. the diagnostic display are possible. measurement of physical ozone measurement an increased number of gas molecules during the UV The isothermal differential pressure procedure is based on the Various automated measurement without requiring calibration using a chemical ous automated instrumental checks such as the stored molar the age of the UV light source, the zero point reading, the flow of the test gas and the flushing gas, and the reading of When destruction using a chemical 0 generation o ozone

is used for ozone generation this method would for further consideration. Further study of this system would be necessary before it could instruments No specific comparisons are reported. However, in principle in this physical method is the best candidate for calibrating the gas subject currently being used for ozonation control. only to strict temperature control of the measurement cell. be free in principle it appears that As long as pure oxygen of interferences and interferences 0 phase 02010

General Summary and Recommendations for Ozone.

methods will, however, come closer and closer to the ideal. comparing all the methods to the "Ideal Method" we 9 ideal standard. Continued development of the various selective

In terms of gas phase measurements, none of the existing methods can be recommended for accurate determinations of ozone. If a relative value of the ozone concentration is needed for control purposes, most of the methods reported could be applicable.

The accurate determination of ozone in the aqueous phase is complicated by the decomposition of ozone, its reactivity to the other species present, and the by-products of the ozonation reactions. Most current methods were developed without a clear knowledge of the associated ozone chemistry. Therefore most of the methods are unacceptable or cannot be recommended. In particular, no iodometric based chemistry is acceptable for the determination of aqueous ozone. Indigo trisulfonate and arsenic(III) direct oxidation are acceptable methods. Amperometery continues to improve -- especially as an automated control method.

The stripping techniques have some merit in terms of improved ozone selectivity. However, automated chemical systems such as flow injection analysis offer considerably more promise. The current GD-FIA indigo procedure is superior for residual ozone measurements due to its selectivity for ozone.

The most important aspect of any potential new or improved ozone analytical method will be speed of analysis and selectivity of the detection system for only ozone. As a point of comparison, we strongly recommend that all future and existing methods be compared against the "Ideal Method".

LITERATURE

- 1. Symons, J.M.; et al "Ozone, Chlorine Dioxide and Chloramines as Alternatives to Chlorine for Disinfection of Drinking Water" in Water Chlorination: Environmental Impact and Health Effects, Vol. 2; Jolley, R.L.; Gorchev, H. and Hamilton, D.H., Jr., Editors, (Ann Arbor, MI: Ann Arbor Science Publishers, Inc., 1979) pp. 555-560 and Complete Report entitled "State of the Art ..." (Cincinnati, OH: U.S. EPA, November, 1977), 84 pp.
- Proceedings of Seminar on "The Design and Operation of Drinking Water Facilities Using Ozone or Chlorine Dioxide", Rice, R.G., Editor, (Dedham, MA: New England Water Works Assoc., 1979).
- 3. Miller, G.W.; Rice, R.G.; Robson, C.M.; Scullin, R.L.; Kühn, W. and Wolf, H., "An Assessment of Ozone and Chlorine Dioxide Technologies for Treatment of Municipal Water Supplies", U.S. Environmental Protection Agency, EPA Project Report, EPA-600/2-78/018, 1978, 571 pp.
- 4. Miltner, R.J. "Measurement of Chlorine Dioxide and Related Products", in <u>Proceedings of the Water Ouality Technological Conference</u>, (Denver, CO: American Water Works Assoc., 1976), pp. 1-11.

- 5. Gordon, G. "Improved Methods of Analysis for Chlorate, Chlorite, and Hypochlorite Ions at the Sub-mg/L Level", U.S. Environmental Protection Agency, EPA Technical Report, EPA-600/4-85/079, October, 1985, 35 p. and Presented at AWWA WQTG, in Proc. AWWA Water Quality Technology Conference, December, Nashville, TN, 1982, pp. 175-189.
- 6. Aieta, E.M.; Roberts, P.V. "Chlorine Dioxide Chemistry: Generation and Residual Analysis" in <u>Chemistry in Water Reuse</u>, <u>Vol. 1</u>, Gooper, W.J., Editor (Ann Arbor, MI: Ann Arbor Science Publishers, Inc., 1981), pp. 429-452.
- Hoigné, J.; Bader, H. "Bestimmung von Ozon und Chlordioxid in Wasser mit der Indigo-Methode" ("Determination of Ozone and Chlorine Dioxide in Water With the Indigo Method"), Vom Wasser, 1980, 55, 261-280.
- 8. Gilbert, E.; Hoigné, J. "Messung von Ozon in Wasserwerken; Vergleich der DPD- und Indigo-Methode" ("Ozone Measurement in Water Treatment Plants: Comparison of the DPD and Indigo Methods"), GFW-Wasser/Abwasser, 1983, 124, 527-531.
- 9. Schalekamp, M. "European Alternatives and Experience" in <u>Proceedings</u>
 of the <u>National (Canadian) Conference on Critical Issues in</u>
 <u>Drinking Water Ouality</u>, (Ottawa, Ontario, Canada: Federation of
 Associations on Canadian Environment, 1984), pp. 140-169.
- 10. Ikeda, Y.; Tang, T-F.; Gordon, G. "Iodometric Method of Determination of Trace Chlorate Ion", Anal. Chem., 1984, <u>56</u>, 71-73.
- 11. Emmenegger F.; Gordon, G. "The Rapid Interaction between Sodium Chlorite and Dissolved Chlorine", Inorg. Chem., 1967, 6, 633-635.
- 12. Aleta, E.M.; Berg, J.D. "A Review of Chlorine Dioxide in Drinking Water Treatment", J. Am. Water Works Assoc., 1986, 78, 62-72.
- 13. Standard Methods for The Examination of Water and Wastewater, 16th
 Edition, Greenberg, A.E.; Trussell, R.R.; Clesceri, L.S.; Franson,
 M.A.H., Editors (Washington, D.C.: American Public Health Assoc.,
 1985), 1268 pp. and 15th Edition, Greenberg, A.E.; Connors, J.J.;
 Jenkins, D.; Franson, M.A.H., Editors (Washington, DC: American
 Public Health Assoc., 1980), 1134 pp.
- 14. Whittle, G.P.; Lapteff, A., Jr. "New Analytical Techniques for the Study of Water Disinfection" in <u>Chemistry of Water Supply.</u>

 <u>Treatment. and Distribution</u>, Rubin, A.J., Editor, (Ann Arbor, HI: Ann Arbor Sci. Pub., Inc., 1974), pp. 63-88.
- 15. Tomiyasu, H.; Fukutomi, H.; Gordon, G. "Kinetics and Mechanism of Ozone Decomposition in Basic Aqueous Solution", Inorg. Chem., 1985, 24, 2962-2966.

- 16. Grunwell, J.; Benga, J.; Cohen, H., Gordon, G. "A Detailed Comparison of Analytical Methods for Residual Ozone Measurement", Ozone Sci. Eng., 1983, 3, 203-223.
- 17. Flamm, D.L.; Anderson, S.A. "Todate Formation and Decomposition in Iodometric Analysis of Ozone", Environ. Sci. Technol., 1975, 2, 660-663.
- 18. Rehme, K.A.; Puzak, J.C.; Beard, M.E.; Smith, C.F.; Paur, R.J.

 "Evaluation of Ozone Calibration Procedures", U.S. Environmental
 Protection Agency, EPA Project Summary, EPA-600/S4-80-050.
 February, 1980, 277 pp.
- 19. Liebermann, J., Jr.; Roscher, N.M.; Meier, E.P.; Cooper, W.J. Development of the FACTS Procedure for Combined Forms of Chlorine and Ozone in Aqueous Solutions", Environ. Sci. Technol., 1980, 14, 1395-1400.
- 20. Palin, A.T.; Derreumaux, A. "Détermination de l'Ozone Résiduel dans l'eau" ("Determination of Ozone Residual in Water"), L'Eau et l'Industrie, 1977, 19, 57-60.
- 21. Bader, H.; Hoigne, J. "Colorimetric Method for the Measurement of Aqueous Ozone Based on the Decolorization of Indigo Derivatives", in Ozonization Manual for Water and Wastewater Treatment, Masschelein, W.J., Editor, (New York, NY: John Wiley & Sons, 1982), pp. 169-172.
- 22. Bader, H.; Hoigné, J. "Determination of Ozone in Water by the Indigo Method", Water Research 1981, 15, 449-456.
- 23. Bader, H.; Hoigné, J. "Determination of Ozone in Water by the Indigo Method; A Submitted Standard Method", Ozone: Science and Eng., 1982, 4, 169-176.
- 24. Straka, M.R.; Gordon, G.; Pacey, G.E. "Residual Aqueous Ozone Determination by Gas Diffusion Flow Injection Analysis", Anal. Chem., 1985, 57, 1799-1803.
- 25. Masschelein, W.J. "Continuous Amperometric Residual Ozone Analysis in the Tailfer (Brussels, Belgium) Plant", in Ozonization Manual for Vater and Wastewater Treatment, Masschelein, W.J., Editor, (New York, NY: John Wiley & Sons, 1982), pp. 187-188.
- 26. Stanley, J.H.; Johnson, J.D. "Amperometric Membrane Electrode for Measurement of Ozone in Water", Anal. Chem., 1979, 51, 2144-2147.
- 27. Stanley, J.W.; Johnson, J.D. "Analysis of Ozone in Aqueous Solution", in <u>Handbook of Ozone Technology and Applications</u>, <u>Vol. 1</u>, Rice, R.G. and Netzer, A., Editors (Ann Arbor, MI: Ann Arbor Sci. Pub., Inc., 1982), pp. 255-276.

A GUIDE FOR EFFICIENT USE OF THIS REPORT (AND A BRIEF GLOSSARY OF TERMS)

This Report contains a very detailed review of all disinfectant residual measurement methods. The Executive Summary is intended to give readers a brief overview of the advantages and disadvantages of each method. To that end, Table I (Characteristics and Comparisons of Analytical Methods) has been included to summarize each of our findings and to recommend possible directions for future research. In addition, Table II (Equivalent Weights for Calculating Concentrations on the Basis of Mass) describes the equivalent weights of each of the disinfection species in terms of the actual reactions involved in the disinfection process.

Each chapter contains individual recommendations following the discussion of the method. A summary of all of the recommendations is also given at the end of each chapter. Additional help is given by means of an alphabetical Index containing more than 2500 individual terms. Specific cross referencing for all recommendations can be found in the Index either under the "recommendation", or, in terms of the subject of the numbered recommendation itself.

The term Referee Method is used to describe appropriate comparisons with existing methods and <u>Standard Methods</u> refers to a specifically recommended method. The Index should be an additional aid to finding the details of specific methods.

In this context, it should be noted that the individual literature citations are specific to each individual chapter -- and are either numbered individually within chapters 2 and 3, or alphabetically sequenced within chapters 4 and 5.

Chapter 4 (Indexed Reference Citations) has been included in this report in order to assist readers in locating particular papers of interest. The 48 categories for chlorine, chloramines, and the oxy-chlorine species, along with the additional 60 categories for ozone, should make the task of finding individual papers of interest considerably less cumbersome. Papers which describe several methods have been included in each of the appropriate categories. All together, the 1,400 references cited in Chapters 1-3 number more than 2,000 individual citations when distributed in the indexed form of Chapter 4.

Chapter 5 is an alphabetical listing of the individual references citations. Finally, a detailed Index has been included in order to assist readers in locating subjects of specific interest. We hope the readers will find these additional chapters as useful as have we in preparing this report.

A brief Glossary follows on the next page in order to assist readers in the various specialized terms and abbreviations used in this report. For additional terms, the reader is referred to the Index.

GLOSSARY

Accuracy -- the ability to determine the correct concentration

BAKI -- boric acid buffered potassium iodide method for ozone

Breakpoint -- the inorganic reaction of chlorine with ammonia nitrogen

CDFW -- chlorine demand free water

Combined Chlorine -- inorganic and organic chloramines

Detection Limit -- a signal that is 3 times the noise level of the system

DOC -- dissolved organic carbon

DPD -- (N,N-diethyl-p-phenylenediamine)

FACTS -- free available chlorine test with syringaldazine

FIA -- flow injection analysis, an automated analysis procedure

Free Chlorine -- the species, Cl₂ + HOCl + OCl⁻

KI -- potassium iodide method for ozone

LCV -- leuco crystal violet

mL -- milliliter(s), standard unit of volume

Molar Absorptivity (e) reported in units of M-1cm-1

NBKI -- neutral buffered potassium iodide method for ozone

Precision -- how well the method reproducibly measures the same concentration

Reactive Intermediate -- species such as 02", HO2", HO2, OH, O3", etc.

Referee Method -- the method against which a working method is compared

Sensitivity -- the change in signal per unit concentration [i.e. Amps/mol]

Standard Methods -- the book, Standard Methods for the Examination of Water and Wastewater published by APHA, AWWA, and WPCF

THM's -- trihalomethanes

Total Chlorine -- the combination of Free Chlorine and Combined Chlorine

TOC -- total organic carbon

TOX -- total organic halogen

APPENDIX E

INACTIVATIONS ACHIEVED BY VARIOUS DISINFECTANTS

TABLE E-I CT VALUES FOR INACTIVATION OF GIARDIA CYSTS BY FREE CHLORINE

AT 0.5 C OR LOWER (I)

CIILORINE			pH·	<=6			Γ		Hq	=6.5			<u>`</u>		oll:	=7.0					:He	.75		
CONCENTRATION		L	og las	ctivatio	ns			1	.og laa	ctivatio				L	•	ctivetion					Log less			1.
(mg/L)	0.5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5		2.5	3.0	0.5		1.5	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5	3.0
		E				-										Towns Alex								
<=0.4	23	46	69	91	114	137	27	54 .	8 2	109	136	163	33	65	98	130	163	195	40	79	119	158	196	237
0.6	24	47	71	94	118	141	28	56	14	112	140	168	33	67	100	133	167	200	40	80	120	159	199	239
0.8	24	48	73	97	121	145	29	57	86	115	143	172	34	61	103	137	171	205	41	B 2	123	164	205	246
1	25	49	74	99	123	148	29	59	88	117	147	176	35	70	105	140	175	210	42	84	127	16	211	253
1.2	25	51	76	101	127	152	30	60	90	120	150	180	36	72	106	143	179	215	43	16	130	173	216	259
1.4	26	52	78	103	129	155	31	61	92	123	153	184	37	74	111	147	184	221	44	29	133	177	222	266
1.6	26	52	79	105	131	157	32	63	95	126	158	189	38	75	113	151	188	226	46	91	137	182	228	273
1.8	27	54	81	108	135	162	32	64	97	129	161	193	39	77	116	154	193	231	47	93	140	186	233	279
2	28	55	83	110	138	165	33	66	99	131	164	197	39	79	118	157	197	236	48	95	143	191	238	286
2.2	28	56	25	113	141	169	34	67	101	134	168	201	40	81	121	161	202	242	50	99	149	196	248	297
2.4	29	57	86	115	143	172	34	68	103	137	171	205	41	82	124	165	206	247	50	99	149	199	248	296
2.6	29	58	22	117	146	175	35	70	105	139	174	209	42	84	126	168	210	252	51	101	152	203	253	304
2.8	30	59	89	119	148	178	36	71	107	142	178	213	43	16	129	171	214	257	52	103	155	207	258	310
3	30	60	91	121	151	181	36	72	109	145	181	217	44	87	131	174	218	261	53	105	158	. 211	263	316
CHLORINE			pH:	-8.0					pH	=8.5					PH<	=9.0					يوند السواد			
CONCENTRATION		L	og Ine	ctivatio	-			1	og Ina	ctivatio			1	Ł	og Inn	clivation								
(mg/L)	0.5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5	3.0						•
•																								
<=0.4	46	92	139	185	231	277	55	110	165	219	274	329	65	130	195	260	325	390						
. 0.6	48	95	143	191	238	286	57	114	171	228	285	342	68	136	204	271	339	407						
0.8	49	98	148	197	246	295	59	118	177	236	295	354	70	141	211	281	352	422						
1	51	101	152	203	253	304	61	122	183	243	304	365	73	146	219	291	364	437						1
1.2	52	104	157	209	261	313	63	125	138	251	313	376	75	150	226	301	376	451				-		
1.4	54	107	161	214	268	321	65	129	194	258	323	387	77	155	232	309	387	464						-
1.6	· 55	110	165	219	274	329	66	132	199	265	331	397	80	159	239	318	398	477				1		
1.8	56	113	169	225	282	338	64	136	204	271	339	407	82	163	245	326	408	489		٠,				
2	58	115	173	231	288	346	70	139	209	278	348	417	83	167	250	333	417	500						
2.2	59	118	177	235	294	353	71	142	213	284	355	426	85	170	256	341	426	511			-			1
2.4	60	120	181	241	301	361	73	145	218	290	363	435	87	174	261	348	435	522						
2.6	61	123	184	245	307	368	74	148	222	296	370	444	89	178	267	355	444	533				•		
2.8	63	125	128	250	313	375	75	151	226	301	377	452	91	181	272	362	453	543				•		
3	64	127	191	255	318	382	77	153	230	307	383	460	92	184	276	368	460	552						

Notes:
(1) CT = CT for 3-log inactivation

TABLE E-2
CT VALUES FOR INACTIVATION
OF GIARDIA CYSTS BY FREE CHLORINE

AT 5 C (I)

CHLORINE			All.	<=6			r		- All	=6.5	30(.,,			-88 -	- 7.0					-11-	= 7.5		
CONCENTRATION			og lee	-			ļ ·	1	•	- v.s clivatio					•	- 7.0 tivation	_				•			
(mg/L)	0.5	1.0	1.5		2.5	3.0	0.5	1.0	سر هم. 1.5		2.5	7.0	١,,		.0g mac 1.5						_	tivations		
(ing, c)	0.5	1.0	1.7	2.0	4.3	3.0	V.3	1.0	1.7	2.0	2.3	3.0	0.5	1.0	1.3	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5	3.0
04	4.6		40						-															
<=0.4	16	32	49	65	81	97	20	39	59	78	98	117	23	46	70	93	116	139	28	55	83	111	138	166
0.6	17	33	50	67	83	100	20	40	60	80	100	120	24	48	72	95	119	143	29	57	36	114	143	171
0.8	17	34	52	69	86	103	20	41	61	81	102	122	24	49	73	97	122	146	29	.58	28	117	146	175
	. 18	35	53	70	88	105	21	42	63	83	104	125	25	50	75	99	124	149	30	60	90	119	149	179
1.2	18	36	54	71	89	107	21	42	64	85	106	127	25	51	76	101	127	152	31	61	92	122	153	183
1.4	18	36	55	73	91	109	22	43	65	87	106	130	26	52	78	103	129	155	31	62	94	125	156	187
1.6	19	37	56	74	93	111	22	44	66	22	110	132	26	53	79	105	132	158	32	64	96	128	160	192
1.8	19	38	57	76	95	114	23	45	68	90	113	135	27	54	81	106	135	162	33	65	98	131	163	196
2	19	39	58	77	97	116	23	46	69	92	115	138	28	55	83	110	138	165	33	67	100	133	167	200
2.2	20	39	59	79	96	118	23	47	70	93	117	140	28	56	85	113	141	169	34	68	102	136	170	204
2.4	20	40	60	80	100	120	24	48	72	95	119	143	29	57	- 36	115	143	172	35	70	105	139	174	209
2.6	20	41	61	81	102	122	24	49	73	97	122	146	29	58	21	117	146	175	36	71	107	142	178	213
2.8	21	41	62	83	103	124	25	49	74	99	123	148	30	59	19	119	148	178	36	72	109	145	181	217
3	21	42	63	34	105	126	25	50	76	101	126	151	30	61	91	121	152	182	37	74	111	147	184	221
CHLORINE			•	-8.0					pH	=8.5					pH<	=9.0								
CONCENTRATION			og las					ı	•	ctivatio				L	og laec	tivatios	•							
(mg/L)	0.5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5	3.0						
			, , , , , , , , , , , , , , , , , , , ,							•														į
<=0.4	33	66	99	132	165	198	39	79	118	157	197	236	47	93	140	186	233	279						
0.6	34	65	102	136	170	204	41	\$1	122 -	163	203	244	49	97	146	194	243	291						
0.8	35	70	105	140:	. 175	210	42	84	126	168	210	252	50	100	151	201	251	301						
1	36	72	108	144	180	216	43	87	130	173	217	260	52	104	156	208	260	312						
1.2	37	74	111	147	184	221	45	89	134	178	223	267	53	107	160	213	267	320						
1.4	38	76	114	151	189	227	46	91	137	183	228	274	55	110	165	219	274	329						
1.6	39	77	116	155	193	232	47	94	141	187	234	281	56	112	169	225	281	337						
1.8	40	79	119	159	198	238	48	96	144	191	239	287	58	115	173	230	288	345						
2	41	81	122	162	203	243	49	98	147	196	245	294	59	118	177	235	294	353						
2.2	41.	83	124	165	207	248	50	100	150	200	250	300	60	120	181	241	301	361		•	•		_	
2.4	42	34	127	169	211	253	51	102	153	204	255	306	61 -	123	184	245	307	368					*	
2.6	43	86	129	172	215	258	52	104	156	208	260	312	63	125	188	250	313	375						
2.8	44	28	132	175	219	263	53	106	159	212	265	318	. 64	127	191	255	318	382						
3	45	89	134	179	223	268	54	108	162	216	270	324	65	130	195	259	324	389						

· Notes:

⁽¹⁾ CT = CT for 3-log inactivation

TABLE E-3
CT VALUES FOR INACTIVATION
OF GIARDIA CYSTS BY FREE CHLORINE

AT 10 C (1)

CHLORINE			pH+	<=6	-				pH	=6.5		<u> </u>			pH:	=7.0					pH:	7.5		
CONCENTRATION	l	L	og las	ctivatio				ı	og lae	ctivatio			i	L	og leed	tivation					Log less	tivations		
(mg/L)	0.5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5	3.0
			,																					
<=0.4	12	24	37	49	61	73	15	29	44	59	73	88	17	35	52	69	87	104	21	42	63	23	104	125
0.6	13	25	38	50	63	75	15	30	45	60	75	90	18	36	54	71	89	107	21	43	64	85	107	128
0.8	13	26	39	52	65	78	15	31	46	61	77	92	18	37	55	73	92	110	22	44	66	87	109	131
. 1	13	26	40	53	66	79	16	31	47	63	78	94	19	37	56	75	93	112	22	45	67	89	112	134
1.2	13	27	40	53	67	80	16	32	48	63	79	95	19	38	57	76	95	114	23	46	69	91	114	137
1.4	14	27	41	55	68	82	16	33	49	65	82	98	19	39	58	77	97	116	23	47	70	93	117	140
1.6	14	-28	42	55	69	83	17	33	50	66	83	99	20	40	60	79	99	119	24	48	72	96	120	144
1.8	14	29	43	57	72	86	17	34	51	67	84	101	20	41	61	81	102	122	25	49	74	96	123	147
2	15	29	44	58	73	87	17	35	52	69	87	104	21	41	62	83	103	124	25	50	75	100	125	150
2.2	15	30	45	59	74	89	18	35	53	70	88	105	21	42	64	85	106	127	26	51	77	102	128	153
2.4	15	30	45	60	75	90	18	36	54	71	89	107	22	43	65	36	106	129	26	52	79	105	131	157
2.6	15	31	46	61	77	92	18	37	55	73	92	110	22	44	66	· 87	109	131	27	53	80	107	133	160
2.8	16	31	47	62	78	93	19	37	56 ,	74	93	111	22	45	67	19	112	134	27	54	82	109	136	163
3	16	32	48	63	79	95	19	38	57	75	94	113	23	46	69	91	114	137	28	55	83	111	138	166
CHLORINE	1	_	-	=8.0			1	_	-	=8.5				-	_	=9.0								
CONCENTRATION	۱		-	ctivatio					og Inc						_	tivatica								
(mg/L)	0.5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5	3.0						
	۔۔ ا																							
<=0.4	25	50	75	99	124	149	30	59	89	118	148	177	35	70	105	139	174	209						
0.6	26	51 53	77	102	128	153	31	61	92	122	153	183	36	73	109	145	182	218				•		
0.8	26 27	53 54	79 81	105	132 135	158 162	32 33	63 65	95 98	126	158 163	189	38	75	113	151	188	226 234						
1.2	23	55	83	111	138	166	33	67	100	130 133	167	195 200	39 40	78	117 120	156	200	240						
1 14	22	57	85	113	142	170	34	69	103	137	172	206	41	90 92	124	160 165	206	247						
1.6	29	58	87	116	145	174	35	70	106	141	176	211	42	84	127	169	211	253						
1.8	30	60	90	119	149	179	36	72	106	143	179	215	43	36	130	173	216	259						
1 2	30	61	91	121	152	182	37	74	111	147	184	213	44	11	133	177	221	265						
2.2	31	62	93	124	155	186	38	75	113	150	188	225	45	90	136	181	226	271			•			
2.4	32	63	95	127	158	190	38	77	115	153	192	230	46	92	138	184	230	276						
2.6	32	65	97	129	162	194	39.	78	117	156	195	234	47	94	141	187	234.	281						
2.8	33	66	99	131	164	197	40	80	120	159	199	239	48	96	144	191	239	287						
3	34	67	101	134	168	201	41	81	122	162	203	243	49	97	146	195	243	292						

Notes:

⁽¹⁾ CT = CT for 3-log inactivation

TABLE E-4
CT VALUES FOR INACTIVATION
OF GIARDIA CYSTS BY FREE CHLORINE

AT 15 C (1)

CHLORINE	7			oH<	=6					pil	=6.5	13 C	\., <u>/</u>			: Ha	=7.0					- 16-	-7.5		
CONCENTRATIO	N		L	g laac	tivatio	*	·		Ĺ	og ka		45		İ	Ł	•	tivation	•				•	tivations		
(mg/L)	0.5	5 1		1.5	2.0		3.0	0.5	1.0	1.5		2.5	3.0	0.5		1.5	2.0	-	3.0	0.5	1.0	1.5	2.0	2.5	3.0
	_	٠						-																	
<=0.	d .	2	16	25	33	41	49	10	20	30	39	49	59	12	23	35	47	58	70	14	28	42	55	4	83
0.	6	8	17	25	33	42	50	10	20	30	40	50	60	12	24	36	48	60	72	14	29	43	57	72	36
0.	1	9	17	26	35	43	52	10	20	31	41	51	61	12	24	37	49	61	73	15	29	44	59	73	22
	1	•	18	27	35	44	53	11	21	32	42	53	63	13	25	38	50	63	75	15	30	45	60	75	90
1.	2	9	18	27	36	45	54	11	21	32	43	53	64	13	25	38	51	63	76	15	31	46	61	71	92
1.	• •	9	18	28	37	46	55	11	22	33	43	54	65	13	26	39	52	65	78	16	31	47	63	78	94
1.	5	9	19	28	37	47	56	11	22	33	44	55	66	13	26	40	53	66	79	16	32	48	64	80	96.
1.	B B	0	19	29	38	48	57	11	23	34	45	57	68	14	27	41	54	68	81	16	- 33	49	65	82	96
	2 1	0	19	29	39	48	58	12	23	35	46	58	69	14	28	42	55	69	83	17	33	50	67	83	100
2.		0	20	30	39	49	59	12	23	35	47	58	70	14	28	43	57	71	85	17	34	51	68	B	102
2.	1	0	20	30	40	50	60	12	24	36	48	60	72	14	29	43	57	72	86	18	35	53	70	25	105
2.		_	20	31	41	51	61	12	24	37	49	61	73	15	29	44	59	73	##	18	36	54	71	27	107
2.	B 1	0	21	31	41	52	62	12	25	37	49	62	74	15	30	45	59	74	29	18	36	55	73	91	109
	3 1	1	21	32	42	53	63	13	25	38	51	63	76	15	30	46	61	76	91	19	37	56	74	93	111
CHLORINE				pH=						•	=8.5					pH<									
CONCENTRATIO	•			eg lanc						عدا وه.						-	tivation								
(mg/L)	0.	5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5	3.0						• •
		_						l																	
<=0.		٠,	33	50	66	83	99	20	39	59	79	98	118	23	47	70	93	117	140						
j., 0.		7	34	51	4	85	102	20	41	61	81	102	122	24	49	73	97	122	146						
0.	: :	18	35 ·· 36	53	70	88	105	21	42	63	84	105	126 130	25	50 52	76 78	101	126 130	151 156						
] · "	: :	 19	37	54 56	72 74	90 93	111	22	43 45	65 67	87 89	108	134	26 27	52 53	20	107	133	160				•		
l i		9	31	57	76	95	114	23	46	69	91	114	17	28	55	83	110	138	165						
	1	9	39	58	77	97	116	24	47	71	94	118	141	28	56	85	113	141	169					-	
1 :		19 10	<i></i>	60	79	99	119	24	48	72	96	120	144	29	58	27	115	144	173			•			
		₩ 10	41	61	81	102	122	25	49	74	98	123	147	30	59	89	118	148	177						
2.	- 1	 !1	41	62	83	103	124	25	50	75	100	125	150	30	. 60	91	121	151	181			•			
2	1	21	42	64	85	106	127	26	51	77	102	128	153	31	61	92	123	153	184						
2		22	43	65	86	106	129	26	52	78	104	130	156	31	63	94	125	157	188						
2		12	44	66	88	110	132	27	53	80	106	133	159	32	64	96	127	159	191						
	3 2	22	45	67	29	112	134	27	54	81	106	135	162	33	65	98	130	163	195	٠.					

NOICE:

⁽¹⁾ CT = CT for 3-log inactivation

TABLE E-S CT VALUES FOR INACTIVATION OF GIARDIA CYSTS BY FREE CHLORINE

AT 20 C (1)

CHLORINE	-		pH-	<=6					pH:	=6.5	20 C	(.,	Г		pil:	=7.0					a) 1	-7.5		
CONCENTRATION		L	og las	ctivatic			1	1	og las	ctivatio	106			L	og ine	tivetice					•	tivations		
(mg/L)	0.5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5	3.0
<=0.4	6	12	18	24	30	36	7	15	22	29	37	44	,	17	26	35	43	52	10	21	31	41	. 52	62
0.6	6	13	19	25	32	38		15	23	30	38	45	9	18	27	36	45	54	11	21	32	43	53	64
0.8	7	13	20	26	33	39		15	23	31	38	46	9	18	28	37	46	55	11	22	33	44	55	66
1	7	13	20	26	33	39		16	24	31	39	47	9	19	28	37	47	56	11	22	34	45	56	67
1.2	7	13	20	27	33	40		16	24	32	40	48	10	19	29	38	48	57	12	23	35	46	58	69
. 1.4	7	14	21	27	34	41		16	25	33	41	49	10	19	29	39	48	58	12	23	35	47	58	70
1.6	7	14	21	28	35	42		17	25	33	42	50	10	20	30	39	49	59	12	24	36	48	60	72
1.8	7	14	22	29	36	43	9	17	26	34	43	51	10	20	31	41	51	61	12	25	37	49	62	74
. 2	7	15	22	29	37	44	,	17	26	35	43	52	10	21	31	41	52	62	13	25	38	50	63	75
2.2	7	15	22	29	37	44	9	18	27	35	44	53	11	21	32	42	53	63	13	26	39	51	64	77
2.4	1	15	23	30	38	45	9	18	27	36	45	54	11	22	33	43	54	65	13	26	39	52	65	78
2.6		15	23	31	38	46	9	18	28	37	46	- 55	11	22	33	44	55	66	13	27	40	53	67	80
2.8	8	16	24	31	39	47	9	19	28	37	47	56	11	22	34	45	56	67	14	27	41	54	66	81
3		16	24	31	_ 39	47	· 10	19	29	38	48	57	11.	23	34	45	57	64	14	28	42	55	69	83
CHLORINE		•	•	=8.0			1		•	=8.5					•	=9.0								
CONCENTRATION			og land			_			og las				1		_	tivatica								
(mg/L)	0.5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5	3.0						
												_												
<=0.4	12	25	37	49	62	74	15	30	45	59	74	39	18	35	53	70	85	105						•
0.6	13	26	39	51	64	77	15	. 31	46	61	77	92	18	36	55	73	91	109						
0.8	13	26	40	53,	•	79	16	32	48	63	79	95	. 19	38	57	75	94	113						
	14	27	41	54	68	81	16	33	49	65	82	98	20	39	59	78	96	117						
1.2	14	28	42 43	55 57	69	83 85	17	33	50	67	83	100	20	40	60	80	100	120						
1.4	14	28 29	44	51 58	71	87	17	34	52 53	69	86	103	21	41	62	82	103	123						
1.6	15 15	30	45	59	73 74	87 89	18	35 36	53 54	70 72	88 90	105	21	42 43	63 65	84 86	105 108	126 129						
2	15	30	46	61	76	91	18	37	55	73	90 92	110	22	44	66	88	110	132						
2.2	16	31	47	62	78	93	19	38	57	75 75	94	113	23	45	68	90	113	135			•			
2.4	16	32	48	63	79	95	19	38	58	וז דד	- 96	115	23	46	69	92	115	138						
2.6	16	32	49	65	81	97	20	39	59	78	91	117	24	47	71	94	112	141						
2.8	17	33	50	66	83	99	20	40	60	79	99	119	24	48	72	95	119	143						
	• •							~~	61	• •		•••	_~	~	-	-3								

Notes:

⁽¹⁾ CT = CT for 3-log inactivation

TABLE E-6 CT VALUES FOR INACTIVATION OF GIARDIA CYSTS BY FREE CHLORINE

AT 25 C (1)

CHLORINE			_	<=6					PH	=6.5					pH:	=7.0					pH:	=7.5		
CONCENTRATION		L	og lee	ctivatio				Ł	og ine	ctivatio	ms .		l	L	og laec	tivation					Log las	zivations		
(mg/L)	0.5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5	3.0
<=0.4	1.4	8	12	16	20	.24	5	10	15	19	24	29	6	12	18	23	29	35	7	14	21	28	35	42
0.6	4	. 8	. 13	17	21	25	5	10	15	20	25	30	6	12	18	24	30	. 36	7	14	22	29	36	43
0.8	4	•	13	17	22	26	5	10	16	21	26	31	6	12	19	25	31	37	7	15	22	29	37	44
. 1	. 4	9	13	17	22	26	- 5	10	16	21	26	31	6	12	19	25	31	37	8	15	23	30	36	45
1.2	5	9	14	18	23	27	5	11	16	21	27	32	6	13	19	25	32	38	8	15	23	31	33	46
1.4	5	•	14	18	23	27	6	11	17	22	28	33	7	13	20	26	33	39	8	16	24	31	39	47
1.6	5	•	14	19	23	28	6	11	17	22	28	33	7	13	20	27	33	40	8	16	24	. 32	40	48
, 1.8	5	10	15	19	24	29	6	11.	17	23	28	34	7	14	21	27	34	41	8	16	25	33	41	49
. 2	5	10	15	19	24	29	6	12	18	23	29	35	7	14	21	27	34	41	8	17	25	33	42	50
2.2	5	10	15	20	25	30	6	12	18	23	29	35	7	14	21	28	35	42	,	17	26	34	43	51
2.4	5	10	15	20	25	30	6	12	18	24	30	36	7	14	22	29	36	43	9	17	26	35	43	52
2.6	5	10	16	21	26	31	6	12	19	25	31	37	7	15	22	29	37	44	9	18	27	35	44	53
2.8	5	10	16	21	26	31	6	12	19	25	31	37		15	23	30	38	45	9	18	27	36	45	54
3		11	16	21	27	32	6	13	19	25	32	38		15	23	31	38	46	,	18	28	37	46	. 55
CHLORINE			•	-8.0					•	=8.5						=9.0								
CONCENTRATION	۱.,		og lee						og las						_	tivation								
(mg/L)	0.5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5	3.0						
												٠												
<=0.4	•	17	25	33	42	50	10	20	30	39	49	59	12	23	35	47	58	70						
0.6	7	17	26	34	43	51	10	20	31	41	51	61	12	24	37	49	61	73						
0.8	' '	18	27 27	35 36	44 45	53	!!	21	32	42	53	63	13	25	38	50	63 65	75 72						
1.2		18	28	37	46	54 55	11	22 22	33 34	43	54 56	65 67	13	26 27	39 40	52 53	67	20						
1.4	10	19	29	38	48	55 57	12	22.	35	45 46	58	. 69	13	27	41	55	4	82						
1.6	10	19	29	39	48	58	12	23	35	47	58	70	14	28	42	56	70	84						
1.8	10	20	30	40	50	60	12	24	36	48	60	72	14	29	43	50 57	72	86						
1.0	10	20	31	41	51	61	12	25	37	49	62	74	15	29	44	59	73	88	•					
2.2	10	21	31	41	52	62	13	25	38	50	63	75	15	30	45	60	75	90				•		
2.4	;;	21	32	42	53	63	13	26	39	51	64	77	15	31	46	61	77	92						
2.6	1 ;;	22	33	43	54	65	13	26	39	52	65	78	16	31	47	63	78	94						
2.8	1 ;;	22	33	44	55	66	13	27	40	53	67	80	16	32	48	64	80	96						
				~~					••						-			97						

Notes:

(1) CT = CT for 3-log inactivation

TABLE E-7

CT VALUES FOR INACTIVATION OF VIRUSES BY FREE CHLORINE (1)

			Log Inact	ivation	•	
	2.0 pH		3,(4.0 pH	
Temperature (C)	6-9	10	6-9	10	6-9	10
0.5	6	45	9	. 66	12	90
5	4	30	6	44	8	60
10	3	22	4	. 33	6	45
15	2	15	3	22	4	30
20	1	11	2	16	3 .	22
25	1	7	1	11	2	15

Notes:

TABLE E-8

CT VALUES FOR
INACTIVATION OF GIARDIA CYSTS
BY CHLORINE DIOXIDE(1)

		Temperatu	re (C)		
<u><=1</u>	_5_	10	15	20	<u>25</u>
10	4.3	4	3.2	2.5	2
21	8.7	7.7	6.3	5	3.7
32	13	12	10	7.5	5.5
42	17	15	13	10	7.3
52	22	19	16	13	9
63	26	23	19	15	11
	10 21 32 42 52	10 4.3 21 8.7 32 13 42 17 52 22	≤=1 _5 10 10 4.3 4 21 8.7 7.7 32 13 12 42 17 15 52 22 19	10 4.3 4 3.2 21 8.7 7.7 6.3 32 13 12 10 42 17 15 13 52 22 19 16	<=1 _5 10 15 20 10 4.3 4 3.2 2.5 21 8.7 7.7 6.3 5 32 13 12 10 7.5 42 17 15 13 10 52 22 19 16 13

Note:

^{1.} Basis for values given in Appendix F.

TABLE E-9

CT VALUES FOR
INACTIVATION OF VIRUSES
BY CHLORINE DIOXIDE ph 6-9

(1)

	Temperature (C)						
<u>Removal</u>	<u><=1</u>	5_	10	15	20	25	
2-log	8.4	5.6	4.2	2.8	. 2.1	1.4	
3-1og	25.6	17.1	12.8	8.6	6.4	4.3	
4-log	50.1	33.4	25.1	16.7	12.5	8.4	

Notes:

. TABLE E-10

CT VALUES FOR INACTIVATION OF GIARDIA CYSTS BY OZONE(1)

	Temperature (C)						
<u>Inactivation</u>	<u><=1</u>	_5_	10	15	20_	25	
0.5-log	0.48	0.32	0.23	0.16	0.12	0.08	
1-log	0.97	0.63	0.48	0.32	0.24	0.16	
1.5-log	1.5	0.95	0.72	0.48	0.36	0.24	
2-log	1.9	1.3	0.95	0.63	0.48	0.32	
2.5-log	2.4	1.6	1.2	0.79	0.60	0.40	
3-1og	2.9	1.9	1.43	0.95	0.72	0.48	

Note:

TABLE E-11

CT VALUES FOR

INACTIVATION OF VIRUSES BY OZONE(1)

<u>Inactivation</u>	<u><=1</u>	_5_	10	15_	20_	25	
2-log	0.9	0.6	0.5	0.3	0.25	0.15	
3-1og	1.4	0.9	0.8	0.5	0.4	0.25	
4-1og	1.8	1.2	1.0	0.6	0.5	0.3	

Note:

TABLE E-12

CT VALUES FOR INACTIVATION OF GIARDIA CYSTS
BY CHLORAMINE ph 6-9(1)

	Temperature (C)						
<u>Inactivation</u>	<=1	_5_	_10	15	20	_25	
0.5-log	. 635	365	310	250	185	125	
1-log	1,270	735	615	500	370	250	
1.5-log	1,900	1,100	930	750	550	375	
2-1og	2,535	1,470	1,230	1,000	735	·500	
2.5-log	3,170	1,830	1,540	1,250	915	625	
3-log	3,800	2,200	1,850	1,500	1,100	750	

Note:

1. Basis for values given in Appendix F.

TABLE E-13

CT VALUES FOR

INACTIVATION OF VIRUSES BY CHLORAMINE(1)

	Temperature (C)							
Inactivation	<u>_<=l</u>	5	_10	15	20	25		
2-log	1,243	857	643	428	321	214		
3-log	2,063	1,423	1,067	712	534	356		
4-log	2,883	1,988	1,491	994	746	497		

Notes:

1. Basis for values given in Appendix F.

TABLE E-14

CT VALUES FOR INACTIVATION OF VIRUSES BY UV(1)

	Log Inactivation	
2.0		3.0
21		36

Note:

1. Basis for values given in Appendix F.

APPENDIX F
BASIS FOR CT VALUES

APPENDIX F BASIS OF CT VALUES

F.1 Inactivation of Giardia Cysts

F.1.1 Free Chlorine

The CT values for free chlorine in Tables E-1 through E-6 are based on a statistical analysis (Clark et al., 1988; attached to this appendix), which considered both animal infectivity studies (Hibler et al., 1987) and excystation studies (Jarroll et al., 1981; Rice et al., 1982; Rubin et al., 1988). A multiplicative model was selected to best represent the chemical reactions during the inactivation process. This model was applied to each of the data sets, listed above, and in various combina-The animal infectivity data were included in all combinations The animal infectivity data was considered essential for studied. inclusion in all the analysis of combined data sets because it included many more data points than the other data sets, all of which represented inactivation levels at 99.99 percent. Because of limitations with the excystation methodology, only data for achieving less than 99.9 percent inactivation was available from such studies.

Statistical analysis supported the choice of combining the Hibler et al. and the Jarroll et al. data (and excluding the Rice et al. (1981) and Rubin et al. (1987) data), to form the best fit model for predicting CT values for different levels of inactivation. As a conservative regulatory strategy, Clark and Regli (1990) (attached at the end of thsi appendix), recommended that CT values for different levels of inactivation be determined by applying first order kinetics to the 99 percent upper confidence interval of the $CT_{99.99}$ values predicted by the model.

The model was applied using the above strategy as a safety factor, to determine the CT values ranging from 0.5-log to 3-log inactivation at 0.5 and 5 C. CT values for temperatures above 5 C were estimated assuming a twofold decrease for every 10 C. CT values for temperatures at 0.5 C were estimated assuming a 1.5 times increase to CT values at 5 C. This general principle is supported by Hoff (1986). It is important to note that the CT values for free chlorine are sensitive to the residual

concentration, C. For example, at a pH of 7 and a temperature of 10 C, a 3-log <u>Giardia</u> cyst inactivation results from a CT of 107 mg/L-min with a free residual of 0.6 g/L and a CT of 124 mg/L-min with a free residual of 2.0 mg/L.

Application of the model to pHs above 8, up to 9, was considered reasonable because the model is substantially sensitive to pH (e.g., CTs at pH 9 are over three times greater than CTs at pH 6 and over two times. greater than CTs at pH 7). At a pH of 9, approximately four percent of the hypochlorous acid fraction of free chlorine is still present. Recent data indicate that in terms of HOCl residuals (versus total free chlorine residuals including HOCl and OCl') the CT products required for inactivation of Giardia muris and Giardia lamblia cysts decrease with increasing pH from 7 to 9 (Leahy et al., 1987; Rubin et al., 1988b). However, with increasing pH, the fraction of free chlorine existing as the weaker oxidant species (OC1') increases. In terms of total free chlorine residuals (i.e., HOCl and OCl') the CT products required for inactivation of Giardia muris cysts increase with increasing pH from 7 to 9 by less than a factor of 2 at concentrations of less than 5.0 mg/L (see Table F-1). Also, the significance of pH on the value of CT products achieving 99 percent inactivation appears to decrease with decreasing temperature and free chlorine concentration. The relative effects of pH, temperature, and chlorine concentration, on inactivation of Giardia muris cysts appears to be the same for Giardia lamblia cysts (Rubin et al., 1988b), although not as much data for Giardia lamblia cysts for high pH and temperature values as for Giardia muris cysts is yet available.

F.1.2 Ozone and Chlorine Dioxide

The CT values for ozone in Table E-10 are based on disinfection studies using in vitro excystation of Giardia lamblia (Wickramanayake, G. B., et al., 1985). CT_{99} values at 5 C and pH 7 for ozone ranged from 0.46 to 0.64 (disinfectant concentrations ranging from 0.11 to 0.48 mg/L). No CT values were available for other pHs. The highest CT_{99} value, 0.64, was used as a basis for extrapolation to obtain the CT values at 5 C, assuming first order kinetics and applying a safety factor of 2, e.g., $(0.64 \times 3/2 \times 2 = 1.9)$. CT values for temperatures

TABLE F-1

CT VALUES TO ACHIEVE 99 PERCENT

INACTIVATION OF GIARDIA MURIS CYSTS BY FREE CHLORINE

(Source: Rubin, et al., 1988b)

	Temperature		•		
рH	(c)	0.2-0.5	Concentrati 0.5-1.0	1.0-2.0	2.0-5.0
7	15	500 200	760 290	1,460 360	1,200 290
8	15	510	820 220	1,580	1,300 320
9	1 15	440 310	1,100 420	1,300 620	2,200 760

above 5 C were estimated assuming a twofold decrease for every 10 C. CT values for temperatures at 0.5 C were estimated assuming a 1.5 times increase to CT values at 5 C.

The CT values for chlorine dioxide in Table E-8 are based on disinfection studies using in vitro excystation of Giardia muris CT_{99} values at pH 7 and 1 C, 5 C, 15 C and 25 C (Leahy, 1985 and Rubin, 1988b). The average CT_{99} value at each temperature (27.9 at 1 C, 11.8 at 5 C, 8.5 at 15 C, and 4.7 at 25 C) was extrapolated using first order kinetics and multiplied by a safety factor of 1.5 to obtain the $CT_{99.9}$ values, e.g.,

at 1 C, $C_{eq} = 27.9 \times 1.5 \times 1.5 = 63$.

Because of the limited data available at pHs other than pH 7, the same CT values are specified for all pHs. Although most of the CT_{99} data were determined at pH 7, it is known that chlorine dioxide is more effective at pH 9. Thus, the CT values in the rule are more conservative for higher pHs than for lower pHs.

A lower safety factor is used for chlorine dioxide than for ozone, because the data was generated using <u>Giardia muris</u> cysts which are more resistant than <u>Giardia lamblia</u> cysts. CT values at other temperatures were estimated, based on the same rule of thumb multipliers assumed for ozone.

A larger safety factor was applied to the ozone and chlorine dioxide data than to the chlorine data because:

- a. Less data were available for ozone and chlorine dioxide than for chlorine;
- b. Data available for ozone and chlorine dioxide, because of the limitations of the excystation procedure, only reflected up to or slightly beyond 99 percent inactivation. Data for chlorine, based on animal infectivity studies rather than excystation procedures, reflected inactivation of 99.99 percent. Extrapolation of data to achieve CT values for 99.9 percent inactivation with ozone and chlorine dioxide, involved greater uncertainty than the direct determination of CT values for 99.9 percent inactivation using chlorine.
- c. The CT values for ozone and chlorine dioxide to achieve 99.9 percent inactivation are feasible to achieve; and
- d. Use of ozone and chlorine dioxide is likely to occur within the plant rather than in the distribution system (versus chlorine and chloramines which are the likely disinfectants

for use in the distribution system). Contact time measurements within the plant will involve greater uncertainty than measurement of contact time in pipelines.

EPA recognizes that the CT values for ozone and chlorine dioxide are based on limited data. Therefore, EPA encourages the generation of additional data in accordance with the protocols provided in Appendix G to determine conditions other than the specified CT values, for providing effective disinfection at a particular system.

F.1.3 Chloramines

The CT values for chloramines in Table E-12 are based on disinfection studies using preformed chloramines and in vitro excystation of Giardia muris (Rubin, 1988). Table F-2 summarizes CT values for achieving 99 percent inactivation of Giardia muris cysts. The highest CT values for achieving 99 percent inactivation at 1 C (2,500) and 5 C (1,430) were each multiplied by 1.5 (i.e., first order kinetics were assumed) to estimate the $CT_{99.9}$ values at 0.5 C and 5 C, respectively, in Table E-12. The CT_{99} value of 970 at 15 C was multiplied by 1.5 to estimate the $CT_{99.9}$ value. The highest CT_{gg} value of 1,500 at 15 C and pH 6 was not used because it appeared anomalous to the other data. Interesting to note is that among the data in Table F-2 the CT values in the lower residual concentration range (<2 mg/L) are higher than those in the higher residual concentration range (2-10 mg/L). This is opposite to the relationship between these variables for free chlorine. For chloramines, residual concentration may have greater influence than contact time on the inactivation of Giardia cysts within the range of chloramine residual concentrations practiced by water utilities (less than 10 mg/L). No safety factor was applied to these data since chloramination, conducted in the field, is more effective. than using preformed chloramines. Also, Giardia muris appears to be more resistant than Giardia lamblia to chloramines (Rubin, 1988b).

The protocol in Appendix G can be used to demonstrate if less stringent disinfection conditions than those cited in Table E-12 can achieve comparable levels of inactivation for specific system characteristics.

TABLE F-2

CT VALUES FOR 99 PERCENT

INACTIVATION OF GIARDIA MURIS CYSTS BY MONOCHLORAMINE*

(Source: Rubin, 1988)

Ha	Temperature (C)	Monochloramine Co ≤0.2	oncentration (mg/L) 2.0-10.0
6 .	15	1,500	880
	5	>1,500	>880
	1	>1,500	>880
7	15	>970	970
	5	>970	1,400
	1	2,500	>1,400
8	15	1,000	530
	5	>1,000	1,430
	1	>1,000	1,880
9	15	890	560
	5	>890	>560
	1	>890	>560

^{*}CT values with ">" signs are extrapolated from the known data.

F.2 <u>Inactivation of Viruses</u>

F.2.1 Free Chlorine

CT values for free chlorine are based on data by Sobsey (1988) for inactivation of Hepatitus A virus (HAV), Strain HM175, at pH 6,7,8,9 and 10, chlorine concentrations of 0.5 to 0.2, and a temperature of 5 C, as contained in Table F-3. The highest CT value for the pH range 6-9 for achieving 2, 3, and 4-log inactivation of HAV were multiplied by a safety factor of 3 to obtain the CT values listed in Table E-7. (e.g., the CT value for achieving 4-log inactivation at pHs 6-9 was determined by multiplying 2.55 X 3 = 7.6 = 8). The CT values at pH 10 were significantly higher than those for pHs 6-9 and are considered separately. The CT values in Table E-7 for pH 10 also include a safety factor of 3. CT values at temperatures other than 5 C were determined assuming a two fold decrease for every 10 C increase. CT values for inactivating viruses in general are based on HAV data since they give higher CT values than those for inactivation of polio and rotaviruses under similar conditions of pH and temperature (Hoff, 1986).

F.2.2 Chlorine Dioxide

Data by Sobsey (1988) for inactivation of Hepatitus A virus, strain HM 175, by a chlorine dioxide concentration of 0.5 mg/l at pH 6 and 5 C is shown in Table F-4. The CT values in Table E-9 for pHs 6-9 and temperature = 5 C were determined by applying a safety factor of 2 to the average CT values presented in Table F-4 at pH 6. This safety factor is lower than that used to determine CT values for chlorine because chlorine dioxide appears to be significantly more effective at higher pHs and most waters are assumed to have a higher pH than 6.

CT values at temperatures other than 5 C in Table E-9 were determined by applying a twofold decrease for every 10 C increase. The data for pH 9 was not considered because it is very limited and other viruses are more resistant to chlorine dioxide than Hepatitus A is at pH 9. According to Hoff (1986) at a pH of 9 and a temperature of 21 C, a CT of 0.35 provides a 4-log inactivation of poliovirus 1. Applying the same safety factor and rule of thumb multipliers to this data results in a CT

of 2.8 for a 4-log virus inactivation at 0.5°C, in contrast to a CT of 50.1 resulting from the Hepatitus A data at pH 6. Therefore, in order to assure inactivation of Hepatitus A, the higher CT values are needed. Systems with high pHs may wish to demonstrate the effectiveness of chlorine dioxide at lower CT values based on the protocol in Appendix G. Chlorine dioxide is much more effective for inactivating rotavirus and polio virus than it is for inactivating HAV (Hoff 1986).

F.2.3 Chloramines

The CT values in Table E-13 at 5 C were based directly on data by Sobsey (1988) using preformed chloramines at pH 8. No safety factor was applied to the laboratory data since chloramination in the field, where some transient presence of free chlorine would occur, is assumed more effective than preformed chloramines.

HAV is less resistant to preformed chloramines than are other viruses. For example, CTs of 3.800-6.500 were needed for $2-\log$ inactivation of simian rotavirus at pH = 8.0 and temperature = 5 C (Berman and Hoff, 1984). However, these same viruses are very sensitive to free chlorine. CT values ranging from less than 0.025 to 2.16 were required to achieve 99 percent inactivation of rotavirus by free chlorine at pH = 6-10 and temperature = 4-5 C (Hoff, 1986). HAV is more resistant to free chlorine than are rotaviruses.

The CT values in Table E-13 apply for systems using combined chlorine where chlorine is added prior to ammonia in the treatment sequence. This should provide sufficient contact with free chlorine to assure inactivation of rotaviruses. CT values Table E-13 should not be used for estimating the adequacy of disinfection in systems applying preformed chloramines or ammonia ahead of chlorine, since CT values based on HAV inactivation with preformed chloramines may not be adequate for destroying rotaviruses. In systems applying preformed chloramines, it is recommended that inactivation studies as outlined in Appendix G be performed with Bacteriophage MS2 as the indicator virus to determine sufficient CT values. Also, the protocol in Appendix G can be used by systems applying chlorine ahead of ammonia to demonstrate less stringent disinfection conditions than those indicated in Table E-13.

TABLE F-3

CT VALUES FOR INACTIVATION OF HEPATITUS A VIRUS
BY FREE CHLORINE
(Source: Sobsey 1988)

LOG INACTIVATION	PH						
	<u>6</u>	2	8	9	· <u>10</u>		
2	1.18	0.70	1.00	1.25	19.3		
3	1.75	1.07	1.51	1.9	14.6		
4	2.33	1.43	2.03	2.55	9.8		

TABLE F-4

CT VALUES FOR INACTIVATION OF HEPATITUS A VIRUS
BY CHLORINE DIOXIDE (SOBSEY 1988)

	Experiment	ClO ₂ Concentration (mg/L)			
	No.	<u>Initial</u>	<u>Average</u>		
рНб	1 2 3 4	0.49 0.50 0.51 0.51	0.32 0.33 0.36 0.37		
рН9	1 2	0.5 0.5	0.5 0.5		

Inaci	tivation Time		(mir			_	- - 1	•		
	Lon	Ex		nt No.			Expe	riment	No.	- .
	Log Inactivation	1	2	3	4	. 1	2	3	4	Average CT
рН6	2 3 4	12 30 55	9 29 59	5 22 43	7 20 39	3.8 9.4 17	3.0 9.6 20	1.8 7.9 16	2.6 7.4 14	2.8 8.6 16.7

Note:

рН9

>2.5

>3.6

<0.17

<0.17

^{1.} CT values were obtained by multiplying inactivation time by the average concentration shown above for each experiment.

F.2.4 Ozone

No laboratory CT values based on inactivation of HAV virus are yet available for ozone. Based on data from Roy (1982), a mean CT value of 0.2 achieved 2-log inactivation of poliovirus 1 at 5 C and pH 7.2. Much lower CT values are needed to achieve a 2-log inactivation of rotavirus (Vaughn, 1987). No CT values were available for achieving greater than a The CT values in Table E-11 for achieving 2-log 2-log inactivation. inactivation at 5 C were determined by applying a safety factor of 3 to the data from Roy (1982). CT values for 3 and 4-log inactivation were determined by applying first order kinetics and assuming the same safety factor of 3. CT values were adjusted for temperatures other than 5 C by applying a twofold decrease for every 10 C increase. Based on the available data, CT values for ozone disinfection are not strongly dependent on pH. Therefore, data obtained at pH = 7.2 is assumed to apply for pHs in the range of 6.0 to 9.0. However, it should be noted that the maintenance of an ozone residual is affected by pH.

F.2.5 <u>Ultraviolet Light (UV)</u>

The CT values for inactivation of viruses by UV are based on studies by Sobsey (1988) on inactivation of Hepatitis A virus (HAV) by UV. These data were used because HAV has been established as an important cause of waterborne disease. The CT values were derived by applying a safety factor of 3 to the HAV inactivation data. The CT values in Table E-14 are higher than the CT values for UV inactivation of poliovirus 1 and simian rotavirus from previous studies (Chang et al., 1985).

F.2.6 <u>Potassium Permanganate</u>

Potassium permanganate is a commonly used oxidant in water treatment. Preliminary testing by Yahya, et al 1988, indicates that potassium permanganate may contribute to virus inactivation. The test data included in Table F-5 indicates the inactivation of bacteriophage MS-2 using potassium permanganate with a pure water-buffer solution. These data do not include safety factors. It is likely that CT values for actual water treatment processes will differ from these values. This data has only been provided here as an indication of the potential of potassium

TABLE F-5

CT VALUES FOR 2-LOG INACTIVATION
OF MS-2 BACTERIOPHAGE WITH POTASSIUM PERMANGANATE

KMnO, (mg/L)	pH 6.0	0.8 Hg
0.5	27.4 a ⁽¹⁾	26.1 a
1.5	32.0 a	50.9 b
2.0	ND ⁽²⁾	53.5 c
5.0	63.8 a	35.5 c
•		

Notes:

- 1. Letters indicate different experimental conditions.
- 2. Not determined.

THE BASIS FOR GIARDIA C'T VALUES IN THE SURFACE WATER TREATMENT RULE: INACTIVATION BY CHLORINE

bу

Robert M. Clark, Director Drinking Water Research Division Risk Reduction Engineering Laboratory Cincinnati, OH 45268

and

Stig Regli
Office of Drinking Water
U.S. Environmental Protection Agency
Washington, DC 20460

RISK REDUCTION ENGINEERING LABORATORY
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
CINCINNATI, OH 45268

February 1991

THE BASIS FOR GIARDIA C'T VALUES IN THE SURFACE WATER TREATMENT RULE: INACTIVATION BY CHLORINE

bу

Robert M. Clark, and Stig Reglib

INTRODUCTION

The 1986 amendments to the Safe Drinking Water Act (SDWA) require EPA to promulgate primary drinking water regulations (a) specifying criteria under which filtration would be required, (b) requiring disinfection as a treatment technique for all public water systems, and (c) establishing maximum contaminant levels (MCLs) or treatment requirements for control of Giardia lamblia, viruses, Legionella, heterotrophic plate count bacteria, and turbidity. EPA has promulaged treatment technique requirements to fulfill the SDWA requirement for systems using surface waters and ground waters under the direct influence of surface water. Additional regulations specifying disinfection requirements for systems using ground water sources not under the direct influence of surface water will be proposed and promulgated at a later date. This paper presents a model that relates pH, temperature, chlorine concentration, and inactivation level to Giardia inactivation by free chlorine. Because Giardia lamblia is known to be one of the most resistant organisms to disinfection by chlorine found in water, much interest and effort

^aDirector, Drinking Water Research Division, Risk Reduction Engineering Laboratory, 26 W. Martin Luther King Drive, Cincinnati, Ohio 45268

bUSEPA, Office of Drinking Water, 401 M Street, S.W., Washington, DC 20460

has been devoted to determination of C:t values for <u>Giardia lamblia</u>. The model has been used to predict "C:t" values that have been included as part of EPA's Surface Water Treatment Rule (SWTR).

7

-

BACKGROUND

Under the SWTR all community and non-community public water systems using surface water, or ground water under the direct influence of surface water. are required to provide minimum disinfection to control Giardia lamblia. enteric viruses and bacteria. In addition, unless the source water is well protected and meets certain water quality criteria (total or fecal coliforms and turbidity limits), treatment must also include filtration. The treatment provided, in any case, is required to achieve at least 99.9 percent removal and/or inactivation of Giardia lamblia cysts and at least 99.99 percent removal and/or inactivation of viruses (i.e., virus of fecal origin and infectious to humans). Unfiltered systems are required to demonstrate that disinfection alone achieves the minimum performance requirements by monitoring disinfectant residual(s), disinfectant contact time(s), pH (if chlorine is used), and water temperature. These data must be applied to determine if their "C't" value [the product of disinfectant concentration (mg/L) and disinfectant contact (minutes)] equals or exceeds the C't values for Giardia lamblia specified in the SWTR. With the exception of chloramines, where ammonia is added prior to chlorine, these C't values are also adequate to achieve greater than 99.99 percent inactivation of viruses. For filtered systems, states are required to specify the level of disinfection for each system to ensure that their overall treatment achieves at least 99.9 and 99.99 percent removal and/or inactivation of Giardia lamblia cysts and viruses, respectively.1

In the Guidance Manual to the SWTR, EPA recommends Ct values for

different disinfectants to achieve levels of inactivation for unfiltered systems. Filtered systems will be required to achieve less inactivation then required for unfiltered systems. The percent inactivation that filtered systems should achieve as a function of the filtration technology in place and source water quality conditions is also recommended.²

PROBLEM

The destruction of pathogens by chlorination is dependent on a number of factors, including water temperature, pH, disinfectant contact time, degree of mixing, turbidity, presence of interfering substances, and concentration of chlorine available. The pH has a significant effect on inactivation efficiency because it determines the species of chlorine found in solution, each of which has a different inactivation efficiency.

The impact of temperature on disinfection efficiency is also significant. For Example, Clarke's work in virus destruction by chlorine indicates that contact time must be increased two to three times when the temperature is lowered 10°C. Disinfection by chlorination can inactivate <u>Giardia</u> cysts, but only under rigorous conditions. Most recently, Hoff et al. concluded that (1) these cysts are among the most resistant pathogens known, (2) disinfection at low temperatures is especially difficult, and (3) treatment processes prior to disinfection are important.⁴

Typical C't values for 99 percent inactivation of <u>Giardia lamblia</u> by free chlorine at different temperatures and pH values are shown in Table 1.

TABLE 1. C'T VALUES FOR 99% INACTIVATION OF GIARDIA4
LAMBLIA CYSTS BY FREE CHLORINE

*

		Range					
Temp (°C	рH	Disinfectant Concentration (mg/L)	Time (min)	C't	Mean C't	No. of Experiments	
5	6	1.0-8.0	6-47	47-84	65	. 4	
	7	2.0-8.0	7-42	56-152	97	3	
	8	2.0-8.0	72-164	72-164	- 110	3	
15	6	2.5-3.0	7	18-21	20	2	
	7	2.5-3.0	6-18	18-45	32	. 2	
	8	2.5-3.0	7-21	21-52	37	2	
25	6	1.5	< 6	< 9	< 9	1	
.,	7	1.5	< 7	<10	<10	Ĩ	
	8	1.5	< 8	<12	<12	. 1	

Jarroll et al., using <u>in vitro</u> excystation to determine cyst viability, showed that greater than 99.8 percent of <u>Giardia lamblia</u> cysts can be killed by exposure to 2.5 mg/L of chlorine for 10 minutes at 15°C and pH 6, or after 60 minutes at pH 7 or 8. At 5°C, exposure to 2 mg/L of chlorine killed at least 99.8 percent of all cysts at pH 6 and 7 after 60 minutes. While it required 8 mg/L to kill the same percentage of cysts at pH 6 and 7 after 10 minutes, it required 8 mg/L to inactivate cysts to the same level at pH 8 after 30 minutes. Inactivation rates decreased at lower temperatures and at higher pH values as indicated by the higher C:t values.

Because of the obvious interactions among these variables it is essential that a model be developed for predicting C t values under the various conditions that may exist in drinking water systems.

OBJECTIVE

As indicated, many factors influence <u>Giardia lamblia</u> reaction kinetics. The objective of the study described in this paper therefore is to develop an equation that will relate C:t values for <u>Giardia</u> inactivated by chlorine to such factors as pH, temperature, level of inactivation and chlorine concentration. As mentioned previously, this equation ultimately provided the values presented in the SWTR and associated Guidance Manual for disinfection of <u>Giardia lamblia</u> by free chlorine.

SIGNIFICANCE

The significance of these efforts relates to the fact that EPA's Office of Drinking Water has adopted the C't concept to quantify the inactivation of Giardia lamblia by disinfection with free chlorine. Whether or not a utility is forced to install surface water treatment will depend on its ability to meet the C't values specified by the SWTR. Even if the utility is not required to install filtration a utility may have to make significant investments in holding basins and disinfection capacity in order to meet these requirements. Therefore C t values established under the SWTR will be extremely important to the drinking water industry and the authors believe it is important that the industry understand the basis for the procedures used to estimate these values. This paper describes the way in which C't values were calculated for the SWTR. It is unlikely that utilities can directly use the models developed in this paper, although it is important that they understand the mechanism by which C't values have been derived. Tables generated from the model will be useful as they provide the C't values for Giardia inactivation by chlorine that utilities must achieve. These tables are presented at the end of the paper.

THEORY

Current disinfection theory is based on the Chick or Chick-Watson model. Chick's law expresses the rate of destruction of microorganisms based on a first-order chemical reaction. §

$$dN/dt = -kt (1)$$

which when integrated yields

$$\ln \left(N_t / N_o \right) = -kt \tag{2}$$

where

N. = number of organisms present at time t (minutes)

N = number of organisms present at time 0

k = rate constant characteristic of type of disinfectant, microorganism, and water quality aspects of system (minutes⁻¹)

t = time (minutes)

Watson, using Chick's data, refined this equation to produce an empirical relation that included changes in the disinfectant concentration:⁷

$$ln (N/No) = r C^{n}t$$
 (3)

where

C = concentration of disinfectant [(milligrams/liter)^{1/n}]

r = coefficient of specific lethality (liters/milligram 'minutes)

n = coefficient of dilution (liters/milligrams * minutes)

or

$$(1/r) \ln (N_t/N_o) = C^n t$$
 (4)

For a given level of survival such as $N_t/N_o = 0.001$ (3 log reduction) the left hand side of equation 4 is a constant K, or

$$K = C^{n}t$$
 (5)

The value K will vary depending on the level of inactivation.

EFFECT OF OTHER VARIABLES

As indicated previously C t values have been found to be a function of pH, temperature, disinfectant concentration and level of inactivation. Therefore in this study equation 5 was reformulated as follows:

$$C \cdot t = C^{-(n-1)} K$$
 (6)

where

K = f(pH, temp, I)

I = ratio of organisms at time t to the organisms at time 0 (N_t/N_o)

temp - temperature at which experiment was conducted in °C

pH = pH at which experiment was conducted in pH units Equation 6 can be rewritten in the form:

$$C \cdot t = R I^a C^b p H^c t emp^d$$
 (7)

where

R,a,b,c, and d are coefficient to be determined.

A more convenient form for coefficient estimation and the one used in this paper is as follows:

$$t = R I^{a}C^{b-1}pH^{c}temp^{d}$$
 (8)

As will be discussed in the following sections these coefficients will be determined by a statistical analysis using appropriate data bases.

COEFFICIENT ESTIMATES

Several data sets are available for estimating the coefficients in equation 8. Data sets have been developed by Jarroll, Hibler, Rice and Rubin. 5.9,10.11

Much of the available <u>Giardia</u> inactivation data is based on excystation rather than animal infectivity since it is an easier measure of cyst viability.¹¹ Hoff et al. compared mouse infectivity and excystation for

determining the viability of G. muris cysts exposed to chlorine and reported that both methods yielded similar results. 12 Hibler et al. used Mongolian gerbils to determine the effects of chlorine on G. lamblia cysts. 9 In a series of experiments, cysts were exposed for various time periods to free chlorine concentrations ranging from 0.4 to 4.2 mg/L at 0.5, 2.5, and 5.0 $^{\circ}$ C and pH 6, 7, and 8. Each of 5 gerbils was fed 5 x 104 of the chlorine exposed cysts and subsequently examined for evidence of infection. Since the test animals had each received a dose of 5 x 104 of the chlorine exposed cysts and subsequently examined for evidence of infection and since infectivity studies with unchlorinated cysts showed that approximately 5 cysts usually constituted an infective dose, the following assumptions were made depending on the infectivity patterns occurring in the animals. If all five animals were infected, it was assumed that C't had produced less than 99.99 percent inactivation and if no animals were infected, that it had produced greater than 99.99 percent inactivation.9 If, however, 1-4 animals were infected it was assumed that the level of viable cysts were 5 per animal and that 99.99 percent of the original cyst population had been inactivated. Hibler interpolated from the results and provided comprehensive tables showing C t values at 0.5°C temperature intervals.9 Because of observations indicating that C't values increased as chlorine concentration increased within the range of chlorine concentrations used, Hibler et al. advised against use of the Ct. values for chlorine concentrations above 2.5 mg/L.

Table 2 summarizes Hibler's data for the different experimental conditions examined. Column 3 shows the range of chlorine concentrations in mg/L to which cysts were exposed before being fed to the gerbils, and Column 7 shows the number of experiments which yields 1-4 infected gerbils out of 5.

Column 4 shows the range of cyst exposure times and Column 5 contains the range of C't values that are the product of the chlorine concentration and cyst exposure time.

TABLE 2. C'T VALUES FOR 99.99 PERCENT INACTIVATION BASED ON ANIMAL INFECTIVITY DATA

рН	Temp	Range of Conc. (mg/L)	Range of Cyst Exposure Time (min)	Range of C't values from Data	Range of Predicted C't Values	Number of Observa- tions
6	0.5	0.56-3.96	39-300	113-263	136-192	25
6	2.5	0.53-3.80	. 18-222	65-212	107-151	15
6	5	0.44-3.47	25-287	50-180	93-134	26
7	0.5	0.51-4.05	76-600	156-306	205-295	14
7	2.5	0.64=4.23	55-350	124-347	169-235	14
7	5	0.73-4.08	47-227	144-222	156-211	15
8	0.5	0.49-3.25	132-593	159-526	294-410	22 .
8	2.5	0.50-3.24	54-431	175-371	233-324	21
8	5	0.84-3.67	95-417	200-386	209-299	15

Hibler's data set, based on animal infectivity, is appealing because it is a more direct indicator of cyst viability than data based on excystation. However the C t values in this data set are based solely on 99.99 percent inactivation. The other three data sets, based on excystation, have values calculated for all four parameters in equation 8. Table 3 contains a summary characterization of the studies on which these data sets were based. Because no one individual experiment provided the exact characteristics required for this study an attempt was made to find the "most consistent" set of data for parameter estimation, which might include several of the data sets discussed.

TABLE 3. CHARACTERIZATION OF G. LAMBLIA FREE CHLORINE*
INACTIVATION STUDIES USED IN PREDICTIVE MODELS

7

27.

	eference Cyst No. Source		Viability Assay	Comments
	5	Symptomatic human	excystation	Conventional survival curves based on multiple samples. End point - 0.1% survival
•	7	Gerbils, adapted from infected humans. (CDC isolate)	gerbil infectivity (5 animals/sample)	No survival curves. Endpoint sought - - 0.01% survival
es sa est	8	Symptomatic and nonsymptomatic humans	excystation	Conventional survival curves based on multiple samples. End point - 0.1% survival
	9 .	Gerbils adapted from infected humans. (Several isolates used)	excystation	Conventional survival curves based on multiple samples. End

*Data provided by Dr. John Hoff formerly of USEPA

The Hibler data set was included in all combinations considered because it was the largest data set, the data set was based on animal infectivity, and the data reflected higher percent inactivation than required under the SWTR. Since the data based on excystation, with the exception of a few data points, only reflected percent inactivation up to 1 log or less than that required under the SWTR, inclusion of the Hibler data was considered essential for developing a model that could predict disinfection conditions for achieving

99.9 percent inactivation with minimum uncertainty. Filtered systems will need to know disinfection conditions for achieving less than 99.9 percent inactivation. Therefore data from at least one of the excystation studies was considered essential since the C t values in the SWTR may be used for calculating partial inactivation levels (i.e., less than 99.9 percent).

A fundamental question that needed to be addressed was the statistical compatibility of the data sets. Initial regression estimates for each of the data sets were made using equation 8. High "r²" were obtained for these fits but significant differences were found for the "R" coefficient or slope. This indicated that the basic model was adequate but that there were differences in the coefficients as defined by the individual estimates using equation 8. It was decided to "anchor" all of the data sets to the Hibler data set. The approach used was to construct an indicator random variable to move the regression intercept or slope to compensate for data set differences. The significance of the indicator random variable would support the hypothesis of different regression surfaces, i.e., incompatibility of the data sets chosen. The indicator random variable was created in such a way as to always differentiate between the Hibler data set and other data sets considered and to move the regression intercept not the slope. The indicator random variable was defined as follows:

Therefore equation 8 was modified as follows:

$$t = R I^a C^{b-1} p H^c temp^d 10^{az}$$
 (10)

where t, I, C, pH, temp are defined as in equation 8, and R,a,b,c,d,e are constants determined from regression.

Equation 10 can be transformed as follows:

log t \sim log R + a log I + (b-1) log C + c log pH + d temp + ez (11) In equation 11 when z = 0 equation 10 is defined over the Hibler data set, and

$$t = R I^a C^{b-1} pH^c temp^d (12)$$

THE MALES

distance of

70

7

3

When z = 1 equation 10 is defined over the remaining data and

$$t = (R \cdot 10^{\circ}) I^{\circ} C^{b-1} pH^{c} temp^{d}$$
 (13)

Table 4 displays the data set combinations and regression diagnostics. Note that z is the indicator random variable.

In Table 4, the first column shows the various data sets considered in the analysis. Column two contains the "r²" values based on equation 13 for each of the data combinations. Column three indicates major results of the analysis. For example it was found, for the first data set combination, that the intercept, and temperature variable were not significant. Column 4 shows the test that was used to determine whether or not the equation yields biased results.

As indicated in Column 4 of Table 4 residual plots were used to determine constant variance and normality. Fortunately a strict assumption of normality is not required. As stated in Neter, Wasserman and Whitmore "Small departures from normality do not create any serious problems. 4 Major departures, on the other hand, should be of concern". Further they write, "Unless the departures from normality are serious, particularly with respect to skewness, the actual confidence coefficients and risks of error will be close to the levels for exact normality". In addition because of the large sample size one would expect the central limit theories would apply and symmetry would not be an issue.

It was found that 90% of the data fell within plus/or/minus 1.64 standard deviations of the mean. In addition 75% of the data fell within plus or minus 1 minus standard deviation which gives support for the normality assumption. [For a perfect normal distribution we would expect 68% of the data to lie within plus or minus 1 standard deviation. Similarly, we would expect 90% to lie within plus or minus 1.64 standard deviation of the mean].

The indicator random variable for the intercept variable using the Hibler, Jarroll data base was not significant (p-value = 0.3372). All other data bases considered had a significant indicator random variable at the 0.095 level of significance. A formal test for differences of intercept and/or slope between the Hibler and Jarroll data sets was conducted and no difference was detected.

As mentioned previously the Hibler data set does possesses some desirable characteristics and it is the largest data set among all data sets available. However one might argue that by forcing the Hibler data set into the analysis the possibility has been ignored that the other data sets may be mutually consistent, and the Hibler data set may represent an "outlier". In addition, one might hypothesize that data from different experimental situations prohibits us from making a reasonable comparison among these excystation studies. Table 4 shows that the Hibler and Jarroll data sets are compatible. Since Table 4 also shows that Hibler-Rice and Hibler-Rubin is not consistent, then it is reasonable to assume that the Jarroll date is not consistent with the Rice and Rubin data so that the Hibler data is not alone in being inconsistent with the other data sets. It seems reasonable therefore to start with the Hibler data set, the largest one, then incorporate other smaller data sets into the modeling process. Thus logic supports the use of the Hibler,

Jarroll data base for extending the model development and the coefficients in equation 8 were estimated using these data as shown in Table 5 in the log transformed form. 13

TABLE 4. DIAGNOSTIC RESULTS FROM DATA SET COMBINATION ANALYSIS

Data sets considered	R-Square	Variables	Plots
Hibler, Rice, Jarroll, Rubin	0.6801	intercept, temp	non-normal data
		not-significant	non-constant var
Hibler, Rice, Jarroll, Rubin, z	0.7316	intercept, temp	non-normal data
		not-significant	non-constant var
Hibler, Rice, Rubin	0.6649	intercept, temp	non-normal data
			non-constant var
Hibler, Rice, Rubin, z	0.7899	intercept	non-normal data
		not-significant	non-constant var
Hibler,, Jarroll, Rubin	0.6424	intercept, temp	non-normal data
		not-significant	non-constant var
Hibler, Jarroll, Rubin, z	0.6879	intercept, temp	non-normal data
institution, and the second second		not-significant	non-constant var
Hibler, Rice, Jarroll	0.8619	all variables	non-normal data
more, more, carrott	0.0020	significant	non-constant var
Hibler, Rice, Jarroll, z	0.865	all variables	non-normal data
•		significant	non-constant var
Hibler, Rubin	0.6483	temp	non-normal data
	` ,	not-significant	non-constant var
Hibler, Rubin, z	0.7593	intercept	non-normal data
		not-significant	constant var
Hibler, Rice	0.8548	all variables	non-normal data
		significant	constant var
Hibler, Rice, z	0.8678	all variables	non-normal data
		significant	constant var
Hibler, Jarroll	0.8452	all variables	non-normal data
		significant	constant var
Hibler, Jarroll, z	0.8459	z not significant	
			constant var

TABLE 5. COEFFICIENT ESTIMATES FOR EQUATION 8.

Variable	DF	Coefficient	Standard Error	Statistical T for HO: Parameter=0	Analysis PROB > 0	Variance Inflation Factor
INTERCEP	1	-0.902	0.200	-4.518	0.0001	0.000
LOGI	1	-0.268	0.014	-19.420	0.0001	1.183
LOGCHLOR	1	-0.812	0.042	-19.136	0.0001	1.033
LOGPH	1	2.544	0.221	11.535	0.0001	1.032
LOGTEMP	Ĭ	-0.146	0.028	-5.117	0.0001	1.179

In Table 5 column 7 entitled the "Variance Inflation Factor (VIF)" is defined as $(1-R_k^2)$ where R_k^2 is the coefficient of multiple determination when X_k is regressed on the other variables in the model. The minimum value of VIF is 1 if there is no multicollinearity. As shown in column 7 all of the variance inflation factors are close to one.

DISCUSSION OF MODEL

As discussed in the previous sections the coefficients for equation 8 were determined by a combination of log transformation and linear regression. An issue to consider is the probability that there is measurement error in the model's independent variables and the effect that this could have on estimates of the parameters.

Regression is intended to fulfill the dual purposes of prediction and explanation. The purpose of equation 8 is primarily to predict by providing water utilities guidance as to what C t values will be needed for a desired level of inactivation. The purpose of this model is to predict C t values and will not be hampered by measurement error as long as consistency is maintained. Since any measurement is subject to some type of error, the approach taken to deal with this issue was to provide safe or "conservative estimates" of C t values.

As one of the diagnostic procedures applied to the analysis equation 13 was evaluated for multicolinearity. As can be see from Table 5 all of the coefficients are highly significant and there is no multicolinearity.

TABLE 6	COLI	INFADITY	DIAGNOSTICS
INDLE D	. LULI	THEWEST	DIWGUO2:1C2

Condition Number	VAR PROP Intercep	VAR PROP LOGI	VAR PROP LOGCHLOR	VAR PROP LOGPH	VAR PROP LOGTEMP
1.000	0.0002	0.0031	0.0214	0.0003	0.0174
2.495	0.0001	0.0063	0.0138	0.0001	0.7833
2.801	0,0003	0,0067	0.9285	0.0004	0.0005
10.662	0.0147	0.9266	0.0029	0.0253	0.1918
45.636	0.9847	0.0574	0.0334	0,9739	0.0071

In Table 6 VAR PROP is the variance-decomposition proportion (VDP) and has a maximum value of 1. A high condition number coupled with high VDP values for two or more coefficients is an indication of multicollinearity between those variables. A condition of 45.636 in conjunction with an intercept VDP of 0.9847 and Log(pH) VDP of 0.9739 indicated a dependency between the intercept and Log(pH) variable, however, multicollinearity among the other coefficients were nonexistent.

2

13.

The final equation used for predicting C't values in the SWTR was based on equation 8 as follows:

$$C \cdot t = RI^{a}C^{b}pH^{c}temp^{d}$$
 (14)

Confidence intervals of the coefficients estimate for equation 14 based on the Bonferroni method at a 99% confidence interval are: $^{14.16}$

R: (0.384, 0.4096)
a: (-0.2321, -0.3031)
b: (0.0792, 0.2977)
c: (1.9756, 3.1117)
d: (-0.2192, -0.0724)

RESULTS

There are many uncertainties regarding the various data sets that might be considered for calculating C't values. The random variable analysis shows at the statistical incompatibility among most of these data sets. More work needs to be done to define the impact of strain variation and in vivo versus in vitro techniques on C't values. In order to provide conservative estimates for C't values in the SWTR and the guidance document the authors used the approach illustrated in Figure 1.

In Figure 1 the 99% confidence interval of the 4 log inactivation level is calculated. First order kinetics are then assumed so that the inactivation "line" goes through 1 at C·t = 0 and a C·t value equal to the upper 99% confidence interval at 4 logs of inactivation. As can be seen the inactivation line consists of higher C·t values than all of the mean predicted C·t values from equation 14, most of the Jarroll et al., and most of the Hibler data points. Conservative C·t values, for a specified level of inactivation, can be obtained from the inactivation line prescribed by the disinfection conditions. For the example indicated in Figure 1, the appropriate C·t for achieving 99.9% inactivation would be 105. This approach (assumption of first order kinetics) also provides the basis for establishing credits for sequential disinfection steps allowed under the SWTR. It should be noted that this approach provides very conservative estimates at mid range levels of C·t.

Note in Figure 1 that some of the individual data points fall outside the 99% confidence interval estimated at the four logs of inactivation. This is to be expected since the confidence intervals constructed were for mean C t values, but also indicated the high variability of the Hibler data.

Equation 14 was applied using the above strategy, as a safety factor, to determine the C t values for 99.9 percent inactivation at 0.5°C and 5°C in the

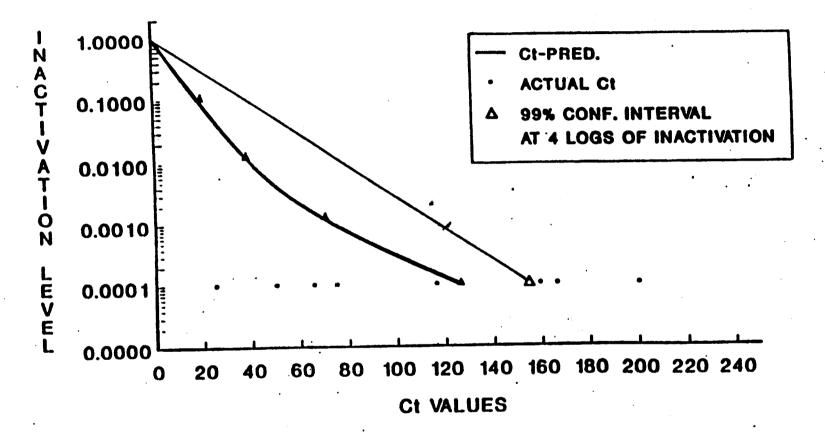


FIGURE 1. 99% CONFIDENCE LEVELS USING
EQUATION 14 FOR CHLORINE = 2 mg/l;
PH = 6; TEMPERATURE = 5°C

final SWTR. 1 C't values for temperatures above 5°C were estimated assuming a twofold decrease for every 10°C increase in temperature since all the Hibler data was generated at 5°C or less. This general principle is supported by Hoff.

Application of equation 14 to pHs above 8, up to 9, was considered reasonable because the model is substantially sensitive to pH (e.g., C'ts at pH 9 are about three times greater than C ts at pH 6 and about two times greater than C ts at pH 7). At a pH of 9, approximately four percent of the hypochlorous acid fraction of free chlorine is still present. Other data indicate that in terms of HOC1 residuals (versus total free chlorine residuals including HOCl and OCl') the C't values required for inactivation of Giardia muris and Giardia lamblia cysts decrease with increasing pH from 7 to 9.10 However, with increasing pH, the fraction of free chlorine existing as the weaker oxidant species (OCI) increases. In terms of total free chlorine residuals (i.e., HOCl and OCl) the C't values required for inactivation of Giardia muris and Giardia lamblia cysts increase with increasing pH from 7 to 9 but generally less than by a factor of 2 at concentrations of less than 5.0 mq/L.10 Table 7 compares the C't values in the proposed SWTR to those given in the SWTR. The C't values in the proposed SWTR were based only on the Hibler data and included different safety factors. 2.8

TABLE 7. COMPARISON BETWEEN MODIFIED APPROACH (MEANS) AND RULE C'TS AT 99.9% INACTIVATION AND 5°C IN THE PROPOSED AND FINAL SWITE

					DΗ			•
Concentration	Proposed	6	Proposed	7	Duanasad	8	9	
ang/L	Proposed	r (Ma)	Proposed	Final	Proposea	rinai	Proposed	Final
1	105	108	149	165	216	·238	329	312
2	116	122	165	186	243	269	371	353

.

÷.

The C't values in the final SWTR are 0-10 percent lower than in the proposed SWTR. Table 8 presents representative C't values determined by application of the above described approach.

TABLE 8. CALCULATED C'T VALUES FOR GIARDIA INACTIVATION USING USING EQUATION 14 AT 0.5°C and 5°.

Values	for	nac	tivati	on of	Giard	lia	Cysts
	by Fi	ree	Chlori	ine at	0.5°C		•

Chlori Concentr		Ina	= 6 ctiva				ctival		Loc	pH =	tivat	tion	Loc	pH =	tivat	tion	
mg/L	0.5	1.0	2.0	3.0	0.5	1.0	2.0	3.0	0.5	1.0	2.0	3.0	0.5	1.0	2.0	3.8	
0.4	23	46	91	137	33		130			92				130	260	390	٠
1 2	25 28	49 55	99 110	148 165	35 39		140 157	210 236		101 115	203 231	304 346	73 8 3	146 167	· 291 333	437 500	
3	30	60	121	181	44	87	174	261	64	127	255	382	92	184	368	552	

Values for Inactivation of Giardia Cysts by Free Chlorine at 5°C

Chlorine Concentration	Loc		= 6 ctiva	tion	Log	pH =	7 :tiva1	ion	Log	pH =	. g	tion	Loc	pH i	9 ctivat	tion
mg/L	0.5	1.0	2.0	3.0	0.5	1.0	2.0	3.0	0.5	1.0	2.0	3.0	0.5	1.0	2.0	3.8
0.4	16 18	32 35	65 70	97 105	23 25	46 50	93 99	139 149	33 36		137 144	198 216	47 52	93 104		279 312
2 3	19 21	39 42	77	116 126	28 30	55	110 121	165 182	41 45	81		243	59	118 130	235	353

Because calculations for the SWTR C:t values are the upper limit on the error bounds associated with equation 14 (Table 8), an equation was developed to estimate these C:t values for 0.5 and 5°C directly. C:t values above 5°C can be estimated by using the method given below to estimate C:t values at 5°C, then the assumption that there is a twofold decrease in C:t values for every 10°C increase in temperature can be applied. The equation for the estimated C:t values at 0.5 and 5°C is as follows:

 $C \cdot t = 0.36 \text{ pH}^{2.69} \text{temp}^{-0.15} C^{0.15} (-\log I)^{1.00} \quad (R^2 = 0.998)$ (15) where the variables in equation 15 are as defined previously.

Table 9 compares the values estimated by equation 15 and the SWTR values shown in Table 8.

TABLE 9. CALCULATED C'T VALUES FOR GIARDIA INACTIVATION USING EQUATION 15 AT 0.5 AND 5°C

				Value				on of ine at			ysts						
Chlorine Concentration	Loc	Ina	= 6 ctiva		Log	pH =	= 7 ctivat	tion		pH =	tiva				tivat		_
mg/L	0.5	1.0	2.0	3.0	0.5	1.0	2.0	3.0	0.5	1.0	2.0	3.0	0.5	1.0	2.0	3.8	
0.4 1 2 3	22 25 27 29	43 49 55 58	86 99 109 116	129 148 164 174	33 37 41 44	65 75 83 88	131 149 165 175	196 224 248 263	47 54 59 63	94 107 118 126	187 214 137 251	281 321 355 377	64 74 81 86	129 147 163 173	257 294 325 345	385 441 487 517	•
•				Value:				on of ine at		dia (ysts						
Chlorine Concentration mg/L	<u>Loc</u> 0.5		= 6 ctiva 2.0	<u>tion</u> 3.0			7 :tiva 2.0	3.0	<u>Log</u> 0.5	pH = Inac 1.0	tivat		<u>Log</u> 0.5		tivat	<u>ion</u> 3.8	
0.4 1 2 3	15 17 19 20	31 35 39 41	61 70 77 82	91 104 116 123	23 26 29 31	46 53 58 62	92 106 117 124	138 158 175 186	33 38 42 44	66 76 84 89	132 151 167 178	198 227 251 266	46 52 58 61	91 104 115 122	182 208 320 244	272 311 345 366	

FUTURE WORK .

Total Control

135

-

Because of the importance from an economic and a public health viewpoint of the calculation of C:t values for the inactivation of Giardia lamblia by free chlorine, much effort has been expended in developing models that interrelate the important variables effecting these values. The work reported in this paper reflects the authors attempts to develop such a relationship for inclusion in the SWTR. However, it also raises a very interesting point regarding the application of statistical methodology to public policy decision problems. There is no perfect "regulatory" experiment that answers all of the textbook questions that could be raised regarding regulatory decision making. One has to use available data and incorporate the best judgment that can be brought to bear on a given issue to insure that public health and welfare is protected. The need to combine data sets from different investigations and then develop a decision rule based on the data, as shown in this paper, as an example of the this process.

There is no doubt in the authors' mind that other better models may be developed. For example, Haas' work in applying the Hom model to inactivation data and incorporating the method of Maximum Likelihood for estimating parameters is promising.¹⁷ The authors believe that the public is best served by examining problems from many different points of view and encourage others to pursue these difficult, frustrating but extremely challenging problems.

SUMMARY AND CONCLUSIONS

Amendments to the Safe Drinking Water Act clearly require that all surface water suppliers in the U.S. filter and/or disinfect to protect the health of their customers. <u>G. lamblia</u> has been identified as one of the leading causes of waterborne disease outbreaks in the U.S. <u>G. lamblia</u> cysts are also one of the most resistant organisms to disinfection by free chlorine.

EPA's Office of Drinking Water has adopted the C't concept to quantify the inactivation of <u>G</u>. <u>lamblia</u> cysts by disinfection. If a utility can assure that a large enough C't can be maintained to ensure adequate disinfection then, depending upon site specific factors, it may not be required to install filtration. Similarly, the C't concept can be applied to filtered systems for determining appropriate levels of protection.

In this paper, an equation has been developed that can be used to predict C:t values for the inactivation of <u>G</u>. <u>lamblia</u> by free chlorine based on the interaction of disinfectant concentration, temperature, pH, and inactivation level. The parameters for this equation have been derived from a set of animal infectivity and excystation data. The equation can be used to predict C:t values for achieving 0.5 to 4 logs of inactivation, within temperature ranges of 0.5 to 5°C, chlorine concentration ranges up to 4 mg/L, and pH levels of 6 to 8. While the model was not based on pH values above 8, the model is still considered applicable up to pH level of 9. The equation shows the effect of disproportionate increases of C:t versus inactivation levels. Using 99% confidence intervals at the 4 log inactivation levels and applying first order kinetics to these end points a conservative regulatory strategy for defining C:t at various levels of inactivation has been developed. This approach represents an alternative to the regulatory strategy previously proposed.

ACKNOWLEDGMENTS

The authors would like to acknowledge Ms. Patricia Pierson and Ms. Diane Routledge for their assistance in preparing this manuscript. The authors are grateful to Dr. John Hoff, formerly of USEPA, Ms. Shirley Pien and Ms. Eleanor Read of the Computer Sciences Corporation, Mr. Dennis Black of the University of Nevada, Las Vegas, and Dr. Charles Haas of the Illinois Institute of Technology for their review and suggestions to improve the manuscript. The authors would like to extend a special acknowledgement to Ms. Dianne Wild for her assistance in the preparation of this manuscript.

REFERENCES

- 1. National Primary Drinking Water Regulations: Filtration, Disinfection, Turbidity, <u>Giardia lamblia</u>, Viruses, <u>Legionella</u>, and Heterotrophic Bacteria. Final Rule, 40 CFR parts 141 and 142. Fed. Reg. 54:124:27486 (June 29, 1989).
- 2. U.S. Environmental Protection Agency, Office of Drinking Water, Criteria and Standards Division. Guidance Manual for Compliance with the Filtration and Disinfection Requirements for Public Water Systems Using Surface Water Sources, October 1987.
- 3. Clarke, N. A., Berg, C., Kabler, P. W., and Chang, S. L., "Human Enteric Viruses in Water: Source, Survival, and Removability". International Conference on Water Pollutions Research, Landar, September, 1962.
- 4. Hoff, J. C., Rice, E. W., and Schaefer III, F. W. "Disinfection and the Control of Waterborne Giardiasis", In Proceedings of the 1984 Specialty Conference, Environmental Engineering Division, ASCE, June 1984.
- 5. Jarroll, E. L., Bingham, A. K., and Meyer, E. A. "Effect of Chlorine on Giardia Lamblia Cyst Viability". Applied and Environmental Microbiology. Vol. 41, pp. 483-48, February, 1981.
- Chick, H., "an Investigation of the Laws of Disinfection:, J. Hygiene, 8, 92 (1908).
- 7. Watson, W. E., "A Note on the Variation of the Rate of Disinfection with Change in the Concentration of the Disinfectant", J. Hygiene, 8, 536 (1908).
- 8. Clark, R. M., Read, E. J., and Hoff, J. C. "Analysis of Inactivation of Giardia Lamblia by Chlorine". Journal of Environmental Engineering, ASCE, Vol. 115, No. 1, February, 1989, pp. 80-90.
- 9. Hibler, C. P., Hancock, C. M., Perger, L. M., Wegrzyn, J. G. and Swabby, K. D. "Inactivation of <u>Giardia</u> Cysts with Chlorine at 0.5°C to 5.0°C. american Water Works Association Research Foundation, 6666 West Quincy Avenue, Denver, Colorado 80235, 1987.
- 10. Rice, E. W., Hoff, J. C. and Schaefer III, F. W. "Inactivation of <u>Giardia</u> Cysts by Chlorine", <u>Applied and Environmental Microbiology</u>, Jan. 1982, Vol. 43, No. 1, pp. 250-251.
- 11. Rubin, A. J., Evers, D. P., Eyman, C. M., and Jarroll, E. L., "Inactivation of Gerbil-Cultured <u>Giardia Lamblia</u> Cysts by Free Chlorine", <u>Applied and Environmental Microbiology</u>, Oct. 1989, Vol. 55, No. 10, p. 2592-2594.
- Hoff, J. C., "Inactivation of Microbial Agents by Chemical Disinfectants" EPA/600/2-86-067.
- 13. Draper, N. and Smith, H. (1981) Second Edition, <u>Applied Regression Analysis</u>, Wiley: New York.

- 14. Neter, J. and Wasserman, W. (1974), <u>Applied Linear Statistical Models</u>, Irwin: Homewood, IL.
- 15. Fuller, Wayne, Measurement Error Models, John Wiley & Sons, 1987.
- 16. Belsley, D. A., Kuh, e. and Welsch, R. E. (1980), Regression Diagnostics, Wiley: New York.
- Haas, Charles W., and Hillar, B. Statistical Analysis of Data on Chlorine Inactivation of <u>Giardia Lamblia</u>, Final Report prepared for U.S. EPA Office of Drinking Water, January 6, 1988.

GLOSSARY

```
d N_{\star}/dt = rate of change of organisms with respect to time
        - inactivation rate in minutes<sup>-1</sup>

    time in minutes

t
        - number of organisms at time t
N.
        - number of organisms at time 0
         = coefficient of specific lethality (liters/milligram - minutes)
r
        - concentration of disinfectant [milligrams/liter] 1/n
            coefficient of dilution
         - constant at given level temperature, pH and inactivation level
Ha
         - pH in water phase
         = temperature in °C
temp
         - level of inactivation
Ī
         concentration in mg/L times time in minutes
C.t
         - coefficient to be determined
R
         - coefficient to be determined
         = coefficient to be determined
         - coefficient to be determined

    coefficient to be determined

         - coefficient to be determined
         = variance inflation factor. If VIF is 1 there is no multicolinearity
 VIF
         - variance decomposition number. If VDP is high for two or more
    variables there is an induction of multicolinearity between
 variables
```

Bonferroni technique = a conservative method of estimating confidence intervals

permanganate as a disinfectant. It is not meant to be used as a basis for establishing CT requirements.

References

- Berman, D.; Hoff, J. Inactivation of Simian Rotavirus SA 11 by Chlorine, Chlorine Dioxide and Monochloramine. Appl. Environ. Microbiol., 48:317-323, 1984.
- Chang, J.C.H.; Ossoff, S.F.; Lobe, D.C.; Dorfman, M.H.; Dumais, C.M.; Qualls, R.G.; Johnson, J.D. Inactivation of Pathogenic and Indicator Microorganisms. Applied Environ. Micro., June 1985, pp. 1361-1365.
- Clark, R.M.; Read, E.J.; Hoff, J.C. Inactivation of <u>Giardia lamblia</u> by Chlorine: A Mathematical and Statistical Analysis. Unpublished Report, EPA/600/x-87/149, DWRD, Cincinnati, OH, 1987.
- Clark, R.; Regli, S.; Black, D. Inactivation of <u>Giardia lamblia</u> by Free Chlorine: A Mathematical Model. Presented at AWWA Water Quality Technology Conference. St. Louis, Mo., November 1988.
- Clark, M.R.; Regli, S. The Basis for Giardia CT Values in the Surface Water Treatment Rule: Inactivation by Chlorine. Submitted to Journal of Water Supply Research and Technology-Aqua, August 1990.
- Hibler, C.P.; C.M. Hancock; L.M. Perger; J.G. Wegrzn; K.D. Swabby Inactivation of <u>Giardia</u> cysts with Chlorine at 0.5 C to 5.0 C American Water Works Association Research Foundation, In press, 1987.
- Hoff, J.C. <u>Inactivation of Microbial Agents by Chemical Disinfectants</u>, EPA/600/52-86/067, U.S. Environmental Protection Agency, Water Engineering Research Laboratory, Cincinnati, Ohio, September, 1986.
- Jarroll, E.L.; A.K. Binham; E.A. Meyer Effect of Chlorine on <u>Giardia lamblia</u> Cyst Viability. Appl. Environ. Microbiol., 41:483-487, 1981.
- Leahy, J.G.; Rubin, A.J.; Sproul, O.J. Inactivation of <u>Giardia muris</u> Cysts by Free Chlorine. Appl. Environ. Microbiol., July 1987.
- Rice, E.; Hoff, J.; Schaefer, F. Inactivation of <u>Giardia</u> Cysts by Chlorine. Appl. and Environ. Microbiology, 43:250-251, January 1982.
- Roy, D., R.S. Engelbrecht, and E.S.K. Chian. Comparative Inactivation of Six Enteroviruses by Ozone. J. AWWA, 74(12):660, 1982.
- Rubin, A. Factors Affecting the Inactivation of <u>Giardia</u> Cysts by Monochloramine and Comparison with other Disinfectants. Water Engineering Research Laboratory, Cincinnati, OH March 1988a.

Rubin, A. "CT Products for the Inactivation of <u>Giardia</u> Cysts by Chlorine, Chloramine, Iodine, Ozone and Chlorine Dioxide" submitted for publication in J. AWWA, December, 1988b.

Sobsey, M. Detection and Chlorine Disinfection of Hepatitus A in Water. CR-813-024. EPA Quarterly Report. December 1988.

Vaughn, J.; Chen, Y.; Lindburg, K.; Morales, D. Inactivation of Human and Simian Rotaviruses by Ozone. Appl. Environ. Microbiol., 53(9):2218-2221, September 1987.

Wickramanayake, G.; Rubin, A.; Sproul, O. Effects of Ozone and Storage Temperature on <u>Giardia</u> Cysts. J.AWWA, 77(8):74-77, 1985.

Yahya, M.T., Landeen, L.K., Forsthoefel, N.R., Kujawa, K., and Gerba, C.P. Evaluation of Potassium Permanganate for Inactivation of Bacteriophage MS-2 in Water Systems. Copyright 1988, Carus Chemical Company, Ottawa, Illinois.

APPENDIX G-1

DETERMINING CHLORAMINE INACTIVATION OF <u>GIARDIA</u> FOR THE SURFACE WATER TREATMENT RULE

Microbiological Treatment Branch Risk Reduction Engineering Laboratory

and

Parasitology and Immunology Branch
Environmental Monitoring Systems Laboratory
U.S. Environmental Protection Agency
26 West Martin Luther King Drive
Cincinnati, Ohio 45268

TABLE OF CONTENTS

I.	Materials3
II.	Reagents4
III.	Giardia muris Assay
IV.	Disinfection Procedures for <u>Giardia</u> 10
٧.	Procedure for Determining Inactivation12
VI.	Bibliography13
VII.	Technical Contacts14
Арр	endix
	A. Use of the Hemocytometer
	B. Preparation and Loading of Chamber Slides20

The Surface Water Treatment Rule requires 99.9% or greater removal/inactivation of <u>Giardia</u>. The following protocol may be used to determine the percentage of <u>Giardia</u> inactivation obtained by a treatment plant using chloramine disinfection.

I. MATERIALS

A. Materials for Disinfection

- 1. Stock chlorine solution
- Stock ammonia solution
- 3. Stirring device
- 4. Incubator or water bath for temperatures below ambient
- 5. Water from treatment plant
- 6. Giardia muris cysts
- 7. Assorted glassware
- 8. Assorted pipettes
- 9. Reagents and instruments for determining disinfectant residual
- 10. Sterile sodium thiosulfate solution
- 11. Vacuum filter device, for 47mm diameter filters
- 12. 1.0 µm pore size polycarbonate filters, 47 mm diameter
- 13. Vacuum source
- 14. Crushed ice and ice bucket
- 15. Timer

3. Materials for Excystation

- 1. Exposed and control Giardia muris cysts
- Reducing solution
- 3. 0.1 M sodium bicarbonate
- 4. Trypsin-Tryode's solution
- 5. 15 ml conical screw cap centrifuge tubes
- 6. Water bath, 37°C
- 7. Warm air incubator or slide warming tray, 37°C
- 8. Aspirator flask :
- 9. Vacuum source
- 10. Assorted pipettes
- 11. Vortex mixer
- 12. Centrifuge with swinging bucket rotor
- 13. Chamber slides
- 14. Phase contrast microscope
- 15. Differential cell counter
- 16. Timer

II. REAGENTS

A. Reducing Solution

Ingredient .	Amount
glutathione (reduced form)	0.2 g
L-cysteine-HCl	0.2 g
1X Hanks' balanced salt solution	20.0 ml

Dissolve the dry ingredients in the 1X Hanks' balanced salt solution and warm to 37°C before use in the experiment. Prepare fresh, within 1 hour of use.

3. Sodium Bicarbonate Solution, 0.1 M

Ingred	ient		Amount
Sod i um	bicarbonate	•	0.42 g

Dissolve the salt in 10 to 15 ml distilled water. Adjust the volume to 50 ml with additional distilled water and warm to 37°C before use in the experiment. Prepare fresh, within 1 hour of use.

C. Sodium Bicarbonate Solution, 7.5%

Ingredient	Amount
Sodium bicarbonate	7.5 g

Dissolve the sodium bicarbonate in 50 ml distilled water. Adjust the volume to 100 ml with additional distilled water. Store at room temperature.

D. Sodium Thiosulfate Solution, 10%

Ingredi	ient '	Amount
Sodium	thiosul fate	10.0 g

Dissolve the sodium thiosulfate in 50 ml distilled water. Adjust the volume to 100 ml with additional distilled water. Filter sterilize the solution through a 0.22 um porosity membrane or autoclave for 15 minutes at 121°C. Store at room temperature.

E. Tyrode's Solution, 20X

Ingredient	•		Amount
Na CT			160.0 g
KC1		•	4.0 g
CaCl ₂	-		4.0 g
MaCla 6HaO			2.0 g
Na Ha PO4 - Ra O			1.0 g
MgCl 2 • 6H ₂ O Na H ₂ PO ₄ • R ₂ O Glucose			20.0 g

Dissolve the dry ingredients in the order listed in 750 ml distilled water. Adjust the volume to 1.0 liter with additional distilled water. If long term storage (up to 1 year) is desired, filter sterilize the solution through a 0.22 um porosity membrane.

F. Tyrode's Solution, 1X

Ingredient		A	mou	int
20X Tyrode's	solution	5	.0	mΤ

Dilute 5 ml of the 20% Tyrode's solution to a final volume of 100 ml with distilled water.

G. Trypsin-Tyrode's Solution

Ingredient	Amount
Trypsin, 1:100, U.S. Biochemical Co.	0.50 g
NaHCO3	0.15 g
1X Tyrode's solution	100.00 ml

With continuous mixing on a stirplate, gradually add 100 ml 1X Tyrode's solution to the dry ingredients. Continue stirring until the dry ingredients are completely dissolved. Adjust the pH of the solution to 8.0 with 7.5% NaHCO3. Chill the trypsin Tyrode's solution to 4°C. NOTE: Trypsin lots must be tested for their excystation efficiency. Prepare fresh, within 1 hour of use.

H. Polyoxyethylene Sorbitan Monolaurate (Tween 20) Solution, 0.01% (v/v)

Ingredient	A	mout	1t
Tween 20	0	.I n	nΤ

Add the Tween 20 to 1.0 liter of distilled water. Mix well.

I. Vaspar

Ingredient	·	Amount
Paraffin		1 part
Petroleum jelly		1 part

Heat the two ingredients in a boiling water bath until melting and mixing is complete.

III. GIARDIA MURIS ASSAY

A. Cysts

Giardia muris cysts may be available from commercial sources. The cysts may be produced in Mongolian gerbils (Meriones unguiculatus) or in mice. Mus musculus, the laboratory mouse, CF-1, BALBC, and C3H/he strains have been used to produce G. muris cysts. The method is labor intensive and requires a good animal facility.

In order for the disinfection procedure to work properly, the <u>G. muris</u> cysts used must be of high quality. Evaluation of a cyst suspension is a subjective procedure involving aspects of morphology and microbial contamination as well as excystment. A good quality G. muris cyst preparation should exhibit the following:

- Examine cyst stock suspension microscopically for the presence of empty cyst walls (ECW). Cyst suspensions containing equal to or greater than 1% ECW should not be used for determining inactivation at any required level. However, if a 99.9% level of disinfection inactivation is required, the stock cyst suspension must contain <0.1% ECW.
- 2. Excystation should be 90% or greater.
- The cyst suspension should contain little or no detectable microbial contamination.
- 4. Good G. muris cysts are phase bright with a defined cyst wall, peritrophic space, and agranular cytoplasm. Cysts which are phase dark, have no detectable peritrophic space, and have a granular cytoplasm may be non-viable. There generally should be no more than 4 to 5% phase dark cysts in the cyst preparation.

Good G. muris cyst preparations result when the following guidelines are followed during cyst purification from feces:

- a. Use feces collected over a period of 24 hours or less.
- b. The isolation of the cysts from the feces should be done immediately after the fecal material is collected.
- c. Initially, G. muris cysts should be purified from the fecal material by flotation using 1.0 M sucrose.
- d. If the <u>G. muris</u> cyst suspension contains an undesirable density of <u>contaminants</u> after the first sucrose float, further purification is necessary. Two methods for further purification are suggested.
 - 1) Cysts may be reconcentrated over a layer of 0.85 M sucrose in a 50 ml conical centrifuge tube. If this

 Cysts can be separated from dissimilar sized contaminants by sedimentation at unit gravity, which will not adversely affect cyst bouyant density, morphology, or viability.

B. Maintenance of Cysts

1. Preparation of stock suspension

Determine the suspension density of the <u>G. muris</u> cyst preparation using a hemocytometer (see Appendix A). Adjust the cyst suspension density with distilled water to approximately $3-5 \times 10^6$ cysts/ml.

2. Storage

Store cysts in distilled water in a refrigerator at 4°C. Cysts should not be used for disinfection experiments if they are more than 2 weeks old (from time of feces deposition).

C. Excystation Assay

A number of G. muris excystation procedures have been described in the scientific literature (see Bibliography, Section VI). Any of these procedures may be used provided 90% or greater excystation of control, undisinfected G. muris cysts is obtained. The following protocol is used to evaluate the suitability of cysts in the stock suspension, and to determine excystation in control and disinfected cysts.

- 1. For evaluating a cyst suspension or for running an unexposed control, transfer 5 x 10^5 G. muris cysts from the stock preparation to a 15 ml conical screw cap centrifuge tube. An unexposed control should be processed at the same time as the disinfectant exposed cysts.
- 2. Reduce the volume of G. muris cyst suspension in each 15 ml centrifuge tube to 0.5 ml or less by centrifugation at 400 x g for 2 minutes. Aspirate and discard the supernatant to no less than 0.2 ml above the pellet.
- 3. Add 5 ml reducing solution, prewarmed to 37°C, to each tube.
- 4. Add 5 ml 0.1 M NaHCO3, prewarmed to 37°C, to each tube. NOTE: Tightly close the caps to prevent the loss of CO2. If the CO2 escapes, excystation will not occur.
- 5. Mix the contents of each tube by vortexing and place in a 37°C water bath for 30 minutes.

はまれ

.

The is

- 6. Remove the tubes from the water bath and centrifuge each for 2 minutes at $400 \times g$.
- 7. Aspirate and discard the supernatant to no less than 0.2 ml above the pellet and resuspend the pellet in each tube in 10 ml trypsin-Tyrode's solution chilled to 4°C.
- 8. Centrifuge the tubes for 2 minutes at 400 x g.
- Aspirate and discard the supernatant to no less than 0.2 ml above the pellet.
- 10. Add 0.3 ml trypsin-Tyrode's solution, prewarmed to 37°C, to each tube. Resuspend the <u>G. muris</u> cysts by low speed vortexing.
- 11. Prepare a chamber slide for each tube (see Appendix B).
- 12. Seal the coverslip on each chamber slide with melted vaspar and incubate at 37°C for 30 minutes in an incubator or on a slide warmer.
- 13. After incubation, place a chamber slide on the stage of an upright phase contrast microscope. Focus on the slide with a low power objective. Use a total magnification of 400% or more for the actual quantitation. NOTE: Be careful to keep the objectives out of the vaspar.
- 14. While scanning the slide and using a differential cell counter, enumerate the number of empty cyst walls (ECW), partially excysted trophozoites (PET), and intact cysts (IC) observed (see Section V for a further description of these forms and the method for calculating percentage excystation). If the percentage excystation in the stock suspension is not 90% or greater, do not continue with the disinfection experiment.

IV. DISINFECTION PROCEDURES FOR GIARDIA

- A. The treatment plant water to be used should be the water influent into the chloramine disinfection unit process used in the plant. If chloramine disinfection is performed at more than one point in the treatment process, e.g., prefiltration and postfiltration, the procedure should simulate as closely as possible actual treatment practice.
- B. Prepare stock ammonia and chlorine solutions to be added to the treatment plant water to achieve the same stoichiometric relationship between chlorine and ammonia that is used in the water treatment plant. These solutions should be concentrated enough so that no more than 2 ml of each solution will be added to the treatment plant water being disinfected.
- C. Determine the contact time by the methods described in the Surface Manual.
- D. Rinse a 600 ml beaker with treatment plant water to remove any extraneous material that may cause disinfectant demand. Then add 400 ml treatment plant water to the beaker.
- E. Mix the contents of the beaker short of producing a vortex in the center and continue until the conclusion of the experiment.
- F. Equilibrate the 600 ml beaker and its contents as well as the disinfectant reagents to the desired experimental temperature.
- G. Adjust the stock G. muris cyst suspension with distilled water so that the concentration is 2-5 x 10⁶ cysts/ml.
- H. Add 0.5 ml of the adjusted cyst suspension to the contents of the 600 ml beaker.
- I. Add the disinfectant reagents to the beaker using the same reagents, the same sequence of addition of reagents, and the same time interval between addition of reagents that is used in the disinfection procedure in the treatment plant.
- Just prior to the end of the exposure time, remove a sample adequate for determination of the disinfectant residual concentration. Use methods prescribed in the Surface Water Treatment Rule for the determination of combined chlorine. This residual should be the same (±20%) as residual present in the treatment plant operation.
- K. At the end of the exposure time, add 1.0 ml 10% sodium thiosulfate solution to the contents of the 600 ml beaker.
- L. Concentrate the <u>G. muris</u> cysts in the beaker by filtering the entire contents through a 1.0 µm porosity 47 mm diameter polycarbonate filter.

70

- M. Place the filter, cyst side up, on the side of a 150 ml beaker. Add 10 ml 0.01% Tween 20 solution to the beaker. Using a Pasteur pipette, wash the <u>G. muris</u> cysts from the surface of the filter by aspirating and expelling the 0.01% Tween 20 solution over the surface of the filter.
- N. Transfer the contents of the 150 ml beaker to an appropriately labeled 15 ml screw cap conical centrifuge tube.
- O. Keep the tube on crushed ice until the excystation assay is performed (see Section III, C) on the disinfectant exposed cysts and on an unexposed control preparation obtained from the stock cyst suspension.

V. PROCEDURE FOR DETERMINING INACTIVATION

A. Giardia muris Excystation Quantitation Procedure

The percentage excystation is calculated using the following formula:

 $\frac{2}{2}$ excystation = $\frac{ECW + PET}{ECW + PET + IC} \times 100$,

where

ECW is the number of empty cyst walls,

PET is the number of partially excysted trophozoites, and

IC is the number of intact cysts.

An ECW is defined as a cyst wall which is open at one end and is completely devoid of a trophozoite. A PET is a cyst which has started the excystation process and progressed to the point where the trophozoite has either started to emerge or has completely emerged and is still attached to the cyst wall. An IC is a trophozoite which is completely surrounded with a cyst wall showing no evidence of emergence. For the control, generally 100 forms are counted to determine the percent excystation.

The number of cysts that must be observed and classified (ECW, PET, IC) in the disinfected sample is dependent on the level of inactivation desired and on the excystation percentage obtained in the control.

For 0.5, 1 and 2 log10 reductions, (58%, 90% and 99% inactivation, respectively), the minimum number of cysts to be observed and classified is determined by dividing 100 by the percentage excystation (expressed as a decimal) obtained in the control.

For a 3 \log_{10} reduction (99.9% inactivation) the minimum number of cysts to be observed and classified is determined by dividing 1,000 by the percentage excystation (expressed as a decimal) obtained in the control.

B. Determining Inactivation

The amount of inactivation is determined by comparing the percentage excystation of the exposed cyst preparation to the percentage excystation in the control preparation using the following formula:

% inactivation = 100% - [(exposed % excysted/control % excysted) x 100]

If the percentage excystation in the exposed preparation is zero, i.e., only IC (no ECW or PET) are observed and counted, use <1 as the value for "exposed % excysted" in the formula for calculating % inactivation.

\$

VI. BIBLIOGRAPHY

American Public Health Association; American Water Works Association; Water Polution Control Federation. Standard Methods for the Examination of Mater and Wastewater, 16th ed. (1985).

Belosevic, M. & G.M. Faubert. <u>Giardia muris</u>: correlation between oral dosage, course of infection, and trophozoite distribution in the mouse small intestine. Exp. Parasitol., 56:93 (1983).

Erlandsen, L.S. and E.A. Meyer. <u>Giardia</u> and Giardiasis. Plenum Press, New York, (1984).

Faubert, G.M. et al. Comparative studies on the pattern of infection with <u>Giardia</u> spp. in Mongolian gerbils. J. Parasitol., 69:802 (1983).

Feely, D.E. A simplified method for in vitro excystation of Giardia muris. J. Parasitol., 72:474-475 (1986).

Feely, D.E. Induction of excystation of <u>Giardia muris</u> by CO₂. 62nd Annual Neeting of the American Society of Parasitologists, Lincoln, Nebraska, Abstract No. 91 (1987).

Gonzalez-Castro, J., Bermejo-Vicedo, M.T. and Palacios-Gonzalez, F. Desenquistamiento y cultivo de <u>Giardia muris</u>. Rev. Iber. Parasitol., 46:21-25 (1986).

Melvin, D.M. and M.M. Brooke. Laboratory Procedures for the Diagnosis of Intestinal Parasites. 3rd ed., HHS Publication No. (CDC) 82-8282 (1982).

Miale, J.B. Laboratory Medicine Hematology, 3rd ed. C. V. Mosby Company, St. Louis, Missouri (1967).

Roberts-Thomson, I.C. et al.. Giardiasis in the mouse: an animal model. Gastroenterol., 71:57 (1976).

Sauch, J.F. Purification of Giardia muris cysts by velocity sedimentation. Appl. Environ. Microbiol., 48:454 (1984).

Sauch, J.F. A new method for excystation of Giardia. Advances in Giardia Research. University of Calgary, Calgary, Canada (In Press).

Schaefer, III, F.W., Rice, E.W., & Hoff, J.C. Factors promoting In vitro excystation of Giardia muris cysts. Trans. Roy. Soc. Trop. Med. Hyg., 78:795 (1984).

VII. TECHNICAL CONTACTS:

A. Eugene W. Rice
Microbiological Treatment Branch
Risk Reduction Engineering Laboratory
U.S. Environmental Protection Agency
26 West Martin Luther King Drive
Cincinnati, Ohio 45268

Phone: (513) 569-7233

B. Frank W. Schaefer, III
Parasitology and Immunology Branch
Environmental Monitoring Systems Laboratory
U.S. Environmental Protection Agency
26 West Martin Luther King Drive
Cincinnati, Ohio 45268

Phone: (513) 569-7222

Appendix A: Use of the Hemocytometer

Suspension Density Determination Using the Improved Neubauer (Bright-line) Hemocytometer

The hemocytometer consists of two chambers separated by a transverse trench and bordered bilaterally by longitudinal trenches. Each chamber is ruled and consists of nine squares, each $1 \times 1 \times 0.1$ mm with a volume of 0.1 mm³. Each square mm is bordered by a triple line. The center line of the three is the boundary line of the square. (See Figure 1).

According to the U. S. Bureau of Standards' requirements, the cover glass must be free of visible defects and must be optically plane on both sides within plus or minus 0.002 mm. ONLY HEMOCYTOMETER COVER GLASSES MAY BE USED. ORDINARY COVER GLASSES AND SCRATCHED HEMOCYTOMETERS ARE UNACCEPTABLE, as they introduce errors into the volume relationships.

The suspension to be counted must be evenly distributed and free of large debris, so that the chamber floods properly. The suspension to be counted should contain 0.01% Tween 20 solution to prevent Giardia cysts from sticking and causing improper hemocytometer chamber flooding. Cyst suspensions should be adjusted so that there are a total of 60 to 100 cysts in the four corner counting squares. Counts are statistically accurate in this range. If the suspension is too numerous to be counted, then it must be diluted sufficiently to bring it into this range. In some cases, the suspension will be too dilute after concentration to give a statistically reliable count in the 60-100 cyst range. There is nothing that can be done about this situation other than to record the result as questionable.

To use the hemocytometer:

- 1. Dilute or concentrate the suspension as required.
- 2. Apply a clean cover glass to the hemocytometer and load the hemocytometer chamber with 8-10 µl of vortexed suspension per chamber. If this operation has been properly executed, the liquid should amply fill the entire chamber without bubbles or overflowing into the surrounding moats. Repeat this step with a clean, dry hemocytometer and cover glass, if loading has been incorrectly done. See step (12) below for the hemocytometer cleaning procedure.
- Do not attempt to adjust the cover glass, apply clips, or in any way disturb the chamber after it has been filled. Allow the <u>Giardia</u> cysts to settle 30 to 60 seconds before starting the count.
- 4. The Giardia cysts may be counted using a magnification 200-600X.
- 5. Move the chamber so the ruled area is centered underneath it.
- 6. Then, locate the objective close to the cover glass while watching it from the side of rather than through the microscope.

- 7. Focus up from the coverslip until the hemocytometer ruling appears.
- 8. At each of the four corners of the chamber is a 1 mm² divided into 16 squares in which Giardia cysts are to be counted (see Figure 1). Beginning with the top row of four squares, count with a hand tally counter in the directions indicated in Figure 2. Avoid counting Giardia cysts twice by counting only those touching the top and left boundary lines and none of those touching the lower and right boundary lines. Count each square mm in this fashion.
- 9. The formula for determining the number of <u>Giardia</u> cysts per ml suspension is:

cysts/ml

- 10. Record the result on a data sheet similar to that shown in Figure 3.
- A total of six different hemocytometer chambers must be loaded, counted, and then averaged for each <u>Giardia</u> cyst suspension to achieve optimal counting accuracy.
- 12. After each use, the hemocytometer and coverslip must be cleaned immediately to prevent the cysts and debris from drying on it. Since this apparatus is precisely machined, abrasives cannot be used to clean it as they will disturb the flooding and volume relationships.
 - a. Rinse the hemocytometer and cover glass first with tap water, then 70% ethanol, and finally with acetone.
 - b. Ory and polish the hemocytometer chamber and cover glass with lens paper. Store it in a secure place.
- 13. A number of factors are known to introduce errors into hemocytometer counts. These include:
 - a. Inadequate suspension mixing before flooding the chamber.
 - b. Irregular filling of the chamber, trapped air bubbles, dust, or oil on the chamber or coverslip.
 - c. Chamber coverslip not flat.
 - d. Inaccurately ruled chamber.
 - e. The enumeration procedure. Too many or too few <u>Giardia</u> cysts per square, skipping or recounting some <u>Giardia</u> cysts.

- f. Total number of <u>Giardia</u> cysts counted is too low to give statistical confidence in result.
- g. Error in recording tally.
- h. Calculation error; failure to consider dilution factor, or area counted.
- i. Inadequate cleaning and removal of cysts from the previous count.
 - j. Allowing filled chamber to sit too long so that chamber suspension dries and concentrates.

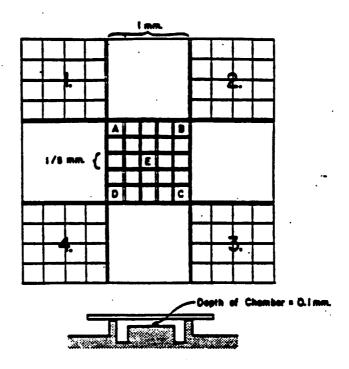


Figure 1. Hemocytometer platform ruling. Squares 1, 2, 3, and 4 are used to count <u>Giardia</u> cysts. (From Miale, 1967)

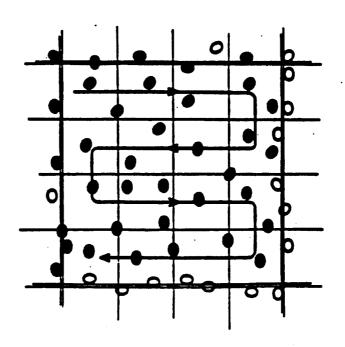


Figure 2. Manner of counting <u>Giardia</u> cysts in 1 square mm. Dark cysts are counted and light cysts are omitted. (After Miale, 1967)

Date	Person Counting	Count	# Cells Counted	# mm ² Counted	Dilution Factor	# Cysts*	Remarks
		1					-
		2					
		3					
		4		<u> </u>			
		5					
		6					
		7					
		8				<u> </u>	
		9					
		10				ļ	
		11				<u> </u>	
		12			ļ	<u> </u>	<u> </u>
		13					
		14			<u> </u>	ļ	
·	<u> </u>	15					
 		16					
		17			<u> </u>		<u> </u>
		18			ļ		
		-19					
		20	1				

Figure 3. Hemocytometer Data Sheet for Giardia Cysts

^{*#} cysts/ml = # of cysts counted $\times \frac{10}{1 \text{ mm}} \times \frac{\text{dilution factor}}{1} \times \frac{1,000 \text{ mm}^3}{1 \text{ ml}}$

Appendix B. Preparation and Loading of Excystation Chamber Slides

- 1. Using tape which is sticky on both sides, cut strips approximately 12 x 3 mm.
- 2. Apply a strip of the tape to one side of a 22 x 22 mm coverslip.
- 3. Apply a second strip of tape to the opposite edge but same side of the coverslip.
- 4. Handling the coverslip by the edges only, attach the coverslip to the center of a 3×1 inch glass slide by placing the taped sides of the coverslip down along the long edge of the glass slide.
- 5. Make sure the coverslip is securely attached to the slide by lightly pressing down on the edges of the coverslip with your fingers. Care should be taken to keep finger prints off the center of the coverslip.
- 6. To load the chamber slide, place a Pasteur or microliter pipette containing at least 0.2 ml of the Giardia cyst suspension about 2 mm from an untaped edge of the coverslip. Slowly allow the cyst suspension to flow toward the coverslip. As it touches the coverslip it will be wicked or drawn rapidly under the coverslip by adhesive forces. Only expell enough of the cyst suspension to completely fill the chamber formed by the tape, slide, and coverslip.
- 7. Wipe away any excess cyst suspension which is not under the coverslip with an absorbant paper towel, but be careful not to pull cyst suspension from under the coverslip.
- 8. Seal all sides of the coverslip with vaspar to prevent the slide from drying out during the incubation.

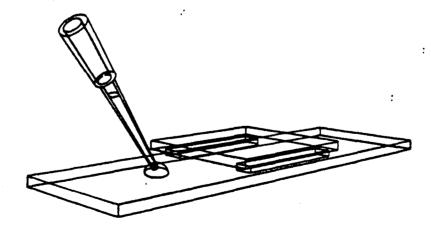


Figure 1. Excystation Chamber Slide

NOTE: Prepared excystation chamber slides may be commercially available from Spiral Systems, Inc., 6740 Clough Pike, Cincinnati, Ohio 45244, (513) 231-1211 or 232-3122, or from other sources.

APPENDIX G-2

DETERMINING CHLORAMINE INACTIVATION OF VIRUS FOR THE SURFACE WATER TREATMENT RULE

Microbiological Treatment Branch Risk Reduction Engineering Laboratory

and

Parasitology and Immunology Branch
Environmental Monitoring Systems Laboratory
U.S. Environmental Protection Agency
26 West Martin Luther King Drive
Cincinnati, Ohio 45268

TABLE OF CONTENTS

I.	Materials	3
II.	Reagents and Media	4
III.	MS2 Bacteriophage Assay	6
IV.	Disinfection Procedure	8
٧.	Procedure for Determining Inactivation	, 9
VI.	Bibliography	10
VII.	Technical Contacts	11

The Surface Water Treatment Rule requires 99.99% or greater removal/inactivation of viruses. The following protocol may be used to determine the percentage of virus inactivation obtained by a treatment plant using chloramine disinfection.

I. MATERIALS

A. Materials for Disinfection

- 1. Stock chlorine solution
- 2. Stock ammonia solution
- 3. Stirring device
- 4. Incubator or water bath for less than ambient temperature
- 5. Water from treatment plant
- 6. MS2 bacteriophage
- 7. Assorted glassware
- 8. Assorted pipettes
- 9. Aqueous, sterile sodium thiosulfate solution
- 10. Refrigerator
- 11. Vortex mixer
- 12. Timer

B. Materials for MS2 Assay

- 1. MS2 bacteriophage and its Escherichia coli host
- 2. Assorted glassware
- 3. Assorted pipettes
- 4. Incubator, 37°C
- Refrigerator
- 6. Petri dishes, 100 x 15 mm, sterile
- 7. Vortex mixer
- 8. Water bath, 45°C
- 9. Sterile rubber spatula
- 10. EDTA, disodium salt
- 11. Lysozyme, crystallized from egg white
- 12. Centrifuge with swinging bucket rotor

II. REAGENTS AND MEDIA

A. Tryptone-Yeast Extract (TYE) Broth

Ingredient		Amount
Bacto tryptone		10.0 q
Yeast extract	,	1.0 g
Glucose		1.0 g
Na C1	•	8.0 g
1.0 M CaCl2		2.0 ml

Dissolve in distilled water to a total volume of 1.0 liter, then add 0.3 ml of 6.0 M NaOH. This medium should be sterilized either by autoclaving for 15 minutes at 121°C or filtration through a 0.22 um porosity membrane and then stored at approximately 4°C. It is used in preparing bacterial host suspensions for viral assays.

B. Tryptone-Yeast Extract (TYE) Agar

Ingredient	 Amount
TYE broth	1.0 liter
Agar	15.0 g

The agar should be added to the broth prior to sterilization. The medium should be sterilized by autoclaving for 15 minutes at 121°C. This medium is used to prepare slant tubes for maintenance of bacterial stock cultures. The prepared slant tubes should be stored at approximately 4°C.

C. Bottom Agar for Bacteriophage Assay.

Ingre	dient		<u> </u>		Amount
Bacto	tryptone				· 10.0 g
Agar					15.0 g
Na C1		•		•	2.5 g
KC1		•			2.5 g
1.0 M	CaCl ₂				1.0 ml

Dissolve the ingredients in distilled water to a total volume of 1 liter. The medium should be sterilized by autoclaving for 15 minutes at 121°C. After autoclaving and cooling, store at 4°C. Immediately prior to use, liquefy the medium by heating. Add approximately 15 ml of liquefied agar into each Petri dish. This bottom layer serves as an anchoring substrate for the top agar layer.

D. Top Agar for Bacteriophage Assay

Ingredient	Amount
Bacto tryptone	10.0 g
Agar .	8.0 g
NaCl ·	8.0 g
Yeast extract	1.0 g
Glucose	1.0 g
1.0 M CaCl ₂	1.0 ml

Dissolve the ingredients in distilled water to a total volume of 1 liter. This medium should be sterilized by autoclaving 15 minutes at 121°C. After cooling, store at 4°C until needed in bacteriophage assays. Immediately prior to use in assays, liquefy the medium by heating and then cool to and maintain at a temperature of 45°C.

E. Salt Diluent for Bacteriophage Assay

Ingredient	Amount
NaCl	8.5 g
1.0 M CaCl ₂	2.0 ml

Dissolve in distilled water to a total volume of 1 liter. This diluent should be sterilized either by autoclaving for 15 minutes at 121°C or filtration through a 0.22 _m porosity membrane. Store at room temperature.

F. CaCl₂, 1.0 M

Ingredient	Amount
CaCl ₂	11.1 q

Dissolve in distilled water to a total volume of 100 ml. Autoclave 15 minutes at 121°C or filter sterilize the solution through a 0.22 μm porosity membrane. Store at room temperature.

G. Sodium Thiosulfate, 1%

Ingredient	Amount
Sodium thiosulfate	1.0 g

Dissolve the sodium thiosulfate in 50 ml distilled water. Adjust the volume to 100 ml with additional distilled water. Filter sterilize the solution through a 0.22 µm porosity membrane or autoclave 15 minutes at 121°C. Store at room temperature.

III. MS2 BACTERIOPHAGE ASSAY

A. Microorganisms

- MS2 bacteriophage: catalog number 15597-B1, American Type Culture Collection, 12301 Parklawn Drive, Rockville, MD 20852
- Bacterial host: <u>Escherichia coli</u>, catalog number 15597, American Type Culture Collection.

B. Growth and Maintenance of Microorganisms

1. Preparation of bacterial host stock cultures

Inoculate host bacteria onto TYE agar slant tubes, incubate 24 hours at 37°C to allow bacterial growth, and then refrigerate at 4°C. At monthly intervals the cultured bacterial hosts should be transferred to a new TYE agar slant.

2. Preparation of bacteriophage stock suspension

Melt top agar and maintain at 45°C. Add 3 ml of the agar to a 13 x 100 mm test tube contained in a rack in a 45°C water bath. Add 0.5 to 1.0 ml of the bacteriophage suspension diluted so that the host bacterial "lawn" will show nearly complete lysis after overnight incubation. Add 0.1 to 0.2 ml of a TYE broth culture of the host bacteria that has been incubated overnight. Mix gently and pour the contents on the surface of bottom agar contained in a Petri dish that has been prepared previously. Rock the Petri dish to spread the added material evenly over the agar surface. After the top agar solidifies (about 15 minutes), invert the Petri dish and incubate overnight at 37°C. Repeat the above procedure so that a minimum of 5 but no more than 10 Petri dishes are prepared.

Following this incubation and using a sterile rubber spatula, gently scrape the top and bottom agar layers into a large beaker. Add to this pool of agar layers an amount of TYE broth sufficient to yield a total volume of 80 ml. To this mixture add 0.4 g of EDTA (disodium salt) and 0.052 g of lysozyme (crystallized from egg white). Incubate this mixture at room temperature for 2 hours with continuous mixing. Then centrifuge the mixture for 15 minutes at 3,000 x g. Carefully remove the upper fluid layer. This fluid layer constitutes a viral stock suspension for use in subsequent testing and assays. The viral stock suspension may be divided into aliquots and stored either frozen or at 4°C.

C. Performance of Bacteriophage Assay

A two-week supply of Petri dishes may be poured with bottom agar ahead of time and refrigerated inverted at 4°C. If stored in a refrigerator, allow agar plates to equilibrate to room temperature

before use. Eighteen hours prior to beginning a bacteriophage assay, prepare a bacterial host suspension by inoculating 5 ml of TYE broth with a small amount of bacteria taken directly from a slant tube culture. Incubate the broth containing this bacterial inoculum overnight (approximately 18 hours) at 37°C immediately prior to use in bacteriophage assays as described below. This type of broth culture should be prepared freshly for each day's bacteriophage assays. If necessary, a volume greater than 5 ml can be prepared in a similar manner.

On the day of assay, melt a sufficient amount of top agar and maintain at 45°C in a water bath. Place test tubes (13 x 100 mm) in a rack in the same water bath and allow to warm, then add 3 ml of top agar to each tube. Inoculate the test tubes containing top agar with the bacteriophage samples (0.5 to 1.0 ml of the sample/tube) plus 0.1 to 0.2 ml of the overnight bacterial host suspension. Dilute the bacteriophage samples from 10-1 to 10-4 in salt diluent prior to inoculation and assay each dilution in triplicate. In addition, assay the uninoculated salt diluent as a negative control. Agitate the test tubes containing top agar, bacteriophage inoculum, and bacterial host suspension gently on a vortex mixer, and pour the contents of each onto a hardened bottom agar layer contained in an appropriately numbered dish. Quickly rock the Petri dishes to spread the added material evenly. and place on a flat surface at room temperature while the agar present in the added material solidifies (approximately 15 minutes). Invert and incubate the dishes at 37°C overnight (approximately 18 hours). The focal areas of viral infection which develop during this incubation are referred to as "plaques" and, if possible, should be enumerated immediatly after the incubation. If necessary, the incubated Petri dishes can be refrigerated at 4°C overnight prior to plaque enumeration. As a general rule, count only those plates that contain between 20 and 200 plaques.

IV. DISINFECTION PROCEDURE

- A. The treatment plant water to be used should be the water influent into the chloramine disinfection unit process used in the plant. If chloramine disinfection is performed at more than one point in the treatment process, e.g. prefiltration and postfiltration, the procedure should simulate as closely as possible actual treatment practice.
- B. Prepare stock ammonia and chlorine solutions to be added to the treatment plant water to achieve the same stoichiometric relationship between chlorine and ammonia that is used in the water treatment plant. These solutions should be concentrated enough so that no more than 2 ml of each solution will be added to the treatment plant water being disinfected.
- C. Determine the contact time by the methods described in the Surface Water Treatment Rule and/or the associated Guidance Manual.
- D. Rinse two 600 ml beakers with treatment plant water to remove any extraneous material that may cause disinfectant demand. Then add 400 ml treatment plant water to the beaker. The first beaker will be seeded with M92 before the contents are chloraminated. The second beaker will be an indigenous virus control and will be chloraminated without addition of extraneous phage.
- E. Mix the contents of the beaker short of producing a vortex in the center and continue until the conclusion of the experiment.
- F. Equilibrate the 600 ml beakers and their contents as well as the disinfectant reagents to the desired experimental temperature.
- G. Dilute the stock MS2 bacteriophage so that the bacteriophage concentration is 1 to 5 x 10^8 PFU/ml.
- H. Add 1.0 ml of the diluted MS2 bacteriophage to the contents of the first 600 ml beaker.
- I. Remove a 10 ml sample from the contents of the first beaker after 2 minutes of mixing. Assay the MS2 bacteriophage concentration in this sample within 4 hours and record the results as PFU/ml. This value is the initial MS2 concentration.
- J. Remove a 19 ml sample from the contents of the second beaker after 2 minutes of mixing. Assay the indigenous bacteriophage concentration in this sample within 4 hours (at the same time as you assay the sample from the first beaker) and record the results as PFU/ml. This value is the initial unseeded concentration.
- K. Add the disinfectant reagents to the contents of both beakers using the same sequence, time, and concentrations as are used in the actual treatment plant operations.

- L. Just prior to the end of the contact time, remove a volume of sample adequate for determination of the disinfectant residual concentration from both beakers. Use methods prescribed in the Surface Water Treatment Rule for the determination of combined chlorine. This residual should be the same ($\pm 20\%$) as the residual present in the treatment plant operation.
- M. 'At the end of the exposure time, remove a 10 ml sample from the first 600 ml beaker and neutralize with 0.25 ml of 1.0% aqueous, sterile sodium thiosulfate. Assay for the MS2 bacteriophage survivors and record the results as PFU/ml. This value is the exposed MS2 concentration.
- N. At the end of the exposure time, remove a 10 ml sample from the second 600 ml beaker and neutralize with 0.25 ml of 1.0% aqueous, sterile sodium thiosulfate. Assay for the indigenous bacteriophage survivors and record the results as PFU/ml. This value is the exposed unseeded concentration.

V. PROCEDURE FOR DETERMINING INACTIVATION

A. Calculation of Percentage Inactivation

Use the following formula to calculate the percent inactivation of MS2:

- 1. % inactivation = 100% [(exposed MS2/initial MS2) x 100]
- Using values from Section IV steps I, J, M and N calculate initial MS2 and exposed MS2 as follows:
- Initial MS2 (PFU/ml) = I J.
- 3. Exposed MS2 (PFU/ml) = M N.

If the number of PFU/ml in exposed MS2 is zero, i.e., no plaques are produced after assay of undiluted and diluted samples, use <1 PFU/ml as the value in the above formula.

B. Comparison of Percentage Inactivation to Log_{10} of Inactivation

68% inactivation is equivalent to 0.5 \log_{10} inactivation 90% inactivation is equivalent to 1 \log_{10} inactivation 99% inactivation is equivalent to 2 \log_{10} inactivation 99.9% inactivation is equivalent to 3 \log_{10} inactivation

VI. BIBLIOGRAPHY

Adams, M.H. Bacteriophages. Interscience Publishers, New York (1959).

American Public Health Association; American Water Works Association; Water Pollution Control Federation. Standard Methods for the Examination of Water and Wastewater, 16th ed. (1985).

Grabow, W.O.K. et al. Inactivation of hepatitus A virus, other enteric viruses and indicator organisms in water by chlorination. Water Sci. Technol., 17:657 (1985)

Jacangelo, J.D.; Olivieri, Y.P.; & Kawata, K. Mechanism of inactivation of microorganisms by combined chlorine. AWWARF Rept., Denver, CO (1987).

Safe Drinking Water Committee. The disinfection of drinking water. In: <u>Drinking Water and Health</u>, National Academy Press, Washington, D.C., 2:5 (1980).

Shah, P. & McCamish, J. Relative resistance of poliovirus 1 and coliphages f_2 and T2 in water. Appl. Microbiol. 24:658 (1972).

U.S. Environmental Protection Agency. Guidance Manual for Compliance with the Filtration and Disinfection Requirements for Public Water Systems Using Surface Water Sources. Appendix G. U.S. EPA, Office of Water, Criteria and Standards Division, Washington, D.C. (1988).

Ward, N.R.; Wolfe, R.L.; & Olson, B.H. Effect of pH, application technique, and chlorine-to-nitrogen ratio on disinfectant activity of inorganic chloramines with pure culture bacteria. Appl. Environ. Microbiol., 48:508 (1984).

VII. TECHNICAL CONTACTS:

A. Donald Berman
Hicrobiological Treatment Branch
Risk Reduction Engineering Laboratory
U.S. Environmental Protection Agency
26 West Martin Luther King Drive
Cincinnati, Ohio 45268

Phone: (513) 569-7235

9. Christon J. Hurst
Hicrobiological Treatment Branch
Risk Reduction Engineering Laboratory
U.S. Environmental Protection Agency
26 West Martin Luther King Drive
Cincinnati, Ohio 45268

Phone: (513) 569-7331

G.3 DETERMINING CHLORINE DIOXIDE INACTIVATION OF GIARDIA CYSTS AND VIRUS

Giardia Cvsts

The basis for the chlorine dioxide CT values for <u>Giardia</u> cysts in the Guidance Manual is given in Appendix F.1.2. The CT values are based on data collected mainly at pH 7. Very little data was available at other pHs. A review of data from Hoff (1986) indicates that the disinfection efficiency of chlorine dioxide for bacteria and viruses increases approximately 2 to 3 fold as pH increases from 7 to 9. Data on which the CT values in the SWTR are based indicate that at 25 C, <u>G. muris</u> cyst inactivation CTs were approximately 2 fold higher at pH 7 than at pH 9 (Leahy, 1985). In addition, the data also indicate that chlorine dioxide efficiency increases as disinfectant concentration increases within the range studied.

Because the data on effects of chlorine dioxide concentration and water pH on <u>Giardia</u> cyst inactivation efficiency were very limited, they were not considered in calculating the <u>Giardia</u> cyst CT values in Appendix E. However, the data suggest that site specific conditions, i.e. water pH and disinfectant concentration, can have significant effects on chlorine dioxide effectiveness. Therefore, the option of allowing the Primacy Agency to consider the use of lower CT values by individual systems has been provided.

This approval should be based on acceptable experimental data provided by the system. The data should be collected using the protocol provided in Appendix G-1 for determining <u>Giardia</u> cyst inactivation by chloramine with appropriate changes in Section IV A, B, I and J to reflect the use of chlorine dioxide rather than chloramines. This procedure can be used for any disinfectant which can be prepared in an aqueous solution and is stable over the course of the testing. To do this, chloramine should be replaced with the test disinfectant in the above noted sections.

Virus

The basis for the chlorine dioxide CT values for virus in Appendix F.2.2 consists of limited data from Sobsey (1988). Because the pH 9 data available were very limited, the CT values are based on the pH 6 data with a safety factor of 2 applied. As indicated previously, review of data from a number of studies (Hoff, 1986) shows that chlorine dioxide efficiency increases 2 to 3 fold as pH increases from 7 to 9.

Because the virus CT values for chlorine dioxide are very conservative and most systems operate at water pHs higher than those on which the CT values are based, the option of allowing the Primacy Agency to consider the use of lower CT values has been provided.

This approval should be based on acceptable experimental data provided by the system. The data should be collected using the protocol provided in Appendix G.2 with appropriate changes in Sections I A,1 and 2 and IV A, B, D, K, and L to reflect the use of chlorine dioxide rather than chloramines. This procedure can be used for any disinfectant which can be prepared in an aqueous solution and is stable over the course of the testing. To do this, chloramine should be replaced with the test disinfectant in the above noted sections.

REFERENCES

Hoff, J.C. Inactivation of Microbial Agents By Chemical Disinfectant's, EPA/600/52-86/067, U.S. Environmental Protection Agency, Water Engineering Research Laboratory, Cincinnati, Ohio, September, 1986.

5

Leahy, J.G. Inactivation of <u>Giardia Muris</u> Cysts by Chlorine and Chlorine Dioxide. Thesis, Department of Civil Engineering, Ohio State University, 1985.

Sobsey, M.D. Detection and Chlorine Disinfection of Hepatitis A Virus in Water. CR813024, EPA Quarterly Report, Dec. 1988.

G.4 DETERMING OZONE INACTIVATION OF GIARDIA CYSTS AND VIRUS

G.4.1 BACKGROUND

The basis for the ozone CT values are given in Appendices F.1.2 (Giardia cysts) and F.2.4 (Virus). As indicated, both sets of CT values are based on limited data and because of this, the values established are conservative and employ large safety factors. In addition, the difference between the way the laboratory experiments used to develop the CT values and how ozone is used in water treatment presents a problem with translating the data for field use. The laboratory studies were conducted using steady state ozone concentrations with ozone continually added during the contact period. In contrast, steady state ozone concentrations are not maintained in field use. Also, the effectiveness of ozone contactors used in field applications may vary from each other and from the mixing efficiencies applied in the laboratory experiments used to establish the CT values.

The net effect of all of these differences is to limit the applicability of the CT values in the SWTR and Guidance Manual to individual systems. Therefore, the option of allowing the Primacy Agency to consider the use of lower CT values by individual systems has been provided.

This approval should be based on acceptable experimental data provided by the system. In general, the procedures provided in Appendix G.1 for determining <u>Giardia</u> cyst inactivation and Appendix G.2 for determining virus inactivation can be used. However, unlike chloramines ozone is not a stable disinfectant. Because of ozone's rapid dissipation, a pilot study must be used in lieu of the batch system to demonstrate the disinfection efficiency. General considerations for conducting pilot studies to demonstrate the disinfection ability of ozone or any other unstable disinfectant are enumerated below.

G.4.2 GENERAL CONSIDERATIONS FOR PILOT TEST

A. All microorganisms, reagents and media are prepared as indicated in sections G.1 for Giardia and G.2 for virus.

- B. The disinfectant should be prepared, measured and added to the test water as it would be added to the water at the water treatment plant.
- C. Specific reactor design should be a function of the disinfectant and reflect how the disinfectant is added at the water treatment plant. Provisions should be made to determine concentration of disinfectant and microbial survival to be measured with contact time.

An example of conducting a pilot test for a plug flow reactor using ozone or another unstable disinfectant is provided below.

Example - Plug Flow Reactor Protocol

The size of the plug flow reactor can be approximated from the table below. Glass, stainless steel, copper, plastic tubing or other material compatible with the disinfectant can be used to construct the plug flow reactor. Table 1 shows the approximate length of pipe for a plug flow reactor to yield 10 minutes contact at flow rates between 50 and 500 ml/min. Depending on pipe size and material an economical reactor can be constructed.

TABLE 1. APPROXIMATE LENGTH AND DIAMETER OF PIPE BASED ON FLOW

.•		LINEAR PIPE LENGTH, METERS NOMINAL PIPE DIAMETER. CM						
TIME MIN.	VOLUME LITERS	cc	0. 6 0. 28	1. 2 1. 31	1. 8 2. 54	2. 54 5. 07	3.81 11.40	5. 0 8 20. 27
10	0. 5	500	17. 7 35. 4	4.4	2.0	1.0	0.4	0. 2 0. 5
10	ż	2000	70.7	17. 7	7.9	3. 9	1. 8	1.0
10	į	4000	141.5	35. 4	15. 7	7. 9	3. 5	2. 0 2. 5
	TIME MIN. 10 10 10 10	TIME VOLUME MIN. LITERS 10 0.5 10 1 10 2 10 3 10 4	TIME VOLUME MIN. LITERS CC 10 0.5 500 10 1 1000 10 2 2000 10 3 3000 10 4 4000	TIME VOLUME 0.6 MIN. LITERS CC 0.28 10 0.5 500 17.7 10 1 1000 35.4 10 2 2000 70.7 10 3 3000 106.1	TIME VOLUME 0.6 1.2 MIN. LITERS CC 0.28 1.31 10 0.5 500 17.7 4.4 10 1 1000 35.4 8.8 10 2 2000 70.7 17.7 10 3 3000 106.1 26.5 10 4 4000 141.5 35.4	TIME VOLUME 0.6 1.2 1.8 MIN. LITERS CC 0.28 1.31 2.54 10 0.5 500 17.7 4.4 2.0 10 1 1000 35.4 8.8 3.9 10 2 2000 70.7 17.7 7.9 10 3 3000 106.1 26.5 11.8 10 4 4000 141.5 35.4 15.7	TIME VOLUME 0.6 1.2 1.8 2.54 MIN. LITERS CC 0.28 1.31 2.54 5.07 10 0.5 500 17.7 4.4 2.0 1.0 10 1 1000 35.4 8.8 3.9 2.0 10 2 2000 70.7 17.7 7.9 3.9 10 3 3000 106.1 26.5 11.8 5.9 10 4 4000 141.5 35.4 15.7 7.9	TIME VOLUME 0.6 1.2 1.8 2.54 3.81 MIN. LITERS CC 0.28 1.31 2.54 5.07 11.40 10 0.5 500 17.7 4.4 2.0 1.0 0.4 10 1 1000 35.4 8.8 3.9 2.0 0.9 10 2 2000 70.7 17.7 7.9 3.9 1.8 10 3 3000 106.1 26.5 11.8 5.9 2.6 10 4 4000 141.5 35.4 15.7 7.9 3.5

Additional information on the design of specific pilot studies can be found in the following references by Thompson (1982), Montgomery (1985), and Al-Ani (1985).

Additional Materials to those in G.1 and/or G.2

plug flow reactor cyst suspension, 2x10⁷ cysts/trial

cyst quantity - cysts are prepared as indicated in G.1.

10³ cysts/ml X 20,000 ml = 2x10⁷ cysts required/trial

MS2 stock, 2x10¹⁰/trial

2-20 liter (5 gal) carboy
test water pump, mid range 200 ml/min
disinfectant generator
disinfectant pump, mid range 10-20 ml/min
disinfectant residual reagents and equipment

Test Procedure

- A. Reactor conditions
 - Test Water Flow rate= 200 ml/min (this may vary from 50 to 500 ml/min with 20 l reservoir total experimental time= 100 min)
 - 2. Disinfectant flow gas-requires specific contactor designed for disinfectant Liquid=10 to 20 ml/min
 - Temperature controlled
 - 4. Prepare 20 liter reservoir (5 gal) of test water at the pH and temperature of the CT trial. Do not add microorganisms
 - 5. Prepare 20 liter reservoir (5 gal) of test water and equilibrate to the temperature of the CT trial. Add <u>Giardia muris</u> cysts at an initial density of 10³ cysts/ml and/or MS2 bacterial virus at an initial density of 10⁶ PFU/ml. Mix thoroughly and adjust pH to the pH of the CT trial. Continuous mixing of the test water feed stock should be carried out over the course of the CT trial to prevent the <u>Giardia</u> cysts from settling.
- B. Disinfection Procedure Prior to Disinfection Trial
 - Determine contact time for the sample ports in the plug flow reactor under conditions of the CT trial by methods described in the SWTR.
 - Determine disinfectant concentration with no microorganisms in the feed test water.

C. CT Trial Procedure

Start test water feed without cysts and or virus (approx. 200 ml/min), start disinfectant feed (gas or liquid).
 Allow system to equilibrate.

Monitor disinfectant residual by appropriate method during this time. Samples for disinfectant residual should be taken directly into tubes or bottles containing reagents to fix the disinfectant at the time the sample is collected. Keep a plot of disinfectant residual vs running time to evaluate steady state conditions.

- 2. After the disinfectant residual has stabilized, switch to the reservoir containing the test microorganism(s).
- Allow system to equilibrate for a time = 3 X final contact time.

example

final contact time =10 min, allow 30 min.

- 4. Monitor disinfectant residual by appropriate method during this time. If the disinfectant residual is stable begin chemical and biological sampling for calculation of CT.
- 5. Sampling
 - a. Chemical

A sufficient volume (about 250 ml should be collected from the sampling tap prior to the biological composite to determine:

pH
Residual disinfectant - Samples
should be collected directly
into tubes or bottles containing
reagents to fix the disinfectant
at the time the sample is collected.

b. Biological Samples for microbial analysis are collected as short time composite samples over a 10 to 20 minute time period. Several trials may run for a given 20 liter test water preparation as long as sufficient equilibration and flow recovery times are allowed between trials.

- Zero time samples should be collected as 250 ml composite samples either directly from the test water feed reservoir or in line prior to the addition of the disinfectant.
- Four 250 ml samples are collected separately into a 2 1 sterile bottle containing a neutralizing agent for the particular disinfectant. Each sample is thoroughly mixed upon collection and stored at 4 C. If multiple sample ports are used, the order of collection should be from longest to shortest contact time to minimize flow changes due to sampling.
- 6. Giardia cyst recovery and assay.

Concentrate the 1000 ml composite sample by filtration according to the method given in section G.1. Record and report the data as described in section G.1. The expected cysts/sample is given below:

Cysts/sample = $4 \times 250 \text{ ml } \times 10^3 \text{ cyst/ml} = 1 \times 10^8 \text{cyst/sample}$.

7. Virus Assay

Before filtration for <u>Giardia</u>, remove 10.0 ml from the biological composite sample to a sterile screw cap culture tube containing 2 to 3 drops chloroform. Assay for MS2, record and report the virus data according to the methods and procedures described in G.2. Be sure to correct the <u>Giardia</u> sample volume to 990 ml.

8. Calculation of CT

Calculate CT in a manner described in Section G.1 for <u>Giardia</u> and Section G.2 for virus. The residual disinfectant should be the average of the four residual determinations performed prior to the individual samples collected for the biological composite and the time should be the time determined for the sample port under similar flow conditions.

REFERENCES

Al-Ani, C.S.U., Filtration of <u>Giardia</u> Cysts and other substances: Volume 3. Rapid Rate Filtration (EPA/600/2-85/027) 1985.

Montgomery, James M. Consulting Engineers Inc., <u>Water Treatment Principles</u> and <u>Design</u>, John Wiley and Sons, May 1982.

Wallis, P.M., Davies, J.S., Nuthonn, R., Bichanin-Mappin, J.M., Roach, P.D., and Van Roodeloon, A. Removal and Inactivation of <u>Giardia</u> Cysts in a Mobile Water Treatment Plant Under Field Conditions: Preliminary Results. In <u>Advances in Giardia Research</u>. P.M. Wallis and B.R. Hammand, eds, Union of Calgary Press, p. 137-144, 1989.

Wolfe, R.L., Stewart, M.H., Liange, S.L., and McGuire, M.J., Disinfection of Model Indicator Organisms in a Drinking Water Pilot Plant by Using PEROXONE, Applied Environmental Microbiology, Vol 55, 1989, pp 2230-2241.

Olivieri, V.P. and Sykora, J.L., Field and Evaluation of CT for Determining the Adequacy of Disinfection. American Water Works Association Water Quality Technology Conference. In press, 1989.

APPENDIX H

SAMPLING FREQUENCY FOR TOTAL COLIFORMS IN THE DISTRIBUTION SYSTEM

TABLE H-1

TOTAL COLIFORM SAMPLING REQUIREMENTS

BASED UPON POPULATION

Popu Se:	lat		Minimum Number of Samples Per Month (1,2,3)	-	ıla:	tion	Minimum Number of Samples Per Month
25	to	1,000	1	59,001	to	70,000	. 70
1,001	to	2,500	2	70,001	to	83,000	80
2,501	to	3,300	3	83,001	to	96,000	90
3,301		4,100	4	96,001	to	130,000	100
4,101	to	4,900	5	130,001	to	220,000	120
4,901	to	5,800	6	220,001	to	320,000	150
5,801	to	6,700	7	320,001	to	450,000	180
6,701	to	7,600	8	450,001	to	600,000	210
7,601	to	8,500	9	600,001	to	780,000	240
8,501	to	12,900	10	780,001	to	970,000	270
12,901	to	17,200	15	970,001	to	1,230,000	. 300
17,201		-	20	1,230,001	to	1,520,000	330
21,501		-	25	1,520,001	to	1,850,000	360
25,001			30	1,850,001	to	2,270,000	390
33,001			40 .	2,270,001	to	3,020,000	420
41,001			50	3,020,001	to	3,960,000	450
50,001			60	3,960,001			480

Notes:

- 1. Non-community systems using all or part surface water and community systems must monitor total coliform at this frequency. A non-community water system using ground water and serving 1,000 persons or fewer must monitor quarterly, beginning 5 years after the rule's promulgation, although this can be reduced to yearly if a sanitary survey shows no defects. A non-community water system serving more than 1,000 persons during any month, or a non-community water system using surface water, must monitor at the same frequency as a like-sized community public water system for each month the system provides water to the public.
- Unfiltered surface water systems must analyze one coliform sample each day the turbidity exceeds 1NTU.

TABLE H-1

TOTAL COLIFORM SAMPLING REQUIREMENTS BASED UPON POPULATION (Continued)

3. Systems collecting fewer than 5 samples per month on a regular basis must conduct sanitary surveys. Community and non-community systems must conduct the initial sanitary surveys within 5 and 10 years of promulgation, respectively. Subsequent surveys must be conducted every 5 years, except for non-community systems using protected and disinfected ground water, which have up to 10 years to conduct subsequent surveys.

TABLE H-2
MONITORING AND REPEAT SAMPLE FREQUENCY

System Size	<pre># Routine Samples</pre>	# Repeats	More Monitoring For			
ncws (1)	Quarterly (2)	4 .	5/mo for 1 additional mo			
25 - 1,000	Monthly (2)	. 4	5/mo for 1 additional mo			
1,001 - 2,500	2/mo	3	5/mo for 1 additional mo			
2,501 - 3,300	3/mo	3	5/mo for 1 additional mo			
3,301 - 4,100	4/mo	3	5/mo for 1 additional mo-			
4,101 - 4,900	5/mo	3	None			
>4,900	Table 1	3	None			

Notes:

- 1. Non-community Water systems.
- 2. For exceptions, see Table 1.

APPENDIX I

MAINTAINING REDUNDANT DISINFECTION CAPABILITY

APPENDIX I REDUNDANT DISINFECTION CAPABILITY

The SWTR requires that unfiltered water systems provide redundant disinfection components to ensure the continuous application of a disinfectant to the water entering the distribution system. In many systems, both filtered and unfiltered, a primary disinfectant is used to provide the overall inactivation/removal and a secondary residual is applied to maintain a residual in the distribution system. As outlined in Sections 3.2.4 and 5.5.4, redundancy of the disinfection system(s) is recommended to ensure that the overall treatment requirement of 3-log Giardia cyst and 4-log virus removal/inactivation is achieved, and a residual is maintained entering the distribution system. This is particularly important for unfiltered supplies where the only treatment barrier is disinfection. Redundancy of components is necessary to allow for disinfection during routine repairs, maintenance and inspection and possible failures.

In reviewing water disinfection facilities for compliance with redundancy requirements, the following items should be checked:

I. General

A. Are the capacities of all components of both the primary system and the backup system equal to or greater than the required capacities?

Some systems may have two or more units that provide the required dosage rates when all units are operating. In these cases, an additional unit is needed as backup, during the downtime of any of the operating units. The backup must have a capacity equal to or greater than that of the largest on-line unit.

- B. Are adequate safety precautions being followed, relative to the type of disinfectant being used?
- C. Are redundant components being exercised or alternated with the primary components?
- D. Are all components being properly maintained?
- E. Are critical spare parts on hand to repair disinfection equipment?

F. Are spare parts available for components that are indispensible for disinfecting the water?

II. Disinfectant Storage

A minimum of two storage units capable of being used alternately should be provided. The total combined capacity of the storage units should provide as a minimum the system design capacity.

A. Chlorine

3.

Storage for gaseous chlorine will normally be in 150-lb cylinders, 2,000-lb containers, or larger on-site storage vessels.

1. Is there automatic switchover equipment if one cylinder or container empties or becomes inoperable?

鉴

3

- 2. Is the switching equipment in good working order, (manually tested on a regularly scheduled basis), and are spare parts on hand?
- 3. Are the scales adequate for at least two cylinders or containers.

B. <u>Hypochlorite</u>

Storage of calcium hypochlorite or sodium hypochlorite is normally provided in drums or other suitable containers. Redundancy requirements are not applicable to these by themselves, as long as the required minimum storage quantity is on hand at all times.

C. Ammonia

An hydrous ammonia is usually stored in cylinders as a pressurized liquid. Aqua ammonia is usually stored as a solution of ammonia and water in a horizontal pressure vessel.

- 1. Is the available storage volume divided into two or more usable units?
- 2. Is automatic switching equipment in operation to change over from one unit to another when one is empty or inoperable?
- 3. Are there spare parts for the switching equipment?

III. Generation

Ozone and chlorine dioxide are not stored on-site. Rather, because of their reactivity, they are generated and used immediately.

To satisfy the redundancy requirements for these disinfectants it is recommended that two generating units, or two sets of units, capable of supplying the required feed rate be provided. In systems where there is more than one generation system, a standby unit should be available for times the on-line units need repair. The backup unit should have a capacity equal to or greater than the unit(s) it may replace.

A. Chlorine Dioxide

Chlorine, sodium chlorite, or sodium hypochlorite should be stored in accordance with storage guidelines previously described.

B. Ozone

Are all generation components present and in working order for both the primary and the redundant units (whether using air or oxygen)?

C. Common

Is switchover and automatic start-up equipment installed and operable to change from the primary generating unit(s) to the redundant unit(s)?

IV. Feed Systems

Redundancy in feed systems requires two separate units, or systems, each capable of supplying the required dosage of disinfectant. If more than one unit is needed to apply the required feed rate, a spare unit should be available to replace any of the operating units during times of malfunction. The replacement unit should, therefore, have a capacity equal to or greater than that of the largest unit which it may replace. This requirement applies to all disinfection methods, and is best implemented by housing the on-line and redundant components in separate rooms, enclosures, or areas, as appropriate.

In reviewing these systems for redundancy, the following components should be checked:

A. Chlorine

- 1. Evaporators
- 2. Chlorinators
- Injectors

B. Hypochlorite

1. Mixing tanks and mixers

2. Chemical feed pumps and controls

3. Injectors

C. Ozone

Dissolution equipment, including compressor and delivery piping systems

D. Chlorine Dioxide

1. Chlorine feed equipment

2. Sodium chlorite mixing and metering equipment

3. Day tank and mixer

4. Metering pumps

5. If a package C10, unit is used, two must be provided

E. <u>Chloramination</u>

- 1. Chlorine feed equipment
- 2. Ammonia feed equipment, including applicable equipment for either:
 - a. Anhydrous ammonia (gas)
 - b. Aqua ammonia (solution)

V. Residual Monitorina

The best method of monitoring a disinfection facility for continuous operation is by continuous recording equipment. To improve reliability, it is suggested that duplicate continuous monitors are present for backup in the event of monitor failure. However, if there is a failure in the monitoring system for indicating that a continuous residual is being maintained, the SWTR allows systems to take grab samples every four hours for up to five days during monitor repair. For systems without 24 hour staffing it will not be practical to take grab samples and redundant monitoring equipment is recommended. Failure of continuous monitoring would be a violation of a monitoring requirement, not a treatment requirement.

A. Chlorine

1. Does the facility have a continuous monitor for chlorine residual at the disinfection system site with an alarm

or indicator to show when the monitor is not functioning? For added assurance, the provision of a backup monitoring unit is also recommended.

2. Is there instrumentation in place to automatically switch from one monitor to the other if the first one fails?

B. <u>Hypochlorite</u>

Same as for chlorine system.

C. Ozone

- 1. Does the facility have a continuous ozone monitor with automatic switchover capability and alarms?
- 2. Does the facility have a continuous ozone residual monitor with automatic switchover capability and alarms?

D. Chlorine Dioxide

- Does the facility have a continuous chlorine dioxide monitor with automatic switchover capability and alarms?
- 2. Does the facility have a continuous chlorine dioxide residual monitor with automatic switchover capability and alarms?

E. Chloramination

- Does the facility have a continuous ammonia monitor with automatic switchover capability and alarm?
- 2. Does the facility also have a continuous chlorine residual monitor on-site with automatic switchover capability and alarms?

VI. Power Supply

A permanently installed standby generator, capable of running all electrical equipment at the disinfection station, and equipped for automatic start-up on power failure, should be on-site and functional.

Alternatives to a standby generator, such as a feed line from a different power source, are acceptable if they can be shown to have equal reliability.

VII. Alarms

Indicators and alarms, both local and remote, should be capable of promptly alerting operating and supervisory personnel of problem conditions.

A. Local

Lights, buzzers, and horns should be installed and functioning to alert on-site personnel to problem conditions.

B. Remote

Alarm signals should be relayed to a central control panel which is manned 24 hours per day and whose operators can notify response personnel immediately.

C. Problem Conditions

A minimum list of problem conditions which should have indicators and alarms, both locally and at a 24-hour per day switchboard, are as follows:

- 1. Disinfectant leak
- 2. Feeder pump failure
- 3. Power outage
- 4. Generator or alternate power source on
- 5. Disinfectant residual less than setpoint value

VIII. Facility Lavout

Maximum reliability is ensured when redundant units are separated from primary units. The type of separation should be appropriate to the type of potential malfunction. For example, any area within a building subject to a chlorine leak should have primary components separated from redundant components by an airtight enclosure, i.e., separate rooms of varying sizes.

IX. Separate Facility

Under certain conditions, such as location of a disinfection facility in an area of high earthquake potential, the most reliable means of providing redundant facilities may be to house them in a completely separate structures at a different site.

APPENDIX J
WATERSHED CONTROL PROGRAM

APPENDIX J WATERSHED CONTROL PROGRAM

The following is a guideline for documenting a watershed control program. The SWTR only requires a watershed control program for unfiltered supplies. A watershed control program can also benefit a filtered system by providing protection for maintaining the source water quality, minimizing the level of disinfection to be provided. It is therefore recommended that all systems conduct the basic elements of a watershed control program. However, the scope of the program should increase as the complexity and size of the watershed/ system increases. The program could be more or less comprehensive than this outline, and will be determined on a case-by-case basis by the utility and the Primacy Agency. In addition to the guidelines below, a wellhead protection program could be the basis of a watershed control program in many states. All of the elements found below would also be part of a local wellhead protection program.

A. Watershed Description

- 1. Geographical location and physical features of the watershed.
- 2. Location of major components of the water system in relationship to the watershed.
- 3. Hydrology: Annual precipitation patterns, stream flow characteristics, etc.
- Agreements and delineation of land use/ownership.

B. Identification of the Watershed Characteristics and Activities Detrimental to Water Quality

- 1. Naturally Occurring:
 - a. Effect of precipitation, terrain, soil types and land cover
 - Animal populations (describe) -- include a discussion of the <u>Giardia</u> contamination potential, any other microbial contamination transmitted by animals

Other - any other activity which can adversely affect water quality

2. Man-Made:

Point sources of contamination such as wastewater treatment plant, industrial discharges, barnyard, feedlots, or private septic systems

The impact of these sources on the microbiological quality of the water source should be evaluated. In cases resulting in identifiable degradation, the discharges should be eliminated in order to minimize the treatment of the water needed.

- b. Nonpoint Source of Contamination:
 - Road construction major highways, railroads
 - Pesticide usage
 - Logging
 - 4) Grazing animals
 - 5) Discharge to ground water which recharges the surface source
 - 6) Recreation activities
 - 7) Potential for unauthorized activity in the watershed
 - 8) Describe any other human activity in the watershed and its potential impact on water quality

It should be noted that grazing animals in the watershed may lead to the presence of <u>Cryptosporidium</u> in the water. Cryptosporidium is a pathogen which may result in a disease outbreak upon ingestion. No information is available on its resistance to various disinfectants, therefore it is recommended that grazing should not be permitted on watersheds of non-filtering systems. Sewage discharges will introduce viruses into the water source which may be occluded in solids and protected from inactivation through disinfection. It is, therefore, recommended that sewage discharges should not be permitted within watersheds of non-filtering supplies. Although it is preferable to not have grazing or sewage discharges within the watershed, Primacy Agencies will

J-2

need to evaluate the impact of these activities on a case-by-case basis. In cases where there is a long detention time and a high degree of dilution between the point of the activity and the water intake, these activities may be permissible for unfiltered supplies. The utility should set priorities to address the impacts in B.1. and 2., considering their health significance and the ability to control them.

C. Control of Detrimental Activities/Events

Depending on the activities occurring within the watershed, various techniques could be used to eliminate or minimize their effect. Describe what techniques are being used to control the effect of activities/events identified in B.1. and 2. in its yearly report.

Example:

Activity: Logging in the watershed.

<u>Management Decision</u>: Develop program to minimize impact of logging.

<u>Procedure</u>: Establish agreements with logging companies to maintain practices which will minimize adverse impacts on water quality. These practices should include:

- limiting access to logging sites
- ensuring cleanup of sites
- controlling erosion from site.

<u>Monitoring</u>: Periodically review logging practices to ensure they are consistent with the agreement between the utility and the logging companies.

Example:

<u>Activity</u>: Point sources of discharge within the watershed.

<u>Management Decision</u>: Eliminate those discharges or minimize their impact.

<u>Procedures</u>: Actively participate in the review of discharge permits to alert the reviewing agency of the potential (actual) impacts of the discharge and lobby for its elimination or strict control.

<u>Monitoring</u>: Conduct special monitoring to ensure conditions of the permit are met and to document adverse effects on water quality.

D. Monitorina

- 1. Routine: Minimum specifications for monitoring several raw water quality parameters are listed in Section 3.1. Describe when, where and how these samples will be collected. These results will be used to evaluate whether the source may continue to be used without filtration.
- 2. Specific: Routine monitoring may not provide information about all parameters of interest. For example, it may be valuable to conduct special studies to measure contaminants suspected of being present (Giardia, pesticides, fuel products, enteric viruses, etc.). Frequent presence of either Giardia or enteric viruses in raw water samples prior to disinfection would indicate an inadequate watershed control program. Monitoring may also be useful to assess the effectiveness of specific control techniques, and to audit procedures or operational requirements instituted within the watershed. Utilities are encouraged to conduct additional monitoring as necessary to aid them in controlling the quality of the source water.

E. Management/Operations

1. Management

- a. Organizational structure
- Personnel and education/certification requirements

Operations

- a. Describe system operations and design flexibility.
- b. The utility should conduct some form of ongoing review or survey in the watershed to identify and react to potential impacts on water quality. The scope of this review should be documented and agreed upon by the utility and Primacy Agency on a case-by-case basis.
- c. Specifically describe operational changes which can be made to adjust for changes in water quality. Example: Switching to alternate sources; increasing the level of disinfection; using

settling basins. Discuss what triggers, and who decides to make, those changes.

- 3. Annual Report: As part of the watershed program, an annual report should be submitted to the Primacy Agency. The contents of the report should:
 - a. Identify special concerns that occurred in the watershed and how they were handled (example: herbicide usage, new construction, etc.).
 - b. Summarize other activities in the watershed such as logging, hunting, water quality monitoring, etc.
 - c. Project what adverse activities are expected to occur in the future and describe how the utility expects to address them.

F. Agreements/Land Ownership

The goal of a watershed management program is to achieve the highest level of raw water quality practicable. This is particularly critical to an unfiltered surface supply.

- 1. The utility will have maximum opportunity to realize this goal if they have complete ownership of the watershed. Describe efforts to obtain ownership, such as any special programs or budget. When complete ownership of the watershed is not practical, efforts should be taken to gain ownership of critical elements, such as, reservoir or stream shoreline, highly erodable land, and access areas to water system facilities.
- 2. Where ownership of land is not possible, written agreements should be obtained recognizing the watershed as part of a public water supply. Maximum flexibility should be given to the utility to control land uses which could have adverse effect on the water quality. Describe such agreements.
- 3. Describe how the utility ensures that the landowner complies with these agreements.

APPENDIX K
SANITARY SURVEY

APPENDIX K SANITARY SURVEY

The SWTR requires that an on-site inspection be conducted each year as outlined in Section 3. It is recommended that at the onset of determining the classification of a source water that a detailed sanitary survey be conducted. In addition, it is recommended that a sanitary survey such as contained in this appendix be conducted every 3 to 5 years by both filtered and unfiltered systems to ensure that the quality of the water and service is maintained. This time period is suggested since the time and effort needed to conduct the comprehensive survey makes it impractical for it to be conducted annually. A periodic sanitary survey is also required under the Total Coliform Rule for systems collecting fewer than 5 samples/month. The survey must be conducted every 5 years for all systems except for protected ground water systems which disinfect. These systems must conduct the survey every 10 years.

The sanitary survey involves three phases, including planning the survey, conducting the survey and compiling the final report of the survey, as will be presented in the following pages.

1. Planning the Survey

Prior to conducting or scheduling a sanitary survey, there should be a detailed review of the water system's file to prepare for the survey. The review should pay particular attention to past sanitary survey reports and correspondence describing previously identified problems and their solutions. These should be noted, and action/inaction regarding these problems should be specifically verified in the field. Other information to review includes: any other correspondence, water system plans, chemical and microbiological sampling results, operating reports, and engineering studies. This review will aid in the familiarization with the system's past history and present conditions, and the agency's past interactions with the system.

The initial phase of the water quality review will be carried out prior to conducting the survey as well, and will consist of reviewing the water system's monitoring records. Records should be reviewed for compliance with all applicable microbiological, inorganic chemical, organic chemical, and radiological contaminant MCLs, and also for compliance with the monitoring requirements for those contaminants. The survey

will provide an opportunity to review these records with the utility, and to discuss solutions to any MCL or monitoring violations. The survey will also provide an opportunity to review how and where samples are collected, and how field measurements (turbidity, chlorine residual, fluoride, etc.) are made. Points to cover include:

- a. Is the system in compliance with all applicable MCLs (organic chemical, inorganic chemical, microbiological, and radiological)?
- b. Is the system in compliance with all monitoring requirements?

The pre-survey file review should generate a list of items to check in the field, and a list of questions about the system. It will also help to plan the format of the survey and to estimate how much time it may take. The next step is to make the initial contact with the system management to establish the survey date(s) and time. Any records, files, or people that will be referenced during the survey should be mentioned at the outset. Clearly laying out the intent of the survey up front will greatly help in managing the system, and will ensure that the survey goes smoothly without a need for repeat trips.

2. <u>Conducting the Survey</u>

The on-site portion of the survey is the most important and will involve interviewing those in charge of managing the water system as well as the operators and other technical people. The survey will also review all major system components from the source(s) to the distribution system. A standard form is frequently used to ensure that all major components and aspects of each system are consistently reviewed. However, when in the field, it is best to have an open mind and focus most attention on the specifics of the water system, using the form only as a guide. The surveyor should be certain to be on time when beginning the survey. This consideration will help get the survey started smoothly with the operator and/or manager.

As the survey progresses, any deficiencies that are observed should be brought to the attention of the water system personnel, and the problem and the corrective measures should be discussed. It is far better to clarify technical details and solutions while standing next to the problem than it is to do so over the telephone. Points to cover include:

a. Is the operator competent in performing the necessary field testing for operational control?

- b. Are testing facilities and equipment adequate, and do reagents used have an unexpired shelf life?
- c. Are field and other analytical instruments properly and regularly calibrated?
- d. Are records of field test results and water quality compliance monitoring results being maintained?
- e. Conduct any sampling which will be part of the survey.

Also, detailed notes of the findings and conversations should be taken so that the report of the survey will be an accurate reconstruction of the survey.

Specific components/features of the system to review and some pertinent questions to ask are:

A. Source Evaluation

All of the elements for a source evaluation enumerated below may also be part of a Wellhead Protection Program.

- 1. Description: based on field observations and discussion with the operator, a general characterization of the watershed should be made. Features which could be included in the description are:
 - a. Area of watershed or recharge area.
 - b. Stream flow.
 - c. Land usage (wilderness, farmland, rural housing, recreational, commercial, industrial, etc.).
 - d. Degree of access by the public to watershed.
 - e. Terrain and soil type.
 - f. Vegetation.
 - a. Other.
- 2. Sources of contamination in the watershed or sensitive areas surrounding wells or well fields should be identified. Not only should this be determined by physically touring and observing the watershed and its daily uses, but the surveyor should also actively question the water system manager about adverse and potentially adverse

activities in the watershed. An example of types of contamination includes:

a. Man Made.

- Point discharges of sewage, stormwater, and other wastewater.
- 2. On-site sewage disposal systems.
- 3. Recreational activities (swimming, boating, fishing, etc.).
- 4. Human habitation.
- Pesticide usage.
- 6. Logging.
- 7. Highways or other roads from which there might be spills.
- 8. Commercial or industrial activity.
- Solid waste or other disposal facilities.
- 10. Barnyards, feed lots, turkey and chicken farms and other concentrated domestic animal activity.
- 11. Agricultural activities such as grazing, tillage, etc., which affects soil erosion, fertilizer usage, etc.
- 12. Other.

b. Naturally Occurring.

- 1. Animal populations, both domestic and wild.
- Turbidity fluctuations (from precipitation, landslides, etc.).
- 3. Fires.
- Inorganic contaminants from parent materials (e.g., asbestos fibers).
- 5. Algae blooms.

6. Other.

This list is by no means all inclusive. The surveyor should rely principally on his observations and thorough questioning regarding the unique properties of each watershed to completely describe what may contaminate the source water.

3. Source Construction.

- a. Surface Intakes.
 - 1. Is the source adequate in quantity?
 - 2. Is the best quality source or location in that source being used?
 - 3. Is the intake protected from icing problems if appropriate?
 - 4. Is the intake screened to prevent entry of debris, and are screens maintained?
 - 5. Is animal activity controlled within the immediate vicinity of the intake?
 - 6. Is there a raw water sampling tap?
- b. Infiltration Galleries.
 - 1. Is the source adequate in quantity?
 - 2. Is the best quality source being used?
 - 3. Is the lid over the gallery watertight and locked?
 - 4. Is the collector in sound condition and maintained as necessary?
 - 5. Is there a raw water sampling tap?
- c. Springs.
 - 1. Is the source adequate in quantity?
 - 2. Is there adequate protection around the spring such as fencing to control the area within 200 feet?

- 3. Is the spring constructed to best capture the spring flow and exclude surface water infiltration?
- 4. Are there drains to divert surface water from the vicinity of the spring?
- 5. Is the collection structure of sound construction with no leaks or cracks?
- 6. Is there a screened overflow and drain pipe?
- 7. Is the supply intake located above the floor and screened?
- 8. Is there a raw water sampling tap?
- d. Catchment and Cistern.
 - 1. Is source adequate in quantity?
 - 2. Is the cistern of adequate size?
 - 3. Is the catchment area protected from potential contamination?
 - 4. Is the catchment drain properly screened?
 - 5. Is the catchment area and cistern of sound construction and in good condition?
 - 6. Is catchment constructed of approved non-toxic, non-leaching material?
 - 7. Is the cistern protected from contamination -- manholes, vents, etc?
 - 8. Is there a raw water tap?
- e. Other Surface Sources.
 - 1. Is the source adequate in quantity?
 - 2. Is the best possible source being used?
 - 3. Is the immediate vicinity of the source protected from contamination?

- 4. Is the structure in good condition and properly constructed?
- 5. Is there a raw water sampling tap?
- Pumps, Pumphouses, and Controls.
 - a. Are all intake pumps, booster pumps, and other pumps of sufficient capacity?
 - b. Are all pumps and controls operational and maintained properly?
 - Are check valves, blow off valves, water meters and other appurtenances operated and maintained properly?
 - d. Is emergency power backup with automatic start-up provided and does it work (try it)?
 - e. Are underground compartments and suction wells waterproof?
 - f. Is the interior and exterior of the pumphouse in good structural condition and properly maintained?
 - g. Are there any safety hazards (electrical or mechanical) in the pumphouse?
 - h. Is the pumphouse locked and otherwise protected against vandalism?
 - i. Are water production records maintained at the pumphouse?
- 5. Watershed Management (controlling contaminant sources): The goal of the watershed management program is to identify and control contaminant sources in the watershed (see Section 3.3.1 of this document, "Watershed Control Program"). Under ideal conditions each source of contamination identified in 2 will already have been identified by the utility, and some means of control instituted, or a factual determination made that its impact on water quality is insignificant. To assess the degree to which the watershed management program is achieving its goal, the following types of inquiries could be made:

- a. If the watershed is not entirely owned by the utility, have written agreements been made with other land owners to control land usage to the satisfaction of the utility? Are appropriate regulations under the contract of state/local department of health in effect?
- b. Is the utility making efforts to obtain as complete ownership of the watershed as possible? Is effort directed to control critical elements?
- c. Are there means by which the watershed is regularly inspected for new sources of contamination or trespassers where access is limited?
- d. Are there adequately qualified personnel employed by the utility for identifying watershed and water quality problems and who are given the responsibility to correct these problems?
- e. Are raw water quality records kept to assess trends and to assess the impact of different activities and contaminant control techniques in the watershed?
- f. Has the system responded adequately to concerns expressed about the source or watershed in past sanitary surveys?
- g. Has the utility identified problems in its yearly watershed control reports, and if so, have these problems been adequately addressed?
- h. Identify what other agencies have control or jurisdiction in the watershed. Does the utility actively interact with these agencies to see that their policies or activities are consistent with the utility's goal of maintaining high raw water quality?

B. <u>Treatment Evaluation</u>

- 1. Disinfection.
 - a. Is the disinfection equipment and disinfectant appropriate for the application (chloramines, chlorine, ozone, and chlorine

- dioxide are generally accepted disinfectants)?
- b. Are there back-up disinfection units on line in case of failure, and are they operational?
- c. Is there auxiliary power with automatic start up in case of power outage? Is it tested and operated on a regular basis, both with and without load?
- d. Is there an adequate quantity of disinfectant on hand and is it properly stored (e.g., are chlorine cylinders properly labeled and chained)?
- e. In the case of gaseous chlorine, is there automatic switch over equipment when cylinders expire?
- f. Are critical spare parts on hand to repair disinfection equipment?
- g. Is disinfectant feed proportional to water flow?
- h. Are daily records kept of disinfectant residual near the first customer from which to calculate CTs?
- i. Are production records kept from which to determine CTs?
- j. Are CTs acceptable based on the level of treatment provided (see Surface Water Treatment Rule for CT values, and Sections 3 and 5 of this guidance manual for calculation of CT).
- k. Is a disinfectant residual maintained in the distribution system, and are recordskept of daily measurements?
- 1. If gas chlorine is used, are adequate safety precautions being followed (e.g., exhaust fan with intake within six inches of the floor, self-contained breathing apparatus that is regularly tested, regular safety training for employees, ammonia bottles and/or automatic chlorine detectors)? Is the system adequate to ensure

the safety of both the public and the employees in the event of a chlorine leak?

2. Other.

- a. Are other treatment processes appropriate and are they operated to produce consistently high water quality?
- b. Are pumps, chemical feeders, and other mechanical equipment in good condition and properly maintained?
- c. Are controls and instrumentation adequate for the process, operational, well maintained and calibrated?
- d. Are accurate records maintained (volume of water treated, amount of chemical used, etc.)?
- e. Are adequate supplies of chemical on hand and properly stored?
- f. Are adequate safety devices available and precautions observed?

Sections of a sanitary survey pertaining to systems containing filtration facilities have been omitted, as this section of the guidance document pertains to non-filtering systems.

C. <u>Distribution System Evaluation</u>

After water has been treated, water quality must be protected and maintained as it flows through the distribution system to the customer's tap. The following questions pertain to the water purveyor's ability to maintain high water quality during storage and distribution.

1. Storage.

a. Gravity.

- 1. Are storage reservoirs covered and otherwise constructed to prevent contamination?
- 2. Are all overflow lines, vents, drainlines, or cleanout pipes turned downward and screened?

- 3. Are all reservoirs inspected regularly?
- 4. Is the storage capacity adequate for the system?
- 5. Does the reservoir (or reservoirs) provide sufficient pressure throughout the system?
- 6. Are surface coatings within the reservoir in good repair and acceptable for potable water contact?
- 7. Is the hatchcover for the tank water-tight and locked?
- 8. Can the reservoir be isolated from the system?
- 9. Is adequate safety equipment (caged ladder, OSHA approved safety belts, etc.) in place for climbing the tank?
- 10. Is the site fenced, locked, or otherwise protected against vandalism?
- 11. Is the storage reservoir disinfected after repairs are made?
- 12. Is there a scheduled program for cleaning storage reservoir sediments, slime on floor and side walls.

b. Hydropneumatic.

- 1. Is the storage capacity adequate for the system?
- 2. Are instruments, controls, and equipment adequate, operational, and maintained?
- 3. Are the interior and exterior surfaces of the pressure tank in good condition?
- 4. Are tank supports structurally sound?
- 5. Does the low pressure cut in provide adequate pressure throughout the entire system?

6. Is the pump cycle rate acceptable (not more than 15 cycles/hour)?

2. Cross Connections.

- a. Is the system free of known uncontrolled cross connections?
- b. Does the utility have a cross connection prevention program, including annual testing of backflow prevention devices?
- c. Are backflow prevention devices installed at all appropriate locations (wastewater treatment plant, industrial locations, hospitals, etc.)?

3. Other.

- a. Are proper pressures and flows maintained at all times of the year?
- b. Do all construction materials meet AWWA or equivalent standards?
- c. Are all services metered and are meters read?
- d. Are plans for the system available and current?
- e. Does the system have an adequate maintenance program?
 - Is there evidence of leakage in the system?
 - Is there a pressure testing program?
 - Is there a regular flushing program?
 - Are valves and hydrants regularly exercised and maintained?
 - Are AWWA standards for disinfection followed after all repairs?
 - Are there specific bacteriological criteria and limits prescribed for new line acceptance or following line repairs?

- Describe the corrosion control program.
- Is the system interconnected with other systems?

D. Management/Operation

- 1. Is there an organization that is responsible for providing the operation, maintenance, and management of the water system?
- 2. Does the utility regularly summarize both current and long-term problems identified in their watershed, or other parts of the system, and define how they intend to solve the problems i.e., is their planning mechanism effective; do they follow through with plans?
- 3. Are customers charged user fees and are collections satisfactory?
- 4. Are there sufficient personnel to operate and manage the system?
- 5. Are personnel (including management) adequately trained, educated, and/or certified?
- 6. Are operation and maintenance manuals and manufacturers technical specifications readily available for the system?
- 7. Are routine preventative maintenance schedules established and adhered to for all components of the water system?
- 8. Are sufficient tools, supplies, and maintenance parts on hand?
- 9. Are sufficient operation and maintenance records kept and readily available?
- 10. Is an emergency plan available and usable, and are employees aware of it?
- 11. Are all facilities free from safety defects?

When the survey is completed, it is always preferable to briefly summarize the survey with the operator(s) and management. The main findings of the survey should be reviewed so it is clear that there are not misunder-standings about findings/conclusions. It is also good

to thank the utility for taking part in the survey, arranging interviews with employees, gathering and explaining their records, etc. The information and help which the utility can provide an invaluable to a successful survey, and every attempt should be made to continue a positive relationship with the system.

3. Reporting the Survey

A final report of the survey should be completed as soon as possible to formally notify the system and other agencies of the findings. There is no set or necessarily best format for doing so, and the length of the report will depend on the findings of the survey and size of the system. Since the report may be used for future compliance actions and inspections, it should include as a minimum: 1) the date of the survey; 2) who was present during the survey; 3) the findings of the survey; 4) the recommended improvements to identified problems; and 5) the dates for completion of any improvements. Any differences between the findings discussed at the conclusion of the survey and what's included in the final report should be discussed and clarified with the utility prior to sending out the final report. In other words, the utility should be fully aware of the contents of the final report before receiving it.

APPENDIX L
SMALL SYSTEM CONSIDERATIONS

APPENDIX L SMALL SYSTEM CONSIDERATIONS

Introduction

Under the provisions of the SWTR, systems with fewer than 500 service connections may be eligible for an exemption. Guidance on the requirements for an exemption is provided in Section 9. For systems which are not eligible for an exemption, compliance with the SWTR is mandatory. It is recognized that the majority (approximately 75 percent) of people in the United States are served by a relatively small number of large systems. However, most water systems in the United States are small. For small systems, compliance with the various provisions of the SDWA has traditionally been a problem. Records show small systems have a disproportionately higher incidence of drinking water quality and monitoring difficulties. The reasons for these difficulties can generally be broken down into the following three categories:

- Economics
- Treatment Technologies
- Operations (lack of qualified personnel)

Small water systems typically face severe economic constraints. Their lack of operating revenues results in significant limitations on their ability to respond to the requirements of the SDWA. These systems cannot benefit from the economies of scale which are available to larger systems.

The second difficulty facing the small systems has been the lack of appropriate treatment technologies. Although methods for removing most of the contaminants known to occur in drinking water are available, many of these technologies have only recently been scaled down for the smaller systems.

The third problem which has traditionally plagued small systems is the lack of well trained operators. This deficiency is the result of many combined factors. First of all, many of these operators are employed only on a part-time basis or if they are employed on a full-time basis they have a myriad of additional duties. In addition, the operator's technical background may be limited as well. This results from the low salary of the position, which is uninviting to qualified operators. Also, in spite of the requirement of retaining certified operators upheld in many states, it seems to be difficult to enforce this requirement in small systems.

31

-

3

-

i w

Agency in defining the problems and potential solutions typically associated with small systems. It is beyond the scope of this document to provide an indepth dicussion of the needs of small systems. However, over the past several years the needs of the small water systems have been recognized to be of primary concern and numerous workshops, seminars and committees have been attempting to more clearly define workable solutions. A partial listing of the papers, reports and proceedings which discuss problems and solutions pertaining to small systems beyond that which is possible in this manual is presented in the reference list of this appendix.

Economics

One of the most severe constraints of small systems is the small economic base from which to draw funds. Certain treatment and services must be provided for a community regardless of how few people are served. Thus, as the number of connections to the system decrease, the cost per connection increases. The economic limitations of small utilities makes it difficult to provide needed upgrading of existing facilities or an adequate salary to maintain the employment of a qualified operator to monitor and maintain the system. Adding to the severity of the economic hardships of small systems is the fact that many of the small water systems are privately owned, with private ownership increasing as system size decreases. The ownership of the plant presents difficulties since privately owned systems are subject to rate controls by the local public utility commission, are not eligible for public grants and loans, and may find commercial loans hard to obtain.

Financing options for small systems include; federal and state loan and grant programs, federal revenue sharing and revenue bonds (for municipal systems) and loans through the United States Small Business Administration (SBA) and use of industrial development bonds or privatiza-

tion (for private utilities). These options are explained in greater detail in the "Guidance Manual - Institutional Alternatives for Small Water Systems" (AWWA, 1986). The following paragraphs will explain some existing options which may ease the hardship of financing small water treatment facilities.

The major cause of small system difficulties arises from the lack of funds and resources. It is therefore in the best interest of small utilities to expand their economic base and the resources available to them, to achieve the economies of scale available to larger systems. Regionalization is the physical or operational union of small systems to effect this goal. This union can be accomplished through the physical interconnection of two or more small systems or the connection of a smaller system to a pre-existing larger system. Water supply systems can also join together for the purchase of supplies, materials, engineering services, billing and maintenance. The union of the small systems increases the population served, thereby dispersing the operational costs and decreasing the cost per consumer.

The creation of utility satellites is another form of regionalization. A satellite utility is one which taps into the resources of an existing larger facility without being physically connected to, or owned by, the larger facility. The larger system may provide any of the following for the smaller system:

- Varying levels of technical operational, or managerial assistance on a contract basis.
- Wholesale treated water with or without additional services.
- 3. Assuming ownership, operation and maintenance responsibility when the small system is physically separate with a separate source.

The formation of a satellite offers many advantages for both the satellite and the parent utility. These advantages include: an improved economy of scale for satellites, an expanded revenue base for the parent utility, provisions of needed resources to satellites, the retention of the satellites' local autonomy, improved water quality management of the satellite, improved use of public funds for publicly owned satellites.

In order to create a more definite structure for the union of resources of water treatment facilities, water districts may be created. Water districts are formed by county officials and provide for the public ownership of the utilities. The utilities in any given district would combine resources and/or physically connect systems so that one or two facilities would provide water for the entire district. The creation of water districts creates eligibility for public monies, has the potential for economies of size, facilitates the takeover or contract services with publicly owned non-community systems and small privately owned systems, and offers a tax advantage. Drawbacks include subjection to politics, a strong local planning effort is needed for success, and competition with private enterprises.

The centralization of utilities can be taken one step further through the creation of county utilities or even state utilities. The government will create a board which may then act to acquire, construct, maintain and operate any public water supply within its district, the system may provide water on its own or purchase water from any municipal corporation. The board may adopt and administer rules for the construction, maintenance, protection and use of public water supplies and the fixation of reasonable rates for water supplies. The cost of construction and/or upgrading of facilities may be defrayed through the issuance of bonds and/or property assessment. As with all the alternatives, the creation of government control of the utilities has its advantages and disadvantages. The advantages include: the creation of central management, creation of economy of scale for utilities, eligibility for public grants and loans, savings through centralized purchasing, management, consultation, planning and technical assistance, and possible provision for pool of trained operators. The disadvantages include the subjectivity to politics, the slow response caused by bureaucracy, and competition to private contractors.

4

In.

-

Treatment Technologies

٠.

The high cost of available treatment technologies has limited their use in small water supply systems. Recently prefabricated package plants and individual treatment units have been developed to lessen these costs.

At the present time, the treatment technologies which are available to enable systems to comply with the Safe Drinking Water Act are identified to be the following:

- Package plants
- Slow-sand filters
- Diatomaceous earth filters
- Cartridge filtration

A brief discussion of each treatment method is provided below.

Package Plants

Clarification and filtration units which require minimal assembly in the field can now be manufactured. To minimize required operator skill level and operational attention, the equipment should be automated. Continuous effluent turbidity and disinfectant residual monitoring systems with alarms and emergency shutdown provisions are features that safeguard water quality and should be provided for unattended plants.

Slow-Sand Filters

Slow-sand filters are applicable to small water supply systems. Their proven record of effective removal of turbidity and <u>Giardia</u> cysts makes them suitable for application where operational attention is minimal. Since no chemicals other than a disinfectant are needed, and no mechanical equipment is involved, the required operator skill level is the lowest of the filtration alternatives available to small systems.

Diatomaceous Earth Filters

Diatomaceous earth (DE) pressure and vacuum filters can be used on relatively low turbidity surface waters (less than 1 to 2 NTU) for removal of turbidity and <u>Giardia</u> cysts. DE filters can effectively remove particles as small as 1 micron, but would require coagulating chemicals and special filter aids to provide significant virus removal.

Cartridge Filters

Cartridge filters using microporous ceramic filter elements with pore sizes as small as 0.2 um may be suitable for producing potable water, in combination with disinfection, from raw water supplies containing moderate levels of turbidity, algae, protozoa and bacteria. The advantage to a small system, is, with the exception of chlorination, that no other chemicals are required. The process is one of strictly physical removal

of small particles by straining as the water passes through the porous membranes. Other than occasional cleaning or membrane replacement, and operational requirements are not complex and do not require skilled personnel.

2

-

Selection of a Filtration Technology

The criteria for selection of a filtration technology for a small community are essentially the same as those for a larger community. That is, the utility must first screen the complete list of available alternatives to eliminate those which are either not technically suited to the existing conditions (Table 4-1) or not affordable by the utility. Remaining alternatives should then be evaluated based on both cost (capital, annual, and life-cycle) and non-cost bases (operation and maintenance, technical requirements versus personnel available; flexibility regarding future needs; etc.). In these evaluations it should be noted that even though automated package plants are cost-competitive with slow sand filters, their operation requirements to achieve optimum performance could be complicated. Also, the maintenance requirements for package plants would be mechanically and electrically oriented and might require a maintenance agreement with the manufacturer.

During the process of installing the treatment system, interim measures should be taken to ensure the delivery of a reasonably safe water to the consumers. In addition to the available interim measures listed in Section 9.3, temporary installation of mobile filtration plants may be possible. These trailer-mounted units are sometimes available from state agencies for emergencies, but more often may be rented or leased from an equipment manufacturer.

Modification of Existing Filtration Systems

Small treatment systems that are already in existence should comply with the performance criteria of the SWTR. If the systems are not found to be performing satisfactorily, modifications to the existing process may be required. Improvement in treatment efficiency depends on the type of filtration system in use. Operation of slow sand filters could be checked for bed depth, short-circuiting, excessive hydraulic loading, and for the need to pretreat the raw water. Infiltration galleries, or sometimes, roughing filters ahead of a slow sand filter may provide for better

performance by reducing the solids load on the filters. However, the design criteria and costs for this alternative have not yet been defined. Site specific studies may be required before roughing filters could be used to achieve compliance with the regulations. Diatomaceous earth (DE) filters should be checked for appropriate precoat and body feed application, hydraulic loading, grade (size) of DE being used, and possible need for chemical pretreatment. Package plants would have to be checked process-by-process, similar to the system used for a conventional plant. Other filtration processes would have to be checked for hydraulic loading rate, appropriateness of the filter material (pore size), and possible need for additional pretreatment.

Disinfection

Disinfection (CT) requirements for small systems can be met in several different ways. The most obvious method of maintaining a disinfectant residual in the distribution system is to add disinfectant at one or more additional locations. An alternate method is to increase the disinfectant dose at the existing application point(s). The latter alternative, however, may increase disinfectant byproducts, including THMs, in the system.

If it is a relatively short distance between the treatment system and the first customer, additional contact time can be provided so that the disinfectant dose does not have to be increased beyond desirable residuals. Two specific methods of increasing contact time for small systems are 1) installing a pressure vessel or closed storage vessel, baffled to provide adequate contact time, or 2) constructing a looped pipeline, on the finished water line between the filtration-disinfection system and the first customer. The feasibility of either of these methods would depend on system specifics that include size, physical conditions, and cost.

If it is not practical to provide additional storage time to achieve the desired CT, an alternate, more effective disinfectant may be used. An alternate disinfectant may provide a sufficient CT without altering the system configuration.

1

رمندچ». ا دورون

-

Operations

Water treatment facilities need to be operated properly in order to achieve maximum treatment efficiencies. There is currently a lack of well trained operators at many small treatment plants. The main cause is lack of awareness of the importance of correct plant operation, lack of training programs, lack of enforcement of the requirement for employment of a certified operator and lack of funds to employ such an operator.

Small systems may wish to implement a circuit rider/operator program. In this program a qualified, certified, experienced operator works for several water supply systems. The rider can either directly operate the plants, or provide technical assistance to individual plant operators, by acting as a trainer through on-the-job supervision. The latter would be preferable since it could create a pool of well trained operators.

The main cause of inadequately trained operators is the lack of well established training programs. Until such training programs are begun, systems must depend on other training means, such as seminars and books. One resource which may be helpful in running the plant is "Basic Management Principles for Small Water Systems - An AWWA.Small-Systems Resource Book", 1982.

Most package plant manufacturers' equipment manuals include at least brief sections on operating principles, methods for establishing proper chemical dosages, instructions for operating the equipment, and trouble-shooting guides. An individual who studies these basic instructions and receives comprehensive start-up training should be able to operate the equipment satisfactorily. These services are vital to the successful performance of a package water treatment plant and should be a requirement of the package plant manufacturer. The engineer designing a package plant facility should specify that start-up and training services be provided by the manufacturer, and also should consider requiring the manufacturer to visit the plant at 6-month and 1-year intervals after start-up to adjust the equipment, review operations, and retrain operating personnel. Further, this program should be ongoing and funds should be budgeted every year for at least one revisit by the package plant manufacturer.

Another way for small systems to obtain qualified plant operation would be to contract the services of administrative, operations, and/or maintenance personnel from a larger neighboring utility, government agencies, service companies or consulting firms. These organizations could supply assistance in financial and legal planning, engineering, purchasing accounting and collection services, laboratory support, licensed operators or operator training, treatment and water quality assurance, regulatory liaison, and/or emergency assistance. Through the contracting of these services the utility provides for the resources needed, improves water quality management and retains its autonomy. However, if and when the contract is terminated, the utility returns to its original status.

References

American Water Works Association. <u>Basic Management Principles for Small Water Systems</u>, 1982.

American Water Works Association. <u>Design and Construction of Small Water Systems</u>, 1984.

Kelly, Gidley, Blair and Wolfe, Inc. Guidance Manual - <u>Institutional Alternatives for Small Water Systems</u>. AWWA Research Foundation Contract 79-84, 1986.

APPENDIX M

PROTOCOL FOR DEMONSTRATION

OF EFFECTIVE TREATMENT:

APPENDIX M

PROTOCOL FOR DEMONSTRATION OF EFFECTIVE TREATMENT

This appendix presents approaches which can be taken to demonstrate overall effective removal and/or inactivation of <u>Giardia</u> cysts.

M.1 Demonstration for Alternate Technology

Systems using a filtration technology other than those enumerated in the SWTR may demonstrate the effectiveness of the treatment process through pilot or full scale testing. As a minimum, testing should be conducted when the source exhibits its worst case annual conditions. Some systems may have two periods of "worst case" water quality including the cold water in winter or algae blooms during the summer.

Pilot units should include the following:

- filtration rate of the pilot system equal to filtration rate on full scale unit
- pilot filter diameter greater than or equal to 50 times the media diameter, (Robeck, et al 1959)
- media diameter, depth, and size gradation should be identical to full scale,
- coagulant dosing identical to full scale
- any mixing and settling occurring before filtration in the full scale plant should be reproduced as closely as possible in the pilot. Mixing should be of the same G value(s), and the detention time for settling should be close to the average flow detention time for the projected full scale plant.

According to the SWTR, alternate technologies must be capable of meeting the same turbidity performance criteria of slow sand filtration systems. Thus the filtered water from the process should be monitored continuously or with grab samples every four hours for turbidity. The requirement for meeting turbidity performance has been established to

ensure that there will be no interference of turbidity with virus inactivation through disinfection.

Following the demonstration of meeting the turbidity requirements, the level of <u>Giardia</u> cyst removal achieved must be determined. The protocol in M.2 may be followed for this demonstration.

17.5

M.2 Particle Size Analysis Demonstration for Giardia Cyst Removal Credit Particle size analysis may be used to demonstrate the level of actual Giardia cyst removal provided by the system. This demonstration can be done using samples from the full scale plant or a pilot unit.

In the case of either a full scale or pilot scale demonstration. removal of particles in the range of 5 to 15 um in diameter should be determined using an electronic particle counter that has been calibrated with latex spheres. If a light blockage device is used (e.g. HIAC) this calibration should have been done during installation of the device. The calibration should be checked before taking measurements for the purposes of this demonstration. Samples should be diluted appropriately to ensure that measurements do not reflect coincident error. Coincident error results when more than one particle passes the detector at one time, causing an inaccurate particle count and diameter measurement. An electrical sensing zone device (e.g. Coulter Counter or Elzone) may also Appropriate dilutions, electrolyte strength, and calibration procedures should be followed (these are scheduled to be outlined in the 17th edition of Standard Methods). When using an electrical sensing zone instrument, an orifice no larger than 125 um and no smaller than 40 um should be used since only particles between 2% and 40% of the orifice diameter are accurately sized and counted (Karuhn et al 1975).

Samples of the filter influent and effluent should be taken 5 minutes after the backwashed filter is placed in operation, and every 30 minutes thereafter for the first 3 hours of operation, followed by hourly samples up until backwash (Wiesner et al 1987). All samples should show at least a 2-log removal. The SWTR establishes an overall treatment requirement of 3-log <u>Giardia</u> cyst removal/inactivation. Thus, disinfec-

tion must be provided to supplement the particulate removal and meet this requirement.

Samples from repeated filter runs may be averaged at each sampling time, but samples should not be averaged within one filter run.

Additional suggestions on particle counting technique (Wiesner 1985):

- 1) If particle counts are not determined immediately upon sampling (within 10 minutes) samples should be diluted.
- 2) For an electrical sensing zone measurement, samples should be diluted 1:5 to 1:20 with a "particle-free" electrolyte solution (approximately 1% NaCl) containing 100 particles per ml or fewer.
- 3) For a light blockage measurement, particle free water should be used to dilute samples.
- 4) Dilutions should be done to produce particle concentrations as close to the tolerance for coincident error as possible to minimize background counts.
- 5) Particle counts should be determined within 8 hours of sampling.
- 6) All sampling vessels should be washed with laboratory detergent, double rinsed in particle free water, and rinsed twice with the water being sampled at the time of sampling.

The log reduction of particles in the size range of 5 to 15 um in size can be assumed to correspond to the log reduction of <u>Giardia</u> cysts which would be achieved.

M.3 <u>Demonstration for Increased Turbidity Allowance</u>

Based upon the requirements of the SWTR, the minimum turbidity performance criteria for systems using conventional treatment or direct filtration is filtered water turbidity less than or equal to 0.5 NTU in 95 percent of the measurements taken each month. However, at the discretion of the Primacy Agency, filtered water turbidity levels of less than or equal to 1 NTU in 95 percent of the measurements taken every month

may be permitted on a case-by-case basis depending on the capability of the total system to remove and/or inactivate at least 99.9 percent of <u>Giardia lamblia</u> cysts.

.

٠.

1

1

.

Treatment plants that use settling followed by filtration, or direct filtration are generally capable of producing a filtered water with a turbidity of 0.2 NTU or less. The most likely cause of high turbidities in the filtered water is incorrect coagulant dosing (0'Melia, 1974). Regardless of the turbidity of the raw or finished water, coagulant addition at some point prior to filtration is required to destabilize particles for removal in the filter. Only plants documenting continuous coagulant feed prior to filtration should be eligible for being allowed higher filtered water turbidities than the 0.5 NTU requirement. At plants that continuously feed coagulant and do not meet the 0.5 NTU requirement, a series of jar tests, and perhaps sand column filtration tests (in batch) should be performed to evaluate the optimum coagulant dose for turbidity removal.

In the event that plants can document continuous coagulant feed, and, after running the plant under conditions determined in batch testing to be optimal for turbidity removal, still do not meet the 0.5 NTU requirement, effective filtration status may still be appropriate. This would further be supported if it can be shown that the full scale plant is capable of achieving at least a 2-log reduction in the concentration of particles between 5 and 15 um in size through particle size analysis as outlined in Section M.2. Where a full scale plant does not yet exist, appropriately scaled-down pilot filters might be used for such a demonstration.

<u>Disinfection</u>

The level of disinfection could also be considered for determining when to allow a higher turbidity performance criterion for a system. For example, if a system achieves 3-log <u>Giardia</u> cyst inactivation through disinfection, as determined by CT values, it may be appropriate to allow higher filtered water turbidities (i.e., greater than 0.5 NTU but less than 1 NTU in 95 percent of the measurements and never exceeding 5 NTU).

The expected level of fecal contamination and <u>Giardia</u> cyst concentrations in the source water should be considered in the above analysis. High levels of disinfection (e.g., 2 to 3-log inactivation of <u>Giardia</u> cysts), in addition to filtration which achieves less than 0.5 NTU in 95 percent of the measurements may be appropriate, depending upon source water quality. Further guidance on the level of disinfection to be provided for various source water conditions is provided in Section 4.4.2. In all cases the minimum disinfection to be provided must supplement the particulate removal to ensure at least a 3-log <u>Giardia</u> cyst removal/inactivation.

References

American Public Health Association; American Water Works Association; Water Pollution Control Federation. <u>Standard Methods for the Examination of Water and Wastewater</u>, 17th ed. (supplement), September 1989.

Coulter Electronics 600 W. 20th Street, Hialeah, FL 33010-2428

Karuhn, R.; Davies, R.; Kaye, B.; Clinch, M. Studies on the Coulter Counter Part I. Powder Technology Volume II, pp. 157-171, 1975.

O'Melia, C. The Role of Polyelectrolytes in Filtration Processes, EPA - 67012-74-032, 1974.

Robeck, G.; Woodword, R. L. Pilot Plants for Water Treatment Research, Journal of Sanitary Engineering ASCE Vol. 85:SA4: 1, August 1959.

Wiesner, M. "Optimum Water Treatment Plant Configuration Effects of Raw Water Characteristics," dissertation John Hopkins University, Baltimore, MD. 1985.

Wiesner, M.; Rook, J. J.; Fiessinger, F. Optimizing the Placement of GAC Filters, J. AWWA VOL 79, pp. 39-49, Dec 1987.

APPENDIX N PROTOCOLS FOR POINT-OF-USE DEVICES

Preface

The protocol presented in this paper can be applied to demonstrate the effectiveness of new technologies as well as point-of-use devices. The evaluation presented here deals with the removal of particulates and disinfection. In areas which pertain to disinfection, the guidelines contained in Appendix G take precedence.

CONTENTS

		Page
PREFACE	•	
1. GENERAL		N-1
2. PERFORMANO	CE REQUIREMENTS	N-6
3. MICROBIOLO	OGICAL WATER PURIFIER TEST PROCEDURES	N-8
APPENDIX N-1 TEST WATER PA	SUMMARY FOR BASIS OF STANDARDS AND ARAMETERS	N-21
APPENDIX N-2	LIST OF PARTICIPANTS IN TASK FORCE	N-29
APPENDIX N-3 PUBLIC COMMEN		N-31

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

Registration Division
Office of Pesticide Programs
Criteria and Standards Division
Office of Drinking Water

GUIDE STANDARD AND PROTOCOL FOR TESTING MICROBIOLOGICAL WATER PURIFIERS

Report of Task Force Submitted April, 1986 Revised April, 1987

1. GENERAL

1.1 Introduction

The subject of microbiological purification for waters of unknown microbiological quality repeatedly presents itself to a variety of governmental and non-governmental agencies, consumer groups, manufacturers and others. Examples of possible application of such purification capabilities include:

- Backpackers and campers
- Non-standard military requirements
- Floods and other natural disasters
- Foreign travel and stations (however, not for extreme contamination situations outside of the U.S.)
- Contaminated individual sources, wells and springs (however, not for the conversion of waste water to microbiologically potable water)
- Motorhomes and trailers

Batch methods of water purification based on chlorine and iodine disinfection or boiling are well known, but many situations and personal choice call for the consideration of water treatment equipment. Federal agencies specifically involved in responding to questions and problems relating to microbiological purifier equipment include:

- Registration Division, Office of Pesticide Programs (OPP), Environmental Protection Agency (EPA): registration of microbiological purifiers (using chemicals);
- Compliance Monitoring Staff, EPA: control of microbiological purifier device claims (non-registerable products such as ultraviolet units, ozonators, chlorine generators, others);
- U.S. Army Medical Bioengineering Research and Development Laboratory (USAMBRDL), U.S. Army Natick Research and Development Center and other Army and military agencies: research and development for possible field applications;
- Criteria and Standards Division, Office of Drinking Water (ODW), EPA: Consideration of point-of-use technology as acceptable technology under the Primary Drinking Water Regulations; consumer information and service;

- Drinking Water Research, Water Engineering Research Laboratory (WERL), EPA; responsible for water treatment technology research;
- Microbiology Branch, Health Effects Research Laboratory (HERL), EPA; responsible for study of health effects related to drinking water filters.

31

-

.

-

West.

-

A number of representatives of the above mentioned agencies provided excellent participation in the task force to develop microbiological testing protocols for water purifiers. Major participation was also provided by the following:

- A technical representative from the Water Quality Association;
 - A technical representative from the Environmental Health Center, Department of Health and Welfare of Canada; and
 - An associate professor (microbiology) from the University of Arizona.

1.2 Basic Principles

1.2.1 Definition

As set forth in EPA Enforcement Strategy and as supported by a Federal Trade Commission (FTC) decision (FTC v. Sibco Products Co., Inc., et al., Nov. 22, 1965), a unit, in order to be called a microbiological water purifier, must remove, kill or inactivate all types of disease-causing microorganisms from the water, including bacteria, viruses and protozoan cysts so as to render the processed water safe for drinking. Therefore, to qualify, a microbiological water purifier must treat or remove all types of challenge organisms to meet specified standards.

1.2.2 General Guide

The standard and protocol will be a general guide and, in some cases, may present only the minimum features and framework for testing. While basic features of the standard and protocol have been tested, it was not feasible to conduct full-fledged testing for all possible types of units. Consequently, protocol users should include pre-testing of their units in a testing rig, including the sampling techniques to be used. Where users of the protocol find good reason to alter or add to the guide in order to meet specific operational problems, to use an alternate organism or laboratory procedure, or to respond to innovative treatment units without decreasing the level of

testing or altering the intent of the protocol, they should feel free to do so. For example, the OPP Registration Division might find it necessary to amend the guide somewhat for different types of treatment units. Another example would be ultraviolet (U.V.) units, which may have specific requirements in addition to the guide protocol.

1.2.3 Performance-Based

The standard will be performance-based, utilizing realistic worst case challenges and test conditions and use of the standard shall result in water quality equivalent to that of a public water supply meeting the microbiological requirements and intent of the National Primary Drinking Water Regulations.

1.2.4 Exceptions

A microbiological water purifier must remove, kill or inactivate all types of pathogenic organisms if claims are made for any organism. However, an exception for limited claims may be allowed for units removing specific organisms to serve a definable environmental need (i.e., cyst reduction units which can be used on otherwise disinfected and microbiologically safe drinking water, such as a disinfected but unfiltered surface water containing cysts. Such units are not to be called microbiological water purifiers and should not be used as sole treatment for an untreated raw water.)

1.2.5 Not to Cover Non-Microbiological Reduction Claims

The treatment of water to achieve removal of a specific chemical or other non-microbiological substances from water will not be a part of this standard. National Sanitation Foundation (NSF) Standards 42 (Aesthetic Effects) and 53 (Health Effects) provide partial guides for chemical removal and other claims testing.

1.2.6 Construction and Information Exclusions

While the standard recommends safe, responsible construction of units with non-toxic materials for optimum operation, all such items and associated operational considerations are excluded as being beyond the scope of the standard. Included in the exclusion are materials of construction, electrical and safety aspects, design and construction details, operational instructions and information, and mechanical performance testing.

1.2.7 Research Needs Excluded

The guide standard and protocol must represent a practical testing program and not include research recommendations. For example, consideration of mutant organisms or differentiation between injured and dead organisms would be research items at this time and not appropriate for inclusion in the standard.

-

A Second

1.2.8 Not to Consider Sabotage

Esoteric problems which could be presented by a variety of hypothetical terrorist (or wartime) situations, would provide an unnecessary complication, and are not appropriate for inclusion in the standard.

1.2.9 Continuity

The guide standard and protocol will be a living document, subject to revision and updating with the onset of new technology and knowledge. It is recommended that the responsible authorities for registration and drinking water quality review potential needs every two to three years and reconvene the task force upon need or upon request from the water quality industry, to review and update the standard and testing protocol.

1.3 Treatment Units Coverage

1.3.1 Universe of Possible Treatment Units

A review of treatment units that might be considered as microbiological purifiers discloses a number of different types covering treatment principles ranging from filtration and chemical disinfection to ultraviolet light radiation.

1.3.2 Coverage of This Standard

In view of the limited technical data available and in order to expedite the work of the task force, the initial coverage is limited, on a priority basis, to three basic types of microbiological water purifiers or active components with their principal means of action as follows:

1.3.2.1 Ceramic Filtration Candles or Units (may or may not contain a chemical bacteriostatic agent)

Filtration, and adsorption, and chemical anti-microbial activity if a chemical is included.

1.3.2.2 Halogenated Resins and Units

Chemical disinfection and possibly filtration. (Note: While not included in this guide standard, halogen products for disinfection or systems using halogen addition and fine filtration may be tested using many of its elements, i.e., test water parameters, microbiological challenge and reduction requirements, analytical techniques and other pertinent elements.)

1.3.2.3 Ultraviolet (UV) Units

UV irradiation with possible add-on treatment for adsorption and filtration (not applicable to UV units for treating potable water from public water supply systems).

1.3.3 Application of Principles to Other Units

While only three types of units are covered in this standard, the principles and approaches outlined should provide an initial guide for the testing of any of a number of other types of units and/or systems for the microbiological purification of contaminated water.

N-5

2. PERFORMANCE REQUIREMENTS

2.1 Microbiological Water Purifier

In order to make the claim of "microbiological water purifier," units must be tested and demonstrated to meet the microbiological reduction requirements of Table 1 according to the test procedures described in Section 3 (Appendix N-1) for the specific type of unit involved.

·

9457

2.2 Chemical Health Limits

Where silver or some other pesticidal chemical is used in a unit, that chemical concentration in the effluent water must meet any National Primary Drinking Water Maximum Contaminant Level (MCL), additional Federal guidelines or otherwise be demonstrated not to constitute a threat to health from consumption or contact where no MCL exists.

2.3 Stability of Pesticidal Chemical

Where a pesticidal chemical is used in the treatment unit, the stability of the chemical for disinfectant effectiveness should be sufficient for the potential shelf life and the projected use life of the unit based on manufacturer's data. Where stability cannot be assured from historical data and information, additional tests will be required.

2.4 Performance Limitations

2.4.1 Effective Lifetime

The manufacturer must provide an explicit indication or assurance of the unit's effective use lifetime to warn the consumer of potential diminished treatment capability either through:

- a. Having the unit terminate discharge of treated water, or
- b. Sounding an alarm, or
- c. Providing simple, explicit instruction for servicing or replacing units within the recommended use life (measurable in terms of volume throughput, specific time frame or other appropriate method).

2.4.2 Limitation on Use of Iodine

EPA policy initially developed in 1973 and reaffirmed in 1982 (memo of March 3, 1982 from J. A. Cotruvo to G. A. Jones, subject: "Policy on Iodine Disinfection") is that iodine disinfection is acceptable for short-term or limited or emergency use but that it is not recommended for long-term or routine community water supply application where iodine-containing species may remain in the drinking water.

3: MICROBIOLOGICAL WATER PURIFIER TEST PROCEDURES

3.1 Purpose

These tests are performed on ceramic filtration candles or units, halogenated resins and units and ultraviolet (UV) units in order to substantiate their microbiological removal capabilities over the effective use life of the purifier as defined in Table 1 and, where a pesticidal chemical is used, to determine that said chemical is not present in the effluent at excessive levels (see Section 3.5.3.4, Appendix N).

3.2 Apparatus

Three production units of a type are to be tested, simultaneously, if feasible; otherwise, in a manner as similar to that as possible.

Design of the testing rig must parallel and simulate projected field use conditions. For plumbed-in units a guide for design of the test rig may be taken from "Figure 1: Test Apparatus-Schematic" (p. A-2 of Standard Number 53 "Drinking Water Treatment Units -- Health Effects," National Sanitation Foundation). Otherwise, the test rig must be designed to simulate field use conditions (worst case) for the unit to be tested.

3.3 Test Waters -- Non-Microbiological Parameters

In addition to the microbiological influent challenges, the various test waters will be constituted with chemical and physical characteristics as follows:

400 X

SEE.

3.3.1 Test Water #1 (General Test Water)

This water is intended for the normal non-stressed (non-challenge) phase of testing for all units and shall have specific characteristics which may easily be obtained by the adjustment of many public system tap waters, as follows:

- a. It shall be free of any chlorine or other disinfectant residual;
- b. pH -- 6.5 8.5;
- c. Total Organic Carbon (TOC) 0.1 5.0 mg/L;
 - d. Turbidity 0.1 5 NTU;

- e. Temperature 20 C * 5 C; and
- f. Total Dissolved Solids (TDS) 50 500 mg/L.

3.3.2 Test Water #2 (Challenge Test Water/Halogen Disinfection)

This water is intended for the stressed challenge phase of testing where units involve halogen disinfectants (halogen resins or other units) and shall have the following specific characteristics:

- a. Free of chlorine or other disinfectant residual:
- b. (1) pH 9.0 ° .2, and
 - (2) for iodine-based units a pH of 5.0 °.2 (current information indicates that the low pH will be the most severe test for virus reduction by iodine disinfection);
- c. Total Organic Carbon (TOC) not less than 10 mg/L;
- d. Turbidity not less than 30 NTU;
- e. Temperature 4 C 1 C; and
- f. Total Dissolved Solids (TDS) 1,500 mg/L 150 mg/L.
- 3.3.3 Test Water #3 (Challenge Test Water/Ceramic Candle or Units With or Without Silver Impregnation)

This water is intended for the stressed challenge phase of testing for the indicated units but not for such units when impregnated with a halogen disinfectant (for the latter, use Test Water #2). It shall have the following specific characteristics:

- a. It shall be free of any chlorine or other disinfectant residual;
- b. pH 9.0 .2;
- c. Total Organic Carbon (TOC) -- not less than 10 mg/L;
- d. Turbidity -- not less than 30 NTU:
- e. Temperature 4 C. 1 C; and
- f. Total Dissolved Solids (TDS) -- 1,500 mg/L ~ 150 mg/L.
- 3.3.4 Test Water #4 (Challenge Test Water for Ultraviolet Units)

This water is intended for the stressed phase of testing for UV units and shall have the following specific characteristics:

- a. Free of chlorine or other disinfectant residual;
- b. pH 6.5 8.5;
- c. Total Organic Carbon (TOC) -- not less than 10 mg/L;
- d. Turbidity -- not less than 30 NTU;
- e. Temperature 4 C ~ 1 C;
- f. Total Dissolved Solids (TDS) -- 1,500 mg/l 150 mg/L;
- g. Color U.V. absorption (absorption at 254 nm) -- Sufficient parahydroxybenzoic acid (PHBH) to be just below the trigger point of the warning alarm on the U.V. unit. (Note that Section 3.5.1.1 provides an alternative of adjusting the U.V. lamp electronically, especially when the U.V. lamp is preceded by activated carbon treatment.)

angener agent

4000

7

3.3.5 Test Water #5 (Leaching Test Water for Units Containing Silver)

This water is intended for stressed leaching tests of units containing silver to assure that excess levels of silver will not be leached into the drinking water. It shall have the following specific characteristics:

- a. Free of chlorine or other disinfectant residual;
- b. pH -- 5.0 0.2;
- c. Total Organic Carbon (TOC) -- approximately 1.0 mg/L;
- d. Turbidity -- 0.1 5 NTU;
- e. Temperature -- 20 C * 5 C; and
- f. Total Dissolved Solids (TDS) -- 25 100 mg/L.
- 3.3.6 Recommended Materials for Adjusting Test Water Characteristics
- a. pH: inorganic acids or bases (i.e., HC1, NaOH);
- b. Total Organic Carbon (TOC): humic acids;
- c, Turbidity: A.C. Fine Test Dust (Park No. 1543094)

from: A.C. Spark Plug Division
General Motors Corporation
1300 North Dort Highway
Flint, Michigan 48556;

d. Total Dissolved Solids (TDS): sea salts, Sigma Chemical Co., S9883 (St. Louis, MO) or another equivalent source of TDS; Color U.V. Absorption: p-hydroxybenzoic acid (grade: general purpose reagent).

3.4 Analytical Methods

3.4.1 Microbiological Methods

Methods in this section are considered "state-of-the-art" at the time of its preparation and subsequent improvements should be expected. Methods used for microbiological analyses should be compatible with and equal to or better than those given below.

3.4.1.1 Bacterial Tests

- a. Chosen Organism: Klebsiella terrigena (ATCC-33257).
- b. Method of Production: Test organism will be prepared by overnight growth in nutrient broth or equivalent to obtain the organism in the stationary growth phase (Reference: Asburg, E.D., Methods of Testing Sanitizers and Bacteriostatic Substances In: Disinfection, Sterilization and Preservation, Seymour S. Block, ed., pp. 964-980, 1983). The organism will be collected by centrifugation and washed three times in phosphate buffered saline before use. Alternatively, the organisms may be grown overnight on nutrient agar slants or equivalent and washed from the slants with phosphate buffered saline. The suspensions should be filtered through sterile Whatman Number 2 filter paper (or equivalent) to remove any bacterial clumps. New batches of organisms must be prepared daily for use in challenge testing.
- c. State of Organism: Organisms in the stationary growth phase and suspended in phosphate buffered saline will be used.
- d. Assay Techniques: Assay may be by the spread plate, pour plate or membrane filter technique on nutrient agar, M.F.C. or m-Endo medium (Standard Methods for the Examination of Water and Wastewater, 16th edition, 1985, APHA). Each sample dilution will be assayed in triplicate.

3.4.1.2 Virus Tests

- a. Chosen Organisms: Poliovirus type 1 (LSc) (ATCC-VR-59), and Rotavirus Strain SA-11 (ATCC-VR-899) or WA (ATCC-VR-2018).
- b. Method of Production: All stocks should be grown by a method described by Smith and Gerba (in Methods in Environmental Virology, pp. 15-47, 1982) and purified by the procedure of Sharp, et al. (Appl. Microbiol., 29:94-101, 1975), or similar procedure (Berman and Hoff, Appl. Environ. Microbiol., 48:317-323, 1984), as these methods will produce largely monodispersed virion particles.

- c. State of the Organism: Preparation procedure will largely produce monodispersed particles.
- d. Assay Techniques: Poliovirus type 1 may be grown in the BGM, MA-104 or other cell line which will support the growth of this virus. The rotaviruses are best grown in the MA-104 cell line. Since both viruses can be assayed on the MA-104 cell line, a challenge test may consist of equal amounts of both viruses as a mixture (i.e., the mixture must contain at least 1.0 x 10 /mL of each virus). Assays may be as plaque forming units (PFU) or as immunofluorescence foci (IF) (Smith and Gerba, In: Methods in Environmental Virology, pp. 15-47, 1982). Each dilution will be assayed in triplicate.

3.4.1.3 Cyst Tests

- a. Chosen Organism
 - 1. Giardia lamblia or the related organism, Giardia muris, may be used as the challenge cyst.
 - 2. Where filtration is involved, tests with 4-6 micron spheres or particles have been found to be satisfactory and may be used as a substitute for tests of occlusion using live organisms (see Table 1). Spheres or particles may only be used to evaluate filtration efficacy. Disinfection efficacy can only be evaluated with the use of viable Giardia cysts.
- b. Method of Production: Giardia muris may be produced in laboratory mice and Giardia lamblia may be produced in Mongolian gerbils; inactivation results based on excystation measurements correlate well with animal infectivity results.
- c. State of the Organism: Organisms may be separated from fecal material by the procedure described by Sauch (Appl. Environ. Microbiol., 48:454-455, 1984) or by the procedure described by Bingham, et al. (Exp. Parasitol., 47:284-281, 1979).

120

d. Assay Techniques: Cysts are first reconcentrated (500 ml., minimum sample size) according to the method of Rice, Hoff and Schaefer (Appl. Environ. Microbiol., 43:250-251, 1982). The excystation method described by Schaefer, et al. (Trans., Royal Soc. of Trop. Med. & Hyg. 78:795-800, 1984) shall be used to evaluate Giardia muris cyst viability. For Giardia lamblia cysts, the excystation method described by Bingham and Meyer (Nature, 277:301-302, 1979) or Rice and Schaefer (J. Clin. Microbiol., 14:709-710, 1981) shall be used. Cyst viability may also be determined by an assay method involving the counting of trophozoites as well as intact cysts (Bingham, et al., Exp. Parasitol., 47:284-291, 1979).

3.4.2 Chemical and Physical Methods

All physical and chemical analyses shall be conducted in accordance with procedures in Standard Methods for the Examination of Water and Wastewater, 16th Edition, American Public Health Association, or equivalent.

3.5 Test Procedures

3.5.1 Procedure - Plumbed-in Units

- a. 1. Install three production units of a type as shown in Figure 1 and condition each unit prior to the start of the test in accordance with the manufacturer's instructions with the test water without the addition of the test contaminant. Measure the flow rate through each unit. The unit shall be tested at the maximum system pressure of 60 psig static and flow rate will not be artificially controlled.
 - 2. Test waters shall have the defined characteristics continuously except for test waters 2, 3 and 4 with respect to turbidity. The background non-sampling turbidity level will be maintained at 0.1-5 NTU but the turbidity shall be increased to the challenge level of not less than 30 NTU in the following manner:
 - In the "on" period(s) prior to the sampling "on" period.
 - In the sampling "on" period when the sample actually will be taken. (Note: at least 10 unit void volumes of the 30 NTU water shall pass through the unit prior to actual sampling so as to provide adequate seasoning and uniformity before sample collection.)
- b. 1. Use appropriate techniques of dilution and insure continual mixing to prepare a challenge solution containing the bacterial contaminant. Then spike test water continuously with the influent concentration specified in Table 1.
 - 2. Use appropriate techniques to prepare concentrated virus and Giardia suspensions. Feed these suspensions into the influent stream so as to achieve the influent concentrations specified in Table 1 in the following manner:
 - In the "on" period(s) prior to the sampling "on" period.
 - In the sampling "on" period when the sample actually will be taken. (Note: at least 10 unit void volumes of seeded water shall pass through the unit prior to sampling so as to provide adequate seasoning and uniformity before sample collection.)

- c. Purge the system of the uncontaminated water with a sufficient flow of contaminated test water. Start an operating cycle of 10 percent on, 90 percent off with a 15 to 40 minute cycle (Example: 3 minutes on, 27 minutes off) with the contaminated test water. This cycle shall be continued for not more than 16 hours per day (minimum daily rest period of 8 hours). The total program shall extend to 100% of estimated volume capacity for halogenated resins or units and for 10-1/2 days for ceramic candles or units and U.V. units.
- đ. Sampling: Samples of influent and effluent water at the specified sampling points shall be collected as shown below for the various units; these are minimum sampling plans which may be increased in number by the investigator. All samples shall be collected in duplicate from the flowing water during the sampling "on" portion of the cycle and they shall be one "unit void volume" in quantity (or of appropriate quantity for analysis) and represent worst case challenge conditions. Effluent samples shall usually be collected near the middle of the sampling "on" period (or the whole volume during one "on" period) except for samples following the specified "stagnation" periods, for which sampling shall be conducted on the first water volume out of the unit. Each sample will be taken in duplicate and shall be retained and appropriately preserved, if required, for chemical or microbiological analysis in the event verification is required. (For units where the volume of a single "on" period is insufficient for the required analysis, samples from successive "on" periods may be accumulated until a sufficient volume has been collected.)

1(a). Sampling Plan: Halogenated Resins or Units (Non-iodine Based)

•			Tests	
Test Point (% of Estimated Capacity)	Test Water	Influent Background	Active Agent/ Residual	Microbiological
Start	General	x	· x	· x
25%			X	x
50%			· X	×
After 48 hours stagnation			x	x
60%	Chal-		. x	x
75%	lenge		X	X
After 48 hours	pH - 9.0 • 0.2		×	x .
stagnation 100%	9.0 0.2		x .	x

1(b). Sampling Plan: Iodinated Resins or Units

		Tests		
Test Point (% of Estimated Capacity)	Test Water	Influent Background	Active Agent/ Residual	Microbiological
Start	General	x	x	x
25%			X	×
50%			X	· X
After 48 hours stagnation	·		x	x
60%	Chal-		x	. ~
75%	lenge		X	×
After 48 hours	pH -			•
stagnation	9.0 0.2		x	x
90%	Chal-		x	x
1001	lenge		X	x
After 48 hours	pH -			•
stagnation	5.0 0.2		x	x
				•

2. Sampling Plan: Ceramic Candles or Units and U.V. Units

		Tests		
Test Point	Test <u>Water</u>	Influent Background	Microbiological	
Start	General	x	x	
Day 3 (middle)	·		x	
Day 6 (middle) After 48 hours		·	x	
et senetion	•		x	
Day 7 (middle)			x	
Day 8 (near end)	Chal-		· x	
After 48 hours	lenge	•	•	
stagnation			×	
Day 10-1/2			x	

(Note: All days are "running days" and exclude stagnation periods. When the units contain silver, a leaching test shall be conducted as shown in Section 3.5.1.e and silver residual will be measured at each microbiological sampling point.)

e. Leaching Tests for Silverized Units: Where the unit contains silver, additional tests utilizing Test Water #5 will be conducted as follows:

	Te	sts
Test Point	Influent Background	Silver/Residual
Start	x	. x
Day 2	•	×
After 48 hours stagnation		×

f. Alternate Sampling Plans:

- 1. Since some laboratories may find it inconvenient to test some units on a 16 hour on/8 hour off cycle, two alternates are recognized:
 - Go to a shorter operational day but lengthen the days of test proportionally

48

7.5

24

- Use up to 20 percent "on"/80 percent "off" for a proportionally shorter operational day
- 2. Sampling points must be appropriately adjusted in any alternate sampling plan.
- q. Application of Test Waters: The application of test waters is designed to provide information on performance under both normal and stressed conditions; it should be the same or equivalent to the following:
 - 1. a. Halogenated Resins or Units (Non-iodine based) --

First 50% of test period: Test Water 1 (General)
Last 50% of test period: Test Water 2 (Challenge)
(pH - 9.0 0.2)

b. Iodinated Resins or Units --

First 50% of test period: Test Water 1 (General)

Next 25% of test period: Test Water 2 (Challenge)
(pH - 9.0 ~ 0.2)

Last 25% of test period: Test Water 2 (Challenge)
(but with pH - 5.0 ~ 0.2)

2. Ceramic Candles or Units --

First 6 days of testing: Test Water 1 (General)

Last 4-1/2 days of testing: Test Water 3 (Challenge)

3. Ultraviolet (U.V.) Units --

First 6 days of testing: Test Water 1 (General)
Last 4-1/2 days of testing: Test Water 4 (Challenge)

h. Analyses and monitoring:

- Microbiological sampling and analysis shall be conducted of the specified influent and effluent sampling points during each indicated sampling period.
- 2. Test Water Monitoring: The specified parameters of the various test waters (see Section 3.3) will be measured and recorded at each microbiological sampling point; the specified parameters will be measured at least once on non-sampling days when the units are being operated.
- 3. Background chemical analyses of influent water shall be conducted at least once at the start of each test period to determine the concentration of the U.S. EPA primary inorganic contaminants, secondary contaminants and routine water parameters, not otherwise covered in the described test waters.
- 4. In addition, quality assurance testing shall be conducted for the seed bacteria under environmental conditions on the first and last days of testing to make sure that there is no significant change over the test day. Populations will be measured (for example, as dispersed in the supply tank) at the beginning and end of the test day to detect possible incidental effects such as proliferation, die-off, adsorption to surfaces, etc. Relatively stable bacterial seed populations are essential to an acceptable test program.
- 5. When a unit contains a halogen or silver, the active agent residual will be measured in the effluent at each microbiological test (sampling) point.
- 6. Silver will additionally be measured three times in the effluent as specified in Section 3.5.1.e.
- i. Neutralization of Disinfection Activity: Immediately after collection, each test sample must be treated to neutralize residual disinfectant. For halogen- and silver-based disinfectants this may be done by addition of thioglycollate-thiosulfate neutralizer solution (Chambers, et al., J. Amer. Water Works Assoc., 54:208-216, 1962). This solution should be prepared daily. All results are invalid unless samples are neutralized immediately upon collection.
- j. Special Provisions for Ceramic Candles or Units:

- Provisions for slow flow: Ceramic units may be subject to clogging and greatly reduced flow over the test period. An attempt should be made to maintain manufacturer rated or claimed flow rates, but even at reduced flows the sampling program set forth in Section 3.5.1.d.2 shall be maintained.
- 2. Cleaning of ceramic units: Units should be cleaned according to manufacturer's directions. Two cleanings should occur during the period of test (in order to prove the unit's durability through the cleaning procedure). However, near the time of microbiological sampling, the units should not be cleaned until after the sampling. Further, no anti-microbial chemical (for cleaning or sanitizing) may be applied to the units during the test period unless the manufacturer specifies the same as part of routine maintenance.
- k. Halogenated units or U.V. units with mechanical filtration processes separate from the microbiological disinfection components shall have the mechanical filtration components replaced or serviced when significant flow reduction (clogging) occurs in accordance with the manufacturer's instructions in order to maintain the test flow rate. Units with non-removable mechanical filtration components will be run until flow is below that considered acceptable for consumer convenience. (If premature clogging presents a problem, some specialized units may require a customized test plan.)
- 1. Special Provisions for Ultraviolet (U.V.) Units:
 - 1. The units will be adequately challenged by the prescribed test waters; consequently they will be operated at normal intensity. However, where the U.V. treatment component is preceded by activated carbon treatment, the output of the U.V. lamp shall be adjusted electronically, such as by reducing the current to the lamp or other appropriate means, to be just above the alarm point. This option shall be available for use under other U.V. configurations, at the choice of the persons responsible for testing, as an alternative to the use of the U.V. absorbent, p-hydroxybenzoic acid.
 - Fail/safe: Units will provide and will be tested for fail/safe warnings in the event of water quality changes or equipment failures which may interfere with its microbiological purification function.
 - Cleaning: Manufacturer's guidance with respect to cleaning will be followed.

3.5.2 .Procedure: Non-Plumbed Units

a. General: The basic procedures given in Section 3.5.1 shall be used with necessary adaptations to allow for the specific design of the unit. In any event, the testing procedures shall provide a test challenge equivalent to those for plumbed-in units.

140

b. Test conditions and apparatus should be adapted to reflect proposed or actual use conditions in consultation with the manufacturer, including flow rate and number of people to be served per day. In some cases variable flow or other non-standard conditions may be necessary to reflect a worst-case test.

3.5.3 Acceptance and Records

3.5.3.1

:

To qualify as a microbiological water purifier, all three production units of a type must continuously meet or exceed the reduction requirements of Table 1, within allowable measurement tolerances for not more than ten percent of influent/effluent sample pairs, defined as follows:

Virus: one order of magnitude
Bacteria: one order of magnitude
Cysts: one/half order of magnitude

The geometric mean of all microbiological reductions must meet or exceed the requirements of Table 1. An example is given as follows:

- Unit: iodinated resin.
- Number of sample pairs over the completed test program: 10 per unit -- 3 units = 30.
- Number of allowable sample pairs where log reduction is insufficient: 10% of 30 = 3 sample pairs.
- Allowable minimum log reductions in these 3 pairs:
 - Bacteria 5 log
 - Virus 3 log
 - Cyst 2-1/2 log
- Conclusion: If the geometric mean of all reductions meets or exceeds the requirements of Table 1, the indicated insufficient sample pairs will be allowed.

3.5.3.2 Records

All pertinent procedures and data shall be recorded in a standard format and retained for possible review until the report of results has been completely accepted by review authorities, in no case for less than a year.

3.5.3.3 Scaling Up or Down

Where a manufacturer has several similar units using the same basic technology and parallel construction and operation, it may sometimes be appropriate to allow the test of one unit to be considered representative of others. Where any serious doubt exists, all units of various sizes may require testing. A "rule of three" is suggested as a matter of judgment. Scaling up to three times larger or on-third, based on the size of either the test unit or of its operative element, may be allowed. However, for UV units, any size scale-up must be accompanied by a parallel increase in radiation dose.

3.5.3.4

Where silver or some other chemical is used in the unit, concentrations in the effluent water must meet any National Primary Drinking Water Maximum Contaminant Level (MCL), additional Federal guidelines, or otherwise must not constitute a threat to health where no MCL exists.

APPENDIX N-1

SUMMARY FOR BASIS OF STANDARDS AND TEST WATER PARAMETERS

A. Microbiological Reduction Requirements

1. Bacteria

Current standards for the microbiological safety of drinking water are based on the presence of coliform bacteria of which Klebsiella is a member. Hembers of the genus Klebsiella are also potential pathogens of man (Vlassof, 1977). Klebsiella terrigena is designated as the test organism since it is commonly found in surface waters (Izard, et al., 1981).

....

2W 3

127.12

tarire.

object.

STANCT ...

PARTY .

- ACE (1)

Experience with the use of coliform bacteria to estimate the presence of enteric bacterial pathogens in drinking water as performed over the last 75 years indicates a high degree of reliability. Required testing of more than one bacterial pathogen appears unjustified since viral and Giardia testing will be required. Enteric viruses and Giardia are known to be more resistant to common disinfectants than enteric bacterial pathogens and viruses are more resistant to removal by treatments such as filtration. Thus, any treatment which would give a good removal of both virus and Giardia pathogens would most likely reduce enteric bacteria below levels considered infectious (Jarroll, et al., 1981; Liu, et al., 1971).

The concentration of coliform bacteria in raw sewage is approximately 10 /100 ml. Concentrations in polluted stream waters have been found to exceed 10 per 100 ml (Culp, et al., 1978, Table 10).

Based on the over $10^5/100$ ml concentrations observed in highly polluted stream water and a target effluent concentration of less than 1/100 ml, a 6 log reduction is recommended.

2. Virus

In the United States concentrations of enteroviruses are estimated to range from 10³-10³/liter in raw sewage (Farrah and Schaub, 1971). Based on this observation it is estimated that natural waters contaminated with raw sewage may contain from 10³ to 10³ enteric viruses per liter.

There are currently no standards for viruses in drinking water in the United States. However, EPA has proposed a non-enforceable health-based recommended maximum contaminant level (RMCL) of zero for viruses (EPA, 1985). Several individuals and organizations have developed guidelines for the presence of viruses in drinking water and various experts have proposed standards (WHO, 1979, 1984; Berg, 1971; Melnick, 1976). It has generally been felt that drinking

water should be free of infectious virus since even one virus is potentially infectious and suggested standards are largely based on technological limits of our detection methodology. Guidelines suggested by the World Health Organization (1984) and others recommend that volumes to be tested be in the order of 100-1,000 liters and that viruses be absent in these volumes.

Assuming a target effluent level of less than one virus in 100 liters of water and a concentration of 10 enteric viruses in 100 liters of sewage-contaminated waters, the water purifier units should achieve at least 4 logs of virus removal.

The relative resistance of enteric viruses to different disinfectants varies greatly among the enteric viruses and even among members of the same group (i.e., enteroviruses). For example, while f2 coliphage is one of the most resistant viruses to inactivation by chlorine it is one of the most susceptible to inactivation by ozone (Harakeh and Butler, 1984). Ionic conditions and pH can also affect the relative resistance of different viruses to a disinfectant (Engelbrecht, et al., 1980). On this basis it is felt that more than one enteric virus should be tested to ensure the efficacy of any disinfection system. Poliovirus type 1 (Strain LSc) was chosen as one of the test viruses because it has been extensively used in disinfection and environmental studies as representative of the enterovirus family. It is recognized that it is not the most resistant virus to inactivation by chlorine, but is still resistant enough to serve as a useful indicator. Rotavirus is selected as the second test enteric virus since it represents another group of enteric viruses in nucleic acid composition and size. It is also a major cause of viral gastroenteritis and has been documented as a cause of water borne gastroenteritis (Gerba, et al., 1985). human rotavirus or the similar Simian rotavirus may be used in the test procedure. A net 4-log reduction for a joint challenge of 1 x 10'/L each for poliovirus and rotavirus is recommended.

Cysts (Protozoan)

Over the past several years, giardiasis has consistently been one of the most frequently reported waterborne diseases transmitted by drinking water in the United States (Craun, 1984). EPA has proposed a RMCL of zero for Giardia (EPA, 1985). Its occurrence has generally been associated with treatment deficiencies including either inadequate or no filtration. Giardiasis has not been known to occur from drinking water produced by well-operated filtration treatment plants. De Walle, et al. (1984), in a study of filtration treatment plant efficiencies, cited percent removals for Giardia in pilot plant tests as follows:

- Rapid filtration with coagulation-sedimentation: 96.6-99.9%;
- Direct filtration with coagulation: 95.9-99.9%.

From this research and from the lack of <u>Giardia</u> cases in systems where adequate filtration exists, a 3-log (99.9%) reduction requirement is considered to be conservative and to provide a comparable level of protection for water purifiers to a well-operated filtration treatment plant.

Data on environmental levels for cysts in natural waters is limited because of the difficulties of sampling and analysis. Unpublished data indicate very low levels from less than 1/L to less than 10/L. Here a 3-log reduction would provide an effluent of less than 1/100 L, comparable to the recommended virus reduction requirements.

. .

.

400

Either <u>Giardia lamblia</u> or the related organism, <u>Giardia muris</u>, which is reported to be a satisfactory test organism (Hoff, et al., 1985), may be used as the challenge organism. Tests will be conducted with a challenge of 10 organisms per liter for a 3-log reduction.

Where the treatment unit or component for cysts is based on the principle of occlusion filtration alone, testing for a 3-log reduction of 4-6 micron particles or spheres (National Sanitation Foundation Standard 53, as an example) is acceptable. Difficulties in the cyst production and measurement technologies by lesser-equipped laboratories may require the use of such alternative tests where applicable.

B. Microbiological Purifier Test Procedures

1. Test Waters

- a. The general test water (test water #1) is designed for the normal, non-stressed phase of testing with characteristics that may easily be obtained by the adjustment of many public system tap waters.
- b. Test water #2 is intended for the stressed phase of testing where units involve halogen disinfectants.
 - Since the disinfection activity of some halogens falls with a rising pH, it is important to stress test at an elevated pH. The recommended level of 9.0 °0.2, while exceeding the recommended secondary level (Environmental Protection Agency, 1984) is still within a range seen in some natural waters (Environmental Protection Agency, 1976). However, for iodine-based units, a second stressful condition is provided -- a pH of 5.0 °0.2 since current information indicates that the disinfection activity of iodine falls with a low pH (National Research Council, 1980). While beneath the recommended secondary level (Environmental Protection Agency, 1984) a pH of 5.0

is not unusual in natural waters (Environmental Protection Agency, 1976).

- 2. Organic matter as total organic carbon (TOC) is known to interfere with halogen disinfection. While this TOC is higher than levels in many natural waters, the designated concentration of 10 mg/L is cited as typical in stream waters (Culp/Wesner/Culp, 1978).
- 3. High concentrations of turbidity can shield microorganisms and interfere with disinfection. While the recommended level of not less than 30 NTU is in the range of turbidities seen in secondary wastewater effluents, this level is also found in many surface waters, especially during periods of heavy rainfall and snow melt (Culp/Wesner/Culp, 1978).
- 4. Studies with Giardia cysts have shown decreasing halogen disinfection activity with lower temperatures (Jarroll, et al., 1980); 4 C, a common low temperature in many natural waters, is recommended for the stress test.
- 5. The amount of dissolved solids (TDS) may impact the disinfection effectiveness of units that rely on displacemable or exchange elements by displacement of halogens or resins, or it may interfere with adsorptive processes. While TDS levels of 10,000 mg/L are considered unusable for drinking, many supplies with over 2,000 mg/L are used for potable purposes (Environmental Protection Agency, 1984). The recommended level of 1,500 mg/L represents a realistic stress challenge.
- c. Test water #3 is intended for the stressed phase of testing of ceramic filtration candles or units with or without silver impregnation.
 - Since viruses are typically eluted from adsorbing media at high pHs (Environmental Protection Agency, 1978) it may be concluded that a high pH will provide the most stressful testing for a ceramic-type unit; consequently, the high natural water pH of 9.0 is recommended.
 - Expert opinion also holds that organic material will interfere with adsorption of viruses. Thus, a high total organic carbon level of not less than 10 mg/L is recommended.
 - 3. Turbidity may enhance the entrapment and removal of microorganisms but it also may stimulate "short-circuiting" through some units. A turbidity level of 30 NTU will provide stress at time of sampling but the

non-sampling level of 0.1-5 NTU will allow routine operation of units.

- 4. Expert opinion holds that low water temperatures and high TDS would most likely interfere with virus reduction by adsorption; consequently, a 4 C temperature and 1,500 mg/L TDS are recommended.
- d. Test water #4 is intended for the stressed phase of testing for ultraviolet (UV) units.
 - In general, high TOC, turbidity and TDS and low temperature are considered most stressful for UV, and the indicated challenge levels are the same as for test water #2.
 - 2. The pH is not critical and may range from 6.5 to 8.5.
 - 3. In order to test the UV units at their most vulnerable stage of operation, a color challenge (light absorption at 254 nm) is to be maintained at a level where UV light intensity is just above the unit's low intensity warning alarm point. However, an alternate to the absorption challenge is provided through adjusting the light intensity output of the UV lamp electronically by reducing current to the lamp, or other appropriate means, to be just above the alarm point; this approach would be particularly necessary where the UV lamp is preceded by activated carbon treatment.
- e. Test water #5 is intended for the stressed leaching tests of units containing silver. Low pH, TOC, turbidity, and TDS and higher temperature are felt to be the characteristics associated with increased leachability. The recommended pH of 5.0 °.2, while being beneath the recommended secondary range of 6.5-8.5 (Environmental Protection Agency, 1984) is still found in some natural waters.

2. Test Procedures

The plan for testing and sampling is designed to reveal unit performance under both "normal" and "stressed" operating conditions. The stressed phase would utilize a set of water quality and operations conditions to give the units a realistic worst case challenge. Testing plans for a specific model might involve modifications to the recommended plan; more samples could be taken and analyzed; more units could be studied. The principle of demonstrating adequate performance even under realistic worst case conditions should be maintained and the final selected test procedures should be agreed as between investigators and reviewers or regulators.

While some aspects of the testing procedures have been utilized in actual experiments, the proposed protocol has not been verified or utilized for the various units that may be considered. Consequently, investigators and users of this protocol may find reasons to alter some aspects through their practical experience; needed changes should be discussed and cleared with involved reviewers/regulators.

REFERENCES:

Berg, G. Integrated approach to the problem of viruses in water. J. ASCE, Sanit. Eng. Div. 97:867-882, 1971.

Culp/Wesner/Culp. Guidance for planning the location of water supply intakes downstream from municipal wastewater treatment facilities. EPA Report, Office of Drinking Water. Washington, DC, 1978.

4

40.4

70

E.

Craun, G. F. 1984. Waterborne outbreaks of giardiasis: Current status. In: Giardia and giardiasis. D. L. Erlandsen and E. A. Meyer Eds., Plenum Press, New York, pp. 243-261, 1984.

DeWalle, F. B.; J. Engeset; Lawrence, W. Removal of <u>Glardia lamblia</u> cyst by drinking water treatment plants. Report No. EPA-600/52-84-069, Office of Research and Development, Cincinnati, OH, 1984.

Engelbrecht, R. S., et al. Comparative inactivation of viruses by chlorine. Appl. Environ. Microbiol. 40:249-256, 1980.

Environmental Protection Agency. Quality criteria for water. Washington, DC, 1976.

Environmental Protection Agency. National secondary drinking water regulations. EPA-570/9-76-000, Washington, DC, 1984.

Environmental Protection Agency. National primary drinking water regulations; synthetic organic chemicals, inorganic chemicals and microorganisms; Proposed rule. Federal Register, Nov. 13, 1985.

Farrah, S. R., and S. A. Schaub. Viruses in wastewater sludges. In: Viral Pollution of the Environment, G. Berg, Ed. CRC Press, Boca Raton, Florida. pp. 161-163, 1983.

Gerba, C. P.; Rose, J. B.; Singh, S. N. Waterborne gastroenteritis and viral hepatitis. CRC Critical Rev. Environ. Contr. 15:213-236, 1985.

Harakeh, M.; Butler, M. Inactivation of human rotavirus, SA-11 and other enteric viruses in effluent by disinfectants. J. Hyg. Camb. 93:157-163, 1984.

Hoff, J. C.; Rice, E. W.; Schaefer, F. W. Comparison of animal infectivity and excystation as measures of <u>Giardia muris</u> cyst inactivation by chlorine. Appl. Environ. Microbiol. 50:1115-1117, 1985.

Izard, D.; Farragut, C.; Gavini, F.; Kersters, K.; DeLey, J.; Leclerc, H. Klebsiella terrigena, a new species from water and soil. Intl. J. Systematic Bacteriol. 31:116-127, 1981.

Jakubowski, W. Detection of Giardia cysts in drinking water. In: Giardia and Giardiasis, Erlandsen, S. L.; Meyer, E. A. Eds., Plenum Press, NY. pp. 263-286, 1984.

Jarroll, E. L.; Bingham, A. K.; Meyer, E. A. <u>Giardia</u> cyst destruction: Effectiveness of six small-quantity water disinfection methods. Am. J. Trop. Med. 29:8-11, 1980

Jarroll, E. L.; Bingham, A. K.; Heyer, E. A. Effect of chlorine on Giardia cyst viability. Appl. Environ. Microbiol. 43:483-487, 1981.

Liu, O. C., et al. Relative resistance of 20 human enteric viruses to free chlorine in Potomac River water. Proceedings of 13th Water Quality Conference Snoeyink, V.; Griffin, V. Eds., pp. 171-195, 1971.

Melnick, J. L. Viruses in water. In: Viruses in Water Berg, G.; Bodily, H. L.; Lennette, E. H.; Melnick, J. L.; Metclaf T. G., Eds. Amer. Public Hlth. Assoc., Washington, DE, pp. 3-11, 1976.

National Research Council. The disinfection of drinking water, In: Drinking Water and Health, Volume 2. Washington, DC, pp. 5-137, 1980.

National Sanitation Foundation. Drinking water treatment units: Health effects. Standard 53. Ann Arbor, MI, 1982.

Vlassoff, L. T. <u>Klebsiella</u>. In: Bacterial Indicators/Health Hazards Associated with Water Hoadley, A. W.; Dutka, B. J., Eds. American Society for Testing and Materials, Philadelphia, PA. pp. 275-288, 1977.

World Health Organization. Human Viruses in Water, Technical Support Series 639, World Health Organization, Geneva, 1979.

World Health Organization. Guidelines for Drinking Water Quality. Volume 1. Recommendations. World Health Organization, Geneva, 1984.

APPENDIX N-2

LIST OF PARTICIPANTS: TASK FORCE ON GUIDE STANDARD AND PROTOCOL FOR TESTING MICROBIOLOGICAL WATER PURIFIERS

Stephen A. Schaub, Chairman -- U.S. Army Medical Bioengineering Research and Development Laboratory (USAMBRDL), Fort Detrick, Maryland 21701, FTS: 8/935-7207 -- Comm: 301/663-7207.

.

- Frank A. Bell, Jr., Secretary -- Criteria and Standards Division, Office of Drinking Water (WH-550), Environmental Protection Agency, Washington, D.C. 20460, Phone: 202/382-3037.
- Paul Berger, Ph.D. -- Criteria and Standards Division, Office of Drinking Water (WH-550), Environmental Protection Agency, Washington, D.C. 20460, Phone: 202/382-3039.
- Art Castillo -- Disinfectants Branch, Office of Pesticide Programs (TS-767CO, Environmental Protection Agency, Washington, D.C. 2046O, Phone: 703/557-3695.
- Ruth Douglas -- Disinfectants Branch, Office of Pesticide Programs (TS-767C), Environmental Protection Agency, Washington, D.C. 20460, Phone: 703/557-3675.
- Al Dufour -- Microbiology Branch, Health Effects Research Laboratory, Environmental Protection Agency, 26 W. St. Clair Street, Cincinnati, Ohio 45268, Phone: FTS: 8/684-7870 -- Comm: 513/569-7870.
- Ed Geldreich -- Chief, Microbiological Treatment Branch, Water Engineering Research Laboratory, Environmental Protection Agency, 26 W. St. Clair Street, Cincinnati, Ohio 45268, Phone: FTS: 8/684-7232 -- Comm: 513/569-7232.
- Charles Gerba -- Associate Professor, Department of Microbiology and Immunology, University of Arizona, Tucson, Arizona 85721, Phone: 602/621-6906.
- John Hoff -- Microbiological Treatment Branch, Water Engineering Research Laboratory, Environmental Protection Agency, 26 W. St. Clair Street, Cincinnati, Ohio 45268, Phone: FTS: 8/684-7331 -- Comm: 513/569-7331.
- Art Kaplan -- Office of Research and Development (RD-681) Environmental Protection Agency, Washington, D.C. 20460, Phone: 202/382-2583.
- Bala Krishnan -- Office of Research and Development (RD-681) Environmental Protection Agency, Washington D.C. 20460, Phone: 202/382-2583,
- John Lee -- Disinfectants Branch, Office of Pesticide Programs (TS-767C)

- Environmental Protection Agency, Washington, D.C. 20460, Phone: 703/557-3663.
- Dorothy Portner -- Disinfectants Branch, Office of Pesticide Programs (TS-767-C), Environmental Protection Agency, Washington, D.C. 20460, Phone: 703/557-0484.
- Don Reasoner -- Microbiological Treatment Branch, Water Engineering Research Laboratory, Environmental Protection Agency, 26 W. St. Clair Street, Cincinnati, Ohio 45268, Phone: 312/654-4000.
- P. Reguanthan (Regu) -- Everpure, Inc., 660 N. Blackhawk Drive, Westmont, Illinois 60559, Phone: 312/654-4000.
- David Stangel -- Policy and Analysis Branch, Office of Compliance Monitoring, Environmental Protection Agency, Washington, D.C., Phone: 202/382-7845.
- Richard Tobin -- Monitoring and Criteria Division, Environmental Health Center, Department of Health and Welfare of Canada, Tunney's Pasture, Ottawa, Ontario, KIA OL2, Canada, Phone: 613/990-8982.

APPENDIX N-3

RESPONSE BY REVIEW SUBCOMMITTEE (1) TO PUBLIC COMMENTS ON GUIDE STANDARD AND PROTOCOL FOR TESTING MICROBIOLOGICAL WATER PURIFIERS

A. Recommendation for the use of <u>Giardia lamblia</u> cysts as a replacement for <u>Giardia muris</u> cysts as the protozoan cyst test organisms.

Recommendation:

The subcommittee concurs with the recommendation and further endorses the use of <u>Giardia lamblia</u> as the preferred cyst test for evaluation of all treatment units and devices. Obviously the use of the protozoan organisms of actual health concern in testing is most desirable. Anyone finding the <u>Giardia lamblia</u> strain feasible for testing and cost-effective to work with is encouraged to use same instead of <u>Giardia muris</u>.

B. Substitution of 4-6 micron bead or particle tests as an alternate option instead of the <u>Giardia</u> cysts for evaluating devices that rely strictly on occlusion filtration for microbiological removal: Several commenters criticized the use of beads or particles (e.g., A.C. fine dust) and recommended only use of live Giardia cysts for performance tests.

Discussion:

The subcommittee recognizes and favors the use of the natural human parasite, Giardia lamblia, but was not aware of any convincing scientific data which would disallow the optional use of testing with beads or particles for units or devices using only occlusion filtration to remove microorganisms. Previous development of the National Sanitation Standard (NSF) 53 (1982) requirement for cyst reduction (using 4-6 micron particles as cyst models) was based on engineering and scientific opinion and experimental evidence at that time. Specifically, Logsdon used radioactive cyst models in the initial phase of a study of removal efficiencies for diatomaceous earth filters; subsequent experiments with Giardia muris cysts confirmed the efficacy of the diatomaceous earth filters. Further studies by Hendricks and DeWalle with Giardia lamblia cysts also showed comparable reduction efficiencies for diatomaceous earth filters.

^{1.}S.A. Schaub; F.A. Bell, Jr.; P. Berger; C. Gerba; J. Hoff; P. Regunathan; and R. Tobin. [Includes additional revision pursuant to Scientific Advisory Panel review (Federal Insecticide, Fungicide, and Rodenticide Act).]

Subsequently confirmatory parallel testing results have been developed vis-a-vis 4-6 micron particles as compared to <u>Giardia lamblia</u> cysts. Specifically, two units listed by NSF for cyst reduction (using 4-6 micron particles) (4) have also been tested and listed for 100% efficiency reduction (using <u>Giardia lamblia</u> cysts) by Hibler (5):

- 1. Everpure Model QC4-SC
- Royal Boulton Model F303.

Again we prefer the use of the human pathogen, Giardia lamblia; however, no experimental data has been provided regarding the lack of validity or of failure in previous tests utilizing beads or particles of 4-6 microns. In most cases the bacterial or viral challenges to occlusion filters ill represent a greater problem in terms of microbiological reduction requirements than will cysts. Therefore, without substantiation of deficiencies, the use of 4-6 micron beads or particles is considered to be as feasible as the use of live cysts for routine performance testing of water filtration (occlusion) devices.

Recommendation:

Recommend retaining the optional use of 4-6 micron particles or beads for cyst reduction testing in occlusion filtration devices only.

References:

- (1) Logsdon, G. S., et al. Alternative Filtration Methods for Removal of Giardia Cysts and Cyst Models, JAWWA, 73(2)111-118, 1981.
- Logsdon, G. S.; Hendricks, D. W., et al. Control of Giardia Cysts by Filtration: The Laboratory's Rose. Presented at the AWWA Water Quality Technology Conference, December, 1983.
- DeWalle, et al. Removal of <u>Giardia lamblia</u> Cysts by Drinking Water Treatment Plants, Grant No. R806127, Report to Drinking Water Research Division, U.S. EPA (ORD/MERL), Cincinnati, Ohio.
- (4) National Sanitation Foundation, Listing of Drinking Water Treatment Units, Standard 53. May, 1986.
- (5) Hibler, C. P. An Evaluation of Filters in the Removal of Giardia lamblia. Water Technology, pp. 34-36. July, 1984.
- C. Alternate assay techniques for cyst tests (Jensen): Proposed alterations in cyst tests include a different method for separating cysts from fecal material and an assay method involving the counting of trophozoites as well as intact cysts. Both alterations have been used by Bingham, et al. (Exp. Parasitol., 47:284-291, 1979).

Recommendation:

These alterations appear to be reasonable laboratory procedures, supported by a peer-reviewed article and will be included in the Report as options for possible development and use by interested laboratories.

ø.

100

4

PU ST

D. The use of pour plate techniques as an option for <u>Klebsiella terrigena</u> bacteria analyses.

Recommendation:

Ŀ

The pour plate technique adds a heat stress factor to the bacteria which constitutes a possible deficiency. However, it is a recognized standard method and probably will not adversely affect the <u>Klebsiella terrigena</u>. Consequently, it will be added to the Report as one of the acceptable techniques.

E. Option of using Escherichia coli in lieu of Klebsiella terrigena for the bacterial tests.

Discussion:

Appendix N-1, Section A.1. of the Guide Standard and Protocol sets forth the basis for selection of \underline{K} . terrigena as the test bacteria. The selection was made along pragmatic line emphasizing the occurrence of \underline{K} . terrigena in surface waters and that it would represent the enteric bacteria. It was also pointed out that the tests with virus and <u>Giardia</u> were expected to be more severe than the bacterial tests. For comprehensiveness, bacterial tests were included in the protocol but were not felt to be as crucial as the virus and Giardia tests.

E. coli, or any number of other generally accepted indicator bacteria, could be used for the test program if they were shown to have good testing and survival characteristics (equivalent to K. terrigena) by the interested research laboratory.

Recommendation:

The intent of the Guide Standard and Protocol is to provide a baseline program subject to modification when properly supported by an interested laboratory. Consequently, any laboratory could propose and with proper support (demonstrating challenge and test equivalency to <u>K. terrigena</u>) use <u>Escherichia coli</u> or one of the other enteric bacteria. This idea will be included in revised working in Section 1.2.2, "General Guide."

F. Performance requirements for Giardia cysts and virus in relation to the EPA-Recommended Maximum Contamination Levels (RMCLs) of zero.

Discussion:

The RMCLs of zero for <u>Giardia</u> and viruses which have been proposed by EPA are health goals. They are no enforceable standards since to assure the presence of <u>"no</u> organisms" would require an infinite sample. The

rationale for the recommended performance requirements for Giardia cysts and virus is set forth in Sections A.2 and A.3 of Appendix A. We feel that these requirements together with the application of realistic worst case test conditions will provide a conservative test for units resulting in treated effluent water equivalent to that of a public water supply meeting the microbiological requirements and intent of the National Primary Drinking Water Regulations.

Recommendation:

Retain recommended performance (log reduction) requirements for cyst and virus reduction.

G. Rotavirus and its proposed assay: One commenter states that the rotavirus tests are impractical because Amirtharajah (J. AWWA, 78(3):34-49, 1976) cites "no satisfactory culture procedures available for analysis of these pathogens and, therefore, monitoring would not be feasible."

Discussion:

Section 3.4.1.2, "Virus Tests" of the Report, presents means for culturing and assaying rotaviruses. This means for doing the rotavirus tests are available and are practical for application in the <u>laboratory</u>. Dr. Amirtharajah was referring to the field collection, identification in the presence of a wide variety of microorganisms, and quantification as not being "satisfactory." Laboratory analysis of rotaviruses is practical but their field monitoring may not yet be feasible.

Further, the selection of both poliovirus and rotavirus as test viruses was necessitated by the fact that the surface adsorptive properties and disinfection resistance of the various enteric viruses have been shown to differ significantly by virus group and by strains of a specific virus. While all enteric viruses and their strains could not be economically tested, it was determined by the task force that at least two distinctly different virus types should be tested to achieve some idea of the diversity of removal by the various types of water purifiers. Polio and rota viruses have distinctly different physical and chemical characteristics representative of the viruses of concern. Polioviruses are small single stranded RNA viruses with generally good adsorptive properties to surfaces and filter media while rotaviruses are over twice as large, are double stranded RNA and in some studies have been found to possess less potential for adsorption onto surfaces or filter media. These two viruses also have been demonstrated to have somewhat different disinfection kinetics.

Recommendation:

Retain the rotavirus test requirements.

H. Definition of microbiological water purifier: One general comment requested redefinition based on "lack of any virus removal "requirement

in the EPA primary drinking water regulations, so that no virus reduction requirement should be included. Also, it was claimed that the separation of purifiers from non-purifiers would be a "disservice to consumers and other users."

Discussion:

Viruses are recognized in the EPA regulations vis-a-vis a proposed recommended maximum contaminant level of zero. Since virus monitoring for compliance with a possible MCL is not yet feasible, a treatment requirement is necessary. Virus control will be considered in the Safe Drinking Water Act filtration and disinfection treatment regulations. The reduction of viruses by treatment is discussed by Amirtharajah (J. AWWA, 78:3:34-49, 1986).

With respect to consumers and other users, we feel that the current definition is appropriate and necessary. The average consumer cannot be expected to know the difference between viruses, bacteria and cysts, or when a raw water will or will not contain any of these organisms. In order to protect the average consumer, the subject units either alone or with supplementary treatment, should be able to cope with all of the specified organisms.

Recommendation:

Retain the current definition for microbiological water purifier.

- I. Coverage of units: Several comments related to the coverage of units. These questions are addressed individually as follows:
 - Ultraviolet units that are used for supplemental treatment of water from public water system taps would not be covered. We agree that such units are not covered and parenthetical language has been included in Section 1.3.2.3 to clarify this point.

-

Tegata.

- 2. A special status should be given to units which remove Giardia and bacteria but not virus. Specifically, the meaning of Section 1.2.4, "Exceptions," was addressed. The "Exceptions" section was specifically developed to relate to the problem of public water systems having disinfection but no filtration on a surface supply. Cysts alone have been found to survive disinfection treatment and could be present in such treated waters. In this case an effective cyst filter serves an independent, beneficial purpose and should not be required to be a microbiological water purifier. However, such a unit should not be used as sole treatment for untreated raw water. Additional parenthetical language has been added to Section 1.2.4.
- 3. The entire treatment unit or system should be tested, not just a single component. We agree but believe that it is sufficiently clear without providing additional language.

- 4. The protocol should be expanded to cover units for the reduction of TCE, EDB and other chemical pollutants. We felt that the introduction of non-microbiological claims to the standard would make it large, unwieldy and duplicative of an existing third-party standards and testing program (see Section 1.2.5).
- J. Alleged preference of National Sanitation Foundation (NSF) over other laboratories for conducting the microbiological water purifier testing protocol. The comment indicated that we were giving NSF preferential treatment "to the detriment of other laboratories well qualified to perform the required protocol."

Discussion:

We have made appropriate references to existing standards (#42 and #53) developed by the NSF standards development process. Standard 53, the health effects standard, was developed by a broadly based Drinking Water Treatment Units Committee, including representatives from local, State and Federal health and environmental agencies, universities, professional and technical associations, as well as water quality industry representatives. It was adopted in 1982 and the only test from it utilized in our Report has been substantiated as described in Part B of this "Response."

Nowhere in our report have we advocated NSF (or any other laboratory) as the prime or only laboratory for implementing "the required protocol."

Recommendation:

No action needed.

K. Instruction concerning effective lifetime. One comment described an alternate means for determining lifetime where a ceramic unit is "brushed" to renew its utility and is gradually reduced in diameter. A gauge is provided to measure diameter and to determine when replacement is needed.

Recommendation:

Where a manufacturer provides a satisfactory "other" means of determining lifetime, this should be accepted. Appropriate words have been added to Section 2.4.1.C.

L. Ceramic candles should not be cleaned during testing because some consumers would not clean them and this would provide the "worst case test." One comment asserted this point.

Discussion:

There is some truth to this proposition. However, the other approach may also have validity. Frequent brushing may reduce filtration efficiency.

In any event, where a manufacturer prescribes filter cleaning and how to do it, and provides a gauge to determine lifetime, we feel the testing program is bound to follow the manufacturer's directions.

Recommendation:

No change needed.

M. Scaling up or down. One comment points out that one or more manufacturers may vary size of treatment units by increasing or decreasing the number of operative units rather than the size of the operative unit. The comment suggests allowing scaling based on size of operative unit.

Tracking.

-

Recommendation:

We agree with the comment and have added clarifying words to Section 3.5.3.3.

N. Turbidity level of "not less that 30 NTU" for ceramic candles or units.

One comment states that "Such levels are impossible to utilize in testing mechanical filtration devices which will clog entirely or require such frequent brushing as to render the test impossible as a practical matter."

Discussion:

We recognized the potential "clogging problems" in Section 3.5.1.a(2) where the 30 NTU water is only to be applied immediately before and during each sampling event; the non-sampling turbidity level, which will be applied over 90% of the "on" time, is currently set at no less than 10 NTU.

Turbidity levels of 30 NTU are commonly found in surface waters during heavy rainfall or snow melt. Treatment units may be used under these circumstances, so this challenge level should be retained. However, most usage will occur under background conditions so the non-sampling turbidity levels should be 0.1-5 NTU.

Recommendations:

- 1. Retain sampling turbidity level of not less than 30 NTU, and
- 2. Change non-sampling turbidity to 0.1-5 NTU. Appropriate wording changes have been introduced in Section 3.5.1.a(2) and in Appendix N-1, Section B.
- O. Chlorine in test water #5. One comment asserts that chlorine "tends to increase silver ion leaching activity" and that a high chlorine level should be included in the silver leaching test; but no reference or evidence, however, is provided to back this assertion.

Discussion:

We have no compelling evidence or reason to expect that chlorine will enhance the leaching of silver. However, the prescribed low pH and TDS levels will provide a clearly severe test for silver leaching.

Recommendation:

No change needed.

- P. Unnecessary difficulty and expense of test protocols. Several comments were made under this general heading. These comments are outlined and discussed as follows:
 - Too many sampling events are required; sampling of a few units at start, middle and finish should be satisfactory: The committee has carefully laid out the standard and protocol and we feel the minimum sampling plan must be maintained for the consumers' health protection.
 - 2. Three units are too many to study; parallel testing of two units should be satisfactory: For consumer protection, the Disinfectants Branch, Office of Pesticide Programs, has traditionally required the testing of three units. The committee recognizes the additional cost involved in testing a third unit but feels that this will provide a minimum level of assurance to prevent infectious disease and recommends retention of the 3-unit requirement.
 - The protocol requires large tanks and microbiological reseeding on a daily basis: We feel that the tank size requirements are not extreme and can be met by an interested laboratory. With respect to reseeding, it should be pointed out that virus and cyst seeding need only be conducted immediately before and during the sampling "on" period (see Section 3.5.1.b(2)), equivalent to less that 10% of the "on" time. This "spot" seeding for viruses and cysts recognized the expense and difficulty of maintaining large populations of these organisms. Continuous seeding was provided for bacteria because they are easier to grow and maintain and might have the capacity to grow through some units, given enough time and opportunity.
 - Challenge levels of contaminants are too high compared to known environmental conditions and the required log reductions exceed Safe Drinking Water Act requirements: As explained in a footnote to Table 1, Section 2, the influent challenges may constitute greater concentrations than would be anticipated in source waters. These levels are necessary to test properly for the required log reductions without having to utilize sample concentration procedures which are time/labor intensive and which may, on their own, introduce quantitative errors to the microbiological assays. As mentioned in Part I of this paper, the log reductions for bacteria, virus and Giardia have been suggested for public water system

treatment in a paper by Amirtharajah (1986, JAWWA, 78:3:34-49). The reductions in the microbiological purifier standard are entirely compatible with the reductions cited for public water supply treatment.

APPENDIX O GUIDELINES TO EVALUATE OZONE DISINFECTION

Principal Technical Author: Dr. Ovadia Lev
Division of Environmental Sciences
Hebrew University of Jerusalem
Jerusalem, Israel

APPENDIX O

GUIDELINES TO EVALUATE OZONE DISINFECTION

TABLE OF CONTENTS

	•	Page
0.1	0.1.1 Background 0.1.2 Objectives of the Recommended Guidelines 0.1.3 EPA's Approach in Setting the Recommended	0.1-1 0.1.1 0.1-2
	Guidelines O.1.4 Typical Ozone Disinfection Units	0.1-3 0.1-4
0.2	DETERMINATION OF CONTACT TIME (T) 0.2.1 Background 0.2.2 T ₁₀ Analysis 0.2.3 Additional Considerations for T ₁₀ :	0.2-1 0.2-1 0.2-1
	Multiple Chamber Contactors 0.2.4 Alternative Analysis of Disinfection Kinetics 0.2.5 Continuously Stirred Tank Reactor (CSTR) Approach 0.2.6 Segregated Flow Analysis (SFA) 0.2.7 Relative Inactivation of Giardia Cysts and Viruses	0.2-3 0.2-7 0.2-9 0.2-10 0.2-12
	0.2.8 Examples of Determining Contact Time (T) 0.2.8.1 Evaluation Using T ₁₀ 0.2.8.2 Evaluations Using CSTR Calculations	0.2-12 0.2-13 0.2-16 0.2-18 0.2-21
0.3	DETERMINATION OF OZONE CONCENTRATION (C) 0.3.1 Introduction 0.3.2 Direct Measurement of C 0.3.3 Estimating C Based on Residual Measurements	0.3-1 0.3-1 0.3-2
		0.3-6 0.3-6 0.3-7 0.310
0.4	0.4.1 Introduction 0.4.2 Site Specific Correlations of C with an	0.4-1 0.4-1
	Observable Variable 0.4.2.1 Utilizing Off-Gas Measurements 0.4.3 Modeling the Performance of Full Scale Operations	0.4-2 0.4-4 0.4-7
	O.4.4 Microbial Indicator Studies to Model Inactivation Contactors	0.4-9

REFERENCES

TABLE OF CONTENTS (Continued)

LIST OF FIGURES

Figure No.	<u>Title</u>	Following Page
0-1	Turbine Contactor, Haworth Water Treatment Plant Hackensack, NJ	0.1-5
0-2	Multiple-Chamber Ozone System, Los Angeles Aqueduct Filtration Plant	0.1-5
0-3	Multiple-Chamber Ozone System, City of Tucson, Arizona	0.1-5
0-4	Multiple-Chamber Ozone System. East Bay Municipal Utility District, Oakland, California	0.1-5
0-5	Schematic of Deep U-Tube Ozone Contactor	0.1-6
0-6	Schematic of In-Line Static Mixer	0.1-6
0-7	Principal of Segregated Flow Analysis	0.2-11
8-0	Segregated Flow Analysis of an Ozone Contactor Tracer Study	0.2-14
0-9	Tracer Study of Sturgeon Bay Ozone Contactor	0.2-15
0-10	Segregated Flow Analysis of Ozone Contactor - Integration of Survival Efficiency.	0.2-20
0-11	Segregated Flow Analysis of Ozone Contact Chamber	0.2-20
0-12	Decision Tree for Estimating T	0.2-21
0-13	Flow Configurations in Ozone Contact Chambers.	0.3-1
0-14	Direct Measurements for Determining T	0.3-5
0-15	Ozone Concentration Profiles	0.3-8
0-16	Decision Tree for Estimating T	0.3-10
0-17	Example of Empirical Correlation of Residual Ozone and Off-Gas	0.4-6

TABLE OF CONTENTS (Continued)

LIST OF TABLES

Table No.	<u>Title</u>	Following Page
0-1	Recommended Procedures to Calculate Contact Time (T)	0.2-2
0-2	CT Values for Inactivation by Ozone	0.2-7
0-3	k Values for Inactivation by Ozone	0.2-7
0-4	Spread Sheet Notations for SFA	0.2-18
0-5	Segregated Flow Analysis of an Ozone Disinfection Contactor at Hackensack	0.2-20
0-6	Correlations to Predict C Based on Outlet Ozone Concentrations	0.3-6
0-7	Henry's Constants for Ozone	0.4-5
8-0	Empirical Correlation Between Cout and yout	0.4-6

0.1 INTRODUCTION

0.1.1 Background

The Surface Water Treatment Rule (SWTR) specifies overall minimal removal/inactivation efficiencies by filtration and disinfection for Giardia cysts and viruses. The SWTR uses the "CT" concept to predict inactivation efficiencies of microorganisms by disinfection. "CT" represents the product of contact or exposure time ("T") and the concentration of disinfectant ("C") during disinfection. The Guidance Manual suggests design, operating and performance criteria for specific surface water quality conditions to provide compliance with the SWTR. Appendix C of the Guidance Manual recommended guidelines for the determination of contact time (T_{10}) for the disinfection of drinking water. T_{10} is the time defined to assure that 90 percent of the water that enters the disinfection chamber will remain for at least T_{10} minutes. This appendix recommends additional procedures which may be used for consistent determination of the C and T for systems using disinfection by ozone.

Ozone has unique characteristics and warrants special consideration for estimating inactivation efficiencies. In developing these recommended procedures, EPA addressed the following complications that are specific to ozone disinfection and distinguish it from other typical disinfection processes.

- Despite the long operational experience with ozone disinfection, the data regarding performance of ozone as a disinfectant are rather limited. Most of the available inactivation rate data are derived from laboratory conditions which are substantially different than full scale continuous operation, generally more so than for other disinfectants.
- From a technical point of view, disinfection of drinking water by ozone is more complicated than disinfection by other common disinfectants because of ozone's unique gas-liquid mass transfer characteristics. Ozone requires sophisticated mass transfer equipment to introduce it into water, because of the relatively low ozone concentration in the feed gas. Ozone is a powerful oxidant, that reacts rapidly with organic and inorganic substances present in the water and undergoes auto-decomposition. Therefore, it's residual is much less stable than that of other disinfectants and dissipates rapidly.

- Ozone contactors exhibit more diversified types of flow configurations relative to the flow pattern in contactors for the other disinfectants. The flow configuration often ranges from an almost continuously stirred tank reactor (CSTR) to an almost ideal plug flow configuration, making the determination of contact time for ozonation more complex than for other disinfectants.
- Ozone contactors are closed vessels because of ozone's toxicity. The contactors have limited access for measurement of the ozone concentration profile within the contactor. Gas bubbles also may interfere with the determination of the dissolved ozone concentration, if the bubbles are entrapped during sampling.
- Ozone technology is still evolving and new types of ozone contactors are being developed. These guidelines should not set unnecessary obstacles that will inhibit engineering progress and prevent innovative designs of disinfection systems.

EPA's procedures for determining C and T for disinfection with ozone differ from those recommended for systems using chlorine, chloramines or chlorine dioxide as disinfectants. The CT evaluation procedures presented in previous chapters of the Guidance Manual are not appropriate for ozone disinfection because they would result in excessive ozone dosages. Excessive ozone doses result in high energy requirements and costs and may lead to unnecessary production of ozonation by-products which may have associated health risks. Additionally, excess dissolved or entrained ozone should be destroyed or removed before reaching the first drinking water consumer or plant personnel, in order to prevent health risks. Therefore, excessive dosage of ozone may require an additional unit operation to destroy the remaining residual ozone. This process is expensive and may not be necessary if guidelines such as those presented in this section are used for compliance with the SWTR.

0.1.2 Objectives of the Recommended Guidelines

The recommended guidelines were developed to assure compliance with the SWTR for the whole range of flow rates, flow configurations and water quality conditions that may be encountered with ozone disinfection of drinking water. The primary goal of these guidelines is to assure compliance with the SWTR even under "worst case" conditions. Without compromising this primary goal, these guidelines were developed to meet the following criteria:

- 1. Simplicity: The guidelines for selecting contact time (T) and concentration (C) have to be easily understood by practitioners, even by those who do not have an engineering background.
- 2. Implementation: The procedure to estimate concentration and time should be easily implemented, even by water utilities that have only limited engineering and technological means.
- 3. Economics: The guidelines should be designed to minimize capital and operating costs and to minimize ozone consumption. The guidelines should be flexible enough to allow systems to take advantage of site specific characteristics of the treated water and the various designs of ozone contactors.

0.1.3 EPA's Approach in Setting the Recommended Guidelines

EPA is aware that the current technological knowledge is insufficient to formulate a consistent and efficient single set of general rules that will achieve these conflicting goals and still guarantee compliance with the SWTR. Therefore, EPA developed two alternative sets of guidelines that systems may use depending on their technological resources:

- Alternative 1: General guidelines which assure compliance with the SWTR regardless of the site specific conditions,
- Alternative 2: A sophisticated evaluation procedure that water utilities may use to take advantage of their site specific conditions.

These guidelines are considered to be state-of-the-art. As more information becomes available, more accurate approaches and models may be developed. A brief description of the current alternatives follows.

Alternative 1 - General Guidelines

This alternative consists of a simple set of general guidelines that assure compliance with the SWTR even under worst case conditions. These guidelines were developed to emphasize generality and simplicity. However, they may not result in the lowest cost alternative(s).

The second and third sections of this Appendix contain detailed descriptions of the general guidelines. Section 0.2 contains procedures to estimate the contact time (T) and Section 0.3 contains procedures to calculate the concentration (C) in ozone contactors based on simple measurements of some parameters. The basis for these general guidelines is discussed in two papers (Lev and Regli, 1990a,b).

Alternative 2 - Site Specific Evaluation Procedures

This alternative consists of a more sophisticated set of evaluation procedures to characterize the performance of ozone contactors and thereby take advantage of site specific conditions. EPA recommends that systems be given opportunity to prove by further experimental and analytical data that the performance of their ozone contactors are better than the performance predicted by the first alternative, thereby allowing a system to minimize costs while providing adequate treatment.

Section 0.4 outlines recommended procedures for demonstrating that ozone contactors achieve better performance than that predicted by the first alternative.

0.1.4 Typical Ozone Disinfection Units

Several types of ozone contactors are currently in use for disinfection of drinking water in the United States. Other types of contactors are being designed or are being used for disinfection of treated sewage effluents. The following characteristics illustrate the diversity of ozone contactors:

- The capacity of ozonation systems ranges from less than 1 million gallons per day (mgd) up to 600 mgd.
- The volume of ozone contactors ranges from less than 35 cubic feet up to more than 35,000 cubic feet for a single chambers.
- The ozone gas stream may be introduced into the water by several ways including porous diffusers, submerged turbines and gas injectors.
- Ozone contactors include single or multiple gas/liquid contact chambers.

Four typical ozone contactors currently in use or in design in the United States are shown on Figures 0-1 through 0-4. Figure 0-1 presents a schematic of an aspirating turbine contactor, operating in countercurrent flow. A turbine agitator is used to introduce the ozone into the contactor and to mix the liquid phase. This unit may serve as the first ozone chamber in a series of chambers or as a single chamber. The unit shown in this figure is from the Hackensack Water Company's Haworth Plant at Haworth, New Jersey. The turbine chamber is followed by a reactive chamber to provide additional contact time. Studies conducted in the full scale turbine agitated contactor demonstrated that even when the ozone demand was high, the dissolved ozone concentration was almost constant throughout the contactor as a result of the vigorous action of the turbine (Schwartz et al, 1990).

The 600 mgd ozone system of the city of Los Angeles is comprised of four parallel contactors each consisting of six chambers. A schematic of one of these contactors is presented on Figure 0-2. (Stolarik and Christie, 1990) As indicated on this figure:

- An oxygen stream containing a few percent by weight of ozone is compressed through bubble diffusers into the first and third chambers of the contactor.
- The second and fourth chambers are used to provide contact time, without supplying additional gas to the liquid stream.
- The size of the first three gas/liquid contact chambers is 20,400 cubic feet each.
- The fifth and sixth chambers are the ozonated water channel and the rapid mixer basins.
- The liquid and gas streams in the first and third chambers flow in a counter-current pattern; the gas stream flows upward and the water stream flows downward.

As illustrated on Figure O-3, a similar design approach was taken by the City of Tucson, Arizona. This contactor is comprised of five chambers, all of which are equipped with gas diffusers. The sixth chamber has no diffusers. The flow in all six chambers is counter-current flow. These counter-current chambers are separated by narrower co-current liquid channels in which the water flows upward to the inlet of the next chamber.

The East Bay Municipal Utility District Oakland, California is currently designing two 60 mgd ozone contactors, the first of which is to be operational in 1991. As illustrated on Figure 0-4, the contactor includes three ozone gas/liquid chambers followed by three more reactive chambers to provide additional contact time. The first and third chambers are counter-current and the second chamber is co-current. In the latter, the water and the gas bubbles flow in the same direction. Hydrogen peroxide can be added at the outlet of the contactor to dissipate any residual dissolved ozone.

The following types of contactors are already used in other parts of the world, but have not yet been installed in the United States:

- The Deep U Tube contactor shown on Figure 0-5, is comprised of two concentric flow tubes. Water and gas streams are introduced at the top of the inner tube and the mixture is pumped 10 to 30 meters downwards at a velocity greater than the rise rate of the gas. After reaching the very bottom of the contactor the mixture flows up in the outer section of the contactor. The Deep U-tube is basically a co-current operation taking advantage of the increased mass transfer at high pressures.
- The Static Mixer (shown on Figure 0-6) consists of a flow tube equipped with baffles to produce efficient contact between the liquid and the gas streams. This installation is gaining popularity in Europe particularly for small and medium size disinfection units. Here the flow is basically co-current, the liquid and gas flow is in the same direction, through a tube equipped with baffles that create turbulence and thus increases the rate of gas-liquid mass transfer. The ozone is applied to the water prior to the mixer either through an eductor or a diffuser. Following dissolution through the mixer, the water flows through a pipeline in plug flow.
- Some contactors, particularly for disinfection of wastewater effluents, use packed beds to increase mass transfer. Cocurrent or counter-current flow configuration may be used.

The guidelines were developed to represent four different flow conditions in ozone contactors. However, other types of contactors or flow conditions may still use the same guidelines if the features of the gas-liquid flow configuration as presented in Section 0.4 of this appendix are taken into account.

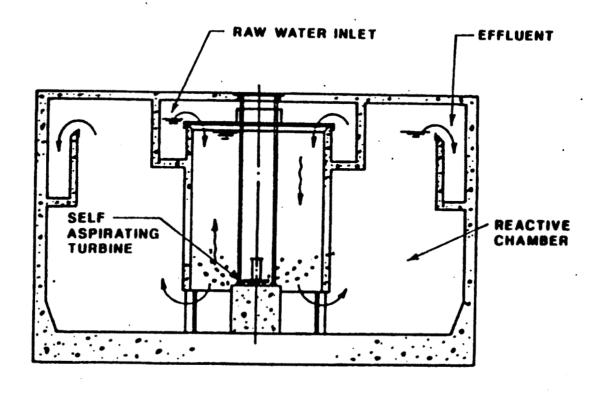


FIGURE 0-1 - TURBINE OZONE CONTACTOR,
HAWORTH WATER TREATMENT PLANT
HACKENSACK, NJ

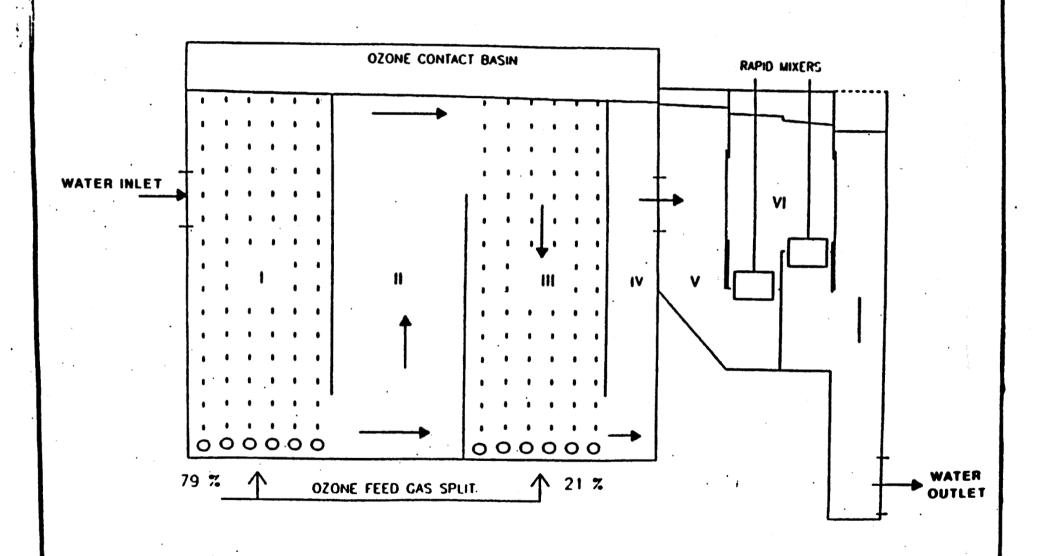


FIGURE 0-2 - MULTIPLE-CHAMBER OZONE SYSTEM, LOS-ANGELES AQUEDUCT FILTRATION PLANT, STOLARIK et al. (1988)

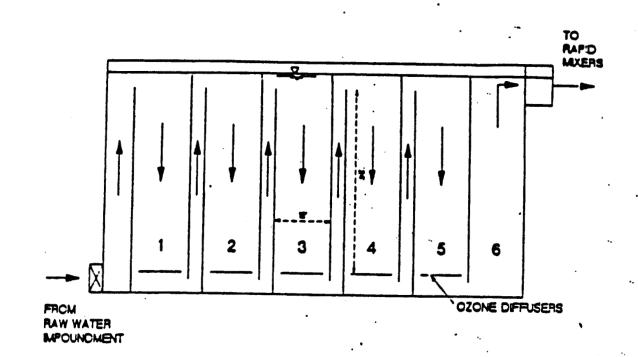


FIGURE 0-3 - MULTIPLE-CHAMBER OZONE SYSTEM, CITY OF TUCSON, ARIZONA, JOOST et al. (1989)

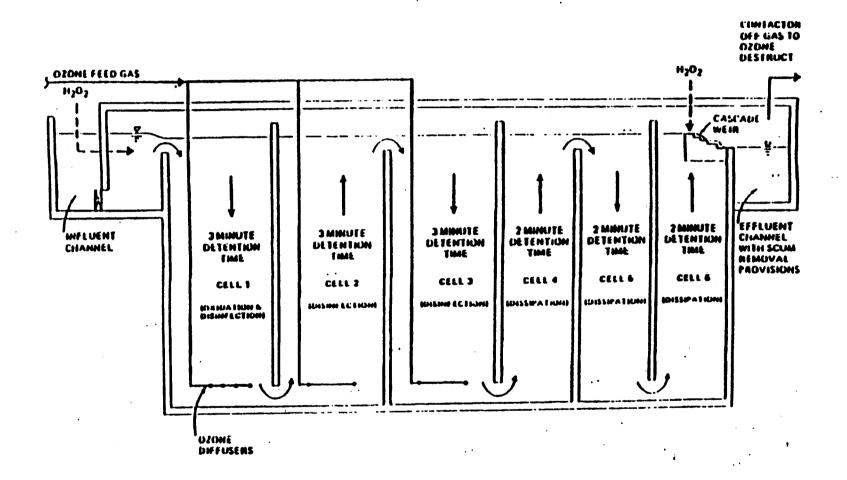


FIGURE 0-4 - MULTIPLE-CHAMBER OZONE SYSTEM, EAST BAY MUNICIPAL UTILITY DISTRICT, OAKLAND, CALIFORNIA, CARNS (1990)

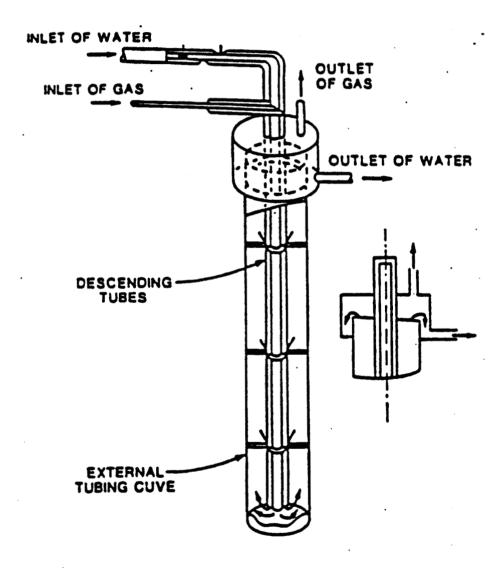


FIGURE 0-5 - SCHEMATIC OF THE DEEP U-TUBE OZONE CONTACTOR, ROUSTAN et al. (1987)

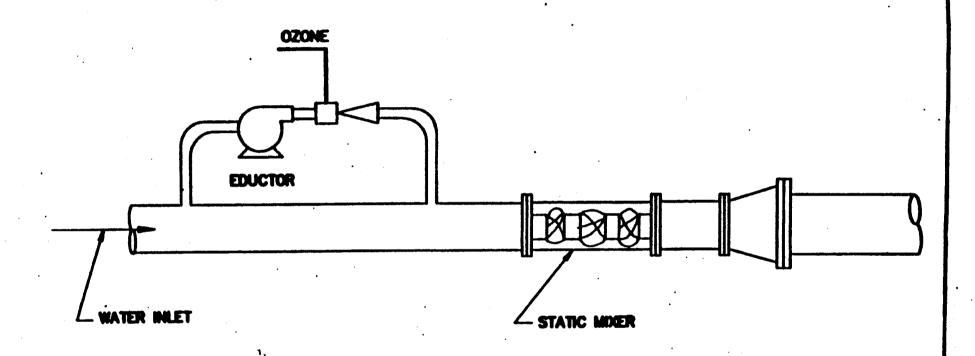


FIGURE 0-6 - SCHEMATIC OF IN-LINE STATIC MIXER

0.2 DETERMINATION OF CONTACT TIME (T)

0.2.1 Background

The hydraulic characteristics in ozone contactors range from an almost Continuous Stirred-Tank Reactor (CSTR) to an ideal plug flow configuration. Because the T_{10} approach may not be adequate for determining the inactivation provided for systems resembling a CSTR, and because the T_{10} approach is overly conservative in other cases, EPA recommends the following three numerical methods to predict the contact time (T) in ozone contactors:

 T_{10} : The T_{10} method discussed in Appendix C (and in Section 0.2.2) is a good measure to characterize the contact time in most cases. However, this method reduces the possibility of complying with the SWTR for systems that have relatively high back-mixing and require high inactivation levels.

Segregated Flow Analysis (SFA): (See Section 0.2.6) This is an alternative procedure to calculate the disinfection contact time. This procedure is applicable only to systems that have good data from tracer studies of high resolution as explained in Section 0.2.6.

CSTR: The Continuously Stirred-Tank Reactor (CSTR) method described in Section 0.2.5, assumes the ozone contactor behaves as a CSTR. This procedure is extremely conservative. However, no apparent simplified analysis is currently available to make it less conservative. The CSTR approach should be used only when:

- Other predicting techniques are not recommended,
- The required inactivation level is very low, or
- Systems cannot afford to get good tracer study data for other methods.

Systems may choose the optimal method for their situation based on the available data to perform the calculations. A discussion of each is presented below.

0.2.2 I₁₀ Analysis

The simplest method of calculating the contact time, T, of microorganisms in a contactor is by the T_{10} approach. T_{10} is defined as the detention time to assure that 90 percent of the liquid that enters the

contactor will remain at least T_{10} minutes in the contactor. A system achieving a CT_{10} corresponding to X percent inactivation, will assure that 90 percent of the water passing through the contactor is receiving at least X percent inactivation, while 10 percent of the water will receive less than X percent inactivation.

When conducting a step-input tracer study, T_{10} is the time interval required for the outlet tracer concentration to achieve 10 percent of its ultimate response, following an inlet step addition. Appendix C of this manual contains procedures to conduct and evaluate tracer studies for the determination of T_{10} . Appendix C also contains procedures to estimate the T_{10} of contactors based on their baffling conditions and flow configuration.

The results of tracer studies conducted on several ozone contactors (Stolarik and Christie, 1990, Schwartz et al, 1990, Rosenbeck et al, 1989) indicate that high quality tracer data on ozone contactors can be obtained and that T_{10} can be estimated with high precision, but to a lesser degree when T_{10} is less than one minute.

 T_{10} is a good measure of the contact time in most contactors and the safety margin provided by using T_{10} compensates for the inferior performance of contactors with a high degree of short-circuiting and backmixing relative to contactors that approach plug flow conditions. (see Lev and Regli, 1990a, for further detail.) However, for contactors with a high degree of short-circuiting and a need to provide a high level of inactivation, this safety margin fails to compensate for the effect of backmixing. In such cases, approximately 10 percent of the water passing through the contactor receives significantly less than the inactivation indicated by CT_{10} . In these cases, either the SFA or the CSTR approach should be used for determining the contact time.

The recommended alternatives for determining the contact time (T) for various conditions of T_{10} versus hydraulic detention time (HDT) are presented in Table 0-1. HDT is determined by dividing the liquid volume of the contactor by the rate of flow through the contactor. As illustrated in this table:

TABLE 0-1

Recomended Procedures to Calculate the Disinfection Contact Time (T)

Condition:	$T_{10} < (HDT)/3$ & -Log $(I/I_0)^{(1)} < 2.5$	$T_{10} < (HDT)/3$ & -Log(I/I ₀) ⁽¹⁾ >= 2.5	T ₁₀ >(HDT)/3
Recommended Methods:	T=T ₁₀		T=T ₁₀
	SFA ⁽²⁾	SFA ⁽²⁾	SFA ⁽²⁾
	CSTR ⁽³⁾	CSTR ⁽³⁾	CSTR ⁽³⁾

Notes:

- 1. Required level of inactivation in logs of either <u>Giardia</u> lamblia cysts or viruses whichever value is greater; I = # live organisms in outlet of ozone contactor and $I_0 = \#$ live organisms in inlet to ozone contactor
- 2. High resolution tracer characterization of the ozone contactor must be available.
- 3. The CSTR method is extremely conservative and should be avoided when alternative approaches are possible.

- The T₁₀ method is applicable for systems that are required to achieve less than a 2.5-log inactivation of <u>Giardia</u> cysts even if the flow configuration in their ozone contactor approaches that of a CSTR, such as disinfection in contactors using turbine agitators.
- Likewise, the T_{10} approach is appropriate for systems demonstrating T_{10}/HDT greater than 1/3 regardless of the required level of disinfection.
- Systems for which the T_{10} approach is appropriate to have the option of applying either the SFA or CSTR analysis. The method resulting in the highest T value, or thereby the lowest C value may then be followed.

The SFA or CSTR should be used in lieu of T_{10} when the:

- Level of inactivation required for <u>Giardia</u> cysts and/or viruses is 2.5-log or higher
- T_{10}/HDT is less than 1/3.

Systems should be aware that the 2.5-log inactivation guideline refers to the inactivation provided by the ozone system alone regardless of inactivation provided by other disinfectants. For example, if a system requires an overall inactivation of 3-log and provides 1-log inactivation by chlorine, then a 2-log inactivation is required by ozone and the T_{10} approach can be used.

Examples for applying the different methods of calculation for T are included in Section 0.2.8.

0.2.3 Additional Considerations for T_{10} : Multiple Chamber Contactors. This section provides guidelines for computing T_{10} for several contactors in series. The main shortcoming of the T_{10} approach is the inherent non-linearity of this measure. In contrast to the HDT, which is a linear measure, T_{10} 's of individual subunits do not sum up to give the T_{10} of the overall unit. For example:

- The HDT of two equal CSTRs in series is exactly twice the HDT of each CSTR.
- The T_{10} for the same two CSTRs in series is more than twice the sum of the individual $T_{10}{}^{\prime}s$.

This raises some practical questions:

- How should the T₁₀ of a multiple-chamber contactor be determined using tracer studies?
- Is it necessary to conduct individual tracer studies for each chamber or is it sufficient to conduct an overall study of the whole contactor?
- How can the contact time of one chamber be determined based on the T_{10} of the overall system?

Conducting tracer studies of individual chambers in a multiple chamber ozone contactor is likely to be difficult. In addition, an analysis conducted by Lev and Regli (1990a) indicates that the computation of the contact time (T) based on tracer studies of the individual chambers is likely to lead to over design. The excess volume of a system designed by summing the T_{10} s of the separate chambers may be up to 9.5 times higher than one designed by the overall T_{10} approach. Therefore, EPA recommends the use of an overall tracer study of the whole contactor, in order to lower operation costs and to avoid overly complex tracer studies.

Disinfection credits for a multiple chamber contactor should be based only on the active chambers, those which have a detectable ozone residual. Based on the recommendation to use overall tracer studies, guidelines are needed for determining the disinfection credit for the active part of a system based on overall tracer studies. The average concentration in the individual chambers of a multiple-chamber system may deviate considerably from one another. Therefore, systems must be able to assign contact times for each chamber.

Lev and Regli, (1990a) evaluated the consequences of using a linear approximation based on relative contact chamber volumes and overall T_{10} of the contactor to determine the contact time of individual chambers in an ozone contactor:

 $T_{10,chamber} = (V_{chamber}) (T_{10,total}) / (V_{total})$ (1)

Where:

T_{10,chamber} = An approximation for the contact time of one chamber.

 $T_{10,total}$ = T_{10} of the entire multi-chamber ozone contactor as determined by tracer studies

V_{chamber} = Volume of the individual chamber

V_{total} - Overall volume of the multi-chamber ozone contactor

They demonstrated that such linear extrapolation may lead to an underestimate of the required T. This underestimate can be significant when the concentration in the different chambers deviate considerably from each other. This would be the case when the residual ozone concentration in one chamber is zero.

Considering the various safety margins that are included in the T_{10} approach, and considering the practical complexity involved in conducting separate tracer studies, EPA recommends the use of the linear approximation described in Equation 1 provided that the volume of the portion of the contactor that has zero residual ozone is less than half of the overall volume of the ozone contactor:

Vinective chamber/Vtotal < 0.5

Where:

V_{inective chamber} = The volume of the chambers in the contactor where the ozone concentration is zero

 V_{total} - The volume of the chambers with a residual

The following examples illustrate the computation of the overall inactivation performance of multiple-chamber systems using the linear approximation of Equation 1:

Example 0.2-1 Linear approximation to predict T_{10}

An ozone contactor has three chambers in series. Each chamber has a volume of 353 cubic feet.

- The average ozone concentration in each chamber is:
 - First chamber: C₁=0 mg/L ozone.
 - Second chamber: C2=1 mg/L ozone.
 - Third chamber: C₃ =0.5 mg/L ozone.
- C₁, C₂ and C₃ are the average concentrations, determined as described in Section 0.3.
- The utility measured T_{10} = 5 min for the entire ozone contactor.
- The volumetric fraction of the chamber which has no ozone residual is $V_1/(V_1+V_2+V_3))=0.33$ which is less than the 0.5 guideline. Therefore it is permissible to use Equation 1 in order to estimate the CT achieved in the ozone contactor.
- The total CT achieved by the ozone contactor is:

$$CT = (C_2)[(T_{10, total})(V_2)/(V_{total})] + (C_3)[(T_{10, total})(V_3)/(V_{total})]$$

$$CT = (1)[(5)(10)/(30)] + (0.5)[(5)(10)/(30)] = 2.5$$

- The CT achieved by the ozone contactor is 2.5 mg-min/L.

Example 0.2-2 Linear approximation not applicable

- An ozone contactor consists of:
 - A chamber with a volume of 70 cubic feet and equipped with a turbine agitator
 - Followed by a second chamber with a volume of 200 cubic feet.
- The first chamber has an ozone residual of 0.5 mg/L and the second chamber has an ozone residual of zero
- The $T_{10,total}$ = 8 min for both chambers at the peak flow rate
- The volumetric fraction of the chamber with no ozone residual is 200/270 = 0.74 which is greater then 0.5 of the total volume. Therefore, the use of Equation 1 to approximate the T_{10} of the chamber that contains an ozone residual is not recommended.
- The system may estimate its performance by either the CSTR approach taking into account only the detention time of the first chamber or conduct tracer studies of the first chamber.

0.2.4 Alternative Analysis of Disinfection Kinetics

The CSTR and the SFA approaches utilize the Chick-Watson inactivation rule directly rather than relying on the CT approach. The following section describes this alternative approach to represent the disinfection kinetics.

The Guidance Manual recommends that systems should calculate the inactivation level in their disinfection contactors by the CT approach. Table 0-2 presents CT data corresponding to specified inactivation levels of <u>Giardia</u> cysts and viruses by ozone. An alternative way to present the same information is by tables of the kinetic coefficients used to calculate the CT values.

The CT values presented in Table 0-2 were calculated based on batchreactor experimental information that was fitted into a logarithmic correlation according to a first order Chick-Watson's rule (Chick, 1907; Watson 1908; and Hoff, 1987):

$$\log(I/I_0) = - k CT \tag{2}$$

Where:

 I/I_0 = Survival ratio of the <u>Giardia</u> cysts or viruses

C = Residual concentration of ozone in mg/L

T = Exposure time in min.

k = A kinetic coefficient which characterizes the specific rate of inactivation of the microorganisms at the appropriate temperature and pH.

Solving Equation 2 for k yields:

$$k = \frac{-\log (I/I_0)}{CT} \tag{3}$$

Equation 3 can be used to calculate k values corresponding to the CT values in Table 0-2. Table 0-3 summarizes these k values. Equation 3 may also be used to transform inactivation levels (I/I_0) to CT values and vice versa.

The following example illustrates the use of the values presented in Table 0-3 to calculate the performance of multiple-chamber ozone contactors:

Example 0.2-3 Multiple-chamber Ozone Contactor

- An ozone contactor consists of three chambers in series.
- Temperature is 5 C.
- The first chamber has a 10 percent survival ratio for <u>Giardia</u> cysts, or (I/I_0) = 0.1, which also corresponds to 90 percent inactivation
- The second chamber has an $I/I_0 = 0.07$
- The third chamber has an $I/I_0 = 0.03$
- The total inactivation may be calculated by either summing CT's or summing logs of inactivation, as presented below.
- Summing CT's:
 - At 5 C the k for Giardia cysts = 1.58
 - The survival fractions are:

First Chamber = 0.1 Second Chamber = 0.07 Third Chamber = 0.03

- Therefore, the CT values in each of the chambers are:
 - First chamber:

$$CT = -\log(I/I_0)/k = -\log(0.1)/(1.58) = 0.63$$

- Second chamber:

$$CT = -\log (I/I_0)/k = \log (0.07)/1.58 = 0.73$$

- Third chamber:

$$CT = -\log(I/I_0)/k = -\log(0.03)/1.58 = 0.96$$

- Total CT is : 0.63 + 0.73 + 0.96 = 2.32
- As indicated in Table 0-2, a CT of 2.32 is sufficient to achieve a 3-log inactivation of <u>Giardia</u> cysts.
- Summing logs of inactivation:
 - First chamber: $-\log (I/I_0) = -\log(0.1) = 1$
 - Second chamber: $-\log(I/I_0) = -\log(0.07) = 1.15$

TABLE 0-2

CT VALUES FOR INACTIVATION BY OZONE

Giardia						
Inactivation	<u><=1</u>	_5_	Temperat 10	15	20	25
0.5 log	0.48	0.32	0.23	0.16	0.12	0.08
1 log	0.97	0.63	0.48	.0.32	0.24	0.16
1.5 log	1.5	0.95	0.72	0.48	0.36	0.24
2 log	1.9	1.3	0.95	0.63	0.48	0.32
2.5 log	2.4	1.6	1.2	0.79	0.60	0.40
3 log	2.9	1.9	1.4	0.95	0.72	0.48
Virus Inactivation					:	
2 log	0.9	0.6	0.5	0.3	0.25	0.15
3 log	1.4	0.9	0.8	0.5	0.4	0.25
4 log	1.8	1.2	1.0	. 0.6	0.5	0.3

TABLE 0-3 k Values for Ozone Inactivation⁽¹⁾

TEMPERATURE (C)	0.5	5	10	15	20	25
Inactivation of <u>Giardia</u> cysts	1.03	1.58	2.08	3.12	4.17	6.25
Inactivation of Viruses	2.22	3.33 °	4.00	6.67	8.00	13.3

k = $-\log(I/I_0)/(CT)$ in L/mg-min. When Chick's rule is represented by the formula $\ln(I/I_0) \Rightarrow$ -K CT (ln stands for the natural logarithm) then k should be calculated by k = 2.303(K)

- Third chamber: $-\log(I/I_0) = -\log(0.03) = 1.52$
- The total logs of inactivation is:

$$-\log (I/I_0) = 1 + 1.15 + 1.52 = 3.67$$

 The 3.67-log inactivation of <u>Giardia</u> cysts is higher than the required 3-log inactivation

0.2.5 Continuously Stirred-Tank Reactor (CSTR) Approach

The CSTR method assumes that the flow configuration in the ozone contactor approaches that of completely stirred reactor. In most cases, this calculation method is the most conservative approach. Studies by Schwartz et al (1990) suggest that well-operated turbine contactors approach ideal CSTR characteristics and the CSTR calculation is appropriate. In some cases, CSTR calculations offer the only apparent method to evaluate the performance of the ozone contactors. CSTR calculations should be used under the following conditions if systems have no other means for demonstrating the inactivation efficiency.

- Tracer data are not available.
- The required inactivation level is greater than 2.5-log, and ozone disinfection is applied in a single chamber contactor with $T_{10}/\text{HDT} \leq 1/3$.
- If either the required inactivation level is less than 2.5-log or $T_{10}/\text{HDT} > 1/3$ then the inactivation predicted by CT_{10} is appropriate provided that tracer data are available. If high resolution tracer data are available then the SFA method can be applied regardless of the level of inactivation required or the ratio of T_{10}/HDT .

In some cases, systems may actually receive more credit by using the CSTR approach then by using the T_{10} approach. Higher credits result when a low level of ozone disinfection such as 0.5-log is required and mixed contactors are used.

When using the CSTR approach, the inactivation performance should be evaluated for viruses and <u>Giardia</u> cysts, regardless of which required CT is higher. This recommendation results from the influence of flow characteristics on contactor performance, as discussed in Section 0.2.7.

The performance equation for a CSTR is based on two important assumptions:

- 1. The concentration of disinfectant and microorganisms is homogeneously distributed in the contactor.
- 2. First order Chick-Watson's law applies. That is, the rate of inactivation of the microorganisms is approximately proportional to the concentration of the microorganisms and the concentration of disinfectant.

The performance of a CSTR contact chamber is given by:

$$(I/I_0) = 1/[1 + 2.303(k)C(HDT)]$$
 (4)

Where:

k = kinetic coefficient for microorganism inactivation
[k values are listed in Table 0-4 (L/mg-min)]

 (I/I_0) = Survival ratio of organisms

C = Average concentration of disinfectant (mg/L)

HDT - Hydraulic detention time (min)

Equation 4 may also be used to calculate the ozone concentration that is required to achieve a specified level of inactivation for a given HDT or to compute the HDT required to achieve a desired inactivation level for a given ozone concentration. Equation 5 restates Equation 4 for use in determining C or HDT

$$C(HDT) = [1-(I/I_0)]/[2.303 k (I/I_0)]$$
 (5)

The effects of mixing on improving disinfection effectiveness may be very significant in CSTR contactors, and are not accounted for in this model.

Examples demonstrating how to calculate the operating conditions necessary to meet the required inactivation levels by the CSTR approach are included in Section 0.2.8.2.

0.2.6 Segregated Flow Analysis (SFA)

SFA is a method that is often used to characterize chemical reactions. Better approximations may be determined through analysis and modelling of the specific details of the flow pattern in the ozone

contactor, but such modelling cannot be done based on tracer studies alone, as the SFA can. Comprehensive descriptions of the SFA can be found in several references including Levenspiel (1972) and Seinfeld and Lapidus (1984). The SFA assumes that the inactivation in a contactor can be determined by the product of the probabilities of two events: the probability distribution for water to remain in the contactor; and the probability distribution for organisms to survive as they pass through the contactor.

The first probability function describes the chances of a microorganism remaining in the contactor for a specified time period. The water passing through the contactor has a probability distribution, determined by tracer studies which indicate the detention time for each fraction of the flow through the contactor.

The second probability function describes the chances of a microbiological species surviving following exposure to a disinfectant for a certain amount of time. This probability function is given by the modified Chick's equation: $(I/I_0) = 10^{-kCt}$. Each fraction of the flow would have a different "t" for which this equation would apply. For example, a virus that is exposed for I minute to C=I mg/L ozone when k=1 L/mg-min has 0.1 (10 percent) chances to survive.

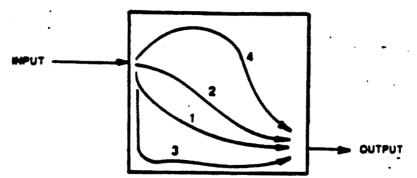
The following illustrates the intuitive origin of the SFA approach:

- The flow in an imaginary contactor may be viewed by flow lines.
- A microorganism that is introduced at time t=0 will follow one of these flow lines.
- For simplicity, consider that only four flow lines exist as represented on Figure 0-7.
- A microorganism that is introduced in the feed to the contactor has some probability (P1) of following any one of these four lines.
- The microorganism will then remain for a specific detention time, characteristic of each flow line, in the contactor.
- This concept is presented schematically on Figure 0-7, where the flow lines are represented by four different tubes whose lengths (or detention times) correspond to the lengths of the flow lines on Figure 0-7.

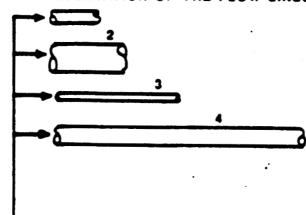
- Microorganisms that are introduced into various tubes have different probabilities of survival (P2), because of different susceptibilities to disinfection in each of these tubes.
- The product of the probability that a microorganism will be carried into a specific tube (P1) times the probability of survival after being exposed to the hostile environment for the appropriate time (P2) is the probability that a microorganism introduced into the feed inlet will get out alive from a specific tube (P1)(P2).

For example, if 20 percent of the flow is directed into the first flowline and I/I_0 for this fraction of the flow equals 0.25, a microorganism has (0.2)(0.25) or a 5 percent chance of emerging alive from this specific flowline. The total survival of microorganisms that are introduced into the inlet to the entire contactor can be computed by summing up all four survival probabilities (P1)(P2).

Complete examples for the application of the SFA are included in Section 0.2.8.3. For SFA to be applied, a high resolution tracer study must be available. The requirements for a high resolution tracer study are:


- Appropriate time distribution of sampling points.
- Limited degree of scatter in sample points.

The first requirement is to have several sample points prior to the occurrence of T_{10} and less frequent sampling points thereafter. Several sampling points prior to T_{10} are essential to get an accurate representation of what is occurring in the early flow through the contactor, when organisms are most likely to exit the contactor while still viable. The second requirement if for a limited degree of scatter between the sample points. The plotted curve should ideally be continuous to allow for more accurate integration to predict the survival of microorganisms.


0.2.7 Relative Inactivation of Giardia Cysts and Viruses

In most cases, when the CT required for the inactivation of <u>Giardia</u> cysts is greater than the CT required for the inactivation of viruses, compliance with the inactivation requirements for <u>Giardia</u> cysts will

A. FLOW LINES IN A CONTACTOR

B. SCHEMATIC REPRESENTATION OF THE FLOW LINES

C. SURVIVAL PROBABILITY FOR AN ORGANISM

Flow Line	P ₁ Fraction of Flow into the Flowline	P ₂ (I/l _o) Survival Ratios	P ₁ P ₂ Overall Survival Ratios
i	2/10	1/4	16/320
2	4/10	1/8	16/320
3	1/10	1/16	2/320 ·
4	3/10	1/32	2/320
·	SUM 1		37/320

FIGURE 0-7 - PRINCIPLE OF SEGREGATED FLOW ANALYSIS

assure compliance with the virus inactivation requirements. Specifically, this is true when:

$$k_{\text{virus}}/k_{\text{cyst}} > \log(I/I_0)_{\text{virus}}/\log(I/I_0)_{\text{cyst}}$$
 (6)

The SWTR, however, requires a higher level of inactivation of viruses than Giardia cysts. Therefore, ozone contactors that are characterized by a high degree of turbulence will find that, as the flow configuration approaches that of a CSTR ($T_{10}/\text{HDT} < 1/3$), compliance with the virus inactivation requirements may be a more demanding task than meeting the inactivation requirements for Giardia cysts. Consequently, an ozone contactor that has a $T_{10}/\text{HDT} < 1/3$ and a low (I/I_0) should be checked for compliance with the inactivation of viruses as well as for cysts. Another way to understand this is that as the inactivation indicated by CT_{10} increases, the 10 percent of the water passing through the contactor with less contact time than T_{10} becomes more significant for lowering the overall inactivation efficiency for all the water passing through the contactor.

0.2.8 Examples of Determining Contact Time (T)

This section presents examples for the application of the three general approaches - T_{10} , SFA, and CSTR - for determining contact time.

0.2.8.1 Evaluation Using T10

The following four examples illustrate when the T_{10} approach should be used and when alternate approaches are appropriate. Procedures for calculating the required ozone residual based on the T_{10} approach are outlined in the examples.

Example 0.2-4 <u>Inactivation Required >2.5-log</u>

The Haworth Water Treatment Plant, Hackensack, New Jersey, uses a turbine ozone chamber followed by a contact chamber to provide additional contact time. A schematic of the contactor is shown on Figure 0-1. The treatment plant provides filtration after the ozone contactor. For the purposes of this example, although it is not the case for Hackensack, the

ozone system must provide disinfection for 2-log <u>Giardia</u> and 3-log virus inactivation to supplement filtration. The following conditions apply:

Water Temperature = 0.5 C CT for 2-log <u>Giardia</u> = 1.9 mg-min/L CT for 3-log virus = 1.4 mg-min/L

- A tracer study was conducted on one of the four ozone contactors. Figure 0-8 depicts the chart recorder of the raw data that were collected during the tracer study.
- The HDT at the flow rate of the study was 20 minutes, and the T_{10} occurs at 11 min.
- The T_{10}/HDT of 0.55, is greater than 1/3, making the T_{10} approach valid for this system.
- The CT for <u>Giardia</u> inactivation is the controlling CT because it is greater than the CT for virus inactivation.
- Using the T_{10} of 11 min, the residual needed to meet the CT requirement of 1.9 mg/L-min is determined as follows:

- As a result of using the T_{10} approach, the system must maintain an ozone concentration of 0.17 mg/L in the contactor to provide the necessary disinfection.

The application of the SFA method for this contactor is presented in Section 0.2.8.3.

Example 0.2-5 <u>Low Detention Time</u>, <u>Inactivation Required <2.5-log</u>
A system using slow sand filtration must provide disinfection for 1log <u>Giardia</u> cyst and 2-log virus inactivation. The system has an ozone contactor equipped with a turbine mixer. The following conditions apply:

Water Temperature = 25 C CT for 1-log <u>Giardia</u> = 0.16 mg-min/L CT for 2-log virus = 0.15 mg-min/L

- The CT for <u>Giardia</u> cyst inactivation is greater than the CT for virus inactivation and is therefore the controlling CT.
- A tracer study was conducted for the ozone contactor and resulted in a T_{10} of 30 seconds.

- The HDT of the contactor at the flow rate of the study was 150 seconds.
- Thus $T_{10}/HDT = 30/150 = 0.2$, is less than 1/3, however, because the required inactivation is less than 2.5-log, the T_{10} evaluation for this system is appropriate.
- Based on the T_{10} evaluation, the residual needed to meet the CT requirement is determined as follows:

CT = 0.16 mg-min/L

$$C = \frac{0.16 \text{ mg-min/L}}{0.5 \text{ min}} = 0.32 \text{ mg/L}$$

- Thus, according to this approach, the system must provide an ozone concentration of 0.32 mg/L to meet the inactivation requirements.
- Because of the low T_{10}/HDT value for this system, the CSTR approach is an alternative for determining C. This example is presented in Section 0.2.8.2.

Example 0.2-6 <u>Low Detention Time</u>, <u>Inactivation Required >2.5-log</u>
An unfiltered water system must provide disinfection for a 4-log inactivation of viruses and a 3-log inactivation of <u>Giardia</u> cysts. The ozone system uses a single chamber turbine contactor for disinfection:

- The hydraulic detention time measured at peak flow rate is 30 minutes and T_{10} determined by a tracer study is 9 minutes.
- The T_{10} approach is not recommended for this system because T_{10}/HDI of 0.3 is less than 1/3 and the required level of 4-log virus inactivation is higher than the 2.5-log level.
- SFA or the more conservative CSTR calculations may be used to determine the required ozone concentration for this system. Examples of the CSTR and SFA calculations are presented in Sections 0.2.8.2 and 0.2.8.3, respectively.

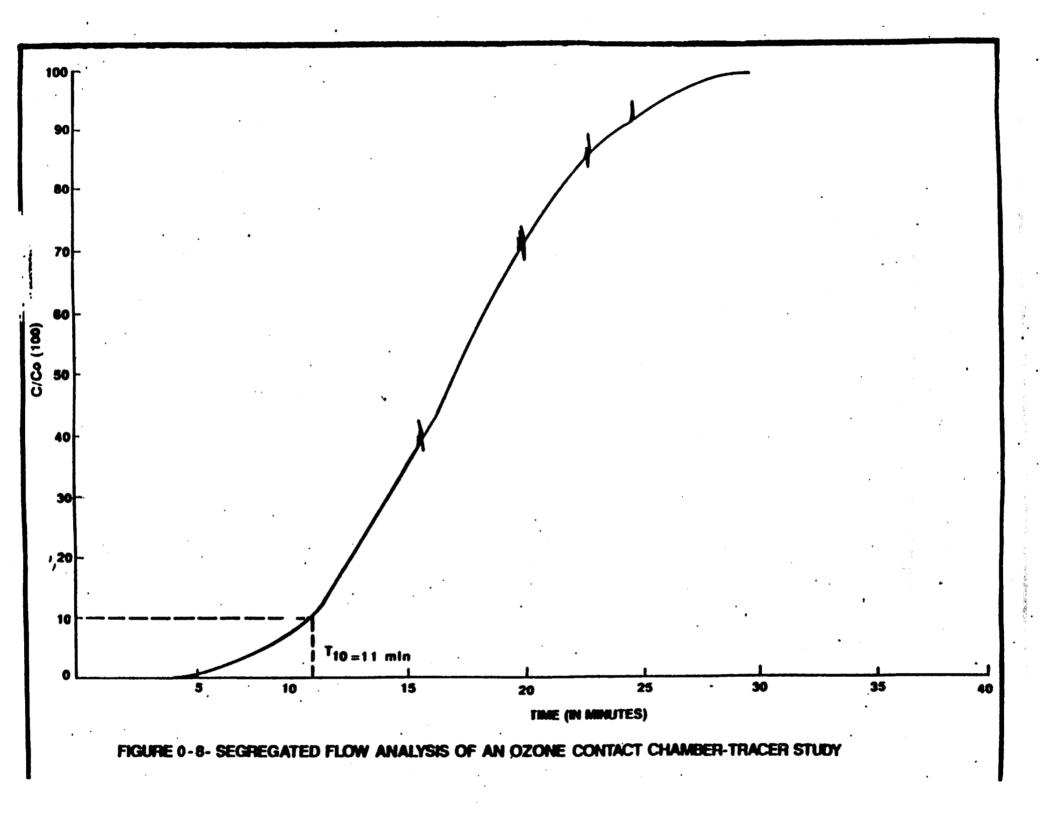
Example 0.2-7 <u>High Detention Time</u>. <u>Inactivation Required <2.5-log</u>
The Sturgeon Bay Water Treatment system (Rosenbeck, 1989) uses a series of two submerged turbine ozone contactors followed by a reactive chamber to disinfect ground water:

- The results of a tracer study conducted on one of the mixed contactors is shown on Figure 0-9.
- The T₁₀ from this study is approximately 30 seconds while the hydraulic detention time is 62 seconds.

- T_{10} /HDT = 30/62 = 0.48 which is greater than 1/3. Therefore, the T_{10} approach is appropriate for this system.

In this case, the SFA method is not recommended as an alternative to the T_{10} approach because of the minimal detention times in the contactor. With such a short period for the collection of samples, the data are insufficient for the SFA method. The resolution of the tracer studies, apparent in Figure 0-9, will lead to an overly conservative estimate of the inactivation if differentiation is conducted by a forward algorithm.

0.2.8.2 Evaluations Using CSTR Calculations


The following two examples demonstrate the CSTR approach. One illustrates the benefit of the CSTR analysis over the T_{10} analysis. The other identifies conditions for which the CSTR approach is not practical.

Example 0.2-8 Low Detention Time. Inactivation Required <2.5-log
The system identified in Example 0.2-5 is a slow sand filtration
plant, using ozone to provide for a 1-log <u>Giardia</u> cyst inactivation.
Chlorine provides the 2-log virus inactivation. Because the level of
inactivation required from ozone disinfection is less than <2.5-log, the
system may choose any method for the determination of the contact time.

- A tracer study conducted on the ozone contactor resulted in a T_{10} of 30 sec for a HDT of 150 sec.
- The fraction of T_{10}/HDT is 0.2, which is less than 1/3, indicating that the CSTR approach may be appropriate.
- Chlorine provides disinfection for the viruses, therefore the CSTR calculation for the ozone disinfection requirements will be based on <u>Giardia</u> cyst inactivation.
- The following conditions apply:

Water Temperature = 25 C CT for 1-log <u>Giardia</u> cyst = 0.16 mg-min/L

Equation 5 from Section 0.2.5 applies for the CSTR calculation: $C(HDT) = [1 - (I/I_0)]/[(2.303)k (I/I_0)]$

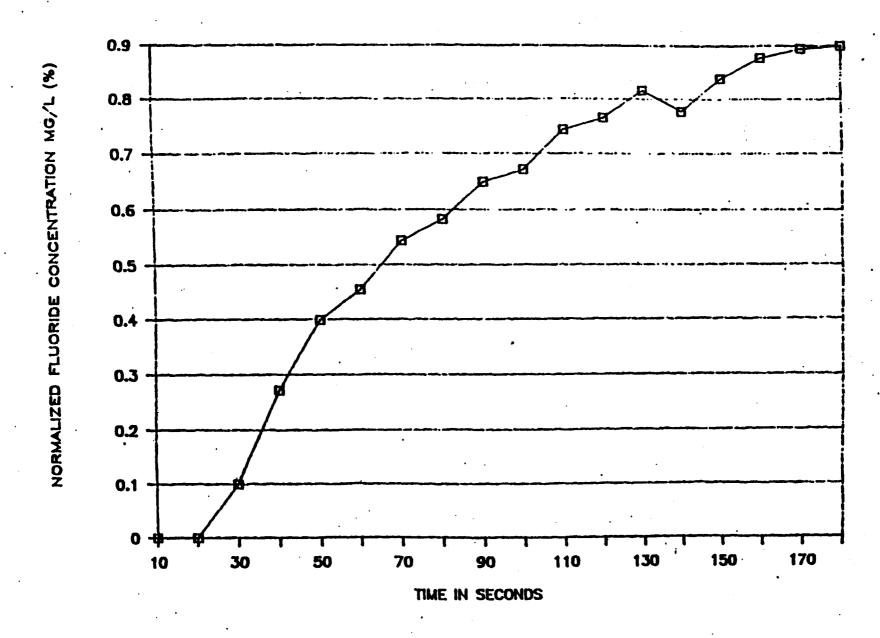


FIGURE 0-9 - TRACER STUDY OF STURGEON BAY OZONE CONTACTOR, G.L. ROSENBECK, (1989)

- The parameters are determined as follows:
 - 1. From Table 0-3, $k_{\text{cyats}} = 6.25$ for CT = 0.16 min/L at 25c
 - 2. For 1-log inactivation, $I/I_0 = 0.1$
 - HDT = 150 sec or 2.5 min
- C is determined as follows:

$$C(HDT) = [0.9]/[(2.303)(6.25) (0.1)] = 0.625 \text{ mg-min/L}$$

$$C = 0.625/2.5 = 0.25 \text{ mg/L}$$

Thus, according to the CSTR approach, the system must provide an ozone concentration of 0.25 mg/L to meet the inactivation requirements. For this case, the system would prefer to use the CSTR approach rather than the T_{10} approach since the T_{10} approach would require a 0.32 mg/L ozone residual, as shown in Example 0.2-5.

Example 0.2-9 Low Detention Time. Inactivation Required >2.5-log An unfiltered water system must provide disinfection for 4-log inactivation of viruses and 3-log inactivation of Giardia cysts. The system uses a single chamber turbine ozone contactor. Hydraulic detention time measured at peak flow rate is 30 minutes and T_{10} determined by tracer studies is 9 minutes. T_{10}/HDT is less than 1/3 and greater than 2.5-log inactivation is required, therefore the T_{10} approach should not be used. The CSTR or SFA methods are appropriate.

- The CSTR calculation must be conducted for both <u>Giardia</u> cysts and viruses to determine the controlling parameter
- Compute the C required for inactivation of <u>Giardia</u> cysts:
 - k cysts = 6.25 (Table 0-3).
 - For 3-log inactivation, $I/I_0 = 0.001$
- Using the CSTR equation:

$$C(HDT) = [1-0.001]/[2.303(6.25)(0.001)] = 69.5 \text{ mg-min/L}$$

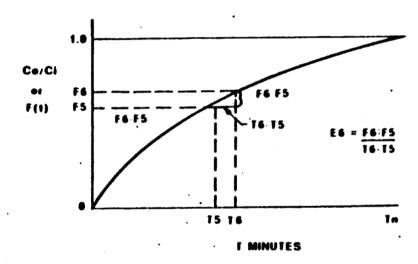
 $C = (69.5 \text{ mg-min/L})/(30 \text{ min}) = 2.3 \text{ mg/L}$

- Compute the required C for inactivation of viruses:
 - $k_{virus} = 13.3$ (Table 0-3)
 - For 4-log inactivation I/I_a = 0.001
- Applying the CSTR Equation:

C(HDT) = [1 - 0.0001]/[(2.303) (6.25) (0.0001)] = 326 mg-min/L

C = (326 mg-min/L)/(30 min) = 10.8 mg/L

As indicated, virus inactivation is the controlling parameter, requiring a C of 10.8 mg/L. Because of the higher ozone residual needed for the virus inactivation, this example illustrates why systems should verify compliance with the inactivation requirements for viruses as well as for the inactivation requirements for <u>Giardia</u> cysts. Since obtaining an ozone residual of 10.8 mg/L is unrealistic, this example illustrates how stringent disinfection conditions can become assuming CSTR characteristics. Consequently, the SFA would result in a more feasible residual requirement for this system.


0.2.8.3 Evaluations Using SFA

The SFA method can be conducted on spread sheets. Table 0-4 presents the calculation procedure in spread sheet notations for a step tracer input:

- The first column of Table 0-4 represents the sequential numbering of consecutive tracer study measurements or digital measurement points fed into the computer.
- The second column represents the time interval that elapsed between the step change in tracer concentration and the sampling of the specific tracer point.
- The third column represents the tracer effluent concentration at a point in time determined by the analyzer (spectrophotometer conductivity meter, etc.) reading.
- The fourth column represents the tracer response on a scale of 0-1, where 0 corresponds to background reading of the analyzer and 1 to ultimate response after a long time interval. In other words, it is C_{out}/C_{in} where C_{out} is the tracer concentration in the outlet of the contactor and C_{in} is the baseline tracer concentration in the inlet.

Seq. <u>No.</u>	<u>t ime</u>	<u>he ight</u>	1117	L(!)	10 kci	[2(1)	(2(f)
. 1	t,	h,	f ₁ =h ₁ /h _n	$(t_1 - (t_2 - t_1) / (t_2 - t_1))$	10 4011	Es ₁ -E ₁ 10 tc:1	$ts_1(t_2 \cdot t_1)$
2	t,	h ₂	fz=hz/hn	f_{2} - $(f_{5}\cdot f_{2})/(t_{5}\cdot t_{2})$	10 rc15	{s ₂ ={ ₂ 10 kc11	152(1, 12)
i	t,	h _i	f,-h,/h _n	t_{i} =(t_{i+1} t_{i})/(t_{i+1} · t_{i})	10 ****	1 s,=1,10 ⁴⁰¹¹	(s,(t,,,-t,)
n	t _n	h _n	F _n =1	1 _n -0	10 kctn	fs _n =0	0 (I/I₀ = sum (Es△t)

TRACER CURVE FROM STEP INPUT

NOTE: GUIDANCE FOR CONDUCTING TRACER
STUDIES IS GIVEN IN APPENDIX C

TABLE 0-4 -SPREAD SHEET NOTATIONS OF SEGREGATED FLOW ANALYSIS FOR A STEP TRACER

- The fifth column represents the forward derivative of the F(t) response. It is the slope of the tracer curve at a specific time interval, or the rate at which C_{out}/C_{in} changes with respect to time at different intervals in time. Note that by forward evaluation of the derivative: E(t) = [F(t+dt)-F(t)]/dt the E(t) curve is shifted by half a dt toward the origin.
- This method of differentiation introduces an inherent safety margin to the calculation. Systems can reduce this safety margin by collecting more tracer points at the initial period of the tracer response, when the response is starting to increase.
- This period has the largest effect on the accuracy of the tracer analysis because most of the contribution to the total survival of microorganisms comes from the organisms that remain only for short time interval in the contactor.
- The sixth column represents Chick's inactivation rule, computed at the concentration and the appropriate 10^{-kCt}.
- The seventh column represents the survival expectancy function $(Es(t) = E(t)(10^{-kCt}))$ which is the product of columns 5 and 6.
- The eighth column represents the organism survival in each segment passing through the contactor. It is also known as the integral of the survival expectancy function (Es presented in the 7th column).
- The survival ratio (I/I $_0$) is the sum of column 8. This represents the sum of organism survival in all the water segments passing through the contactor.
- Table 0-4 illustrates only one form of performing the integration (i.e., quadratic integration). Other integration methods can also be used.
- The corresponding log inactivation and the corresponding calculated CT may be computed by the procedures outlined in Section 0.2.4.

The following examples illustrate the use of the SFA method to calculate conditions in ozone contactors, and a situation where SFA cannot be used.

Example 0.2-10 Turbine Contactor

As noted in Example 0.2-4, the ozone system at Haworth Water Treatment Plant, uses a turbine ozone chamber followed by a reactive

-

chamber to provide additional contact time. A tracer study was conducted on one of the contactors resulting in a T_{10} value of 11 minutes for a HDT of 20 minutes. Using the same conditions as the above cited example, the SFA will be conducted on the tracer data. The following illustrates a step by step procedure for conducting a SFA:

- The digitized tracer response (F(i)) is depicted in Figure 0-10 as a function of t(i) where:
 - i stands for the consecutive numbering of randomly chosen points from the tracer study chart, and
 - t(i) is the corresponding time coordinate.
- The slope of the tracer curve, also known as the density of the expectancy function, E(t) approximated by the following equation is depicted in Figure 0-10.

$$E(i) = [F(i+1)-F(i)]/[t(i+1)-t(i)]$$

- The digitized points were not translated into a smooth curve in order to avoid numeric compromises.
- The survival expectancy (Es(t)) was then calculated by Es(i)=Et (i)($10^{-kCt(i)}$) and summed to give the survival ratio (I/I₀) as shown in Table 0-5.
- Figure 0-11 depicts the integration for conditions where the ozone residual is C = 0.15 mg/L.
- The cumulative survival ratio is 0.00982 which is below 0.01 assuring compliance with the 2-log or 99 percent inactivation requirement for <u>Giardia</u> cysts. A survival ratio of <0.01 corresponds to an inactivation of greater than 99 percent or 2-log.

The residual value determined from this method is lower than C=0.17 mg/L predicted by the T_{10} approach presented in Example 0.2-4. Although this example only shows a small difference in C values needed, other cases may result in a greater reduction of C compared to the C resulting from the T_{10} approach.

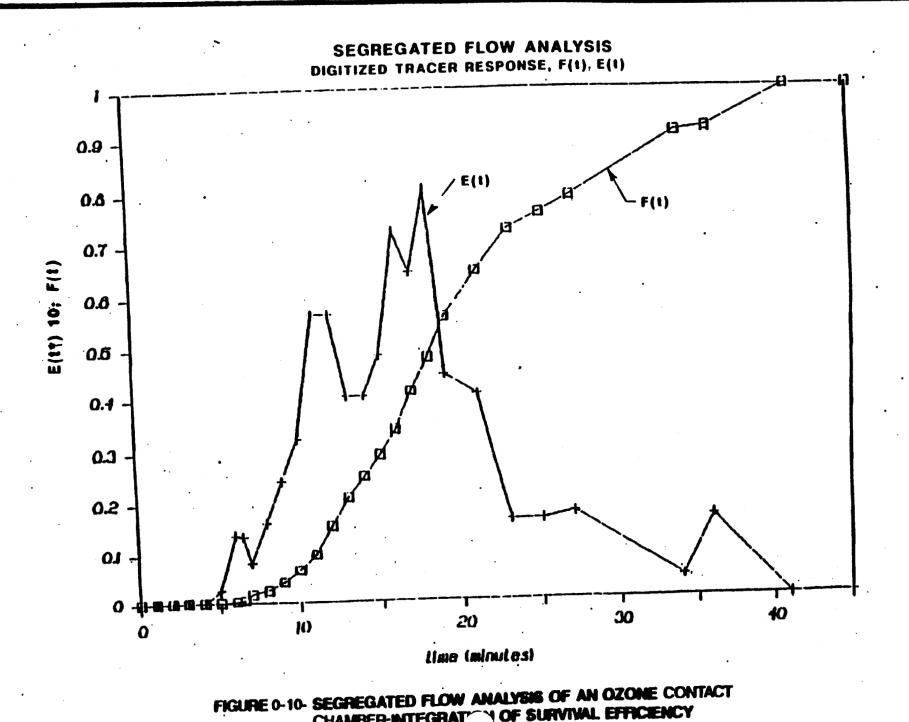


TABLE 0-5

Segregated Flow Analysis
of an Ozone Disinfection Contactor at Hackensack

time (min)	height (mm)	F(t)	E(t)	10 ^{-kCt} (C=0.16 k=1.03)	Es= =E(t)10 ^{-kCt}	(Es)at
0	0.0	0.000	0.000	1.000	0,00000 .	0.00000
1	0.0	0.000	0.000	0.708	0.00000	0.00000
2	0.0	0.000	0.000	0.502	0.00000	0,00000
3	0.0	0.000	0.000	0.355	0.00000	0.00000
4	0.0	0.000	0.000	0.252	0.00000	0.00000
5 6	0.0 0.3	0.000 0.002	0.002 0.014	0.178 0.126	0.00043 0.00173	0.00013
6.5	0.5	0.002	0.013	0.106	0.001/3	0.00035 0.00215
7	2.0	0.016	0.008	0.089	0.00143	0.00213
8.	3.0	0.024	0.016	0.063	0.00102	0.00204
9	5.0	0.040	0.024	0.045	0.00108	0.00204
10	8.0	0.065	0.032	0.032	0.00102	0.00408
11	12.0	0.097	0.056	0.022	0.00127	0.00889
12	19.0	0.153	0.056	0.016	0.00090	0.00630
13	26.0	0.210	0.040	0.011	0.00045	0.00225
14	31.0	0.250	0.040	0.008	0.00032	0.00160
15	36.0	0.290	0.048	0.006	0.00029	0.00174
16	42.0	0.339	0.073	0.004	0.00027	0.00243
17	51.0	0.411	0.065	0.003	0.00018	0.00144
18	59.0	0.476	0.081	0.002	0.00016	0.00160
19	69.0	0.556	0.044	0.001	0.00006	0.00066
21	80.0	0.645	0.040	0.001	0.00003	0.00030
23	90.0	0.726	0.016	0.000	0.00001	0.00004
25	94.0	0.758	0.016	0.000	0.00000	0.00000
27	98.0	0.790	0.017	0.000	0.00000	0,00000
34	113.0	0.911	0.004	0.000	0.00000	0.00000
36	114.0	0.919	0.016	0.000	0.00000	0.00000
41 45	124.0	1.000	0.000 0.000	0.000 0.000	0.00000	0.00000
40	124.0	1.0000	0.000	0.000	0.00000	0.00000

 $\mathcal{E}(E_s)\Delta t + = I/I_0 = 0.00982$

SEGREGATED FLOW ANALYSIS SURVIVAL OF CYSTS (C=0.15, k=1.03)

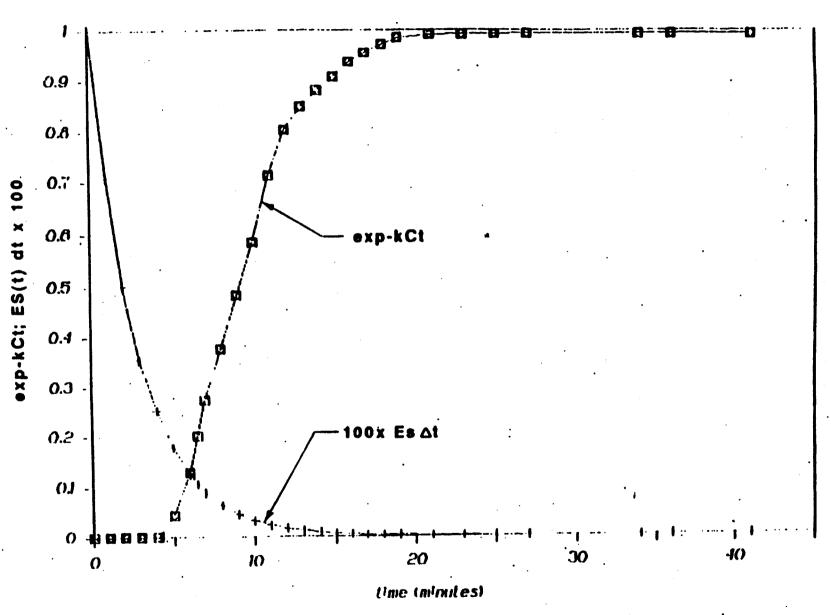


FIGURE 0.11 - SEGREGATED FLOW MALYSIS OF OZONE CONTACT CHAMBER

0.2.9 ESTIMATING T

The results of this section are summarized in Figure 0-12. The decision tree shows the applicable methods of estimating T for each approach, and provides a quick means to compare alternatives and make a selection.

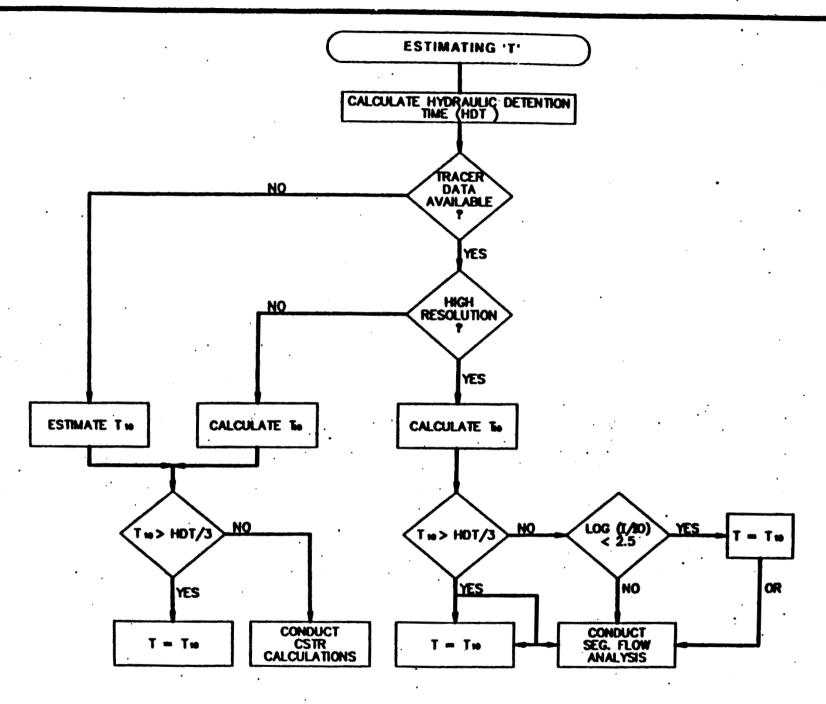


FIGURE 0-12 - DECISION TREE FOR ESTIMATING T

对 H Li Li

18 14 27 39

0.3 DETERMINATION OF OZONE CONCENTRATION (C)

0.3.1 Introduction

This section presents ways to measure or estimate the ozone concentration, C, for the calculation of CT. An alternative, more elaborate concept, requiring better characterization of the hydrodynamics of the ozone contactor is presented in Section 0.4 of this appendix.

EPA recommends use of the average dissolved ozone concentration in the water for C for all types of ozone contactors. The average concentration may be determined by one of following methods:

- Direct measurement of the concentration profile of dissolved ozone in each contact chamber
- 2. Indirect prediction of the average concentration by assuming a set of conservative correlations between an observed variable such as the concentration of ozone in the outlet from the ozone chamber and the average concentration within the ozone chamber.

The application of these methods to estimate the average concentration should take into account the gas/liquid flow configuration in the ozone contactor. The next section presents a short discussion of the types of liquid/gas contact in ozone chambers, followed by two sections that describe the methods to estimate the average concentration in the chamber based on simple measurements.

Classification of Ozone Chambers

Ozone contactors currently in use or in design stage in the US may be classified into four types of flow configurations as illustrated on Figure 0-13. This, of course, does not preclude the use of other types of contactors. The four configurations are as follows:

Continuously Stirred-Tank Reactor (CSTR):

Ozone contactors using turbine agitators, where the water may be considered uniformly mixed as shown on Figure 0-13, diagram 1. Studies conducted in a full scale turbine contact chamber indicate that turbine contactors may be considered uniformly

mixed (Schwartz et, al., 1990). This study was conducted in the first contact chamber under conditions of high ozone demand. Therefore, it is assumed that under less stringent kinetic conditions, turbine contactors can still be considered uniformly mixed.

2. Counter-Current Flow Chambers

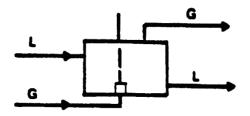
In these chambers, the water flows opposite the direction of the gas bubbles. For example, the first and third chambers in the Los-Angeles ozone treatment system, as shown on Figure 0-2.

3. Co-Current Flow Chambers

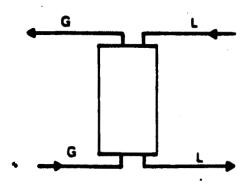
In these chambers, the gas bubbles and the water flow in the same direction. For example, the Deep U-Tube contactor shown in Figure 0-5 and the Static Mixer contactor. This is the case also for the conventional gas/liquid contact chambers such as the second contact chamber in the configuration designed for the East Bay MUD water disinfection system, as shown on Figure 0-4.

4. Reactive Flow Chambers

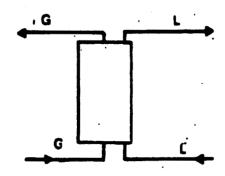
In these chambers, no gas (and ozone) is being introduced into the chamber or conduit. The second and fourth chambers of the Los Angeles water disinfection system are reactive chambers (Figure 0-2).


0.3.2 Direct Measurement of C

Direct measurement of the dissolved ozone concentration is the preferred method to determine the ozone concentration in ozone contact chambers. However, very little full scale experience is currently available with this type of measurement. Some guidelines were developed based on the limited studies conducted at the Haworth, NJ (Schwartz et al. 1990) and Los Angeles water treatment systems (Stolarik and Christie, 1990). The guidelines developed for direct measurement of ozone concentration in the liquid phase are detailed in the following sections.


Analyze Each Chamber Separately

Every chamber of a multiple-chamber unit should be analyzed separately. Different chambers in series exhibit different ozone consumption rates and reactivities and, therefore, are likely to have different dissolved ozone profiles.



2. COUNTER-CURRENT CHAMBER

3. CO-CURRENT CHAMBER

4. REACTIVE FLOW CHAMBER

L: Liquid

G: Gas

FIGURE 0 13- FLOW CONFIGURATIONS IN OZONE CONTACTOR CHAMBERS

Avoid Interference From Gas Bubbles

Gas bubbles may strongly interfere with the measurement of ozone concentration, particularly if some bubbles are carried into the sampling taps. This interference may be reduced by directing the sampling port opposite to the direction of the bubble flow in order to prevent gas from entering the sampling tube. Additionally, the operator should verify, by visual inspection, that the sample water does not contain gas bubbles.

Systems using in-situ ozone analyzers should be careful to prevent direct contact of gas bubbles with the measuring probe which is usually a gas permeable membrane. Such contact may bias the measurements and give high results.

Minimize Distance to Ozone Analyzers

Minimize the distance from the sampling ports to the ozone analyzer to limit ozone consumption by reducing agents in the water. This consideration is particularly important when evaluating the concentration profile in chambers with high ozone demand such as the first chamber in multiple-chamber units.

Provide Proper Spacial Distribution

The vertical profile of the ozone concentration in ozone contact chambers should be measured in at least five vertical locations and at least two different horizontal locations for each vertical sampling point within the contact chamber. Each sample should represent the time averaged concentration at the specific location. This may be achieved by sampling a large volume of water into a container and analyzing the water by the indigo trisulfonate method (Bader and Hoigne, 1982). In-situ measurement of ozone should be carried out over a sufficient time interval to suppress temporal fluctuations. Such instruments should be initially calibrated by the indigo trisulfonate method. Facilities that have more than 25 percent deviation between the average concentration at two horizontal locations should collect additional measurements at a third location. The average of all measurements may be taken as the average concentration of dissolved ozone in the ozone contact chamber. For systems with a symmetrical vertical distribution of ozone concentration

the vertical sampling points should be equidistant. Systems with an asymmetrical distribution of available sampling points can perform an integration of the data to estimate the average concentration in the chamber. An example of this is given at the end of this section.

Some contact chambers, such as the Deep U-Tube chambers, static mixers and reactive flow chambers have a high length to width ratio, where the length of the chamber in the direction of fluid flow is greater than four times the cross section length. These chambers have more uniform radial concentration profiles, eliminating the need to measure the concentration at various vertical or horizontal locations. Therefore, measuring the concentration profile at several points along the flow path should be sufficient to accurately determine the average concentration.

Select Representative Locations

All sampling positions should be placed in representative locations, avoiding stagnant zones and zones near the wall. Measurements in stagnant locations will lead to low values of the average residual concentrations. While measurements at the wall may result in either an underestimate or overestimate of the residual depending on the ozone flow pattern.

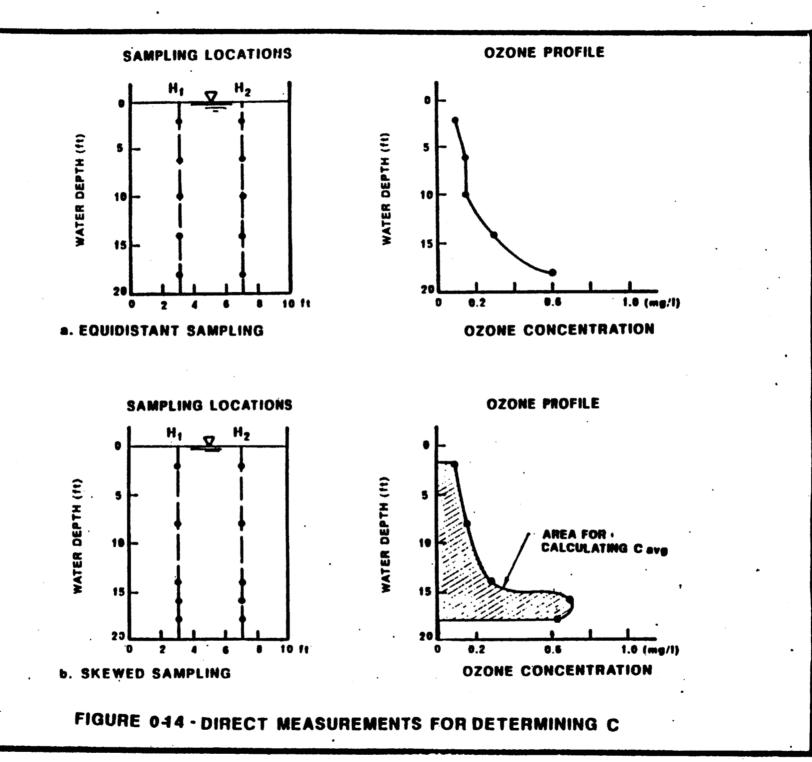
Systems having two or more identical parallel ozone contact chambers may determine the average ozone concentration by measuring the concentration profile at one horizontal location in each contact chamber. These systems should, however, show by dual or triple horizontal measurements in at least one of the parallel chambers that the measurement in the particular horizontal location adequately represents the concentration profile in the contact chamber.

Example 0.3-1

A system with a co-current chamber with dimensions of $10' \times 10' \times 20'$ was sampled to determine the average concentration in the chamber. In accordance with the recommended guidelines, the following samples were taken:

Water	Ozone Residual	(ma/L)
Depth (ft)	<u>H, </u>	_H ₂
2	0.1	0.12
6	0.15	0.17
10	0.15	0.14
14	0.3	0.25
18	0.6	0.65

- The horizontal sampling point measurements are within 25 percent of each other indicating that no additional horizontal sampling is needed. Figure 0-14a shows the sampling locations and the resulting ozone profile.
- Average the H₁ and H₂ sampling points to determine C_{avg} : C_{avg} = (0.1 + 0.15 + 0.15 + 0.3 + 0.6 + 0.12 + 0.17 + 0.14 + 0.25 + 0.65)/10 = 0.26. C_{avg} equals 0.26 mg/L, which is C for the chamber.


Example 0.3-2

A system with a co-current chamber and the same dimensions of the system in Example 0.3-1 has sampling results as follows:

Water	Ozo	ne Residual	(mg/L)
Depth (ft)	<u>H</u> 1	_Н	Average(1)
2	0.1	0.12	0.11
8	0.16	0.14	0.15
14	0.27	0.3	0.285
.16	0.70	0.73	0.715
18	0.62	0.61	0.615

(1) Average = $(H_1 + H_2)/2$

- The sampling points are not vertically equidistant so the system will plot the average ozone concentration of the horizontal sampling points versus depth to calculate the area under the curve. This approach should only be used if the sampling points cover the range of the water depth.
- As shown on Figure 0-14b, the area under the curve is determined for the range of depths sampled from 2 to 18 ft.
- Several methods can be used for calculating the area including:
 - Measurement with a planimeter
 - Mathematical methods such as:
 - Simson's Rule
 - Runge Kutta

The area under the curve is in units of mg/L-ft. C_{avg} is determined as:

range of depth sampled (ft)

For this data, use of a planimeter results in an area of 5.44 mg/L-ft, with the concentration determined as follows:

$$\frac{5.44 \text{ mg/L} - \text{ft}}{18 \text{ ft} - 2 \text{ ft}} = 0.34 \text{ mg/L}$$

0.3.3 Estimating C Based on Residual Measurements at the Outlet

For many systems, measuring ozone profiles in their ozone chamber may be impractical because of physical constraints. These systems may estimate C in the chamber based on measurements of the ozone residual at the outlet from the chamber. EPA has established correlations for different types of gas-liquid contact configurations currently in use in ozone contactors. These relationships were derived based on conservative assumptions regarding the type of flow configuration in the contactor. Due to the highly reactive nature of ozone the values for C vary slightly between first chambers and subsequent chambers. The recommended concentrations for first and subsequent chambers are summarized in Table 0-6.

0.3.3.1 First Chambers

A first chamber is the chamber in which ozone is initially introduced. In establishing guidelines for determining C values for the first ozone contact chamber, the following items were considered:

1. The relationship between C and the outlet concentration in the first chamber of a multiple-chamber system (or single chamber) may be very sensitive to the reaction order of the ozone consumption kinetics.

The average concentration in the contactor may be less than 10 percent of the outlet concentration. This was demonstrated in pilot plant studies conducted in a multiple chamber system by Stolarik and Christie, 1990. Therefore, general relationships between the residual ozone concentration at the outlet from a first (or single) ozone contact chamber and the average concentration in this chamber cannot be developed.

TABLE 0-6

CORRELATIONS TO PREDICT C BASED ON OUTLET OZONE CONCENTRATIONS(1,3)

	FLOW CONFIGURATION				
	TURBINE	CO-CURRENT FLOW	COUNTER-CURRENT FLOW	REACTIVE FLOW	
First Chamber				· · · · · · · · · · · · · · · · · · ·	
	C	PARTIAL ⁽²⁾ CREDIT	PARTIAL ⁽²⁾ CREDIT	NOT APPLICABLE	
Subsequent Chambers	•	•			
	C = C _{out}	C = C _{out}	$C = C_{out}/2$	C = C _{out}	
		C = (C _{out} + C _{in}))/2	•	

NOTES:

1. Definitions:

- C Characteristic Concentration (mg/L)
- C_{out} Dissolved ozone concentration at the outlet from the chamber (mg/L)
- $C_{\rm in}$ Concentration of ozone at the inlet to the chamber (mg/L)
- 2. 1-log of virus inactivation providing that $C_{\rm out} > 0.1$ mg/L and 1/2-log Giardia cysts inactivation providing that $C_{\rm out} > 0.3$ mg/L.
- 3. Alternatively, C may equal the average concentration as evaluated by the direct measurement method (Section 0.3.2).

- The rate of disinfection of viruses (coliphage) by ozone often decreases with respect to contact time whereby the initial inactivation rate is very fast and deteriorates afterwards.
- 3. Pilot plant experiments reported by Wolfe et al, (1989) suggest that the inactivation of organisms including MS2 bacteriophages, <u>Giardia</u> muris cysts, R2A bacteria and E. Coli, in the first chamber of a multiple-chamber reactor is very rapid even when high ozone demand waters are used.

Considering these items, EPA recommends a general guideline of crediting the first ozone chamber with CT credits equivalent to 1-log virus inactivation and 0.5-log <u>Giardia</u> cyst inactivation, provided that the residual concentration measured at the outlet from the first contact chamber exceeds 0.1 mg/L and 0.3 mg/L, respectively, regardless of the contactor configuration. However, this guideline does assume that the volume of the first chamber is equal to the volume of subsequent chambers. The credit for 1-log virus inactivation at an outlet residual of 0.1 mg/L may appear conservative with respect to MS2 bacteriophage data, however, only limited data for ozone inactivation of the animal viruses of concern is currently available. Preliminary test results indicate that bacteriophage may not be an appropriate indicator for virus inactivation by ozone (Finch, 1990).

Systems may prove higher performance of their first contact chambers by measuring the concentration profiles in the first chamber, as outlined in Section 0.3.2 or by applying the more sophisticated methods that are presented in Section 0.4.

0.3.3.2 Subsequent Chambers

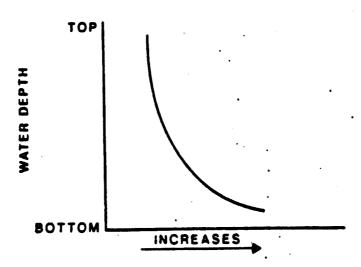
The correlations in Table O-6 are based on analysis of the dissolved concentration profile in liquid/gas contacting chambers. All correlations rely on the accurate measurement of ozone concentration outside of the gas/liquid contacting regime. Concentrations at the outlet from the ozone contact chambers can be measured accurately without interferences from the ozone bubbles. The correlations represent the highest possible estimate of C that can be supported without site-specific test data. These estimates are conservative and systems may choose to determine C based on

direct measurement of the concentration profile in the contact chamber, or use one of the procedures recommended in Section 0.4.

Correlations were developed for the four types of flow configurations:

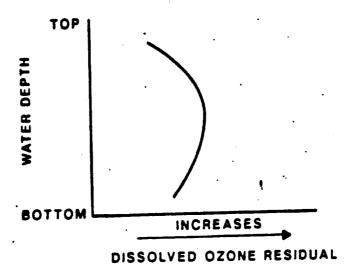
- Turbine
- Counter Current Flow
- Co-current Flow
- Reactive Flow

<u>Turbine</u>


For turbine chambers or rigorously mixed chambers, the flow characteristics in the chamber approach that of a CSTR and, therefore, the concentration at the outlet from the contactor ($C_{\rm out}$) is assumed to be representative of the dissolved concentration of ozone in the liquid phase (C). Currently, contactors using turbine agitators appear to approximate CSTR characteristics (Schwartz et al, 1990). Other systems with T_{10}/HDT values less than 0.33 may use the same correlations. This correlation is applicable to every chamber, including turbine contactors used for first chambers or as a single chamber contactor.

The measurement of ozone concentration in the gas phase is a possible alternative for determining C although such correlations will be highly site specific. A procedure to develop site specific correlations between the average ozone concentration and the off-gas concentration is presented in Section 0.4.2.1.

Counter-Current Flow


In counter-current flow, the water flows opposite to the direction of bubble rise. Measurement of the concentration profile in such systems revealed that the concentration in the liquid phase uniformly increased with depth in the ozone chamber as shown in Figure 0-15. The maximum concentration in the chamber is achieved near the water outlet from the ozone chamber.

Measurement of the ozone concentration in an ideal plug flow chamber reveals that the average concentration is only 25 to 50 percent of the outlet concentration for these chambers under typical operating conditions. Additional contributions to the average concentration that are not accounted for by the plug flow analysis, include the contribution of

DISSOLVED OZONE RESIDUAL

A. COUNTER-CURRENT FLOW PROFILE

B. CO-CURRENT FLOW PROFILE

FIGURE 0-15 - OZONE CONCENTRATION PROFILES

turbulence and the contribution of the inlet concentration. Based on these considerations, EPA recommends the use of one-half the outlet concentration of ozone as an estimate for C.

The measurement of ozone concentration in the off gas is a possible alternative for determining the average ozone concentration although the correlations will be highly site specific. A procedure to develop site specific correlations between the average ozone concentration and the offgas concentration is presented in Section 0.4.2.1.

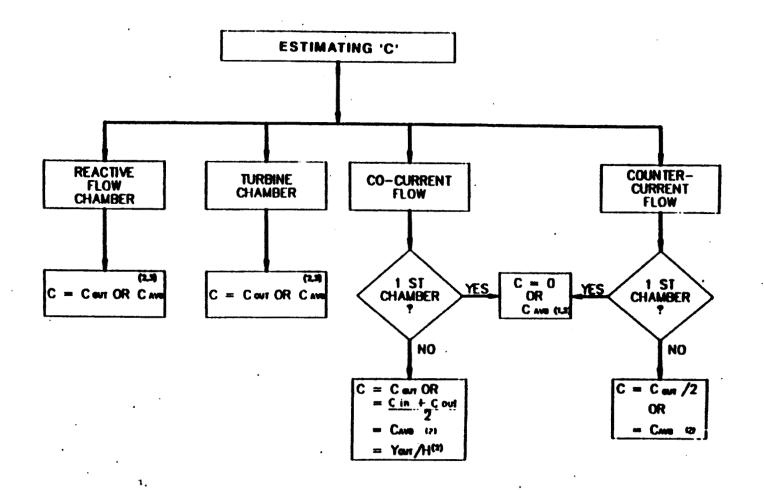
Co-Current Flow

In co-current flow, both the water and gas flow in the same direction. The ozone concentration profile in co-current operation increases until it reaches a maximum and then decreases along the contact chamber as shown on Figure 0-15. The dissolved ozone concentration increases at the beginning of the column due to dominant mass transfer from the ozone rich bubbles. Then the gas phase becomes depleted of ozone and the impact of ozone consumption in the liquid phase dominates the ozone profile. C can be estimated as the concentration of dissolved ozone at the outlet or by the average of the inlet and outlet concentrations of dissolved ozone, whichever is higher. This estimate should still be conservative, particularly for systems exhibiting high transfer efficiencies.

The measurement of ozone concentration in the off gas is a possible alternative for determining the average ozone concentration although the correlations will be highly site specific. A procedure to develop site specific correlations between the average ozone concentration and the off-gas concentration is presented in Section 0.4.2.1.

Reactive Flow

In ozone chambers operated in a reactive flow configuration, the water contains dissolved ozone residual from previous chambers but no additional ozone is being introduced. Reactive flow chambers are used: for other disinfectants, such as chlorine, chlorine dioxide and chloramines; for the decay of ozone following a contactor or a static mixer; and for combining ozone with hydrogen peroxide.


For static mixers, the mixer acts as a turbine chamber with the pipeline following the mixer acting as the reactive chamber. The pipeline is in effect the second chamber and the guidelines in Table 0-6 apply for the determination of C. The contact time in the pipeline can be calculated by assuming plug flow.

In order to be consistent with the recommendations for monitoring other disinfectants in reactive flow chambers, and in order to assure compliance under worst case conditions, the use of the residual outlet from the chamber ($C_{\rm out}$) is recommended as a conservative measure of C. The CT for reactive flow chambers may be estimated by dividing the chamber into subunits, measuring the concentration at the end of each subunit, and adding the CT credits.

Estimates of C based on the outlet concentration were conservatively developed based on available test data. EPA's recommended values for C are summarized in Table 0-6. A system may choose to perform additional testing for direct measurement of ozone residuals to support a higher value, if appropriate. In addition, a reactive flow chamber may be subdivided into smaller units with ozone measurements at the end of each unit to improve CT credit.

0.3.4 Estimating C

The results of this section are summarized in Figure 0-16. The decision tree shows the applicable methods of estimating C for each flow configuration, and provides a quick means to compare alternatives and make a selection.

NOTES: 1. CREDIT FOR I-log WRUS WHEN $C_{\text{out}} > 0.1 \text{ mg/L}$ AND 0.5 -log <u>GIARDIA</u> INACTIVATION WHEN $C_{\text{out}} > 0.3 \text{mg/L}$ FOR FIRST CHAMBERS.

- 2. DETERMINATION OF CAVG IN SECTION 0.3.2 AND YOUT/H IN SECTION 0.4.2
- 3. FOR FIRST OR SUBSEQUENT CHAMBERS.

FIGURE 0-16- DECISION TREE FOR ESTIMATING C

0.4 SITE-SPECIFIC EVALUATION OF OZONE CONTACTORS

0.4.1 Introduction

The second set of guidelines is designed to prevent systems from costly over-design and use of overdoses of ozone, by performing site specific characterization of their ozone contactors. This approach was partially utilized in the previous two sections by recommending a direct measurement of the ozone concentration profile and by allowing systems to use the SFA or CSTR approaches. In this section the site specific evaluation procedure will be further developed by presenting additional options to improve disinfection credits or simplify monitoring procedures. EPA recommends the following three alternatives for site specific evaluations:

- Estimating C by measurement of another variable
- Modeling performance of field scale operation
- Use of microbial indicator studies

C may be estimated by measuring an easily monitored (observable) variable. Systems should develop site specific correlations between C and another observable parameter such as the gas or liquid concentration exiting (C_{out}) the chamber and monitor this observable parameter instead of C. Guidelines to develop such site specific correlations are presented in Section 0.4.2

Modelling the performance of full scale operations is an alternative to the separate C and T approach. The first procedure separated the analysis into two separate issues related to determining C and T. Extensive modelling of the system may predict higher inactivation levels, even for the same C and T. EPA recommends that systems construct mathematical models of their ozone contactors to predict the disinfection performance, provided that the models are confirmed by experimental observation of the actual ozone concentration profile in the contact chambers, as discussed in Section 0.4.3.

Microbial indicator studies may be used to determine the inactivation of viruses and <u>Giardia</u> cysts in ozone contactors. EPA recommends that systems be allowed to evaluate the performance of their disinfection systems by spiking a pilot of the contactor with an indicator microorganism and predicting the actual inactivation of <u>Giardia</u> cysts and viruses

based on the inactivation of the indicator microorganisms. Guidelines to conduct such pilot scale performance evaluations are presented in Section 0.4.4.

0.4.2 <u>Site Specific Correlation of C with an Observable Variable</u>
Section 0.3 recommends determining the concentration of ozone in contactors by one of the following ways:

1. Measure the concentration profile in the chambers and determine the average dissolved ozone concentration for C.

100

44--

2. Measure the dissolved concentration of ozone in the water outlet from each chamber ($C_{\rm out}$) and estimate C by the correlations presented in Tables 0-6.

This section presents an alternative method to determine C.

The SWTR requires unfiltered systems to report a daily CT for their disinfection systems. Similar requirements may be specified by the Primacy Agency for filtered systems. Measuring the concentration in the ozone chambers each day may be difficult. Determining the ozone concentration in a chamber by continuous or daily measurements of other variables is probably preferable. Likewise, many systems may prefer to monitor the ozone concentration in the off gas $(Y_{\rm out})$ or via the applied ozone dose rather than monitor $C_{\rm out}$. However, based on available data, a non-site specific correlation between the average ozone concentration in the chamber and an observable variable other than $C_{\rm out}$ could not be developed.

EPA encourages systems to develop such site specific correlations and use them instead of the general procedures. These correlations may be developed in one of the following ways:

- 1. Determine site specific correlations between $C_{\rm out}$ and another variable that can be easily monitored. Measure the variable, estimate $C_{\rm out}$ and then use the correlations presented in Tables 0-6 to predict C.
- 2. Determine site specific correlations directly between C and another variable such as the ozone concentration in the off gas (Y_{out}) or C_{out} . Measure that variable and estimate C.

Correlations between C or $C_{\rm out}$ and a measurable parameter may vary in complexity from a simple empirical linear correlation to a highly sophisticated mathematical model accounting for the ozone concentration profile in the contact chamber. Development of appropriate correlations depends on the engineering capabilities of the utility. Therefore, EPA does not recommend any particular mathematical relationships. However, the following sections present guidelines to assist systems in developing appropriate correlations.

Correlations for Specific Chambers

The correlations should refer to a specific contact chamber and should be verified to fit the performance of this chamber. For example, a correlation for the first chamber should not be used to predict C in the second chamber of a multiple-chamber system.

Developing the Correlation

When fitting the correlation with experimental data, a record of the following variables should be kept:

- a. Water flow rate
- b. Gas flow rate
- c. Ozone concentration in the gas feed
- d. Ozone transfer efficiency
- d. Water temperature and pH
- e. Concentrations of all major inorganic reducing agents, if they constitute a substantial proportion of the total ozone demand, such as iron(II) and manganese, TOC, alkalinity and turbidity.
- f. Cour or whatever is being correlated
- g. The measurable variables such as ozone dosage or $C_{
 m out}$

The system should also record the dependent (C or C_{out}) and independent measurable variables.

Application of the Correlation

The correlation should be evaluated with at least a 90 percent confidence level. Since confidence margins are very sensitive to the number of observations used to develop the relationship, this requirement will prevent the use of correlations that are based on a limited amount of observations. On the other hand, because systems usually make daily records of most of the parameters needed to develop a correlation, the number of observations will usually be very high, thereby, providing a high confidence level for the correlation. Simple procedures to determine confidence intervals are presented in statistical textbooks.

्रेस कुल्ला

-

1

3

SEC.

THE A.

The correlation must be checked periodically, such as monthly, as an additional precaution against unexpected shifts in water conditions.

The correlation should be applied only to conditions that are within the parametric range for which the correlation was developed, as noted in the second guideline. Interpolation is permitted but extrapolation is not. Correlations developed during the winter time should not be used to evaluate performance in the summer.

EPA believes that by permitting such correlations, systems will be encouraged to apply sophisticated mathematical models in order to decrease the confidence interval and administer smaller doses of ozone. EPA also expects that systems will develop correlations between C in the contactors and measurable parameters to simplify their operations. Small or lesser equipped systems will then be able to use these relationships to estimate the performance of their ozone contactors. EPA intends to follow advances in this field and issue updated examples and guidelines regarding the selection of efficient site specific correlations.

0.4.2.1 Utilizing Off-Gas Measurements

In ozone contactors, the gas and liquid streams equilibrate when the contact between the gas and liquid is intimate enough and for sufficient time, otherwise the concentration in the water phase will be much lower than the equilibrium concentration. It can be assumed that close to equilibrium conditions are reached, when the transfer efficiency in the contactors is greater than 85 percent $((Y_{in}-Y_{out})/Y_{in}>0.85)$. When the transfer efficiency is greater than 85 percent, systems may use solubility

constant data to calculate $C_{\rm out}$ from the contactor, based on the ozone concentration in the off gas. This may lead to a slight over estimate of the concentration in the liquid phase but this over estimate is justified, in view of the better reliability of gas phase measurements.

Henry's constants for ozone at various temperatures are presented in Table 0-7. The residual concentration of ozone may be estimated by:

Where:

Y_{out} = The concentration of ozone in the gas phase (ppm - volume or partial pressure-atm)

C_{out} = The concentration of ozone in the liquid phase (mg/L)

H = Henry's constant (atm/mq/L)

When applying off-gas modelling, liquid phase measurements must be made periodically to check the correlation, as the ozone transfer efficiency has a high impact on the results of this correlation.

Systems must be cautioned against the use of off-gas measurements for multiple chamber contactors with a common headspace. As noted previously, modelling must be specific to individual chambers. Thus, if a contactor has a common head space between chambers, no distinction can be made as to the concentration in each chamber. Therefore, off-gas measurements for modelling are recommended for use with single chamber contactors.

Example 0.4-1

The Metropolitan Water District of Southern California conducted off-gas monitoring on a single chamber co-current flow pilot contactor to determine the dissolved ozone concentration:

- Operating conditions were as follows:
 - source water: Colorado River
 - feed gas ozone concentration = 2 percent by weight
 - off gas ozone concentration = 0.185 percent by weight (or 0.123 percent by volume)

- transfer efficiency = 90.8 percent
- temperature = 16.5 C
- observed ozone residual = 1.04 mg/L
- Henry's constant 16.5°C = 0.001179 atm/mg/L
- The ozone residual estimated from the off gas concentration is:

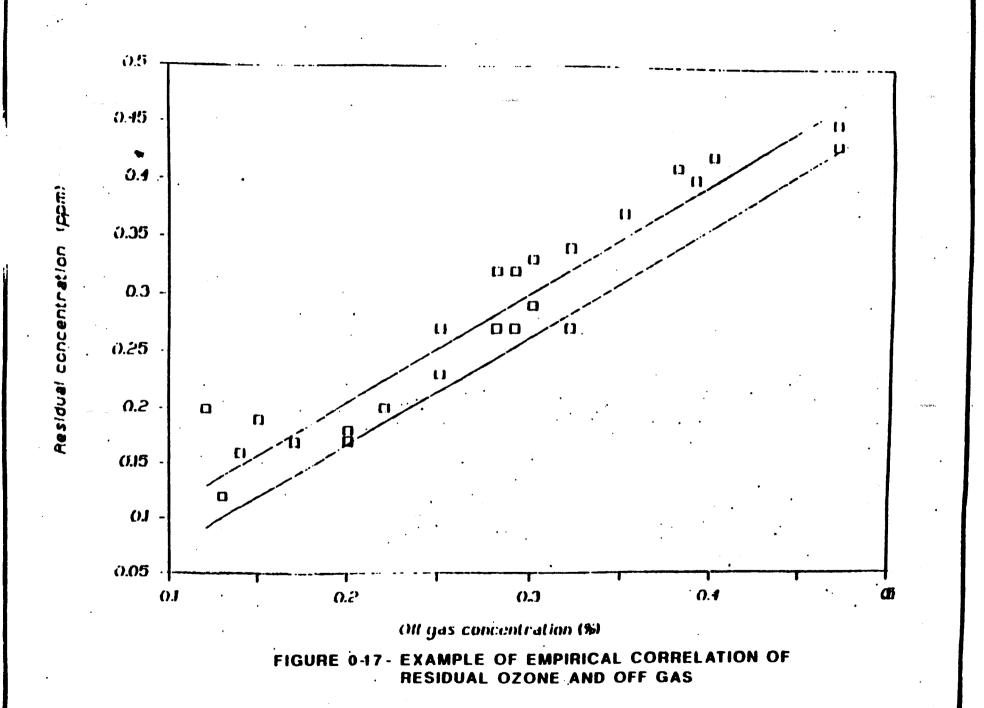
 Cout=Yout/H = 0.00123/0.001179

 = 1.04 mg/L
- The measured residual is the same as that predicted by the off-gas measurement indicating that this approach is appropriate for this system.

Example 0.4-2 Empirical Correlation between Cour and Yout

A system using two counter-current contact chambers in series wants to predict $C_{\rm out}$ in the second chamber by the concentration of ozone in the off-gas $(Y_{\rm out})$. Daily observations of the pertinent parameters during the first month of operation are presented in Table 0-8.

- The system chose to correlate C_{out} and Y_{out} by linear empirical correlation.
- The daily observations, and the best linear fit are presented in Figure 0-17.
- The 90 percent confidence interval is presented by the lower line in Figure 0-17.
- The system may use the 90 percent confidence level line to estimate $C_{\rm out}$ based on measurements of $Y_{\rm out}$.
- For example when Y_{out} = 0.4 percent then the system may use C_{out} = 0.36 mg/L.
- Although the best estimate is $C_{\rm out}$ = 0.4 mg/L, the system should predict $C_{\rm out}$ = 0.36 mg/L.
- Now, according to Table 0-6, the system may predict C using the recommended guideline of C = $C_{out}/2 = (0.36)/2 = 0.18$ mg/L.
- The system measures the ozone concentration at the chamber outlet monthly, to check the model correlation.


TABLE 0-7
HENRY'S CONSTANTS FOR OZONE(1)

Water Temperature (°C)	Henry's Constant atm/Mole Fraction	Henry's Constant (atm/mg/l ozone)
0	1,940	0.00073
- 5	2,180	0.00082
10	2,480	0.00093
15	2,880	0.00108
20	3,760	0.00141
25	4,570	0.00171
30	5,980	0.00224

NOTE: (1) EPA, 1986

TABLE 0-8
Empirical Correlation
Between Cout and Yout

Yout	Cout	COD	Temp. °C	Yin%
0.5 0.47	0.5 0.43	2.0 2.8	20 15	2.0 2.0
0.38	0.41	2.5	. 17	2.0
0.39 0.28	0.4 0.32	2.3 2.4	18 18	2.0 2.0
0.2 0.25	0.17	2.6	20	2.0
0 25	0.23	2.0	20	2.0
0.32 0.29	0.27 0.27	2.0 2.0	21 18	1.9 1.9
0.2	0.18	2.0	17	2.0
0.22	0.2	1.9 1.8	18	2.1
0.30 0.32	0.33 0.34	1.9	20 17	2.0 · 2.0
0.28	0.27	1.9	18	1.8
0.29	0.32 0.42	2.5	18 19	1.9 1.9
0.4 0.47	0.45	2.4 2.3	19	1.8
0.35	0.37	2.4	21	1.9
0.30	0.29 0.17	1.9 1.9	19 19	1.8 1.8
0.20 0.15	1.19	2.0	19	2.0
0.12	0.20	1.9	17	2.0
0.17	0.17 0.16	1.9 2.0	19 19	1.9 2.0
0.14 0.13	0.12	1.9	18	2.0
0.25	0.27	1.9	17	2.0
0.29	0.32 0.29	1.9 1.8	18 17	2.1 2.0
0.30 0.22	0.29	1.9	17	2.0
0.22	0.20	1.9	18	1.9

If this system had the means to monitor the concentration profile in the contactor and determine C directly it could develop a correlation between C and Your instead of using Table O-6.

0.4.3 Modeling the Performance of Full Scale Operations

More extensive site specific mathematical modelling of the actual performance of the ozone contactor may determine higher inactivation levels than those determined by the separate C and T approach. Therefore, systems should be allowed to use such advanced modelling, provided that these models are confirmed by direct measurement of the dissolved ozone profile in the contactor. Only after the model is confirmed to correctly estimate the concentration profile in the contactor can it be used to estimate the inactivation performance of the contactor. Systems with multiple chamber contactors must develop models for each of the chambers.

Various types of mathematical models for reaction-diffusion systems were reported (Danckwerts, 1976) and some were shown to be applicable for ozone contactors (Gurol and Singer, 1982). This section deliberately avoids giving preference to any type of mathematical modelling in order to encourage engineering innovations. The guidelines presented below may help systems to select appropriate modelling that will be consistent with the requirements of the SWTR.

The model should account for the ozone demand of the water being treated in the contactor. The rate of ozone reaction and decomposition should be based on batch experiments, on-site pilot plant columns, or full-scale measurements.

The model should represent the actual flow distribution in the ozone contact chambers by incorporating a dispersion term and/or a three dimensional velocity distribution term in the contactor.

The modelled profile of the concentration of dissolved ozone in the contactor should fit the actual distribution of dissolved ozone, as verified by direct measurements, with a variation of less than 10 to 20 percent. This difference between the model and measured residual allows for the inherent inaccuracies in measuring the actual ozone residual. The mathematically modelled concentration profile should not be used without comparing it with actual measurements. Even elaborate mathematical models

are not considered reliable enough to estimate the concentration distributions of dissolved gasses in complex gas/liquid operations, without additional verification of the actual concentration profile in the contactor.

In addition to the above guidelines, the model may also account for other phenomena that may affect the performance of the ozone contact chambers, such as: the effects of varying bubble diameter during its movement through the contactor, the effect of stagnant regions in the contactor and the variation of the hydrostatic pressure.

For example, a system may use the two film theory coupled with reaction kinetics to estimate the performance of an ozone contact chamber. Using the two film theory the relevant differential equations are:

L dC/dz = Mt + Mr + Md

G dy/dz = Mt

L dI/dz = Md - KCI

Where:

- C = Concentration of dissolved ozone (mg/L)
- G = Gas flow rate per cross section of the contactor (m².Kg gas/min)
- I = Concentration of the target microorganism (Giardia or viruses)
- L = Water flow rate per cross section area of the reactor (Kg water/min.m²)
- y = Concentration of ozone in the gas phase (mg/L)
- z = Length coordinate of the contactor
- Mt = An expression for ozone transfer from the bubble phase to the water phase. For example, $k_i a(C_i C)$ where $k_i a$ stands for the volumetric mass transfer coefficient, C_i represents the interfacial concentration of ozone, given by solubility data (Table 0-10).
- Mr = An expression for the rate of ozone consumption in the water due to auto-decomposition and the ozone demand of the treated water. For example, Mr= k_1 C - k_2 (C)(R). Where k_1 and k_2 are kinetic coefficients, and R represents the variable ozone demand, such as TOC. An additional equation may be required to represent the variation of R along the contactor.

An expression for the dispersion by turbulence and bubble flow of dissolved ozone in the specific contactor. For example, Dd²C/dz² the dispersion coefficient (D) may be evaluated by analysis of tracer study data. The third equation describing the microorganism concentration (dI/dz) should incorporate the same dispersion coefficient (D).

KCI= Chick's inactivation term (K=2.303k, where k = Chick-Watson's inactivation coefficient presented in Table 0-4, C represents the local concentration of ozone and I represents the concentration of microorganisms).

The validity of these equations is subject to the appropriate boundary conditions at the bottom and top of the contactor. The signs of the various terms depend on the definition of coordinates and the type of flow configuration (co-current or counter-current flow configuration).

0.4.4 Microbial Indicator Studies to Model Inactivation Contactors According to the recommendations in Appendix G, systems may demonstrate the actual performance of a disinfection system rather than rely on the CT approach. The procedures outlined in Appendix G recommend the use of Giardia muris cysts as indicators of Giardia inactivation and bacteriophage (MS2) as indicators for virus inactivation by disinfection However, recent data indicate that MS2 phages may be in general. substantially more sensitive to ozone disinfection than pathogenic viruses, and therefore are not a good indicator for determining adequate ozonation conditions for inactivating pathogenic viruses (Finch, 1990). Additional research is needed to determine which coliphage species, if any, can be used as an appropriate indicator for virus inactivation by ozone. Pilot scale inactivation experiments using appropriate indicator microorganisms can serve as powerful tools to indicate the performance of the ozone contactors. This section contains guidelines for conducting At this time, full-scale testing with indicator indicator studies. organisms is not feasible because of the high volume of organisms needed and the concern for introducing organisms into the finished water. However, with the development of naturally occurring indicators such as resistant species of coliphage, demonstration on the full-scale level may be feasible in the future.

Systems may determine the performance of their disinfection basins by demonstrating levels of inactivation of indicator microorganisms such as <u>Giardia muris</u> cysts, or other indicator microorganisms provided that such demonstrations are based on solid engineering principles. The following steps can be used for conducting indicator studies:

1. Batch Experiments

On-site batch disinfection experiments are recommended with treated water spiked with indicator microorganisms to determine the inactivation kinetics of the indicator used in the pilot scale experiments. Microorganisms should be used as indicators preferably in the range where the inactivation kinetics approximate Chick's law. This protocol assumes that within the desired inactivation range, the inactivation kinetics will approximate Chick's law. It-is important to note that other disinfection kinetic models, not yet apparent, may be developed to more accurately predict ozone inactivation efficiency than the Chick-Watson model. Evidence that other models may be more appropriate is shown with data generated by several researchers for different organisms (Wolfe, R.L. et al, 1989; Finch G., et al 1988; Finch G. and Smith, D.W. 1989).

2. Pilot Scale Indicator Experiments

Pilot-scale experiments should then be conducted using identical strains of biological indicators to those used in the batch experiments. The pilot-scale experiments should be repeated under identical gas and water flow conditions with and without introducing ozone into the gas stream. The actual performance may then be calculated by subtracting the inactivation achieved in the control experiment (without ozone) from the inactivation achieved in the ozone disinfection experiments.

3. Evaluation of Inactivation Performances

Systems may choose direct or indirect methods to interpret the inactivation performance of ozone contactors based on indicator studies. The direct method is more conservative and simple while the indirect method is more accurate but requires mathematical modelling of the contactors. The two procedures are outlined below:

1. Direct prediction of inactivation performance

a. Determine k_i (where k_i is Chick-Watson's inactivation coefficient of the indicator microorganism) from batch test data with the expression:

 $log(I/I_0)_{indicator} = -k_iCt$

where:

 $(I/I_0)_{indicator}$ = Survival ratio of indicator microorganism determined by batch experiments.

Dissolved ozone concentration in the batch
experiment (mg/L)

t = time (minutes) elapsed from the beginning of the batch experiment

Note: This assumes that the inactivation data will provide a reasonable fit for this equation. If this is not true, then the following is not applicable and other relationships should be developed.

- b. Determine the disinfection performance of the pilot scale disinfection system on the indicator microorganism $(I/I_0)_{indicator}$.
- c. Calculate the inactivation of <u>Giardia</u> cysts or viruses (I/I_0) using the appropriate k' values from Table 0-3:

$$\log(I/I_0) = \log(I/I_0)_{indicator} (k'/k_i) \theta (ki > k)$$
 (7)

$$\log (I/I0) = \log (I/I_0)_{indicator} (ki < k)$$
 (8)

This equation still represents an approximation because it neglects dispersion effects. The laws used in deriving the above equations are based on conservative similarity approaches. When the indicator microorganism is less resistant to ozone disinfection than the target organism $(k_1 > k)$, then the plug flow operation represents the more conservative prediction approach. Equation 7 is based on the assumption that the flow configuration in the chamber approaches plug flow. When the indicator microorganism is more vulnerable then the target microorganism $(k_1 > k)$ then the CSTR approach provides a more conservative estimate. Equation 4 represents a conservative approximation to the CSTR similarity

rule. A more accurate determination of the inactivation performance of the contactor may be calculated by the following approach:

2. Indirect determination of the disinfection performance

a. Determine k, (where k, is Chick-Watson's inactivation coefficient of the indicator microorganism) from batch test data with the expression:

log(I/Io) indicator & -kiCt

where:

 $(I/I_0)_{indicator}$ = Survival ratio of indicator micro-organisms as determined by batch experiments.

- C = Dissolved ozone concentration in the batch experiment (mg/L)
- b. Determine the disinfection performance of the pilot scale inactivation level of the indicator microorganism $(1/I_0)_{indicator}$.
- c. Determine the actual concentration profile in the disinfection chamber (see Section 0.3.2).
- d. Construct a mathematical model that estimates the concentration profile in the contactor as discussed in Section 0.4.3
- e. Confirm the mathematical model by fitting its parameters such as dispersion or kinetic coefficients to describe accurately the concentration profile of ozone in the contactor and the overall inactivation of the indicator microorganism. A model that predicts within 10-20 percent the inactivation of the indicator microorganism and the concentration profile of dissolved ozone in the contactor would be considered to be valid and can be used by incorporating k values from Table 0-3 to estimate the inactivation of Giardia cysts or viruses in the contactor.

REFERENCES

- Bader, H. and J. Hoigne, Determination of Ozone in Water by the Indigo Method, A Submitted Standard Method, Ozone: Science and Engineering, pp 449-456, 1982, 4
- Carns, K, Design of East Bay Municipal Utility District ozone disinfection plants in Oakland Ca., presented at EPA workshop on Ozone CT, Cincinnati, OH., Feb. 1990
- Chick, H., An investigation of the laws of disinfection, J. Hygiene, 8, 92 (1908)
- Danckwerts, P.V. Gas Liquid Reactions, McGraw Hill Inc. (1976)
- Finch, G.R., Smith, D.W., Stiles, M.E., Dose Response of <u>Escherichia Coli</u> in Ozone Demand-free Phosphate Buffer, Water Research Vol. 22, No.12, pp. 1563-1570, 1988.
- Finch, G., University of Alberta, Canada, Private Communication (1990).
- Hoff, J. C., Strengths and weaknesses of using CT values to evaluate disinfection practice, in assurance of adequate disinfection, or C-T or not C-T, AWWA seminar proceedings, Annual AWWA Conference, Kansas City, pp. 9 (1987)
- Gurol M.D. and P.C. Singer, Kinetics of ozone decomposition, A dynamic approach, Env. Sci. & Tech., 16, 377 (1982)
- Joost, R.D., L.A. Jackson and L.J. Bollyky, Optimization of ozone contactors for drinking water disinfection, Proceedings of the 9th Ozone World Congress, L.J. Bollyky, Editor, New York, NY, vol 1, pp. 551 (1989).
- Lev, O. and S. Regli, Compliance of ozone disinfection systems with the Surface Water Treatment Rule, Selection of characteristic exposure time (T), submitted to J. of Env. Eng. ASCE (1990a)
- Lev, O. and S. Regli, Compliance of ozone disinfection systems with the Surface Water Treatment Rule, Selection of characteristic concentration (C), submitted to J. of Env. Eng. ASCE (1990b)
- Levenspiel, O., Chemical Reaction Engineering, 2nd ed. Wiley, New York, NY (1972).
- Perry R.H., Perry's Chemical Engineering Handbook, McGraw Hill Book Company, New York, NY (1963)
- Richards, D. A. and Fleischman, M., Ozone transfer to aqueous systems in a static mixer, 2nd Symposium on ozone technology, Montreal, Canada, R. G. Rice, P. Pichet and M. A. Vincent, eds, p. 57 (1975).

Rice, R. EPA, in preparation, Source Document: Ozone Treatment of Drinking Water, EPA/625/1-86/021.

Rosenbeck, G.L, McMahon Associates, Inc., Private communication (1989)

Schwartz, B., Hackensack Water Company, Private communication (1989)

Schwartz, B., L.C. Fung and C. N. Weng, Determination of ozone concentration in turbine contactor, presented at EPA Workshop on Ozone CT, Cincinnati, OH., Feb. 1990

Seinfeld J. H. and Lapidus L., Mathematical methods in Chemical Engineering, Vol. 3, Process Modeling Estimation and Identification, Prentice Hall Inc. (1984).

Stolarik, G.L. and J. D. Christie, Projection of ozone C-T values, Los Angeles Aqueduct Filtration Plant, presented at Int. Ozone Assoc. Conf. Monroe, Mich., April 1987.

Stolarik, G.L. and J. D. Christie, Projection of ozone C-T values, Los Angeles Aqueduct Filtration Plant, presented at EPA workshop on Ozone CT, Cincinnati, OH., Feb. 1990

Treybal, R.E., Mass-transfer operations, McGraw-Hill Book Company, 3rd ed. (1980)

Watson, H.E., A note on the variation of the rate of disinfection with change in the concentration of the disinfectant, J. Hygiene, 8, 536 (1908)

Wolfe, R.L., M.H. Stewart, K.N. Scott and M. J. McGuire, Inactivation of Giardia Muris and indicator organisms seeded in surface water supplies by peroxone and ozone, Env. Sci. and Tech., 23, 744 (1989)

Yuteri C. and Gurol M.D. Evaluation of kinetic parameters for the ozonation of organic micropollutants, Wat. Sci. & Tech. 21, 465 (1989)

Appendix 2a

Question	naire	III =	Pre	limina	ry Well	Eva:	luation	by	GWUI	OI Ri	Lsk
${ t Points}^1$	for	Priority	of	GWUDI	Evaluat	tion	Includi	ing	MPA	Test	s

Systems Name	PWS ID#	Well #
Evaluator: Reviewer(s) ³ :	Date: Date:	
Total W	# +	SW GW
A. Water Quality (WQ) A.1. Multiply MPA test reviewer may multiply the MB	t result (if available) f	
wells are considered hydraul relatively rapidly and unfil	ltered between the wells.	-
public health considerations (<4) number of samples and r collected by the ADH. If on available, divide the points	may also choose to consid ly one sample that is con	ider a very limited er only samples sidered reliable is
P/FCP samples tot	x 80 =	; and points
P/FCA samples ÷	otal samples X 30 =	; andpoints
(÷ to) X 20 =	 points

A.3. Nitrate test(s) (if available). If results of highest tests are:

NO₃ Detected, result \geq 0.1 ppm --- ascribe 5 = ____; or Confirmed NO₃, result \geq 2 ppm ---- ascribe 10 = ____; or Confirmed NO₃, result \geq 5 ppm ---- ascribe 40 = ___; or.

¹ In general: <50 GWUDI (Ground Water Under the Direct Influence of surface water) Risk Points is the threshold for determining a well not GWUDI; ≥ 50 and <150 points usually requires performing a detailed GWUDI evaluation that may include an MPA test; and ≥ 150 points may be an automatic GWUDI (contingent on review. Priority of evaluation is based on the total points.

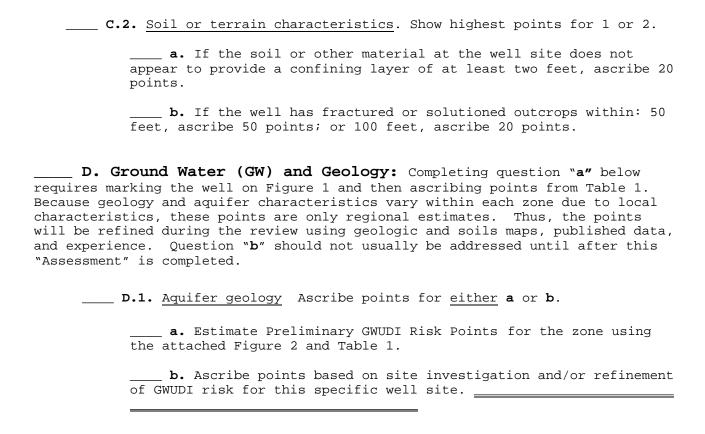
Short descriptions of the site location (well is behind store, well is near creek, etc.) are appropriate. Space for longer comments, site sketches, and/or more complete answers to specific questions is provided on page 5.

³ The reviewer(s) may modify the points for any question due to specialized experience regarding grout method, soils, geology and other factors.

Confirm. NO_3 , MCL Violat. \geq 10 ppm -- ascribe 50 = _____ .

- A.4. Water quality and environmental data. These points are based on the evaluator's observations or by asking the operator, or some other reliable person that is knowledgeable about the well, the first four questions shown. Based on the ADH evaluator's experience, "e" can be used to ascribe points for other documentation, observations, and/or anecdotal evidence indicating a probable GWUDI condition.
 - ___ a. Is the well's water is dingy, cloudy, murky, or muddy after a rain or after a high stage in a nearby river, lake, or other potential source? If yes, ascribe 50.
 - ___ b. Does the well's water level correlate to environmental changes, for example a rainfall event or a high stage in a nearby river, lake, or other potential source? If yes, ascribe 30.
 - ____ c. Does the well's water quality (excluding turbidity), such as taste or smell, change after a rain or after a high stage in a nearby river, lake, or other potential source? If yes, ascribe 20.
 - $\underline{}$ **d.** Does the well produce less water during a dry period? If yes, ascribe 5.
 - ____ e. Other GWUDI indication(s) are _____

____ B. Well Construction (WC).

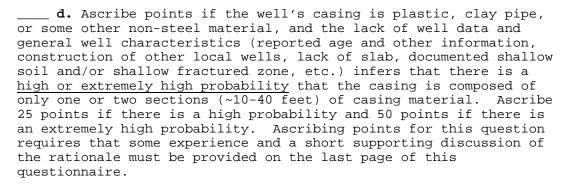

- $__$ B.1. Well-site location/drainage, above-ground construction, and special well condition(s).
 - _ a. The site location and/or drainage characteristics do not conform to minimum established standards for a public water supply well and minor construction/maintenance will not correct these deficiencies. Further, there is evidence or strong inference that the deficiencies contribute to GWUDI. These include: 1) possibly unsafe conditions within 100 feet of the well (septic, improperly abandoned well, etc.); and/or 2) a site that does not have a good surface drainage (not at a higher elevation than, and a safe distance -- runoff can increase a safe distance to hundreds of feet -- from a source of contamination). Inform the owner/operator that this condition is not in conformance with the current ADH regulations and that the ADH may recommend/require some remedial action. Ascribe 50 points and annotate "Site Problem -- not easily repaired" on the bold line immediately below the Total line near the top of the first page. A photograph or sketch on page 5 of this questionnaire is necessary to document this condition. Describe the condition ____
 - ___ b. The above-ground site and/or construction has characteristics that do not conform to minimum established standards for a public water supply well and minor construction and/or maintenance will correct these deficiencies. Inform the owner/operator of the fact that a letter addressing the deficiencies and required remedial action will be forthcoming and annotate "Above-Ground Deficiency -- to be Repaired" on the bold line immediately below the Total line near the top of the first page. The risk points ascribed for these deficiencies are: minor drainage

- ____ c. The well is hand dug and has characteristics usually associated with a well for a private residence; experience has shown that this type of well is almost certainly GWUDI. Inform the owner/operator that the well is considered to be an extremely high risk for GWUDI and that the ADH will provide a more detailed evaluation on a priority basis. It must be noted that an MPA test may not be required for these wells. Ascribe 100 points and annotate "GWUDI?? -- Hand Dug" on the bold line immediately below the Total line near the top of the first page. A photograph/sketch and description on page 5 of this questionnaire is necessary to document this condition.
- ____ e. The well has a <u>pitless adapter</u>. Inform the owner/operator that this condition is not in conformance with the ADH regulations and that the ADH may require installing an above-ground well head. Carefully inspect and document the installation as completely as possible. Particular emphasis should be on how well the below-ground construction is sealed. Ascribe 50 points and annotate <u>"Pitless Adapter"</u> on the bold line immediately below the Total line near the top of the first page. Photographs/sketches and a discussion on page 5 of this questionnaire is required to document this condition.
- _____ B.2. Below-ground construction characteristics (casing depth, grout seal, etc.) The above-ground slab is also considered under these questions because experience has shown that wells with originally constructed slabs are more likely to have better (and safer) below-ground construction than those without slabs.
 - ___ a. The well's below-ground construction is not documented or reported by a reliable source (operator, ex-operator, well-driller, engineer, etc.) and this well has the following characteristics.
 - 1. The well casing is not enclosed in a slab, and no grout (or what appears to be a cement mix) is visible or the grout-like material appears to be defective (crumbling, etc.), ascribe 30 points.

- 2. The well casing is enclosed in a cracked, broken, or decomposing slab, ascribe 15 points.
- 3. The well casing is enclosed in a properly constructed slab, ascribe $5\ \mathrm{points}$.
- _____ b. The well's below-ground construction is documented or reported by a reliable source (see "a" above) to have the following characteristics. A grout seal under "b.2" and "b.3" is assumed to be from the ground surface down; the reviewer will modify the ascribed points for grout ending below the surface.
 - 1. The well has no grout seal and no slab (or what appears to be a properly constructed slab), and the casing is: < 20 feet, ascribe 40 points; \geq 20 and < 50 feet, ascribe 30 points; \geq 50 and < 100 feet, ascribe 15 points; or \geq 100 feet, ascribe 5 points.
 - 2. The well has a grout seal and no slab (or an inadequate or improper slab) and the grouted casing is: < 20 feet, ascribe 30 points; \geq 20 and < 50 feet, ascribe 23 points; \geq 50 feet < 100 feet, ascribe 12 points; or \geq 100 feet, ascribe 0 points.
 - 3. The well has both a grout seal and a proper slab and the grouted casing is: < 20 feet deep, ascribe 20 points; \geq 20 and < 50 feet deep, ascribe 15 points; or \geq 50 feet < 100 feet deep, ascribe 8 points; or \geq 100 feet, ascribe 0 points.
- ____ C. Surface Water (SW) and Soils Do not ascribe points under this section for the same deficiencies noted under B.1.

____ C.1. Distance to surface water source

- ____ a. The well is located in a floodplain, river channel, or similar fluvial environment and reported or observed indications (debris lines, etc.) infer that seasonal surface water flows at the well. Show points for either 1 or 2 below.
 - 1. The flow is at the <u>level of the well's base</u>: ascribe 30 points if the well doesn't have structural protection (a well house or shed that appears reasonably water tight, etc.); or ascribe 20 points if the well has structural protection.
 - 2) Flow is at the <u>level of the well's head</u>: ascribe 50 points if the well doesn't have structural protection; or ascribe 30 points if the well has structural protection.
- ____ b. If the well's location from a potential surface water source is: < 20 feet, ascribe 50 points; \geq 20 feet and < 50 feet, ascribe 30 points; \geq 50 and < 100 feet, ascribe 15 points; \geq 100 and < 150 feet, ascribe 10 points; or \geq 150, ascribe 0 points. Further, the evaluator must estimate any elevation difference (+ or -) between the source(s) and the well to allow the reviewer to modify the points. Comments:


Additional information (photos, sketches, and comments) -- add pages if necessary.

Is	aquifer	limestone unit(s) or in Spring. Plat.?	50
Is	aquifer	in Salem Plateau ?	35
Is	aquifer	<pre>interbedded carbonates/Ss/Sh ?</pre>	25
Is	aquifer	interbedded shale/Ss or in Ouachitas?	15
Is	aquifer	alluvial material?	10
в.	Struct	ural (check highest yes)	
Is	well < 5	miles from Euraka springs escarp.?	10
Is	well in	<pre>fractured zone (near graben, fault, etc.)?</pre>	. 5
Α.	₩ ⊝ 11 (onstruction	

A. Well Construction

Casing Depth

If the condition of the above-ground casing infers that the below-ground casing may have portions rusted out (steel casing) or cracked and broken (plastic or clay pipe), ascribe 50 points.

- **____ e.** If casing depth is ≤ 40 feet, ascribe 50 points.
- ____ f. If casing depth is 40-60 feet, ascribe 25 points.

____ B.2. Casing grout depth and range:

- ____ a. If grout (or what appears to be a cement mix) is visible around the casing and this material appears to be decomposing (or the slab appears to be decomposing), ascribe 25 points.
- ____ b. If the well is reported or documented to have been grouted, but there are significant indications (reported or documented information, general construction characteristics of well or nearby wells, etc.) that the well is probably not pressure grouted, ascribe 15 points.
- $\underline{\hspace{1cm}}$ **c.** If the grout range (reported or documented) is from the bottom of the casing up to less than the land surface, ascribe 35 points.
- ____ **d.** Well is documented as pressure grouted (or evidence infers that it is) from the land surface to: \leq 50 feet, ascribe 25 points; or 51-100 feet, ascribe 15 points.

____ B.3. Well site characteristics

- ____ a. If the well site is susceptible to runoff or flooding due to the terrain and if this deficiency is not easily correctable with minor construction or maintenance, ascribe 25 points.
- ____ **b.** If an improperly abandoned water well's location is: ≤ 100 feet, ascribe 50 points; or ≤ 200 feet, ascribe 25 points.
- ____ c. If some other source, see examples at the end of this assessment, of potential well contamination is: \leq 100 feet, ascribe 50 points; or \leq 200 feet, ascribe 25 points.

Appendix 2b

System Name:, Well no	
Work Sheet Questionnaire GWUDI Risk Indicators (The questions for each indicator are shown in parentheses on this summary sheet.)	
SUMMARY OF GWUDI RISK INDICATORS SHOWN IN TABLE 1	
. Numeric indicators: If the Total Numeric Indicator is \geq 100 the well is determined GWUDI.	
.A. Water Quality (WQ) Questions	
I.A.1. Microscopic Particulate Analysis (MPA) questions (WQ-1,-2)	
<pre>I.A.2. Raw-water test results questions (WQ-3,-4,-5,-6)</pre>	
I.A.3. Chemical analysis and environmental data questions (WQ-7,-8,-9,-10)	
Subtotal (WQ-1 WQ-10)	
.B. Well Construction (WC) Questions	
Subtotal (WC-1 WC-7)	
Total Numeric Indicator, all WQ and WC questions I. Descriptive indicators: These supplemental indicators are not directly us numeric GWUDI determination, but are provided as supporting information.	ed
II.A. All Surface Water and Soils questions (SW&S-1,-2)	
<pre>II.B. All Ground Water and Geology questions (GW&G-1,-2)</pre>	
II.C. All Other Factor questions (OF-1,-2)	
Summary of Above-Ground Well Construction shown in Table 3: The well's conformance to established above-ground standards for siting, construction, a maintenance are also documented in section I.B., Questions WC-1,-2, and -3. These are summarized below; YES is acceptable and NO indicates deficiencies a present.	
Site - slope and drainage (WC-1)	
Slab - size and condition (WC-2)	
Casing - height and condition (WC-3)	
Casing - seal and vent (WC-3)	
Evaluator: Date:	

- I. Numeric Indicators: The sum of the numeric indicators from the Water Quality Questions (WQ) and the Well Construction, Siting, and Maintenance Questions (WC) is the Total Numeric Indicator shown on the first page of this questionnaire and on Table 1. For the WQ or WC questions below show the numeric indicator or: ND for No Data of this type collected; ID for Inadequate or Insufficient Data for evaluation; NA for either the fact that the data were Not Analyzed or Not Applicable to this question; or AQ for the fact that this data or analysis is addressed under Another Question. A rationale for ID, NA, and AQ should be presented in the Justification.
- I.A. Water Quality (WQ) Questions: The numeric sum of the Microscopic Particulate Analysis (MPA) questions, raw water bacteriological test results questions, and chemical analysis and environmental data questions are shown on the first page of this questionnaire and on Table 1.
- I.A.1. MPA Questions: Show the highest numeric indicator, either WQ-1 or WQ-2, on the front page. Attach copies of pertinent MPA tests. MPA tests produce numerical GWUDI risk factors based on the number of surface water bio-indicators filtered from 500 to 1,000 gallons of well water. These indicators include algae, insects and larvae, chlorophyll-containing plant debris, and Giardia cysts. The MPA test procedure was developed by the Environmental Protection Agency (EPA) using "a collaborative effort combining the experience and knowledge from contributors throughout the country into an acceptable consensus method." The GWUDI Risk Indicators used by the Arkansas Department of Health (ADH) to evaluate public water supply wells are based on the GWUDI risk factors defined by the EPA for the MPA tests.
- WQ-1. Multiply the highest MPA test result for this well by 4. If no test was performed, leave blank. Show date(s) of test(s) and results, and summarize primary bio-indicators of surface water influence.

Justification or comments:

WQ-2. Multiply the value of an MPA test for an adjacent well by 2 if two conditions are present: 1) the two wells are served by the same aquifer or the aquifers serving the two wells are connected (ungrouted section of casing, unconfined conditions, or other probable indication(s) of connection); and 2) there is a reasonable probability that water moves relatively rapidly within or between the aquifer(s).

Justification:

I.A.2. Raw Water Bacteriological Sample Questions: Show the sum of WQ-3 through WQ-6 on the front page.

General comments:

- WQ-3. (P/FCP samples \div total samples) X 80 = indicator; $[(\underline{\underline{}} \div \underline{\underline{}}) \times 80] = \underline{\underline{}}.$
- WQ-4. (P/FCA samples \div total samples) X 30 = indicator; [(__ \div ____) X 30] = ___.

WQ-5. (CG+TN samples \div total samples) X 20 = indicator; $[(__ \ \div \ ___) \ X \ 20] = __ \ .$

 $\underline{\underline{}}$ WQ-6. Show 10 if a highly probable seasonal variation is shown in the sample results.

Justification:

I.A.3. Chemical Analysis and Environmental Data Questions: Show the sum of WQ-7 through WQ-10 on the front page.

 $\underline{\underline{}}$ WQ-7. Chemical analysis, either organic or inorganic, were performed that infer: no significant risk, 0; low risk, 1; moderate risk, 5; high risk, 10; or extremely high risk, 17.

Justification:

____ WQ-8. Ground water parameter data, such as turbidity, temperature, specific conductance, and pH, were collected that infer: no significant risk, 0; low risk, 1; moderate risk, 5; high risk, 10; or extremely high risk, 17.

Justification:

____ WQ-9. Comparison of environmental data to ground water parameters or chemical/biological tests shows a relationship that infers that the well is directly influenced by surface water. The environmental data appropriate for comparison includes precipitation, air temperature, and river stage. The indicators are: no significant risk, 0; low risk, 5; moderate risk, 15; high risk, 30; or extremely high risk, 50.

Justification:

WQ-10. Comparison of environmental or water quality data (other than an MPA test) collected for this well: 1) shows a relationship to corresponding data from a nearby well; 2) this relationship infers that the wells are either hydraulically connected or directly influenced by the same surface water source; and 3) this nearby well has been found to have either moderate, high, or extremely risk water quality and/or well construction indicators. If all three of these conditions are present the indicators are: low risk, 5; moderate risk, 15; high risk, 30; or extremely high risk; 50.

Justification:

I.B. Well Construction, Siting and Maintenance Questions: Show the sum of WC-1 through WC-7 on the front page. For questions WC-1 through WC-5 the risk ascribed is an evaluation of two factors: 1) the well's lack of conformance to established standards; and 2) the probable risk of direct surface water influence due to that non-conformance. The "Justifications" for questions WC-1, WC-2, and WC-3 must also explain the rationale for the answers to the Summary of Above-Ground Well Construction evaluation shown on the first page of this questionnaire. See Table 3.

WC-1. The well site area is not properly sloped to drain water away from the well and prevent rapid infiltration in the local area of the well or the site is unsuitable for some other reason. Further, there is evidence that the local area is susceptible to rapid and relatively unfiltered movement of surface water from the land surface to the aquifer zone. The evidence is usually either the characteristics of: 1) surface or near-surface material; or 2) local relief. The indicators are: no significant risk, 0; low risk, 5; moderate risk, 15; high risk, 30; or extremely high risk, 50.

Justification:

Site - slope and drainage: Does the well site conform to established standards?

___ WC-2. The well slab is not properly constructed or not present. Further, there is evidence that this condition contributes to surface water contamination of the well. The indicators are: no significant risk, 0; low risk, 5; moderate risk, 15; high risk, 30; or extremely high risk, 50.

Justification:

Slab - size and condition: Does the well slab conform to established standards?

____ WC-3. The casing height above the slab or ground is too short and/or the wellhead is not properly sealed and vented. Further, there is evidence that these conditions are a source of surface water contamination of the well. The indicators are: no significant risk, 0; low risk, 5; moderate risk, 15; high risk, 30; or extremely high risk, 50.

Justification:

Casing - height and condition: Does the well casing height and condition conform to established standards?

Casing - seal and vent: Does the well casing seal and vent (or any other above-ground potential deficiency not addressed) conform to established standards?

___ WC-4. The below-ground well parameters are unsuitable or uncertain due to the lack of documentation for the known or probable hydrogeologic characteristics of the subsurface at the well site. These parameters include depth of well, type and depth of casing, and grout and/or screen interval(s). Further, there is evidence that these conditions contribute to surface water contamination of the well. The indicators are: no significant risk, 0; low risk, 5; moderate risk, 15; high risk, 30; or extremely high risk, 50.

Justification:

____ WC-5. There is evidence that some well-site characteristics other than those identified in WC-1 through WC-4 contribute to surface water contamination of the well. The indicators are: low risk, 5; moderate risk, 15; high risk, 30; or extremely high risk, 50.

Justification:

____ WC-6. Hydrologic connection between the well and a surface water source can be shown to be highly probable by: a water balance technique; a chemical separation of flow using a mass balance technique; or a similar technique. The indicators are: low risk, 5; moderate risk, 15; or high risk, 30; or extremely high risk; 50.

Justification:

WC-7. An underground travel time from a surface water source to a well can be estimated with reasonable accuracy. Further, this estimate is shorter than the 50 day underground survival time cited for Giardia and the aquifer has characteristics that would probably allow the surface water to travel underground for that period without filtering out protozoa-size organisms. The time of travel range and the respective numeric indicators are: 49 to 35 days, 5; 34 to 25 days, 10; 24 to 15 days, 15; 14 to 10 days, 25; 9 to 5 days, 35; and 4 days or less, 45.

Justification:

II. Descriptive Indicators: Indicators for the following three information categories are provided as supplementary data and are not used directly in GWUDI determination. In general, they indicate the GWUDI risk for the well (considering its construction) under the specific category. The five different GWUDI risks that can be assigned for all six questions are: N, No significant risk; L, Low risk; M, Moderate risk; H, High risk; and EH, Extremely High risk. NA is used to indicate either the fact that data of this category were Not Analyzed or Not Applicable to this question. The indicator that is to be shown on the front page and on Table 1 for each category should be either: the highest GWUDI risk indicator of the two if they are different; or one risk category higher if they are the same and moderate or worse (with the obvious exception that two EH determinations would yield an EH).

II.A. Surface Water and Soils:

 $__$ SW&S-1. There is a surface water source near the well and there are conditions, documentation, or data that infer that this source contributes to surface-water contamination of the well or the aquifer near the well.

Justification:

_____SW&S-2. There are conditions, documentation or data that infer that the soil or unconsolidated material at and near the well: 1) does not serve as a surface confining layer; and/or 2) has characteristics that may contribute to surface-water contamination of the well or the aquifer near the well.

Justification:

II.B. Ground Water and Geology:

___ GW&G-1. Outcrops of consolidated or unconsolidated material are present near the well and these outcrops have characteristics that infer that there is some rapid and relatively unfiltered flow of surface water through the material to the aquifer at or near the well.

Justification:

 $\underline{}$ GW&G-2. There are conditions, documentation or data that infer that the aquifer(s) has characteristics that allow rapid and relatively unfiltered water flow through the aquifer from known or probable surface water sources outside the local area to the well. These characteristics include high fracture porosity, solution cavities, and sometimes non-horizontal bedding.

Justification:

II.C. Other Factors:

___OF-1. The well is not located an adequate distance from potential sources of surface water contamination such as septic field lines, improperly abandoned wells, or landfills. In general, this distance is considered a minimum of 100 feet but highly permeable soils or other conditions can increase this distance by a factor of two or more. Public health considerations may also require greater distances for specific sources and/or contaminates. Further, there are conditions, documentation or data that infer that these potential sources do affect the well.

Justification:

 $_$ OF-2. There are other conditions, data or documentation, not considered in other questions, that infer that the well is contaminated by surface water.

Justification:

III. Notes and Attachments: Show question # and notes here. Attachments should be titled and provided with a page number for reader's convenience.

Comments and discussion: The following section consists of material referred to either in the questionnaire or the summary. This section begins on page 15.

Appendix 3

Protocol for Determining Groundwater Under the Direct Influence of Surface Water

INTRODUCTION

GUDI is an acronym for Groundwater Under the Direct Influence of surface water. This term refers to groundwater sources (e.g., wells, springs, infiltration galleries, etc.) where microbial pathogens are able to travel from nearby surface water to the groundwater source. The Nova Scotia Treatment Standard for Municipal Surface Source Water Treatment Facilities requires all municipal Public Water Systems using surface water or GUDI sources to meet the requirements of the standard.

The purpose of this document is to present aprotocol for determining whether or not a groundwater source is GUDI, where GUDI is defined as: "any water beneath the surface of the ground with:

- i) significant occurrence of insects or other macro-organisms, algae, organic debris, or large-diameter pathogens such a Giardia lamblia or Crytosporidium; or
- ii) significant and relatively rapid shifts in water characteristics such as turbidity, temperature, conductivity, or pH which cbsely correlate to climatological or surface water conditions.

Part (i) of the definition is aimed at determining if there are particulates present that are indicative of surface water. This may be determined using Microscopic Particulate Analysis (M PA) which analyzes for significant numbers of large macro-organisms, algae and surrogate indicators of surface water. Part (ii) of the definition is aimed at establishing whether there is a hydrauliconnection between the groundwater source and surface water. This implies that if groundwater is rapidly recharged by surface water, then microbial pathogens carenter the groundwater source.

The protocol presented here is baseon guidance provided in USEPA (1991), AWWA (1986), AWWA (2001) and MOE (2001). The protocol should be carried out by, or under the supervision of, a qualified hydrogeologist. The protocolconsists of three steps, beginning with a screening step that provides a method to rapidly identify obvious non-GUDI sources (i.e., true groundwater) that do not require a detailed investigation. Sources that fail the screening step are conidered potentially GUDI and proceed to Sep 2 to determine whether there is a hydraulic connection which allows rapid recharge

between the groundwater source and surface water. If there is no hydraulic connection the source is non-GUDI. If a hydraulic connection exists, Step 3 is completed to determine if there are particulates present in the groundwater source that are indicative of surface water. A flow chart for the protocol is presented in Figure 1 and explanation of each step is provided below. If a well is declared GUDI at any point in the protocol, the additional investigation steps are not required.

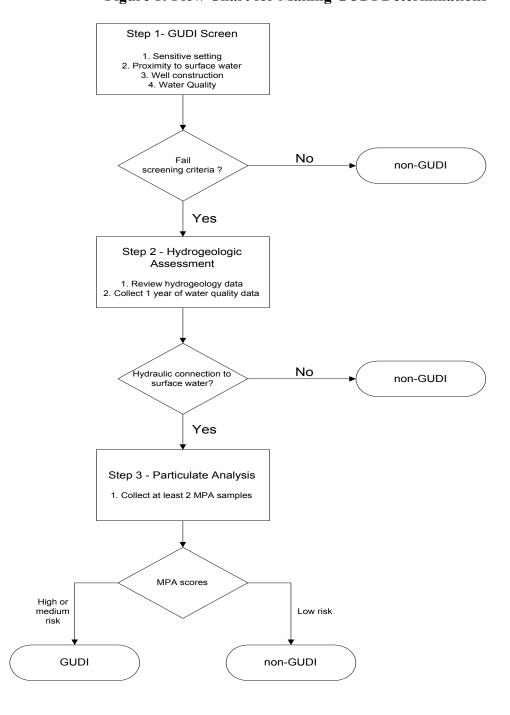


Figure 1: Flow Chart for Making GUDI Determinations

STEP 1 - GUDI SCREENING

The objective of this step is to identify obvious non-GUDI sources that do not need further investigation. The screening step will normally involve a file search, review of well construction details and a site visit. At the end of Step 1 the well should be classified as either non-GUDI or potentially GUDI. The screening step may also identify remedial measures, such as well construction improvements, to reduce the potential to be influenced by surface water. If remedial measures are recommended, they should be completed before proceeding to Step 2 and 3.

For a groundwater source to be considered non-GUDI it must satisfy all of the criteria below. If it does not meet these criteria it is considered potentially GUDI.

- 1. Sensitive settings the source must not fall into any of the following categories: spring, infiltration gallery, horizontal collection well, wells in karst aquifers, wells in unconfined aquifers and wells that are part of an enhanced recharge/infiltration project.
- **2. Proximity to surface water** the well must be greater than 60 m from the nearest surface water body (i.e., water open to the atmosphere and subject to surface runoff, such as ponds, lakes, wetlands, lagoons, reservoirs, estuaries, rivers, streams, brooks, ditches).
- **3. Well construction** the well must meet the current Well Construction Regulations; the casing must extend at least 12.2 m below ground surface; and the well must have a drive shoe, wellhead and annular seal that will prevent surface water from entering the well and prevent water from migrating within the annular space.
- **4.** Water Quality available data must show the raw well water does not regularly contain total coliforms or exceed turbidity guidelines.

STEP 2 - HYDROGEOLOGICAL ASSESSMENT

The objective of this step is to determine if there is either an existing or potential hydraulic connection that could allow rapid recharge of the well by surface water or precipitation. Step 2 will normally involve a review of available hydrogeologic information and collection of one year of water quality data (such as temperature, conductivity, turbidity, pH). Additional hydrogeologic data may also be collected if

the review of available data indicates there is insufficient information. At the end of this step the well can be classified as either:

- non-GUDI (i.e., no hydraulic connection with surface water/precipitation);
- in hydraulic connection with surface water/precipitation; or
- potentially in hydraulic connection, if there is significant uncertainty.

The hydrogeologic information review should be used to assess whether there is potential for a hydraulic connection and to estimate the time-of-travel between the well and surface water. The review should include, but not be limited to, an evaluation of the following:

- well characteristics (well depth, casing depth, annular seal, etc.);
- aquifer characteristics (aquifer type, confining layers, unsaturated zone thickness, hydraulic conductivity, effective porosity, depth to water bearing zones, the degree of connection between the surface water and aquifer does the surface water body penetrate the aquifer?);
- hydraulic gradient (vertical gradient under pumping conditions, horizontal gradient between the well and the surface water body under pumping conditions, variation of static water level and surface water level with time, variation of static water level with precipitation);
- surface water features; and
- groundwater quality and flow (eg., time-of-travel between the surface water and the well).

Raw water quality data should be collected at the well and a nearby surface water body for a one year period to determine if there is a close relationship between changes in the surface water quality and the well. Patterns are best recognized from one-year hydrographs; however, a shorter duration may be sufficient if a hydraulic connection is recognized early on in the monitoring program. Water quality parameters should include, but not necessarily be limited to, temperature and conductivity and should be measured on a weekly basis at a minimum. A rainfall gauge can be used to measure cumulative rainfall each week.

The water quality data should be plotted and the graphs inspected for rapid changes and obvious similarities between surface water and groundwater. The time lag between peaks or inflection points of the surface water and groundwater temperature and conductivity graphs can be used to estimate the time-of travel. The well is considered to be rapidly recharged if the time-of travel is less than 90 days.

STEP 3 - PARTICULATE ANALYSIS

The results of the Hydrogeological Assessment in Step 2 may determine that there is a hydraulic connection between the well and surface water. However, if the aquifer provides sufficient natural filtration to remove surface water organisms and debris, the well is not under the direct influence of surface water. The objective of Step 3 is to determine if there are significant particulates present in the well that are indicative of surface water. This is determined using Microscopic Particulate Analysis (MPA). The MPA test involves filtering approximately 4,500 L of water to concentrate organisms and debris which are then identified and quantified using a microscope. At the end of this step the MPA score is used to classify the well as either a low, medium or high risk.

A minimum of two MPA samples should be collected. The samples are to be collected during periods when there is the greatest probability that surface water is impacting groundwater. The results from Step 2 should be used to help select the most appropriate MPA sampling times (e.g., if there is a 15 day time-of-travel, then the well should be sampled 15 days after a surface water event). It is recommended that one sample be collected in the spring after a heavy rainfall (25-50 mm) or snow melt and one be collected in the fall after a prolonged dry period. The MPA scores should be evaluated based on the risk factors specified by the USEPA (1992) as follows:

- low risk = MPA score < 10
- medium risk = MPA score 10 to 19
- high risk = MPA score >20

If any of the MPA samples fall into the medium or high risk categories the well should be considered GUDI unless remedial action and/or further sampling demonstrates otherwise.

December 2002 5

GUDI DETERMINATION

The final determination of whether a well is GUDI or non-GUDI will be a matter of professional judgement based on all of the evidence collected. In general, wells that have no evidence of existing or potential hydraulic connection with surface water will be considered non-GUDI, and wells that have a hydraulic connection and a medium or high risk MPA score will be considered GUDI. Evidence that a well is GUDI is usually more conclusive than evidence that a well is non-GUDI. If there is significant uncertainty, it is appropriate to err on the side of public health and safety and consider the well to be GUDI.

REFERENCES

MOE (Ontario Ministry of the Environment). 2001. Terms of Reference, Hydrogeological Study to Examine Groundwater Sources Potentially Under Direct Influence of Surface Water. October 2001.

USEPA. 1991. Guidance Manual for Compliance with the Filtration and Disinfection Requirements for Public Water Systems Using Surface Waters. U.S. Environmental Protection Agency, Office of Drinking Water. March 1991.

USEPA. 1992. Consensus Method for Determining Groundwater Under the Direct Influence of Surface Water Using Microscopic Particulate Analysis (MPA). U.S. Environmental Protection Agency. EPA 910/9-92-029. October 1992.

AWWA (American Water Works Association). 1996. Determining Groundwater Under the Direct Influence of Surface Water.

AWWA (American Water Works Association). 2001. Investigation of Criteria for GWUDI Determination.

December 2002 6

Appendix 4

Guidance Document:

Potential GWI Sources— Determining Hydraulic Connection Through Water Quality Monitoring

August 2003

Guidance Document:

Potential GWI Sources— Determining Hydraulic Connection Through Water Quality Monitoring

August 2003

For more information or additional copies of this report contact:

Training and Outreach Section Office of Drinking Water Department of Health PO Box 47828 Olympia, WA 98504-7828 (360) 236-3164

Mary Selecky Secretary of Health

Janice Adair Acting Assistant Secretary, Environmental Health

Rich Hoey Acting Director, Office of Drinking Water

The Department of Health is an equal opportunity agency. For persons with disabilities, this document is available on request in other formats. To submit a request, please call 1-800-525-0127 (TTY 1-800-833-6388). For additional copies of this publication, call 800-521-0323. This and other publications are available at www.doh.wa.gov/ehp/dw.

CONTENTS

THE SURFACE WATER TREATMENT RULE	1
DEFINITION OF GWI SOURCE	1
DEFINITION OF A POTENTIAL GWI SOURCE	
DEFINITION OF ASSOCIATED SURFACE WATER	
HYDRAULIC CONNECTION TO SURFACE WATER	
WATER QUALITY MONITORING METHODOLOGY	
PURPOSE OF MONITORING.	
PARAMETERS TO MONITOR	
Temperature	
Conductivity	
pH and turbidity	
Coliform bacteria	
Rainfall events / Water levels	
MONITORING FREQUENCIES AND TIMEFRAMES	
Physical parameters	
Sampling timeframe	
Monitoring equipment	
Specifications	
Acceptable models	
MONITORING LOCATIONS	
Potential GWI Source	
Nearby surface water	
MEASUREMENT AND SAMPLING METHODS.	
Field measurements	
Groundwater sampling	
Surface water sampling	
Coliform Samples	
RECORD KEEPING.	
WATER QUALITY MONITORING REPORTS	
Preliminary WQM Report	
General Information	
Weekly water quality monitoring data	1
FINAL WQM REPORT	
OUTCOME OF WATER QUALITY MONITORING RESULTS	13
DESIGNATION OF GROUNDWATER	
DESIGNATION OF GROUNDWATER IN HYDRAULIC CONNECTION WITH SURFACE WATER	
Disinfection Microscopic particulate analysis samples	14
Additional options for groundwater in hydraulic connection with surface water	
Source monitoring requirements for sources in hydraulic connection	
FOR MORE INFORMATION	1 6

The Surface Water Treatment Rule

The federal Surface Water Treatment Rule (SWTR) regulations were promulgated in 1989 as part of the Safe Drinking Water Act Amendments. In 1993, the Washington State Board of Health adopted regulations (Part 6 of WAC 246-290) that are as stringent as the federal SWTR.

The federal SWTR affects all Group A public water systems that use:

- Surface water sources or
- Groundwater sources under the direct influence of surface water (GWI).

The SWTR is based on the assumption that all surface water and GWI sources are at risk of microbiological (bacteriological, viral, and protozoal) contamination, and that the pre-SWTR drinking water requirements were insufficient to protect against the risk of waterborne disease outbreaks.

For most affected systems, the SWTR requires both filtration and disinfection to control microbiological contamination and to provide adequate protection from waterborne disease-causing organisms such as *Giardia lamblia*.

Water systems are required to achieve at least 99.9% removal and/or inactivation of *Giardia lamblia* cysts and at least 99.99% removal and/or inactivation of viruses. To accomplish this, systems must filter (unless certain source quality and site-specific conditions are met), disinfect, and be operated by qualified personnel.

Definition of GWI Source

The SWTR defines groundwater under the direct influence of surface water as:

Any water beneath the surface of the ground with:

- 1. Significant occurrence of insects or other macroorganisms, algae or large-diameter pathogens such as Giardia lamblia, or
- 2. Significant and relatively rapid shifts in water characteristics such as turbidity, temperature, conductivity, or pH which closely correlate to climatological or surface water conditions.

Under the direct influence of surface water means that the groundwater source is located close enough to nearby surface water, such as a river, stream, lake, or pond, to receive direct surface water recharge. Since a portion of the groundwater source's recharge is from surface water, the groundwater source is considered at risk to contamination from microbial pathogens such as *Giardia lamblia*, which are not normally found in true groundwaters, but are often found in surface water.

Sources most likely to be under the direct influence of surface water are:

- Infiltration galleries and Ranney wells.
- Springs.
- Shallow wells located near surface water.

1

Definition of a potential GWI source

Potential GWI sources are defined as infiltration galleries, Ranney wells, and springs. Potential GWI sources also include wells that withdraw water from less than 50 feet below the ground surface and that are located within 200 feet of surface water (WAC 246-290-010). Other susceptible sources may be considered potential GWI sources based upon poor water quality, substandard construction, or public health concerns.

DOH Drinking Water staff, local health department staff, sanitary surveyors, and other field personnel often identify potential GWI sources while conducting field work. DOH also conducts records reviews to identify potential GWI sources. Once a source is identified as a potential GWI source, field confirmation is conducted to make sure the potential GWI source fits the regulatory definition. If the regulatory definition is appropriate, DOH designates the source as a potential GWI source.

Definition of associated surface water

All surface waters within 200 feet of the potential GWI source are identified as associated surface water and must be monitored. In general, surface water is defined as water open to the atmosphere and subject to surface runoff, including perennial (year-round) rivers, streams, and creeks as well as lakes, ponds, and wetlands. Intermittent streams and natural and man-made surface impoundments that receive runoff are also included in the definition of surface water. Isolated bodies of water that form in low-lying areas during the rainy season solely as a result of the water table rising to the surface are not considered surface water. If there is a question as to whether a particular body of water will be considered surface water in the context of this guidance, the deciding factor will be whether channelized drainage contributes water to the body; that is, a particular body of water will be considered surface water if channelized drainage contributes water to it.

Hydraulic connection to surface water

Hydraulic connection to surface water means that water provided by a well (through pumping) or a spring (through pumping or by gravity-flow) is actually coming from the nearby, associated surface water, and that the time it takes for the surface water to reach the potential GWI source is sufficiently short for pathogens to survive the trip. Any contamination present in the surface water can travel through the subsurface soil and emerge in water drawn from the well or spring. This is how *Giardia lambia*, *Cryptosporidium*, viruses, and other microbial organisms contaminate what appear to be groundwater sources.

In general, the closer a groundwater source is to surface water, the greater the likelihood of a hydraulic connection. Because of the nearness of a potential GWI source to surface water, hydraulic connectivity must be evaluated. Water quality monitoring is a way to determine whether groundwater is hydraulically connected to surface water. This guidance document describes the general process and field methodology for determining hydraulic connectivity through water quality monitoring.

Water quality monitoring requires measurement of specific water quality parameters, including temperature and conductivity, at the potential GWI source and each associated body of surface water on a weekly basis for up to one full year. The data are analyzed for time trends and statistical correlation. The outcome of the statistical analysis will indicate whether a hydraulic connection with surface water likely exists.

If a hydraulic connection is determined to exist, the source will be designated as groundwater in hydraulic connection with surface water. This designation is an interim step in the GWI determination process and is not the same as a final designation of GWI. The difference between the two designations is the type and extent of treatment to be installed.

Sources that are designated groundwater in hydraulic connection must install disinfection that complies with WAC 246-290-451. In addition to installing disinfection, these sources must continue with the GWI determination process, the next step of which requires the collection of MPA samples (See DOH Publication #331-231, Potential GWI Sources—Microscopic Particulate Analysis). Required disinfection treatment must begin within 120 days after the source is designated groundwater in hydraulic connection.

If a hydraulic connection is determined not to exist, the source is no longer designated a potential GWI source. It is instead designated as groundwater and is subject to the groundwater source monitoring and treatment requirements. The source will remain noted as susceptible, however, and may be subject to additional regulatory requirements, including installation of disinfection treatment.

Water quality monitoring methodology

Purpose of monitoring

The WQM approach to determine hydraulic connectivity is designed to identify groundwater sources that need further evaluation of direct surface water influence. Baseline monitoring provides a record of seasonal changes in key physical, chemical, or biological parameters in both the groundwater source of supply (potential GWI source) and the nearby associated surface water (potential source of microbiological contamination). A graphical and statistical evaluation of WQM data determines whether a hydraulic connection exists between a groundwater source and nearby surface water. If the monitoring results indicate the existence of a direct hydraulic connection, further testing is required to determine whether the source is at risk to contamination by *Giardia lambia* and/or *Cryptosporidium*.

Parameters to monitor

Temperature

Research has shown that water temperature is the most useful indicator of potential surface water influence. Temperature is simple to measure and requires relatively inexpensive equipment. All systems conducting water quality monitoring to determine hydraulic connectivity must monitor water temperature. Both the potential GWI source and the nearby surface waters must be monitored, since the goal is to find whether there are changes in groundwater characteristics that mimic surface water conditions.

To help identify changes in water temperature resulting from seasonal changes in air temperature, air temperature also must be monitored for all spring sources (and is recommended for all other sources) at the same time the source temperature measurements are made.

Conductivity

For some sources (such as springs and shallow wells), temperature variations may occur due to seasonal changes in ambient air conditions and may not be indicative of a hydraulic connection with nearby surface water. Thus, it is important that each system monitor at least one other parameter in addition to temperature. Conductivity is the next best indicator parameter and must be monitored at the same time as temperature. Both the potential GWI source and the nearby surface waters must be monitored.

pH and turbidity

Extenuating circumstances may exist for some sources, leading to the need to monitor a parameter other than conductivity. In such cases, pH and/or turbidity may be monitored, but only with prior approval from DOH.

Coliform bacteria

The presence of fecal coliform bacteria in source water indicates that recent fecal contamination has occurred and may indicate that the source is under the direct influence of surface water. Systems conducting WQM may collect coliform or heterotrophic plate count (HPC) samples from the source as an additional data set for use by DOH in evaluating whether a source is under the direct influence of surface water. The sample may initially be submitted to the lab as investigative. If total coliform

bacteria are present, the lab will automatically test for fecal coliform. It is important to understand that the absence of total coliform or fecal coliform bacteria does not preclude the possibility of direct surface water influence.

Rainfall events / Water levels

All systems conducting WQM must record information regarding precipitation (rainfall and snowfall) on the report forms. Systems may wish to purchase inexpensive rain gauges and record the amount of rain that has fallen since the previous sampling day. An alternative would be to locate a local rain gauge (such as the nearest National Weather Service site) for rainfall information if the gauge location is representative of the source site. Seasonal precipitation patterns over a number of years may be a worthwhile evaluation tool.

Systems are also encouraged to record information about stream flow, surface water levels, groundwater levels, and pumping activity. Of primary interest are relative changes in flow or levels over time. Stream flow information may be available from the Washington State Department of Ecology and the United States Geological Survey (USGS).

Monitoring frequencies and timeframes

Physical parameters

At a minimum, physical parameters (temperature, conductivity, pH, and turbidity) must be measured at least once a week, with measurements spaced at least 5 days apart. Systems that have the ability to collect samples more frequently are encouraged to do so (5 days per week is ideal). More frequent measurements enhance graphical and statistical detection of rapid and significant shifts in water characteristics (and more clearly show smooth, gradual changes) in both the surface source and potential GWI source. Water temperature should be measured at the same time of day each time it is measured.

The department recommends measuring stream flow, surface water levels, and groundwater levels at the same time as the physical parameters are measured. Concurrent pumping activity should also be recorded.

Bacteriological samples

The potential GWI source may be monitored for total and fecal coliforms, or HPC, on a monthly basis.

Sampling timeframe

After discussion with the purveyor, DOH will assign a date to begin water quality monitoring at the potential GWI source and associated surface water.

Monitoring equipment

Specifications

• Temperature measurements must be made with a digital thermometer and recorded to the nearest 0.1 degree Centigrade.

- Conductivity measurements must be made with a temperature-compensated conductivity meter with a digital readout; the meter must be able to measure conductivity to the nearest 1 micromho/centimeter over a range of 0 2000 µmhos/cm.
- Systems approved to measure pH must use a pH meter with a digital readout that is able to measure pH to the nearest 0.1 pH units.
- Turbidity measurements must be made with a turbidimeter with a digital readout; the meter must be able to measure turbidity to the nearest 0.1 NTU (nephelometric turbidity units) over a range of 0 1000 NTUs.

Acceptable models

For systems that need to purchase monitoring equipment to conduct WQM, relatively inexpensive models are available. Although the more expensive instruments tend to be more accurate, the use of inexpensive equipment is acceptable for purposes of baseline monitoring because DOH is interested in the relative changes occurring over time more than absolute values. Since monitoring may be needed for only a short time period (12 months), it is not necessary for systems to purchase top-of-the-line instruments.

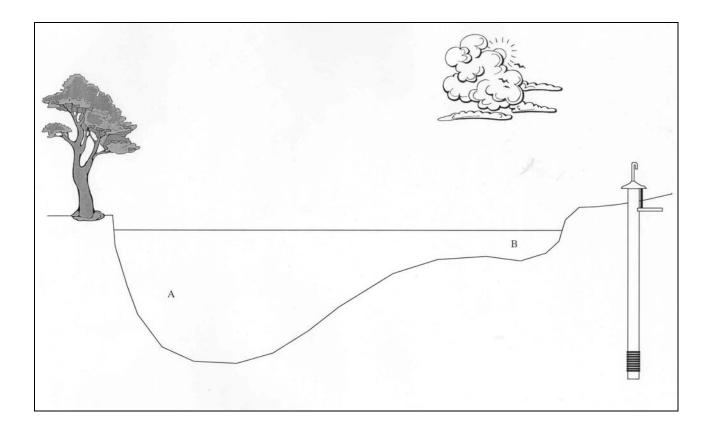
Acceptable water quality monitoring equipment is generally available from companies that sell products for environmental analysis such as Cole-Parmer in Vernon Hills, Illinois (1-800-323-4340), Whatman Scientific in Hillsboro, Oregon (1-800-942-8626) and the Hach Company in Loveland, Colorado (1-800-227-4224). Other providers of equipment may be found by searching the internet for environmental sampling equipment or similar topics.

Larger systems that have more accurate equipment on hand should measure temperature, conductivity, pH, and turbidity in accordance with the procedures outlined in the *Standard Methods* for the Examination of Water and Wastewater, American Water Works Association, 20th Edition (or later).

All instruments and meters must be properly maintained and calibrated in accordance with the manufacturer's instructions. The water system must keep records of maintenance and calibration on file (see Record Keeping below).

Monitoring locations

Potential GWI Source


All potential GWI source water samples must be collected from the source (or as close to the source as practical) and prior to storage and treatment. Systems with multiple potential GWI sources must conduct monitoring independently for each source identified as a potential GWI by the department (as indicated in the notification letter).

Nearby surface water

Ideally, to obtain data optimally useful for indicating whether a source is in direct hydraulic connection with nearby surface water, samples from the surface waters should be collected from mid-channel at the shortest horizontal distance from the potential GWI source. The Department realizes that, for some systems, collecting a mid-channel sample at this location may be difficult. Thus, mid-channel samples may be collected from bridges, docks, or boats up to 1 mile upstream and up to 0.25 miles downstream of the ideal sampling location (provided that no tributaries enter between the sampling point selected and the ideal sampling point).

Samples should be collected to reflect mid-channel conditions, since this will be more indicative of the water that would likely be infiltrating to the groundwater. Systems should avoid taking samples from quiescent backwater eddies, slackwater areas, or stagnant areas because these samples likely do not reflect physical/chemical conditions of the bulk of the water in the river or stream.

In the illustration below, point A is ideal for sampling because it is most representative of the bulk of the water flowing in the stream or river. Point B, on the other hand, would not provide a representative sample

Systems with sources located near large surface water bodies (such as major rivers or reservoirs) may wish to contact the US Geological Survey (USGS) or the Washington State Department of Ecology for information regarding locations of surface water gauging/sampling stations in their vicinity and parameters monitored on a routine basis. Data from these agencies may be used to supplement source-specific monitoring results.

Systems with multiple nearby surface waters must monitor the required parameters at all surface waters within 200 feet of each potential GWI source.

Once groundwater and surface water sampling sites have been selected, these same locations must be used for all subsequent monitoring.

Measurement and sampling methods

Field measurements

Temperature, conductivity, pH, and turbidity must be measured in the field; samples are not to be collected and then sent to a laboratory for analysis. Coliform or HPC samples must be collected in the field and sent to a certified laboratory for analysis.

Groundwater sampling

All groundwater measurements should be made in a manner that reflects the characteristics of water coming from the aquifer (rather than from the well casing or borehole). In general, to ensure that samples collected for water quality monitoring reflect aquifer conditions, samples should be collected under flowing water conditions after the well has been purged for approximately 15-30 minutes (or a minimum of three casing and borehole volumes). For permanent, frequently used wells sampled after heavy use/peak demand periods, 15 minutes should be a sufficient purge time. For permanent wells that haven't been pumped recently or are sampled during low demand periods, a 30-minute purge is required.

Seasonal well sources should be sampled after they have been on-line and in use for at least two weeks. Samples should be collected for monitoring after the well has been purged for 30 minutes.

Surface water sampling

To collect samples from the surface water for purposes of measuring temperature and other parameters, a clean one-gallon container such as a bucket should be used. Rinse the container at least three times with the surface water, being careful not to stir up bottom sediments in the stream or pond. If the container is metal, fill it with water, remove it from the surface water and let the water sit in it for several minutes between successive rinses, so the container will be brought to the same temperature as the surface water. Samples should be collected from a depth of one foot or more.

Take all temperature, conductivity, pH, etc. measurements from within the middle of the container. After each set of measurements, discard the water in the container. Collect fresh samples of water and repeat the measurements until three successive surface water samples yield measurements that are the same or closely agree.

Coliform Samples

Bacteriological samples must be collected, transported, and analyzed in accordance with *Standard Methods for the Examination of Water and Wastewater*, American Water Works Association, 20th Edition (or later).

A certified laboratory must be used to analyze source bacteriological samples. Results must be expressed as counts/100 ml. Presence/absence results are not acceptable for source water samples. If the total coliform results are positive, the laboratory must analyze the samples for fecal coliforms and express fecal coliform results as counts/100 ml.

Record Keeping

The department has several forms that apply to the GWI determination process. The first two listed below will have been provided to you prior to beginning water quality monitoring effort. A copy of these records should be kept in your water system files.

- Potential GWI Source Identification and Designation Form (DOH Form #331-189). This form documents the criteria the department used to designate your potential GWI source.
- **GWI Determination Process Purveyor's Choice (DOH Form #331-190).** This form documents the action the purveyor chose to take in determining whether a potential GWI source is GWI. This form documents that the water quality monitoring method was chosen to determine whether the potential GWI source is in hydraulic connection with surface water.

The following three forms apply specifically to the water quality monitoring effort. Copies are also to be kept in your water system files.

- GWI Water Quality Monitoring Interview Documentation (DOH Form #331-191). This form documents the water quality monitoring required and optional parameters for all potential GWI sources and associated surface waters. It includes checklist reference information about monitoring equipment, sampling frequency, technique, location, and reports.
- **GWI Water Quality Monitoring Confirmation (DOH Form 331-192).** This form is a formal acknowledgement by the purveyor regarding mandatory and optional water quality monitoring parameters. It lists the field equipment to be used and provides DOH with the water system data collector's contact information.
- **GWI Water Quality Monitoring Report Form (DOH Form 331-193).** This form is used to record weekly water quality monitoring data. It is to be completed (a line at a time) after each water quality monitoring parameter is measured in the field. It is to be submitted after six months of monitoring as part of the Preliminary WQM Report and after 12-months of monitoring as part of the Final WQM Report (see below).

9

Water Quality Monitoring Reports

Two water quality monitoring (WQM) reports are required to be submitted to DOH: a preliminary report providing water quality data after 6 months of weekly monitoring is completed; and a final report after 12 months of monitoring is completed.

Preliminary WQM Report

Systems must prepare a preliminary WQM report for review by DOH after 6 months of weekly monitoring has been completed. The purveyor must submit the preliminary report within 30 days of the end of the 6-month monitoring period. A fee for DOH review of the report will be billed at the current hourly rate for special reports.

The preliminary report contains general information about site conditions and sampling locations and specific water quality monitoring data derived as a result of the weekly measurements. The general information section requires a surficial (plan-view) map and an elevation profile (cross-section) diagram that are described in more detail below. Purveyors are encouraged to prepare the General Information portion of the report as a basis for discussion prior to meeting with DOH regarding the WQM strategy for your system. Copies of the water quality monitoring data must also be submitted as part of the preliminary WQM report. The data will be statistically analyzed to help determine whether the potential GWI source is in hydraulic connection with surface water.

General Information

The general information section of the preliminary WQM report must include the following minimum information:

Surficial (plan-view) map. Include a map to show the water system layout and general surface features that surround each potential GWI source. Indicate the locations of each potential GWI source, all surface waters within 200 feet of each potential GWI source, and the locations of the baseline monitoring points for each surface water. The map must include major roadways, any stormwater storage or collection facilities open to the atmosphere, and any potential sources of microbiological contamination within the 6-month time of travel for the potential GWI source (for example, onsite sewage absorption systems, sewer lines, dairy or livestock operations, etc.). The radius of the 6-month time of travel may be obtained from the source susceptibility assessment survey that was completed as part of the organic chemical waiver program. You should have a copy of the survey in your water system file. If you do not have a copy, contact your DOH Regional Office source monitoring staff.

Various types of maps may be used to meet this requirement, including USGS maps, county plat and planning maps, aerial photographs, and water system planning maps. The map scale should be at least four inches to the mile; it may be necessary to enlarge an existing map.

Elevation profile (cross-section) diagram. For each potential GWI source, create an elevation profile diagram (with a scale of no less than one inch equals 50 feet) that shows in cross section the elevations of the potential GWI source and nearby surface water with the following additional information:

Wells:

- Well depth
- Depth to top of first screened, perforated or open interval

- Surface seal depth (indicate type of seal, if known)
- Slope of the land in the vicinity of the well and associated surface water

This information may be obtained from well logs contained in your files, water system planning reports, or source susceptibility assessment surveys. If you cannot locate a well log, you may be able to obtain one from the individual who drilled your well or the regional office of the Washington Department of Ecology (1-360-407-6000).

Springs, infiltration galleries and Ranney wells:

- Depth of box or caisson
- Depth of buried collection laterals
- Surface seal type, depth, and extent
- Slope of the land in the vicinity of the source and associated surface water

This information may be found in files, as-built drawings, construction reports, or water system plans. If records are incomplete, provide the available information and your best estimate for the remaining information (indicate estimate on the diagram, as appropriate).

Nearby surface waters that may potentially affect the source:

- Elevation of normal pool
- Elevation of 100-year floodplain
- Elevation of lake bed, bottom of river channel, or streambed
- Approximate sampling point elevations
- Slope of the land surface between the source and the associated surface water

This information may be obtained from local floodplain maps or reports available in city and county offices.

Weekly water quality monitoring data

Systems must record weekly WQM data on DOH Form #331-193 (or equivalent format preapproved by the department). Systems with multiple potential GWI sources must complete separate WQM report forms for each potential GWI source. Systems with multiple surface water bodies in the vicinity of their groundwater source must report data for each surface water body within 200 feet of the groundwater source.

The data are required to be graphically depicted and statistically analyzed using a statistical software application. Systems are encouraged to consult with DOH prior to submitting electronic files. Electronic data files are expected to be submitted on disk in either ASCII text or spreadsheet (Lotus, QuattroPro, Excel) format and must be precisely recorded in order that an electronic transfer can be performed. Data must be in a column-unique format with only one parameter in each column. Do not report values as < (less than) or > (greater than) since these are not numerical fields. Include full dates (mm/dd/yy format preferred) and the hour of collection. Put any text comments in the far right column only.

Final WQM Report

Systems must prepare a final WQM report for review by DOH after completing 12 months of weekly monitoring. The final report must be submitted to DOH within 30 days of the end of the 12-

month period. A fee for DOH review of the report will be billed at the current hourly rate for special reports. The final report must contain copies of the first and second 6-month periods of water quality monitoring data report forms. The data are required to be graphically and statistically analyzed to help determine whether the potential GWI source is in hydraulic connection with surface water.

Outcome of Water Quality Monitoring Results

Four outcomes are possible after the collection and analysis of weekly water quality monitoring data:

Outcome 1. The Preliminary WQM Report with its analysis of six months of water quality data indicates a hydraulic connection **does not** exist between the potential GWI source and associated surface water. In this case, an additional six months of water quality monitoring is required. A designation of groundwater cannot be made based on only six months of water quality monitoring.

Outcome 2. The Preliminary WQM Report with its analysis of six months of water quality data indicates a hydraulic connection **does** exist between the potential GWI source and associated surface water. In this case, the source is designated groundwater in hydraulic connection with surface water and disinfection and the collection of MPA samples are required.

Outcome 3. The Final WQM Report with its analysis of 12 months of water quality data indicates a hydraulic connection **does not** exist between the potential GWI source and associated surface water. In this case, the source is designated groundwater. The collection of MPA samples is not required. Disinfection is not likely required at this point. Disinfection may be required in the future, however, depending on the upcoming federal Ground Water Rule.

Outcome 4. The Final WQM Report with its analysis of 12 months of water quality data indicates a hydraulic connection **does** exist between the potential GWI source and associated surface water. In this case, the source is designated groundwater in hydraulic connection with surface water and disinfection and the collection of MPA samples are required.

These four outcomes result in two possible designations:

- Designation of a source as groundwater
- Designation of a source as groundwater in hydraulic connection with surface water

Each of these designations is described in more detail below.

Designation of groundwater

When the Final WQM Report indicates the potential GWI source is not in hydraulic connection with surface water, it is designated groundwater. Disinfection is not required at this point. Disinfection may be required in the future, however, depending on the requirements of the upcoming federal Ground Water Rule. These sources are required to conduct source and distribution system monitoring as a groundwater source.

Designation of groundwater in hydraulic connection with surface water

If the Preliminary or Final WQM Report indicates that a hydraulic connection exists between the potential GWI source and associated surface water, disinfection and the collection of MPA samples are required. The system must retain the services of a professional engineer to assist in developing

13

an Action Plan (WAC 246-290-640(4)). The Action Plan clarifies the strategy and timing for disinfecting and for collecting the required MPA samples. The plan is to be submitted to the department within 90 days of being notified of the hydraulic connection designation.

Disinfection

A designation of groundwater in hydraulic connection with surface water triggers installation or upgrade of disinfection per WAC 246-290-451. The disinfection treatment must be completed within 120 days after the second MPA result is known (or after the first MPA result is known, if a second sample is not required).

Microscopic particulate analysis samples

In addition to installation of disinfection, MPA samples are required to be collected to look specifically for organisms that are typically found in surface water, such as algae, insect parts and *Giardia* cysts. This sample method and laboratory analysis will determine the relative risk of a source to biological indicators found in surface water. The timing of sample collection is based on any correlation detected from the WQM data and analysis. The MPA samples are analyzed and evaluated in accordance with the Environmental Protection Agency (EPA) *Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using Microscopic Particulate Analysis*, EPA 910/9-92-029, October 1992. (See *DOH Publication #331-231*, *Potential GWI Sources—Microscopic Particulate Analysis*.)

Typically, a minimum of two MPA samples is required to be collected approximately six months apart, so this step of the determination process may require a year to complete. As few as one and as many as ten MPA samples may be required, depending on each sample result. As long as the source is in the process of collecting MPA samples, the GWI determination process is considered underway, and a final designation is not made until the MPA effort is completed.

MPA samples may be collected as soon as a hydraulic connection has been established and DOH has approved the Action Plan's MPA sampling plan.

Additional options for groundwater in hydraulic connection with surface water

When a source is designated groundwater in hydraulic connection with surface water, disinfection and MPA samples are not the only options available to mitigate the impact of surface water. A purveyor may choose to install treatment (disinfection and filtration) required for sources designated GWI or to reconstruct or replace the source.

Install treatment for a GWI source

A purveyor may choose to skip collection of MPA samples and proceed directly to compliance with the SWTR. If MPA samples are skipped and the source proceeds to SWTR compliance, the source is subject to all SWTR requirements. Compliance options provided under the SWTR include: (1) design a filtration system; (2) monitor for avoidance of filtration based on watershed protection and water quality parameters; or (3) consider a limited alternative to filtration if watershed control permits such an option. The decision to proceed to treatment in accordance with the SWTR may be based on a strong statistical correlation and response to surface water fluctuations as evidenced by the WQM effort. Other factors, such as timing to meet other facility treatment needs, may be factored into this decision.

Source reconstruction or replacement

If a facility construction problem is detected during the WQM effort, and it is feasible to reconstruct or replace the source so as to exclude surface water impacts and eliminate the regulatory definition of potential GWI, this may be the best option. The consulting engineer should work closely with DOH to develop a strategy for mitigation. Plans and specifications for improvements must be reviewed and approved by DOH prior to reconstruction or replacement of the source.

Upon completion and certification of reconstruction efforts or the replacement source (that result in the source no longer meeting the definition of a potential GWI source), the source is no longer in the GWI determination process.

If completion and certification of reconstruction efforts or the replacement source do not result in eliminating the applicability of the definition of potential GWI source, the system must repeat the WQM effort to determine whether the reconstruction effectively eliminated the hydraulic connection between groundwater and surface water.

Source monitoring requirements for sources in hydraulic connection

A source determined to be groundwater in hydraulic connection with surface water is required to be monitored as a groundwater source until a final designation is made regarding GWI status. Contact your regional office source monitoring staff for more information about source monitoring requirements.

15

For more information

Department of Health, Office of Drinking Water

- Donna Freier, GWI Program Lead, (360) 586-5179 or email donna.freier@doh.wa.gov
- Regional Office GWI Program contacts:

Eastern Regional Office, Jeff Johnson (509) 456-2797 Northwest Regional Office, Derek Pell (253) 395-6763 Southwest Regional Office, John Blacklaw (360) 664-8951

- Website: http://www.doh.wa.gov/ehp/dw/. Provides access to publications on *Cryptosporidium* and other contaminants, information on how to hire an engineer, and many other resources. Also includes links to other sites such as the federal Environmental Protection Agency (EPA) and the American Water Works Association (AWWA.)
- Toll-free number: 1-800-521-0323

US Environmental Protection Agency

Safe Drinking Water Hotline 1-800-426-4791

16

Appendix 5

TITLE 18. ENVIRONMENTAL QUALITY

CHAPTER 4. DEPARTMENT OF ENVIRONMENTAL QUALITY SAFE DRINKING WATER

ARTICLE 2. STATE DRINKING WATER REGULATIONS

R18-4-212. Groundwater Under the Direct Influence of Surface Water

- A. The Department suspects the following sources to be groundwater under the direct influence of surface water:
 - A spring
 - 2. An infiltration gallery;
 - 3. A radial well collector, Ranney well, or horizontal well;
 - 4. A well that is less than 500 feet from a surface water, and:
 - a. The Department conducts a vulnerability assessment and determines that the source is vulnerable to direct surface water influence, or
 - b. The Department cannot assess the vulnerability of the groundwater source to direct surface water influence because of a lack of information or the uncertainty of available information on the local hydrogeology or well construction characteristics;
 - 5. A shallow well with perforations or well screens that are less than 50 feet below the ground surface;
 - 6. A hand-dug or auger-bored well without a casing;
 - 7. A groundwater source for which turbidity data is available that shows that the groundwater violates an interim MCL for turbidity;
 - 8. A groundwater source for which data is available that shows that total coliform, fecal coliform, or *E. Coli* are present in untreated groundwater from the source that are not related to new well development, source modification, repair, or maintenance; and
 - 9. Any groundwater source if the temperature of the groundwater fluctuates 15% to 20% from the mean groundwater temperature over the course of a year or if changes in the temperature of the groundwater correlate to similar changes in the temperature of surface water.
- **B.** The Department shall conduct a sanitary survey of each public water system that the Department suspects is using a groundwater source under the direct influence of surface water.
- C. The Department shall provide written notice to a public water system that the Department suspects a groundwater source is under the direct influence of surface water. A public water system may submit information to the Department to show that a groundwater source is not under the direct influence of surface water. Information that is submitted to show that a suspect groundwater source is not under the direct influence of surface water shall be in writing and shall be prepared by a qualified professional, such as a professional engineer registered in Arizona, registered geologist, water system operator, or hydrogeologist. The Department shall review any information submitted by a qualified professional to show a suspect groundwater source is not under the direct influence of surface water within 90 days after receipt of the information and determine if the source remains suspect.
- D. If a groundwater source continues to be suspect after the analyses required in subsections (A) through (C), the Department may require a public water system that is suspected of using a groundwater source that is under the direct influence of surface water to conduct Microscopic Particle Analysis (MPA) monitoring of the groundwater source. A public water system may request that the Department allow the system to use an alternative method to determine whether a groundwater source is under the direct influence of surface water. An alternative method to determine whether a groundwater source is under the direct influence of surface water shall be approved by the Arizona Department of Health Services under 9 A.A.C. 14, Article 6.
- **E.** A public water system shall conduct MPA monitoring as follows:
 - 1. Each sample shall be representative of the groundwater source. A public water system shall not take a sample of blended water or a sample of water from the distribution system.
 - 2. Each sample shall be collected and analyzed according to the procedures prescribed in the "Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using Microscopic Particulate Analysis (MPA)," EPA 910/9-92-029, United States Environmental Protection Agency, Environmental Services Division, Manchester Environmental Laboratory, 7411 Beach Dr. E., Port Orchard, WA 98366, October 1992 (and no future editions or amendments), which is incorporated by reference and on file with the Department.
 - 3. The Department shall schedule MPA monitoring at a time when the groundwater source is most susceptible to direct surface water influence.
 - 4. The Department shall use the MPA risk ratings in Table 1 to determine whether groundwater is under the direct influence of surface water.
 - a. If the MPA risk rating of the initial sample indicates a high or moderate risk of direct surface water influence, the public water system shall collect a second sample for MPA at the same location on a date scheduled by the Department. If the MPA risk rating of the second sample indicates a high or moderate risk of direct surface water influence, the Department shall determine that the groundwater is under the direct influence of surface water. If the risk rating of the second sample indicates a low risk of direct surface water influence, the public water system shall collect a third sample for MPA at the same location on a date scheduled by the Department. If a third sample is taken, the Department shall determine whether the groundwater is under the direct influence of surface water under

- subsection (E)(4)(c).
- b. If the MPA risk rating of the initial sample indicates a low risk of direct surface water influence, the public water system shall collect a second sample for MPA at the same location on a date scheduled by the Department. If the MPA risk rating of the second sample indicates a low risk of direct surface water influence, the Department shall determine that the groundwater is not under the direct influence of surface water. If the MPA risk rating of the second sample indicates a high or moderate risk of direct surface water influence, the public water system shall collect a third sample for MPA at the same location on a date scheduled by the Department. If a third sample is taken, the Department shall determine whether the groundwater is under the direct influence of surface water under subsection (E)(4)(c).
- c. If a third sample is required and the MPA risk rating of the third sample indicates a high or moderate risk of direct surface water influence, the Department shall determine that the groundwater is under the direct influence of surface water. If the MPA risk rating of the third sample indicates a low risk of direct surface water influence, the Department shall determine that the groundwater is not under the direct influence of surface water.
- **F.** If the Department determines a source to be groundwater under the direct influence of surface water under subsection (E) and a public water system demonstrates to the Department that it is feasible to take corrective action to prevent direct surface water influence, the Department shall establish a schedule of compliance for the public water system to take corrective action instead of requiring installation of filtration and disinfection treatment. A schedule of compliance to take corrective action shall require:
 - 1. Completion of corrective action no later than 18 months after receipt of the initial MPA monitoring results, and
 - 2. A second round of MPA monitoring to determine whether the source is under the direct influence of surface water after completion of the corrective action.
- **G.** Except as provided in subsection (F), a public water system with a source that the Department determines to be groundwater under the direct influence of surface water shall provide filtration and disinfection required under 40 CFR 141 Subparts H, P, and T, as incorporated by reference in this Chapter, within 18 months after the date that the Department makes the final determination that the groundwater is under the direct influence of surface water.
- **H.** The Department shall provide a written notice to a public water system of a final determination that a groundwater source is under the direct influence of surface water. The notice shall contain the information required by A.R.S. 41-1092.03(A).
- I. A public water system may appeal a final determination that a groundwater source is under the direct influence of surface water by serving notice of appeal with the Department under the Uniform Administrative Hearing Procedures in A.R.S. Title 41, Chapter 6, Article 10. A public water system shall file notice of appeal with the Department within 30 days after receiving notice of the Department's determination that a groundwater source is under the direct influence of surface water. The Department shall notify the Office of Administrative Hearings which shall schedule a hearing on the appeal within 60 days after the date that notice of appeal is filed with the Department. Hearings shall be conducted according to the Uniform Administrative Hearing Procedures in A.R.S. Title 41, Chapter 6, Article 10.

2008 (Supp. 08-3).

Table 1. Decision Matrix for Determining Groundwater Under the Direct Influence of Surface Water

Initial Sample MPA Risk Rating	Second Sample MPA Risk Rating	Third Sample MPA Risk Rating	Groundwater Under the Direct Influence of Surface Water
High	High or Moderate		Yes
High	Low	High or Moderate	Yes
High	Low	Low	No
Moderate	High or Moderate		Yes
Moderate	Low	High or Moderate	Yes
Moderate	Low	Low	No
Low	High or Moderate	High or Moderate	Yes
Low	High or Moderate	Low	No
Low	Low		No

Appendix 6

SPECIAL EXCEPTION PERMIT QUESTIONNAIRE State of Illinois Environmental Protection Agency

Groundwater Under Direct Influence of Surface Water Re: 400 - Foot Setback Version 1. Indicate the depth of the well casing. Feet 2. Is the well properly sealed? Yes No 3. Does the well casing penetrate consolidated (slowly permeable) material? Yes No Is the well casing only perforated or screened below consolidated (slowly 4. permeable) material? Yes No 5. Attach a copy of the well log. 6. Is the well greater than 200 feet from the nearest surface water? Yes No If not, indicate the distance between the well and surface water, and describe the source of surface water Feet 7. Is the well in a pit? Yes No 8. Does the casing extend at least 18 inches above the surroundings? Yes No 9. Is the well properly grouted for at least 10 feet? Yes No 10. Is the well subject to flooding? Yes No If it is, does the casing extend at least 3 feet above the highest flood elevation, or the 100 year flood elevation, whichever is higher? Yes No 11. Are there any sewage disposal pits, leach beds, or improperly abandoned wells within 400 feet of the well? Yes No 12. Are there any septic tanks or subsurface septic tanks effluent disposal tile within 75 feet of the well? Yes No

This agency is authorized to require this information under 35 Illinois Administrative Code, 611, Subpart B. Disclosure of this information is required under that Section. Failure to do so may prevent this form from being processed. This form has been approved by the Forms Management Center.

13.	Are there livestock, grazing areas or feedlots, within 50 feet of the well?	Yes	No			
14.	Are there any sewers of non-watertight construction within 50 feet of the well?	Yes	No			
15.	Does the well have a history of total coliform or fecal coliform contamination in untreated samples over the past 3 years?	Yes	No			
16.	Attach a summary of raw water coliform samples for the well over the last 3 years.					
17.	Does the well have a history of significant and relatively rapid water quality shifts? (e.g. turbidity, temperature, pH, taste & odor)	Yes	No			
	If yes, please explain.					
18.	Has the well ever been associated with a disease outbreak?	Yes	No			
I hereb	by certify that to the best of my knowledge and belief the information supplied is true,	complete and a	accurate.			
Name	of owner or authorized agent: PLEASE PRINT OR TYPE -					
Signat	- PLEASE PRINT OR TYPEDate:					

Appendix 7

GUIDANCE FOR DETERMINATION OF GROUNDWATER UNDER THE DIRECT INFLUENCE OF SURFACE WATER

SEPTEMBER 1993

TABLE OF CONTENTS

	<u>Page</u>
Introduction	1
Determination of Direct Influence	2
Appendix 1 Determining Source Classification	9
Appendix 2 Summary of Indicators	10
Appendix 3	
Water Well Construction Regulations (401 KAR 6:310)	12
Appendix 4	
EPA Consensus Method	31

Guidance for Determination of Groundwater Under the Direct Influence of Surface Water

This guidance supplements the Disinfection and Filtration Regulation (401 KAR 8:150) of the Kentucky Drinking Water Regulations and has been developed to assist public water supplies to evaluate their raw water sources as required by the Surface water Treatment Rule (SWTR). This rule requires the raw water sources for all public water supplies to be evaluated and classified as surface water, groundwater or groundwater under the direct influence of surface water. Should the source be determined to be influences by surface water, the requirements of the SWTR shall apply.

Obvious surface sources such as lakes, streams, springs, etc., are subject to the SWTR and no further evaluation is necessary. Raw water sources which are currently classified as groundwater, however, must be further evaluated to determine their ultimate classification. There are several methods which can be used to determine surface water influence. They include:

- 1. A determination that the local geology in conjunction with the well depth and design favors or precludes surface water influence.
- 2. Particulate analysis of the untreated water with regard to insects, algae, organic debris, or large diameter pathogens.
- 3. Long-term monitoring of the untreated water for variations in temperature, turbidity, conductivity, pH, and other parameters to determine any close correlation with nearby surface waters.

It shall be the responsibility of the water supply to employ individuals, firms, or organizations with adequate expertise to acquire the data necessary for the state evaluation. For community water supplies, this information must be submitted by June 29, 1994. Non-community supplies must submit the required data by June 29, 1999. A flow chart for this determination has been included as Appendix 1.

¹Adapted from "Guidance Manual for Compliance With the Filtration and Disinfection Requirements for Public Water Systems Using Surface Water Sources," October 1990 Edition, U.S. EPA Office of Drinking Water, Washington, D.C.

Determination of the Direct Influence of Surface Water on Groundwater Sources

While many raw water sources in Kentucky have historically been classified as groundwater, recent evidence suggests that a number of these sources may be under the direct influence of surface water and thus subject to the treatment requirements of the SWTR. One method of determination is an extensive evaluation of the raw water quality (particulate analysis-procedure 2-A). This method is rather labor intensive, however, and other criteria have been developed to help identify sources not subject to surface water influence. While not as definitive as quality analysis, they do provide a reasonable degree of accuracy. A summary of indicators has been included as Appendix 2.

All Kentucky raw water sources currently classified as groundwater must be evaluated by the following procedures:

Procedure 1 – Review of the Source

1.A. Water Pumped from Sand and Gravel Aquifers

If local geology and well construction verify that a source is producing coliform-free water from a properly constructed well at a production depth of greater than 50 feet from a sand and gravel aquifer, the source should not be subject to the SWTR. A minimum of three samples, collected over a three-month period, shall be analyzed for coliform bacteria to verify that the source is coliform free.

1.B. Other Sources

Groundwater sources meeting all of the following criteria will not be considered subject to the SWTR:

- a. water is produced from a depth greater than 50 feet;
- b. the well is properly located, constructed, and protected from surface contamination;
- c. the casing and nearest collector lateral are located at least 200 feet from any surface water; and,
- d. the water quality records indicate:
 - (1) No record of total or fecal coliform contamination in untreated samples collected quarterly over the past three years.

- (2) No reports or history of turbidity problems associated with the source.
- (3) No history of known or suspected disease outbreaks that could be associated with surface water.

1.C. On-Site Evaluation

An on-site inspection must be performed by competent personnel to evaluate the physical condition of the source. The inspection should include:

- a. Physical condition of well seal, casing, etc.;
- b. Evidence of surface water entering the source through defects; and,
- c. Distance to obvious surface water.

If the evaluation indicates that the source is subject to direct surface water influence, the source must be reconstructed to correct the problem or be subject to the SWTR. Physical modifications to the well shall be in accordance with the Water Well Construction Practices and Standards Regulation (401 KAR 6:310) included as Appendix 3. Sources which do not meet the requirements of this procedure must be further evaluated in accordance with Procedure 2.

Procedure 2 - Particulate Analysis and Other Indicators

2.A. Particulate Analysis

Particulate analysis is intended to identify organisms which occur only in surface water as opposed to groundwater and whose presence in groundwater would clearly indicate that at least some surface water has been mixed with it. Specific identification of diatoms, rotifers, coccidia, insect parts, or <u>Giardia</u> cysts are considered as valid evidence of direct surface water influence. Other large-diameter (>7 um) organisms which are clearly of surface water origin, such as <u>Diphilobothrium</u>, should also, by their presence, be considered as indicators of surface-water influence.

Methods

Since standard methods have not been developed specifically for particulate analysis, there has not been consistency in the way samples have been collected and analyzed. Differences in the degree of training and experience of the microbiologists have added further to the difficulty in comparing results from sample to sample and system to system. The current limitations in sample collection and analytical procedures

must be considered when interpreting the results. Until standardized methods are developed, the EPA Consensus Method (included as Appendix 4) is recommended as the analytical method for particulate analysis.

Sampling Method

Samples should be collected using the equipment outlined in the EPA Consensus Method. Samples should always be collected as close to the source as possible and prior to any treatment. If samples must be taken after disinfection, this should be noted on the sample and then analyzed as soon as possible. Samples must be collected during two periods when the source is most susceptible to surface water influence. Such critical periods will vary from source to source and will need to be determined on a case-by-case basis. For most systems, it may be one or more days following a significant rainfall (for example, two inches or more in 24 hours). In each case, particulate samples should be collected when the source in question is most affected. A surrogate measure such as source turbidity or depth to water table may be useful in making the decision to monitor. If there is any ambiguity in the particulate analysis results, additional samples should be collected when there is the greatest likelihood that the source will be affected by surface water.

Sample volume should be between 500 and 1000 gallons and should be collected over a four-to eight-hour time period. It is preferable to analyze a similar (\pm 10 percent) volume of water for all sources, preferably a large volume, although this may not always be possible due to elevated turbidity or sampling logistics. The volume filtered should be recorded for all samples.

<u>Interpretation of Results</u>

Identification of a <u>Giardia</u> cyst in any source water should be considered conclusive evidence of direct surface water influence. The repeated presence of diatoms in source water should also be considered as conclusive evidence of direct surface-water influence. However, it is important that this determination be based on live diatoms and not empty silica skeletons which may only indicate the historical presence of surface water.

Blue-green, green, or other chloroplast containing algae require sunlight for their metabolism as do diatoms. For that reason, their repeated presence in source water should also be considered as conclusive evidence of direct surface-water influence.

Rotifers, insects, and insect parts are indicators of surface water. Some rotifers do not require sunlight, and not all rotifers require a food source such as algae which originates in surface water. Their nutritional requirements may be satisfied by organic matter such as bacteria or decomposing soil organic material not necessarily associated with surface water. More precise identification of rotifers, i.e. to the species level, is necessary to determine the specific nutritional requirements of the rotifer(s) present. Further information on identifying rotifer species and on which species require food

sources originating in surface water would be valuable, but is not readily available at this time. Without knowledge of which species is present, the finding of rotifers indicates that the source is either a) directly influenced by surface water, or b) it contains organic matter sufficient to support the growth of rotifers. It could be conservatively assumed based on this evidence alone that such a source is directly influenced by surface water. However, it is recommended that this determination be supported by other evidence, such as the source being near surface water, turbidity fluctuations being significant, etc.

Insects or insect parts likewise may originate in surface water, from the soil, or in the case of uncovered sources, they may have been airborne. If insects are observed in a particulate analysis sample, it should be confirmed, if possible, that there is no other route by which insects could enter the source other than surface water. Insects which spend a portion of their life cycle in water are the best indicators of direct surface water influence. Terrestrial insects should not be ruled out as surface water indicators, though, since their accidental presence in surface water is common.

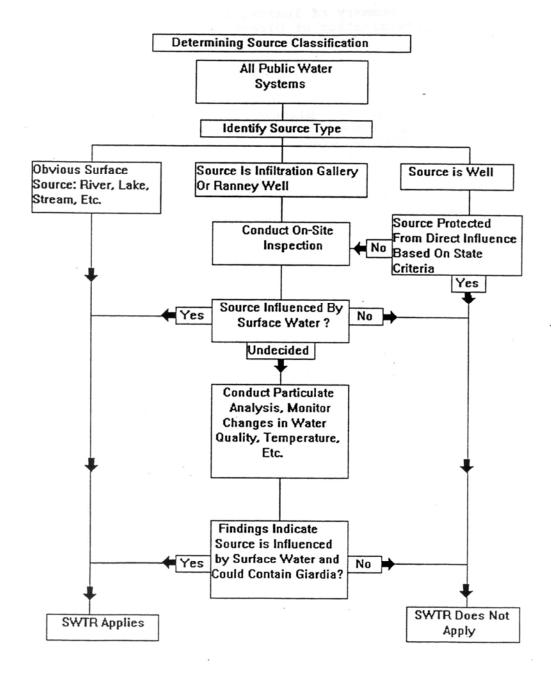
Some researchers have indicated that some insects may burrow and that the finding of eggs or burrowing larvae may not be good indicators of direct surface-water influence. While this may be true for some insects, the distance burrowed in subsurface sediments is expected to be small and the larvae generally are large compared to <u>Giardia</u> cysts. Until further research suggests otherwise, it is recommended that the presence of insects or insect parts be considered strong evidence of surface-water influence. The strength of this evidence can be increased if the source in question is near a surface-water source and similar insects can be found in the surface-water. Coccidia are intracellular parasites which occur primarily in vertebrates and live in various tissues and organs including the intestinal tract.

Though not frequently identified by normal particulate analysis techniques, coccidia are good indicators of direct surface-water contamination. <u>Cryptosporidium</u> is commonly found in surface water, but due to its small size (4-6 um), it is not normally identified without specific antibody straining techniques.

Other microorganisms (>7 um) which are parasitic to animals and fish may be found and are good indicators of surface water influence. Examples include, but are not limited to, helminthes, ascaris, and <u>Diphilobothrim</u>.

2.B. Other Indicators

While particulate analysis is currently considered to provide the most direct evidence of surface water influence, a number of other indicators can be used to provide strong supportive evidence of such influence. These indicators include, among other items, turbidity, temperature, pH, hardness, and conductivity. A record of these parameters, measured daily from the groundwater source along with similar evaluation of nearby surface water and concurrent weather measurements, is necessary for a one-year period.


Turbidity variations of greater than 1.0 NTU over the period of one year may indicate surface water influence. Caution should be used in this evaluation, however, due to the fact that turbidity can be caused by very small particles (<1 um) not originating in surface water. In addition, larger particles may be filtered out and only the smallest particles migrate into the source. Only groundwater sources at risk to contamination from Giardia or other large pathogens (>7 um) are subject to the SWTR requirements.

Temperature fluctuations may also indicate surface-water influence. Fortunately, this information is easy to obtain, and if there is surface water within 500 feet of the source, measurements of both should be recorded for comparison. Changes in surface-water temperature closely followed by similar changes in ground source temperature would be indicative of surface water influence. Also, temperature changes (in degrees F) of greater than 15-20 percent over the course of a year appear to indicate source influence by surface water.

Changes in other chemical parameters, such as pH, hardness and conductivity, should be monitored for the source water and nearby surface water and results recorded. Again, these evaluations do not provide a direct indication that pathogens originating in surface water are present but can indicate whether the water chemistry changed in a pattern similar to surface water chemistry. At this time, no numerical guidelines are available to differentiate what is or is not similar, so these comparisons are more qualitative than quantitative.

Although classification deadlines of 1994 and 1999 have been set, it should be clear that the majority of the evaluations can not be made quickly. All public water supplies are strongly encouraged to begin their source evaluations as soon as possible so that compliance with the regulations can be maintained and any system modifications deemed necessary can be completed in a timely manner.

APPENDIX 1

APPENDIX 2

Summary of Indicators for Determination of Direct Influence By Surface Water

Biological

The presence of: Giardia lamblia, Diphilobothrim, Cryptosporidium, algae, rotifers, diatoms, insects, insect parts, chironomids or other living microorganisms.

Temperature

Temperature variations of over 15-20 percent over the course of a year.

Chemical Parameters

Variations in pH, conductivity, hardness or other chemical parameters over the course of a year that can be correlated with weather conditions or nearby surface waters.

Turbidity

Raw water turbidity in excess of 5.0 NTU or fluctuations of more than 1.0 NTU over the course of a year.

Other indicators of direct surface water influence are:

- 1. wells producing water from a depth of less than 50 feet;
- 2. wells utilizing an unconfined aquifer located within 500 feet of a body of surface water where the static level of water in the well is less than or equal to the level of water in the surface body;
- 3. wells with casings cut off near or below ground level;
- 4. wells improperly cased and back filled;
- 5. wells located in karst areas;
- 6. wells without sanitary seals;
- 7. customer complaints regarding water quality or water-related illnesses;
- 8. wells that become milky after a rain; and
- 9. wells with yields that rise rapidly after rains.

APPENDIX 3

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET Department for Environmental Protection Division of Water

401 KAR 6:310. Water well construction practices and standards.

RELATES TO: KRS 223.400 through 223.460, 223.991

STATUTORY AUTHORITY: KRS 223,420, 223,435, 224,70-100

NECESSITY, FUNCTION, AND CONFORMITY: This administrative regulation provides standards and requirements for the commercial practice of water well drilling. These requirements are necessary to ensure that the completed well provides an appropriate quality of product to the consumer while protecting the ground water resources of the Commonwealth. This administrative regulation fulfills the mandate of KRS 223.435 to promulgate administrative regulations establishing standards of practice for water well construction and of KRS 224.70-100 to protect water quality.

Section 1. Definitions. The terms used in 401 KAR 6:320 and this administrative regulation shall have the meanings given in KRS 223.400, 224.005, or in this section:

- (1) "Abandoned" means a well unsuitable for its intended use that has been sealed or plugged to prevent entry of surface water and to prevent mixing of water from different aguifers.
- (2) "Annular space" means the opening between a well-bore or excavation and the well casing or between a casing pipe and a liner pipe.
- (3) "Aquifer" means a water-bearing formation that transmits water in sufficient quantity to supply a well.
- (4) "Bedrock" means any solid rock exposed at the surface of the earth or overlain by unconsolidated materials or soils.
- (5) "Consolidated formation" means a geological formation which is bedrock.
- (6) "Construction" means all acts necessary for obtaining ground water by wells, including drilling or excavation of the well and installation or modification of casing, but excluding the installation of permanent pumps and pumping equipment.
- (7) "Driller" means water well driller as defined in KRS 223.400.
- (8) "Established ground surface" means the elevation of the ground surface at the site of the well.
- (9) "Finished ground surface" means the final or permanent elevation of the ground surface at the site of the well
- (10) "Impervious" means any material which will not permit the passage of water at a rate greater than 1×10^{-7} centimeters per second (cm/sec) (e.g., clay).
- (11) "Modification" means any change, replacement, or other alteration of the water well. This includes, but is not limited to deepening of a well, replacing or repairing a casing, replacing or repairing a well screen, installing a pitless adapter and any other changes of a well structure. Bailing and pump replacement are not modifications.
- (12) "Monitoring well" means a well constructed when the actual or intended use in whole or part is the removal of water for the purpose of sampling, measuring or test-pumping for scientific, engineering or regulatory purposes.
- (13) "Pitless well adapter" means a device designed for attachment to one (1) or more openings through a well casing. It shall be constructed so as to prevent the entrance of contaminants into the well through the opening, protect the water supply lines and plumbing from freezing and provide access to water system parts within the well.
- (14) "Pitless well unit" means an assembly which extends the upper end of the well casing to above the finished ground surface. It shall be constructed so as to prevent the entrance of contaminants into the well, conduct water from the well, protect the water lines from freezing, and shall provide full access to the well and to water system parts within the well.
- (15) "Pumping water level" means the elevation of the water surface in a well when water is discharged during pumping.
- (16) "Rig operator" means any individual under supervision of a driller for whom an application has been submitted and who has been given a rig operator card from the cabinet and who may from time to time be in charge of well construction in the driller's absence.

- (17) "Rig operator card" means an identification card provided to a rig operator by the cabinet after a certified driller has submitted an application requesting a card for the rig operator.
- (18) "Static water level" means the level at which water stands in a well when no water is being taken from the aquifer either by pumping or by free flow.
- (19) "Unconsolidated formation" means a geological formation such as sand or gravel, which has a tendency to cave in under natural conditions.
- (20) "Well unsuitable for its intended use" means a well:
- (a) The use of which has been permanently discontinued;
- (b) Which is in such a state of disrepair that it cannot be used to supply groundwater;
- (c) Which presents a health hazard;
- (d) From which groundwater for useful purposes is not obtainable; or
- (e) Bore-holes which:
- 1. Are dry:
- 2. Have caved in; or
- 3. Are unsuitable for further development and well construction.
- Section 2. Scope. This administrative regulation provides minimum standards for location, construction and modification of water wells. No water well shall be constructed or modified contrary to the provisions contained in this administrative regulation. Sections 3 through 12 of this administrative regulation apply to water wells except monitoring wells. Section 13 of this administrative regulation applies to monitoring wells. Wells used solely for the purpose of recovery of pollutants shall not be included in this administrative regulation.
- Section 3. General Requirements. (1) Certified driller required. All water wells subject to this administrative regulation shall be constructed only by persons having a valid certificate issued in accordance with KRS 223.400 through 223.460 and 401 KAR 6:320, or by persons under the supervision of certificate holders and having a rig operator card.
- (2) Reports. Within thirty (30) days after a water well has been constructed or modified, the driller shall submit a report of construction to the cabinet. The report shall be submitted on the form entitled Kentucky Water Well Record (DEP-4045).
- (3) Variance.
- (a) If conditions are believed to exist at a proposed installation site which preclude compliance with the requirements of this administrative regulation, the driller may request a variance by submitting to the cabinet a Kentucky Water Well Variance Request Form (DEP-6036) outlining a specific proposal to be used in lieu of compliance with this administrative regulation. The request shall include a thorough description of the site (lot size, the location of sewers, septic tanks, buildings, seepage fields, and other sources of contamination on the property and adjacent property with distances shown to the proposed well), the section number and brief summary of the provisions for which a variance is requested, and a complete justification as to why the variance is needed and how the alternate standard ensures the protection of the quality of the groundwater and the protection of public health and safety. The driller shall give special emphasis to ensuring the protection of the public's health and safety. The driller shall provide a description of site-specific geologic and soil conditions. The cabinet shall notify the applicant in writing within thirty (30) days of its decision either to grant or deny the variance based upon a determination by the cabinet that the proposed variance shall ensure the protection of the quality of the groundwater and protection of the public health and safety. The driller shall request a variance and shall obtain approval before well construction begins. In case of an emergency, where the delay incurred due to the above-described variance procedure would cause undue hardship or loss of life to the intended user, the driller may obtain an oral variance, provided the above-listed information is provided to the cabinet within fifteen (15) days of the date such oral variance is issued.
- (b) After any variance is issued regarding the location of a well with respect to various contamination sources in Section 6 of this administrative regulation, the driller for which a variance has been issued shall take two (2) water samples from the well and have them analyzed for fecal coliform at a cabinet-approved laboratory. The cabinet may require analysis for other water quality parameters which may exist in conjunction with the source of potential pollution as necessary to protect the health or safety of potential users. At the time the variance is approved, the cabinet shall notify the driller as to what these parameters will be. One (1) sample shall be

taken within thirty (30) days and the second sample shall be taken within sixty (60) days, but not less than thirty (30) days, after completion of the well.

- (c) Examples of location problems which could preclude compliance with this administrative regulation would be where the proposed location of a well is too close to septic tanks, buildings, sewer lines, or barnyards as indicated in Table A.
- (d) Examples of public health and engineering principles that may be considered in issuing a variance are ground surface conditions, depth of the water table, the location of sources of pollutants, the vulnerability of the aquifer to bacteria and other pollutants, and the geologic conditions at the site.
- (4) Water sampling. All water samples shall be delivered to the laboratory within six (6) hours of the time they are taken and shall be kept at four (4) degrees centigrade (or forty (40) degrees Fahrenheit) during that time, but shall not be frozen. Containers for the water samples shall be sterile glass or plastic. However, drillers may obtain approval from the cabinet to perform fecal coliform analyses (except those required for variance approval) if they can demonstrate to the cabinet that they are capable of providing an accurate analysis.
- (5) Display of certificate number. Drillers shall have their certificate numbers permanently affixed and prominently displayed on all drilling equipment used at construction sites. The certificate number shall be inscribed in the following manner: KY.CERT. XXXX-XXXX (insert certificate number in place of the X's). Numbers shall be at least three (3) inches in height and of a color that is easily distinguishable from that of the equipment. This number shall be removed if equipment is scrapped, sold, or otherwise changes ownership or if the driller's certificate becomes invalid.
- (6) The documents listed in paragraphs (a) and (b) of this subsection are adopted and filed herein by reference. Copies of these documents may be obtained from the Natural Resources and Environmental Protection Cabinet, Division of Water, 18 Reilly Road, Frankfort, Kentucky 40601, (502) 564-3410. The material is available for public inspection and copying during business hours of 8 a.m. to 4:30 p.m. at the Division of Water, Frankfort Office Park, 18 Reilly Road, Frankfort, Kentucky 40601, (502) 564-3410.
- (a) Kentucky Water Well Record (DEP-4045) (September 15, 1987); and
- (b) Kentucky Water Well Variance Request Form (DEP-6036) (January 1, 1991).
- Section 4. Design Factors. The driller shall design each well to include the following:
- (1) Natural protection. Location of the well shall include use of every natural protection available to promote sanitary conditions.
- (2) Geological formations. The well construction shall be adapted to the local or site-specific geologic formations and ground water conditions.
- (3) Undesirable geological formations. Water bearing formations shall be prevented from contributing to a well by installing casing or a liner and properly sealing when such formations contain undesirable water or when the primary purpose for the well is to withdraw water from a deeper formation.
- (4) Capacity. The well shall be constructed with the capacity to produce as much quantity of the desired water as the aquifer or aquifers can safely furnish.
- (5) Durability. Construction methods and materials shall provide a durable well capable of maintaining safe water and protecting the aquifer over its useful lifetime and until the well is properly abandoned.
- (6) Pitless well adapters. No well casing shall be cut off or cut into below ground surface except by a driller to install a pitless well adapter or pitless well unit. The well casing shall extend at least four (4) inches above established ground surface. If practicable, the well casing shall extend above any known conditions of flooding or run-off from the surrounding land after installation of a pitless well adapter or pitless well unit. Construction or installation of pitless well adapters or pitless well units shall be done in such a manner to provide a leak-proof seal.
- Section 5. Location. (1) General. In establishing the location of a well, the driller shall consider sources of pollutants which exist on or adjacent to the premises where the well is to be located. As far as possible, the well shall be located on ground which is higher than sources of pollutants and shall have ready access for repairs, maintenance, treatment and inspection.
- (2) Relation to sources of pollutants. In establishing minimum lateral distances to locate a well from potential sources of pollutants, the driller shall consider the character and location of the

sources of pollutants, types of geologic formations present, depth to the aquifer, direction of ground water flow, effect on the ground water movement by well pumping and possibilities of flooding of the site by surface waters. Sources of pollutants such as streams, refuse disposal sites, excavations, waste treatment facilities, buried oil and gasoline storage tanks, improperly constructed wells and cisterns shall be evaluated and a distance determined based on the pertinent facts.

- (a) The minimum lateral distances shown in Table A shall apply for the sources of pollutants listed.
- (b) When the upper formations are composed of materials with a permeability of 1 x 10^3 centimeters per second or greater, the lateral distances in Table A shall be doubled.
- (3) Flood water. The construction of wells in locations subject to flooding shall be avoided. If no reasonable alternate site exists, wells may be constructed in flood zones only if water-tight construction is provided. If practicable, the casing of the well shall terminate not less than two (2) feet above the maximum known flood elevation.
- (4) Relation to building. With respect to buildings, pits, and basements, the location of a well shall be as follows:
- (a) Adjacent to building. When a well must be located adjacent to a building, it shall be so located that the center line of the well extended vertically will clear any projection from the building by not less than five (5) feet.
- (b) Pits and basements. New wells shall not be constructed in pits or basements.
- Section 6. Drilled Wells in Unconsolidated Formations. (1) General. In wells constructed in unconsolidated formations which extend the full depth of the well, including the screened area, the driller shall install a permanent casing, governed by the pumping level in the finished well. For pumping levels greater than twenty (20) feet below the ground surface, the driller shall install casing that extends five (5) feet below the pumping level. For pumping levels twenty (20) feet or less below the ground surface, the driller shall install casing that extends ten (10) feet below the pumping level. Under no conditions shall a driller install less than twenty (20) feet of permanent casing, excluding the screened interval. The driller shall fill the annular space between the casing and the drill hole. This may be accomplished by constructing an upper drill hole having a diameter four (4) inches greater than the inner diameter of the casing to be installed and extending to a depth of at least twenty (20) feet. The driller shall seal the upper drill hole with impervious drill cuttings, native clay, bentonite, or a neat cement-bentonite slurry after the casing is in place. Cable-tool drilling may accomplish proper seal through dry bentonite application while driving casing.
- (2) Gravel pack construction. When an oversized drill hole (i.e., more than four (4) inches greater than the inside diameter of the casing) is constructed to permit the placement of a gravel pack around the well screen, the driller shall seal the annular space between the casing and drill hole in the top twenty (20) feet or twenty (20) feet below the point of pitless adapter attachment with impervious drill cuttings, native clay, a neat cement-bentonite slurry or bentonite. If a permanent outer casing is installed, the driller shall extend the outer casing to a depth of at least twenty (20) feet and, depending on the formations present, seal the annular space between the drill hole and the outer casing with impervious drill cuttings, native clay, bentonite, or a neat cement-bentonite slurry. The driller shall seal the annular space between inner and outer casings to prevent the entrance of pollutants from the surface.
- (a) All gravel placed in the well shall be clean, washed and disinfected prior to placement or provisions made for disinfection in place.
- (b) Gravel refill pipes may be installed if they terminate above established ground surface and are provided with watertight caps.
- (c) In wells designed for placement of an artificial gravel pack, the driller shall provide an adequate screen having openings sized on the basis of the grain size of the gravel. The driller shall develop the well to ensure free entry of water without sediment.
- (d) Under no circumstances shall the gravel pack extend to any closer than twenty (20) feet of the established ground surface.
- Section 7. Drilled Well Construction in Consolidated Formations. (1) Where the soil overburden is thirty (30) feet or less in thickness, the driller shall drive or otherwise provide a watertight seal to a depth of at least twenty (20) feet below ground level and at least ten (10) feet into bedrock. The

diameter of the drill hole shall be a minimum of one and three-quarter (1 3/4) inches greater than the inner diameter of the casing. The driller shall fill the annular space with a neat cement-bentonite slurry, bentonite, native clay, impervious drill cuttings, or a mechanical packer in combination with one (1) or more of the above materials. The driller shall install plastic casing as required in subsection (7) of this section.

- (2) Where the soil overburden is greater than thirty (30) feet in thickness, the driller shall install the casing to a watertight seal, a minimum of two (2) feet into stable rock. When the casing is driven, the driller shall fit the casing with a drive shoe and drive the casing to a watertight seal. The driller shall seal the annular space around the casing with impervious drill cuttings, native clay, bentonite, a neat cement-bentonite slurry or a mechanical packer in combination with one (1) or more of the above materials. The driller shall install plastic casing as required in subsection (7) of this section.
- (3) Where the well is drilled to obtain water from the bedrock, beneath a thick (greater than thirty (30) feet) overburden of soil or unconsolidated formations which are unstable and will settle back around the casing, the driller shall drive the well casing to a watertight seal. In instances where a temporary surface casing must be installed to stabilize the bore-hole and in order to facilitate drilling and permanent casing installation, the driller shall fill the annular space around the well casing with impervious drill cuttings, bentonite, a neat cement-bentonite slurry or native clay to a depth of at least twenty (20) feet. The driller shall not install plastic casing under these conditions. (4) Where the well is drilled to obtain water from a lower formation the driller shall extend the casing at least two (2) feet below any creviced formation or fractured formation encountered and drive or install the casing watertight into stable bedrock. The diameter of the drill hole through the creviced formation shall be a minimum of one and three-quarter (1 3/4) inches greater than the inner diameter of the casing. The driller shall seal the annular space with a neat cement-bentonite slurry, bentonite, native clay, impervious drill cuttings, or a mechanical packer in combination with one (1) or more of the above materials. Where an outer casing is left in place, the driller shall seal the annular space between the casings with impervious drill cuttings, native clay, bentonite, a neat cement-bentonite slurry, or a mechanical packer in combination with one (1) or more of the above materials. In instances where voids are encountered, the driller shall extend the casing a minimum of two (2) feet into stable rock below the lowermost void and shall seal the annular space with impervious drill cuttings, bentonite, a neat cement-bentonite slurry, clay or a mechanical packer in combination with one (1) or more of the above materials.
- (5) Flowing artesian well. All flowing artesian wells shall be shut in. The driller shall install casing to eliminate flow in the annular space and shall seal the annular space between drill hole and casing with a neat cement-bentonite slurry, bentonite, native clay, impervious drill cuttings, or a mechanical packer in combination with one (1) or more of the above materials.
- (6) In all wells where the casing is driven, the driller shall not use plastic casing.
- (7) Plastic casing installations. When plastic well casing is installed, the drill hole shall be a minimum of two (2) inches greater than the inner diameter of the casing. The driller shall clean the pipe spigot and socket and treat it with a cleaner-primer. The driller shall solvent cement the joints with a quick-setting cement, or thread and couple the joints. Other types of joints may be evaluated and approved by the cabinet. The driller shall cement a coupling on the bottom of the casing to stabilize it in the hole or use centralizers. The driller may use a steel nipple five (5) to ten (10) feet long on the bottom of the casing in lieu of the coupling when the well will be continued by drilling out through the bottom of the casing. In wells completed in consolidated formations, the driller shall set the casing into bedrock a minimum of ten (10) feet where the overburden is thirty (30) feet or less in thickness and a minimum of two (2) feet where the overburden is greater than thirty (30) feet in thickness to prevent leaking around the end of the casing. In wells in bedrock where the well will be drilled to total depth before casing is installed, the driller shall install a watertight mechanical packer at the bottom of the lowermost string of casing. The driller shall seal the annular space between the casing and wall of the drill hole with at least five (5) feet of bentonite immediately above the packer. The driller shall fill the annular space above the bentonite seal with impervious drill cuttings, native clay, bentonite, or a neat cement-bentonite slurry.
- (8) In areas where the overburden is at least fifteen (15) feet thick and water can only be obtained at or just above the rock surface, the driller shall set the casing at or just above the rock. Under

these conditions, the driller shall seal the lowermost part of the annular space between the casing and wall of the drill hole with a minimum of two (2) feet of bentonite. The driller shall fill the remaining annular space above the bottom seal to the surface with a neat cement-bentonite slurry, bentonite or impervious clay. There shall be no less than twelve (12) feet of overburden from the ground surface to the bottom of the seal. If the casing is to be slotted or a screen installed, the driller shall not extend the slotted section above the bottom of the bentonite or cement seal. If water is encountered in drilling into the rock to develop a reservoir, the driller shall choose which water source is to be used and seal off all others.

Section 8. Special Type Wells. (1) General. Wells in this classification are dug, bored, driven, and radial collector. The choice of any one (1) of these as opposed to a drilled well is largely dictated by the characteristics of the water-bearing formations or aquifers in the local areas.

- (2) Bored or dug well well not finished with buried slab. Bored or dug wells that are not finished as buried slab wells shall comply with the following:
- (a) Annular space. The driller shall grout the open space between the excavation and the installed casing with concrete. The driller shall pour the concrete a minimum of six (6) inches thick and without construction joints from the ground surface to a minimum of ten (10) feet below ground level. The driller shall be responsible for the installation of the concrete grout. The driller shall insure that the diameter of the well bore below the grouting is a minimum of four (4) inches greater than the outside diameter of the well casing and is filled with a gravel pack from the well bottom to the water-producing formation and with impervious material from the top of the gravel pack to the bottom of the concrete grout. The driller shall not extend the gravel pack any closer than ten (10) feet of the ground surface.
- (b) Upper terminal. The driller shall extend the casing at least eight (8) inches above finished ground surface. The driller shall provide a cover slab at least four (4) inches thick, adequately reinforced and having a diameter sufficient to extend to the outer edge of the casing. The slab shall be constructed without joints. The driller shall slope the top of the slab to drain to all sides and shall provide a watertight joint where the slab rests on the well casing. If a manhole is installed, the driller shall insure that the manhole consists of a curb cast in the slab extending four (4) inches above the slab. The driller shall provide a watertight cover having sides which overhang the curb at least two (2) inches for any manhole.
- 1. If installing a vent, the driller shall provide a vent that consists of pipe extending above the slab with the open end turned down and not less than six (6) inches above the slab. The driller shall cover the open end with twenty-four (24) mesh or finer screen of durable material.
- 2. The driller shall cast in place adequate sized pipe sleeve or sleeves in the slab to accommodate the type of pump or pump piping proposed for the well.
- (3) Bored or dug well buried slab construction. The driller shall terminate the well casing at a depth of ten (10) feet or more below the ground surface. The driller shall use well casing meeting the requirements in Section 9 of this administrative regulation. The driller shall firmly imbed or connect the casing to a pipe cast in a reinforced buried concrete slab. The casing shall be a minimum of four (4) inches in diameter and extend from the concrete slab to at least eight (8) inches above finished ground surface. The driller shall fill the annular space between the casing pipe and the well bore with clean impervious material thoroughly tamped to minimize settling. The driller shall make the diameter of the well bore below the buried slab a minimum of four (4) inches greater than the outer diameter of the well casing. The driller shall fill the well bore with a gravel pack from the well bottom to the water table and with impervious material from the top of the gravel pack to the bottom of the concrete slab. The driller shall not extend the gravel pack any closer than ten (10) feet of the ground surface.
- (4) Driven well. The well point, drive pipe and joints shall be structurally suitable to prevent rupture or distortion during the driving of the well. The driller shall construct the top ten (10) feet of the hole to a diameter of at least two (2) inches greater than the inner diameter of the drive pipe. The driller shall fill the annular space around the drive pipe with impervious material. The type of pump proposed for the well will determine how the top ten (10) feet or more of the well shall be completed. If the working barrel of a hand pump is to be located below ground surface, the driller shall enclose the upper portion of the well in steel or iron casing pipe to a point below the barrel. So called "frost pits" curbed with stone, brick, tile, or other materials shall not be installed.

(5) Radial collector well. Approval of plans for the well shall be obtained from the cabinet before construction. Factors that shall be considered for approval of a radial collector well include depth of well, types of soil formations, location of well and sources of potential contamination in the surrounding area.

Section 9. Construction Materials and Other Requirements. (1) Casing and liner pipe. In selection of casing and liner pipe, the driller shall consider the stress to which the pipe will be subjected during construction and the corrosiveness of the water with which it comes in contact. The driller shall install steel or plastic casing, except for bored or dug wells, which the driller shall construct in accordance with Section 8 of this administrative regulation and except for monitoring wells, which the driller shall construct in accordance with Section 13 of this administrative regulation. The driller shall install all pipe and casing in accordance with manufacturer's specifications. The driller shall not install used or rejected casing or pipe shall not be used.

- (a) The driller shall install steel well casing that conforms to the minimum standards given in Table B; or
- (b) The driller shall install plastic well casing and liners that meet the requirements given in Table C. Evidence of compliance shall be display of the National Sanitation Foundation seal on each section of casing.
- (c) The driller shall install plastic well casing and liners that are Standard Dimension Ratio (SDR) rated, have an minimum impact classification of IC-1, and conform to the minimum requirements given in Table C.
- (2) Outer casing. The driller shall install casing, intended for construction purposes only, that is of weight and design as necessary to be watertight and permit installation without distortion or rupture to the specified depth. The driller shall remove the outer casing upon completion of the well.
- (3) Joints. The driller shall insure that all casing and liner pipe joints are watertight.
- (4) Screens or perforated or slotted casing. The driller shall install screen or perforated or slotted casing openings that provide the maximum amount of open area consistent with strength of screen or casing and the grading of the water-bearing formation or gravel pack. The driller shall install materials with openings that permit maximum transmitting ability without clogging or jamming and are sized to provide sediment-free water to the well. Screens shall be made of noncorrosive material.
- (5) Drive shoe. The driller shall equip the pipe that is to be driven with a drive shoe. The driller may use a collar or coupling for light driving. No driller shall drive plastic casing.
- (6) Grouting guides. The driller shall provide a centering shoe for protective casing that is to be grouted in the drill hole or annular space. The driller shall provide sufficient guides or centralizers to permit the unobstructed flow and deposition of the thickness of grout specified.
- (7) Cement grout. The driller shall use the procedures and materials for preparing and placing cement grout that follow:
- (a) Concrete grout. The driller shall mix cement, sand, and water in the proportion of one (1) bag of cement (ninety-four (94) pounds) and an equal volume of dry sand to not more than six (6) gallons of clean water.
- (b) Neat cement grout. The driller shall mix one (1) bag of cement (ninety-four (94) pounds) to not more than six (6) gallons of clean water.
- (c) Neat cement-bentonite slurry. The driller shall mix one (1) bag of cement, (ninety-four (94) pounds) to seven and one-half (7 1/2) gallons of clean water and two (2) to six (6) percent bentonite (by weight two (2) to six (6) pounds) to increase fluidity and to control shrinkage.
- (d) Application. The driller shall perform all cement grouting by adding the mixture from the bottom of the annular space upward in one (1) continuous operation until the annular space is filled or to the point of pitless adapter attachment. The driller may add bentonite, aquajel, or similar materials to the annular space in the manner indicated for grouting, prior to the cement grouting, to seal any small crevices or fissures and assure that the annular space is open.
- (e) Setting time. The driller shall not resume drilling operations until the cement grout has set and hardened for at least forty-eight (48) hours when high-early-strength cement is used and at least seventy-two (72) hours when regular cement is used. The driller may reduce setting time from forty-eight (48) hours with high-early-strength cement and seventy-two (72) hours with regular

cement by addition of manufacturers' approved chemicals and following manufacturers' recommendations for setting time.

- (8) Plumbness and alignment. The driller shall ensure that the bore of the hole is sufficiently plumb and straight to receive the casing without binding. The driller shall ensure that the casing is sufficiently plumb and straight that it will not interfere with installation and operation of the pump.
- (9) Construction water. The driller shall obtain water used in the drilling process from a source which will not result in the introduction of pollutants into the well.
- (10) For air rotary drilling, the driller shall inject water into the air stream at the rate of approximately three (3) gallons per minute.
- (11) Drill cuttings. The driller shall use drill cuttings that are impervious to fill the annular space of a well to prevent surface water from percolating down the drill hole.
- (12) The driller shall not use any material containing lead in constructing a water well.
- Section 10. Finishing and Testing. (1) Upper terminal. The driller shall terminate the casing or riser pipe at a height above established ground surface consistent with proposed plans for a pump house and pump installation, but not less than four (4) inches above finished ground surface. If practicable, the driller shall not install casing less than two (2) feet above any known conditions of flooding by drainage or run-off from the surrounding land. The driller shall fit the well with a well cap or sanitary seal upon completion of the well and prior to departure from the well site. The driller shall compact and grade the ground surface surrounding the well to drain water away from the well.
- (2) Disinfection. For all wells except monitoring wells, the well driller shall disinfect all wells upon completion of the driller's work. The driller shall introduce sufficient chlorine to give a concentration of at least 100 parts per million to the water in the well. (CAUTION: When working with chlorine, persons should be in ventilated place. The powder or strong liquid should not come in contact with skin or clothing. Solutions are best handled in wood, plastic or crockery containers because metals are corroded by strong chlorine solutions.)
- (a) Drilled wells. The driller shall disinfect the well in accordance with the following:
- 1. Determine the amount of water in the well by multiplying the gallons per foot (from Table D) by the number of feet of water in the well.
- 2. For each 100 gallons of water in the well, use the amount of chlorine liquid or compound given in Table D. Mix this total amount in about ten (10) gallons of water. If dry granules or tablets are used, they may be added directly to drilled wells.
- 3. The total amount of this solution shall be poured into the top of the well before the seal is installed and splashed around the lining, or wall, of the well. Ensure that the solution has contacted all parts of the well.
- 4. Where the driller installs a pump, the driller shall connect one (1) or more hoses from faucets on the discharge side of the pressure tank to the top of the well casing and start the pump, recirculating the water back into the well for at least fifteen (15) minutes. Then open each faucet in the system until a chlorine smell is evident. Close all faucets. Seal the top of the well.
- 5. Let stand for several hours, preferably overnight.
- 6. After standing, operate the pump, discharging water from all outlets until all chlorine odor disappears. Faucets on fixtures discharging to septic tank systems shall be throttled to a low flow to avoid overloading the disposal system.
- 7. Where no pump is installed, the well shall be bailed until all chlorine odor disappears before sampling.
- (b) Dug wells. The driller shall disinfect the well in accordance with the following:

Diameter of well (in feet)	3	4	5	6	7	8	10
Amount of 5.25% laundry bleach to use per foot of water (in cups)	1. 5	3	4. 5	6	9	12	18
Amount of 70% Hypochlorite granules to use per foot of water (in ounces)	1	2	3	4	6	8	12

- 1. The amount of disinfectant required is determined primarily by the amount of water in the well. Using Table E, calculate the amount of chlorine that must be added for each foot of water in the well, according to its diameter.
- 2. To determine the exact amount of bleach to use, multiply the amount of disinfectant indicated as determined by the well's diameter times the number of feet of water.
- 3. This total amount of bleach shall be added to approximately ten (10) gallons of water, and splashed around the lining, or wall of the well. Be certain that the solution has contacted all parts of the well, using the entire amount of disinfectant. Seal the top of the well.
- 4. When this is done, pump enough water so the strong chlorine odor is evident. When the odor is detected, stop the pumping and allow the solution to remain in the well overnight.
- 5. After standing, operate the pump, discharging water from all outlets until a colormetric test indicates the absence of chlorine. Faucets on fixtures discharging to septic tank systems shall be throttled to a low flow to avoid overloading the disposal system.
- (c) Water samples. Upon completion and disinfection of a new well or modification of an existing well, the driller shall be responsible for having the well tested for fecal coliform if the well is for potable use. The driller shall also give the owner information prepared by the cabinet explaining the importance of water well sampling, procedures for sampling, and how the water can be tested to assure a safe supply of water. The water sample shall not be taken until all chlorine has been removed from the well.

Section 11. Modification of Wells. (1) General. Wells constructed prior to the effective date of this administrative regulation need not meet its provisions. However, when a well is modified, reconstructed, or repaired, the work shall include those changes necessary to make the well conform to this administrative regulation.

- (2) Well pits.
- (a) No new well pits shall be allowed.
- (b) No person shall modify existing well pits. Any person modifying a well shall eliminate existing well pits. The driller shall extend the casing a minimum of four (4) inches above the finished ground surface. Any flooring and the walls of the pit shall be broken and removed and the pit shall be filled with compacted earth.
- (3) Notification. Within thirty (30) days after modification of a well, the driller shall provide written notification of the modification to the cabinet. The notification shall be submitted on the form entitled Kentucky Water Well Record (DEP-4045), incorporated in Section 3(6) of this administrative regulation.
- Section 12. Abandoned Wells. (1) General. If a constructed water well is not suitable for its intended purpose and is to be abandoned, or if a well is drilled too close to a previously constructed well the owner shall ensure that the abandonment procedures are implemented as soon as possible, but no later than thirty (30) calendar days after completion of the well or after the owner has made the decision that the uncompleted well or previously constructed well is not to be used. The driller shall ensure that the well is completely filled in such a manner that the vertical movement of water within the annular space is effectively and permanently prevented.
- (a) Preparation for wells to be abandoned. Before a well which is to be abandoned is sealed, the driller shall measure the depth and check to ensure that there are no obstructions within the well which may interfere with plugging operations. The driller shall pull or drill out screens, casings

- and liner pipes whenever possible to assure placement of an effective seal. The driller shall remove at least the upper five (5) feet of casing, liner pipe, brick, stone, metal, or other materials in all wells to prevent the passage of water along the casing and entering the water-bearing strata. The driller shall pull rather than cut the top joint of all plastic or steel casing.
- (b) Disinfection. The driller shall disinfect the well and fill materials by using sodium hypochlorite or calcium hypochlorite. The driller shall dissolve sufficient chlorine compound to produce a calculated concentration of at least 100 parts per million (100 ppm) available chlorine in double the volume of water in the well. The driller shall place the fill material in the well after the water in the well has been so treated. Cement grouts do not require disinfection.
- (c) Fill materials. The driller shall fill the aquifer or water-bearing zones in the wells with clean (relatively free of organic matter), disinfected, and dimensionally stable materials. The driller shall mechanically pack the fill materials to avoid later settlement. Neat cement shall not require disinfection. Except as specified in paragraph (e) of this subsection and subsections (2) through (5) of this section, the driller shall use only neat cement grout, a neat cement-bentonite slurry, or bentonite in plugging water wells. In all cases, clay may be used to fill the uppermost five (5) feet of the bore-hole.
- (d) Placement of grout. The driller shall introduce neat cement or neat cement-bentonite grout used as a sealing material in abandonment operations at the bottom of the well or interval to be sealed (or filled) and shall place it progressively upward to the top of the well. For all such sealing materials the driller shall use grout pipe, tremie, cement bucket or dump bailer, in such a way as to avoid segregation or dilution of the sealing materials. Dumping grout material from the top shall not be permitted.
- (e) Permanent bridges. Permanent bridges may be used only where voids are encountered which are too large to be filled. Under these circumstances, the driller shall completely fill the well to the bottom of the void with impermeable material. The driller shall construct a permanent bridge immediately above the void. The permanent bridge shall be at least ten (10) feet thick. Permanent bridges shall be composed only of neat cement. The driller shall allow the cement to harden for at least twenty-four (24) hours, if Type I cement is used, or for at least twelve (12) hours if Type III (high early strength) cement is used, before backfilling is continued. Temporary bridges used to provide a base for the permanent bridge shall consist only of inorganic materials except that patented devices containing expandable neoprene, plastic, and other elastomers, and specifically designed for use in well construction are acceptable. Notification shall be given to the cabinet at least twenty-four (24) hours before a permanent bridge is to be installed.
- (f) Preexisting contamination. A well unsuitable for its intended use which has been affected by salt water intrusion or any other pollutant shall be considered a special case. The method of filling and sealing such wells shall be submitted to the cabinet by the drillers and shall be subject to individual review and written approval by the cabinet prior to sealing. In the sealing of a double or multiple cased well, the driller shall submit a drawing of the well with a description of the proposed procedure and materials to be used, for prior approval by the cabinet.
- (g) Well abandonment records. Before equipment is removed from the site, the exact location of the well or drill hole to be sealed and abandoned shall be determined and recorded, tying in the location with permanent reference points. The driller shall record all information relative to the abandonment procedures and the location of the abandoned well on forms provided by the cabinet with copies supplied to the cabinet and the owner of the land within thirty (30) days. The information shall be submitted on the form entitled Kentucky Water Well Record (DEP-4045) incorporated by reference in Section 6(3) of this administrative regulation.
- (2) Abandonment of wells in unconsolidated formations. Drillers shall completely fill a well unsuitable for its intended use that is constructed only in unconsolidated formations and contains water under water table or atmospheric conditions. Clean, disinfected sand or gravel may be used as a fill material from the well bottom to the water table level. If the water-bearing formation consists of coarse sand or gravel and producing wells are located nearby, only sealing materials which do not adversely affect the producing wells shall be used. A driller shall not extend the sand or gravel fill any closer than ten (10) feet of the ground surface. The driller shall place a minimum of five (5) feet of neat cement grout, neat cement-bentonite slurry or bentonite above the sand or gravel fill. The driller shall fill the uppermost portion of the well above the cement or bentonite plug with clay or an impermeable material appropriate to the intended use of the land.

Neat cement, a neat cement bentonite slurry, or bentonite may be used to fill the well to the ground surface.

- (3) Abandonment of wells in consolidated formations. The driller shall completely fill a well unsuitable for its intended use that is constructed in consolidated formations or bedrock with neat cement, a neat cement-bentonite slurry, or bentonite, if there is no artesian flow of water in the well. The driller shall not use sand or gravel except for those wells for which a well record is on file with the cabinet. Use of sand or gravel shall be considered a special case and the method of filling and sealing such wells shall be subject to written approval by the cabinet prior to sealing. Under these conditions, the cabinet may allow the use of sand and gravel to fill through the water-producing horizon, if there is limited vertical movement of water in the formation and such movement will not adversely affect the quality or quantity of water in producing wells. The driller shall place neat cement or neat cement-bentonite grout or bentonite immediately above the sand and gravel fill, extending up to within five (5) feet of the ground surface. The driller shall fill the uppermost five (5) feet of the bore-hole with clay or an impermeable material appropriate to the intended use of the land. In the event the casing cannot be pulled or drilled out, the driller shall use bentonite slurry to fill the length of the casing.
- (4) Abandonment of flowing artesian wells. The sealing of abandoned flowing artesian wells or wells which are unsuitable for their intended use and in which there is vertical movement of water between aquifers requires special attention. The driller shall notify the cabinet at least twenty-four (24) hours before such a well is to be sealed. The driller shall pressure cement such wells with neat cement mixed with the minimum quantity of water that will permit handling. In order to place the cement, the driller shall restrict flow. Gravel or stone aggregate not more than one-third (1/3) of the diameter of the hole may be placed through the water-bearing horizon, if its extent is known. The driller shall place a well packer, cast-iron plug, or temporary bridge at the bottom of the confining formation immediately overlying the artesian water-bearing horizon to seal off the flow. Temporary bridges shall consist only of inorganic materials - except that patented devices containing expandable neoprene, plastic, and other elastomers, and specifically designed for use in well construction shall be acceptable. The driller shall place the neat cement grout in one (1) continuous operation from the top of the packer, plug or bridge to five (5) feet of the surface or to the bottom of an overlying water-bearing formation. In the latter situation it may be necessary to repeat the process described in this subsection. The driller shall fill the uppermost five (5) feet of the bore-hole with clay or an impermeable material appropriate to the intended use of the land. Section 13. Monitoring Well Construction. (1) After July 1, 1991, no person shall construct or modify a monitoring well without having a valid certificate issued in accordance with KRS 223.400 through 223.460.
- (2) Drillers shall construct monitoring wells to maintain existing natural protection against the introduction of pollutants into aquifers, prevent the entry of pollutants through the bore-hole, and prevent the intermingling of groundwater from different aquifers through the bore-hole. Compliance with this section shall not relieve the driller from specific requirements under other federal or state regulatory programs.
- (3) The driller shall use materials in the construction of a monitoring well appropriate to the purpose of that well. The driller shall seal the annular space above the sampling depth with suitable material, such as cement grout or bentonite, in order to prevent the introduction of pollutants into the samples or the groundwater. The driller shall complete the well at least four (4) inches above ground level or shall install a waterproof flush mount device capable of preventing surface water run-off, pollutants and contaminants from entering the well. The driller shall label the well with a Kentucky well tag. Within thirty (30) days after a monitoring well has been constructed or modified, the driller shall provide the well with a locking well cap.
- (4) The driller shall provide the cabinet with a record of the well as specified in KRS 223.440.
- (5) The record shall be submitted on the form entitled Kentucky Monitoring Well Record (DEP-8043). The following document is adopted and filed herein by reference: Kentucky Monitoring Well Record (DEP-8043) (January 1, 1991). Copies of this document may be obtained from the Natural Resources and Environmental Protection Cabinet, Division of Water, 18 Reilly Road, Frankfort, Kentucky 40601, (502) 564-3410. The material is available for public inspection and copying during business hours of 8 a.m. to 4:30 p.m. at the Division of Water, Frankfort Office Park, 18 Reilly Road, Frankfort, Kentucky 40601.

- (6) The owner shall ensure that monitoring wells are properly abandoned within thirty (30) days of the last sampling date or the determination is made that the monitoring well is unsuitable for use as a monitoring well.
- (7) This section shall become effective on July 1, 1991.

TABLE A	
Required Minimum Distances Fro Lateral Sources of Pollutants	om
Lateral Sources	Minimu
of Contamination	m
	Distanc
	es
	for Clay
	& Loam
	Soils
Cess Pools	150 feet
Leaching Pit	100 feet
Pit Privy	75 feet
Subsurface Seepage Tile	75 feet
Lateral Fields	70 feet
Manure Piles	75 feet
Septic Tank	50 feet
Barnyard	50 feet
Sewers (noncast iron) (nonperforated)	50 feet
Sewers (cast-iron with watertight leaded or mechanical joints)	15 feet
Sewers (Schedule 40 or heavier plastic pipe with solvent cemented or elastomeric seal joints.) Pipe is solid pipe not perforated.	15 feet
Footing Drains (no connection to a sewer or a sump handling sewage)	10 feet
Pump House Floor Drain	2 feet
Cemeteries	75 feet
Property Lines	20 feet

TABLE B					
Casing	Casing and Liner Pipe Weights and Dimensions				
Size (inche s)	External Diameter (inches)	Thickne ss (inches)	Weight (pounds per foot)		
1	1.315	0.120	-		
1 1/4	1.660	0.120	-		
1 1/2	1.900	0.120	-		
2	2.375	0.120	2.89		
2 1/2	2.875	0.120	3.53		
3	3.500	0.120	4.33		
3 1/2	4.000	0.120	4.97		
4	4.500	0.188	8.66		
5	5.563	0.188	10.79		
6	6.625	0.188	12.92		
8	8.625	0.277	24.70		
10	10.750	0.307	34.24		
12	12.750	0.330	43.77		
14	14.000	0.375	54.57		
16	16.000	0.375	62.58		
18	18.000	0.375	70.59		
20	20.000	0.375	78.60		

Pipe sizes not listed that are less than eight (8) inches in diameter shall match listed values as closely as possible.

Pipe sizes not listed that are eight (8) inches in diameter or greater shall be Schedule 30 pipe as a minimum.

	TABLE C						
Plas	tic Cas	ing and Liner Pipe	Specifications				
Size (inche s)	SD R	External Diameter (inches)	Minimum Wall (inches)				
4	26	4.500	0.173				
5	26	5.563	0.214				
6	26	6.625	0.255				
8	26	8.625	0.332				
10	26	10.750	0.413				
12	26	12.750	0.490				
14	26	14.000	0.539				
16	26	16.000	0.616				

TABLE D				
Requ	uired Amounts of	Disinfectant		
Disinfectant Diameter of Well in Inches	Volume of Water in Gallons Per Foot of Depth	Required for Each 100 Gallons of Water		
3	0.37	Laundry Bleach (5.25% chlorine) = 3 cups		
4	0.65			
5	1.0	Hypochlorite Granules (70% chlorine) = 2 oz.		
6	1.5			
8	2.6			
10	4.1			
12	6.0			

1 cup = 8 ounces measuring cup (2 cups = 1 pint; 4 cups = 1 quart)

1 ounce = 1 heaping tablespoon granules (16 ounces = 1 pound)

TABLE E							
Required .	Amoι	ınts	of Dis	infe	ctan	t	
	[Diam	eter (of we	ell (ir	n feet)
	3	4	5	6	7	8	10
Amount of 5.25% laundry bleach to use per foot of water (in cups)	1. 5	3	4. 5	6	9	12	18
Amount of 70% hypochlorite granules to use per foot of water (in ounces)	1	2	3	4	6	8	12

(11 Ky.R. 1950; Am. 12 Ky.R. 144; eff. 8-13-85; 17 Ky.R. 2762; 3142; eff. 5-22-91.)

APPENDIX 4

EPA CONSENSUS METHOD FOR <u>GIARDIA</u> CYST ANALYSIS

TESTING FOR GIARDIA IN WATER

To begin the work groups on testing, Jay Vasconcelos gave a slide presentation about the testing method used in the Region 10 Laboratory. The following pages summarize his talk.

METHODS OF TESTING FOR GIARDIA IN WATER (George (Jay) Vasconcelos, (Regional Microbiologist, Region 10 Laboratory,

Manchester, Washington)

Background:

Although recent development of an excystation technique by Drs. Bigham, Meyer, Rice and Schaefer could in the future lead to developing cultural methods, at this time no reliable methods exist for culturing <u>Giardia</u> cysts from water samples. At present, the only practical method for determining the presence of cysts in water is by direct microscopic examination of sample concentration.

Microscopic detection in water-sample concentrates isn't an ideal process. Finding and identifying the cysts relies almost entirely on the training, skill, experience and persistence of the examiner. (And it is a skill not widespread among water-supply laboratories.) But despite its limitations, microscopic identification is currently the best method we have.

Years ago, the basic assumption was made that in order to find <u>Giardia</u> cysts in water, some form of sample concentration was necessary. As early as 1956, labs were using membrane filters with a porosity of 0.45 um. With few exceptions, these attempts were unsuccessful. The Center for Disease Control has tried particulate filtration, with diatomaceous earth as the medium. This removed the cysts from the water, but the cysts couldn't be separated from the particles of diatomaceous earth.

With the recent increase in the incidence of water borne giardiasis, further efforts have been made to improve the detection method. An ideal method would be one that recovers all cysts in a water sample rapidly, cheaply and simply; allows rapid detection, identification and quantification; and provides information on the viability of and/or infectivity potential of cysts detected.

Unfortunately, no such method exists. The methods presently available can be broadly separated into two general stages: primary concentration and processing (see Table 1 on next page), and detection and identification (see Table 2 on next page).

TESTING FOR GIARDIA IN WATER

Methods of Testing for Giardia in Water (Continued...)

Table 1: PRIMARY CONCENTRATION AND PROCESSING METHODS

	<u>METHOD</u>	<u>INVESTIGATOR(S)</u>	<u>RESULTS</u>
1.	Membrane Filtration		
	Cellulosic (47mm-0.45 um)	Chang & Kabler USPHS, 1956	Generally unsuccessful
	Polycarbinate (293mm-5 um)	Pyper, DuFrain & Henry Eng 1982, (unpublished)	Passing 1 gal/min @ 10 PSI. 15-1800 gal total
2.	Particulate Filtration (diatomaceous earth, sand, etc.)	Shaw et al, 1977 Jurenek, 1979	Generally good removal but poor eluation
3.	Algae (Foerst) Centrifuge	Holman et al, 1983 DHHS, Washington	Good rapid recovery, but limited in field use.
4.	Anionic and Cationic Exchange	Resins Brewer, Wright State UN. (unpublished)	Generally unsuccessful
5.	Epoxy-Fiberglass Balston Tube (10"-8um)	Filters Riggs, CDHS Lab, Berkley, CA (unpublished)	Overall recovery 20-80%
6.	Microporous Yarnwoven Depth (7 & 1um orlon & polyprolylene)	.Filters Jakubowski, Erickson, 1980, EPA-Cincinnati	Recovery 3-15% Extraction ave. 58%
7.	Pellican Cassette System	Millipore Corp. (unpublished)	May be useful for processing filter washings
8.	Filterwashing Apparatus	DuWalle, U. of Wash., 1982 (unpublished)	Clains 75% recovery from orlon filters

TESTING FOR GIARDIA IN WATER

Methods of Testing for Giardia in Water (Continued...)

Table 2: DETECTION METHODS

<u>METHOD</u>	INVESTIGATOR(S)	RESULTS
1. <u>Immunofluorescen</u> DFA	Riggs, CSDHS Lab, Berkley, CA 1983	Good prep., Cross Rx
IFA	Sauch, EPA-Cincinnati Riggs, CSDS	Still under study
Monoclonal Antibodies	Riggs, CSDHS Sauch, EPA-Cincinnati (unpublished)	Still under study
2. ELISA Method	Hungar, J. Hopkins MD, 1983	Feces samples only
3. <u>Brightfield/Phase</u> Contrast	EPA Consensus method	Ongoing

TESTING FOR GIARDIA IN WATER

Methods of Testing for Giardia in Water (Continued...)

EPA Consensus Method:

In September, 1980, the EPA convened a workshop on Giardia methodology in Cincinnati. Its main purposes were to identify the best available methodology, and to agree on a reference method. The five labs in attendance recognized that any proposed method would be based in large part on opinions and personal preferences rather than on hard data, but that agreeing on a consensus method would promote uniformity and provide a basis for future comparisons. Our lab has modified the EPA consensus method slightly for our use. This method is shown below.

Filter unwound into quarters \rightarrow Rinsed in distilled water with polysorbate 20 \rightarrow

Settled overnight, or centrifuged → Collect sediment and add 2% Formaldehyde in

PBS→ Settled overnight, or centrifuged → Collect sediment

If sediment is >1 g, then Sucrose or Percoll-sucrose Gradient.

If sediment is <1 g, then ZnSO₄ Flotation.

Afterwards, Microscopic observation of the entire Concentrate (Brightfield/Phasecontrast)

CONCENTRATING, PROCESSING, DETECTING AND IDENTIFYING <u>GIARDIA</u> CYSTS IN WATER

The following pages contain background information supporting Jay Vasconcelos' talk, "Methods of Testing for $\underline{Giardia}$ in Water."

CONCENTRATING, PROCESSING, DETECTING AND IDENTIFYING <u>GIARDIA</u> CYSTS IN WATER

TABLE 1: PRIMARY CONCENTRATION AND PROCESSING METHODS

M	<u>ETHOD</u>	INVESTIGATOR(S)	RESULTS
1.	Membrane Filtration Cellulosic (47mm-0.45um)	Chang and Kabler USPHS, 1956	Generally unsuccessful
	Polycarbinate (293mm-5um)	Pyper, DuFrain & Henry Eng 1982, (unpublished)	Passing 1 gal/min at 10 PSI. 15-1800 total
2.	Particulate Filtration (diatomaceous earth, sand, etc.)	Shaw et al, 1977 Juranek, 1979	Generally good removal but poor eluation
3.	Algae (Foerst) Centrifug	e Holman et al, 1983 DHHS, Washington	Good rapid recovery but limited in field use
4.	Anionic and Cationic Exchange Resins	Brewer, Wright St. UN. (unpublished)	Generally unsuccessful
5.	Epoxy-Fiberglass Balsto Tube Filters (10"-8um)	n Riggs, CDHS Lab, Berkley, CA (unpublished)	Overall recovery 20-80 percent
6.	Microporous Yarnwover Filters (7 and 1 um orlon and polyprolylene	Jakubowski, E. 1979 and 1980,	Recovery 3-15 percent Extration ave. 58 percent
7.	Pellican Cassette System	Millipore Corp.	May be useful for processing

(unpublished) filter washings

8. <u>Filterwashing Apparatus</u>

DuWalle, U. of W. Claims 75 percent

1982 (unpublished) recovery from orlon filters

CONCENTRATING, PROCESSING, DETECTION AND IDENTIFYING GIARDIA CYSTS IN WATER

PRIMARY CONCENTRATION AND PROCESSING METHODS

1. MEMBRANCE FILTER (MF) METHODS

A. Cellulosic (mixed esters of cellulose)

- 1. Chang and Kabler in 1956
 First to use MF for cyst recovery. Recovered 20-42 percent at cyst concentration of 3, 5, and 10 cyst/gal.-no cyst found at 1 cyst/gal.
- 2. Method was used in 1965 Colorado outbreak (Moore, et al, 1969) using 2 liter size water samples from 10 sites. No cysts were detected. Use of cellulosic filters have generally not been successful in demonstrating cysts in drinking water.

B. Polycarbonate (PC) Filters

- 1. Luchtel and Colleages in 1980 and used 293 mm, 5.0 um pore size nucleopore (PC) filters to concentrate formalin-fixed, G. lamblia cysts from 20 L tap water samples. Recovery rates of approximately 75 percent were reported.
- 2. Pyper of DuFrain and Henry Engineers claim good recovery with same nucleopore filter at a flow rate of 1 gal./min., not over 10 PSI, passing 15-1800 gal. In just over 24 hours.
- C. Even with those claims by Pyper and Luchtel, the MF Method has only once (Aspen, 1965) been successful in demonstrating cysts in water—probably because:
 - 1. Inability to process a sufficient volume.
 - 2. Inability to remove cysts from filter.
 - 3. Cysts were not present at a time of sampling during or after outbreak.

2. PARTICULATE FILTRATION

a. <u>SAND</u> - CDC (Shaw, 1977) used high-vol filtration through swimming pool sand filter (280,000 gal. Total over 10 days) – was back flushed into 55 gal. Drums and coagulated w/alum. Concentration fed to beagle puppies and after treatment (cheesecloth to wire screening to 30 um MF to centrifuge) was examined microscopically. First time cysts observed in water supply after concentration.

CONCENTRATING, PROCESSING, DETECTING AND IDENTIFYING GIARDIA CYSTS IN WATER

b. <u>Diatomaceous earth (DE)</u> - CDC (Juranek, 1979) used DE to remove cysts from seeded water. Problem was that cysts could not be removed from DE particles. Brewer (1983) claims 5.2-31.1 percent recovery from DE backwash. Retention through 3 forms (celite 505, HyFlo-Supercel and celite 560) at cyst concentration ranging from 6-16,000 cyst/L. Recovery range between 66-100 percent.

3. ALGAE CENTRIFUGE

- a. Was found to recover more cysts (10X) than a series of MF-filters and nylon screens: 5 vs. 1 day by MF.
- b. May be impractical in field because of power requirement.
- c. If used in lab, 1 large single sample collected in the field could miss cyst.
- d. May find application for concentration cysts from orlon filter washings.

4. ANIONIC AND CATIONIC EXCHANGE RESINS (Brewer – unpublished)

- a. Based on hypothesis that cysts could be attracted to charged surfaces, cysts have a charge of approximately 25mV at pH 5.5 which increases in electronegativity as the pH rises to 8.0.
- b. Charge attraction techniques have been used for concentration of both bacteria and viruses in water.
- c. Five exchange resins were tested:
 - 1.) 49 percent recovery from anionic Dowex 1-XY columns
 - 2.) 38 percent recovery from cationic Dowex 50W-X8 columns
- d. Compared to parallel tests w/diatomaceous earth, <u>exchange resins less</u> efficient in retention.

5. <u>BALSTON EPOXY-FIBERGLASS TUBE FILTERS</u>

- a. Riggs of CSHD, Viral and Rick. Lab., can filter 500 gallons drinking water thru 10" 8 um Balston tube filter.
- b. Backflushes w/1 L 3 percent beef extract or solution of 0.5 percent potassium citrate.

CONCENTRATING, PROCESSING, DETECTING AND IDENTIFYING <u>GIARDIA</u> CYSTS IN WATER

- c. Concentration is centrifuged w/40 percent potassium citrate and middle layer filtered throught 5 u polycarbonate filters.
- d. Uses direct immunofluorescence antibody technique for detection and identification.
- e. Claims 20-80 percent efficiency in collection, preprocessing and ID.

6. MICROPOROUS YARNWOVEN DEPTH FILTERS

- a. In 1976 EPA developed a concentration-extraction method involving large volumes of water through microporous yarnwoven orlon-fiber filters.
- b. This method has been tentatively adopted as the "method of choice" for concentrating cysts from water supplies.
- c. Since initial studies which showed only 3-15 percent recovery with a mean of 6.3 percent and a 58 percent extraction rate, several changes have been made which may have increased the retention rate to >20 percent.
 - 1. Gone from 7 to 1 um porosity filter;
 - 2. Limited the rate of flow to ½ gallon/min;
 - 3. Limited the pressure head to 10 PSI; and,
 - 4. Have gone to polypropylene filters in lieu or orlon
- d. It was the first method successfully used to detect cysts in the distribution system of a community water supply.
- e. Is the recommended filter to be used by the EPA consensus method.

7. PELLICAN CASSETTE SYSTEM

- a. Is a plate and frame style holder which accepts both ultra thin and depth type filters.
- b. Has from 0.5 to 25 ft² of filter area.

- c. Has not been investigated thoroughly but has had some success in virus concentration.
- d. Its main application for cyst recovery may lay with the processing of filter washings.

CONCENTRATING, PROCESSING, DETECTING AND IDENTIFYING <u>GIARDIA</u> CYSTS IN WATER

9. FILTERWASHING APPARATUS

- a. This is a proposed device by DuWalle, 1982 from University of Washington, for unwinding the fibers from the filter cartridge while repeatedly brushing and squeezing them while in a bath solution.
- b. Bath could contain either a surfactant or pH controlled solution.
- c. Potential claims are as high as 75 percent extraction of cysts from the fibers.

TABLE 2: <u>DETECTION METHODS</u>

1.				
	a.	DFA	Riggs, CSDHS Lab, Berkeley, CA 1983	Good prep., Cross Rx
	b.	IFA	Sauch, EPA-Cincinnati Riggs, CSDS	Still under study
	c.	Monoclonal Antibodies	Riggs, CSDHS Sauch, EPA-Cincinnati (unpublished)	Still under study
2.	ELIS	A Method	Hungar, J. Hopkins MD, 1983	Feces samples only
3.	<u>Brigh</u>	tfield/Phase Contrast	EPA Consensus method	Ongoing

DETECTION METHODS

1.a. DIRECT FLUORESCENT ANTIBODY (DFA) TECHNIQUE

1. Riggs has produced a high titer purified immune sera to <u>Giardia lamblia</u> cysts in guinea pigs and labeled it with fluorecein isothio cyanate. Sera is purified through NH₄OH and DEAE sefadex fractionation.

2. Obtained cross reactions with <u>Chilomastix mesnili</u> cysts but claims it can be easily distinguished from Giardia by its smaller size.

CONCENTRATING, PROCESSING DETECTING AND IDENTIFYING GIARDIA CYSTS IN WATER

1.b. INDIRECT FLUORESCENT ANTIBODY (IFA) TECHNIQUE

1. Sauch using IFA with immune sera from rabbits (unpurified). It is reacted with commercially available fluorescent-labeled goat anti-rabbit gamma globulin.

1.c. MONOCLONAL ANTIBODIES

- 1. Using clones of hybridoma cell lines obtained by fusing mouse myeloma cells with spleen cells from mice (BALB/c) immunized with G. lamblia trophozoites.
- 2. Produced eight monoclonal antibodies evaluated by IFA against both trophs and cysts.
 - a. 3/8 stained the ventral disk;
 - b. 2 stained the nuclei;
 - c. 2 stained cytoplasmic granules; and,
 - d. 2 stained membrane components.
- 3. Variability in staining may be due to differences in stages of encystment.
- 4. Preliminary results indicate monoclonal Abs may give rapid and specific ID of cysts.
- 5. Rx may be too specific, not reacting with all human forms of <u>G. lamblia</u> may have to go to polyclonal Abs.

2. ELISA METHOD

- a. Hungar at John Hopkins (unpublished) has produced a detection method by ELISA using an intact "sandwich" technique in 96-well microtiter plates.
- b. Using antisera from 2 different animals (may present problem).
- c. Need a minimum of 12 cysts/well for color Rx.

http://www.water.ky.gov/dw/techdoc/GWUDI.htm

Appendix 8

PWS-5

GROUNDWATER UNDER THE DIRECT INFLUENCE OF SURFACE WATER (GWUDISW)

2002 EDITION

TABLE OF CONTENTS

SECTION 1.0	PURPOSE	2
SECTION 2.0	SURFACE WATER DEFINED	2
SECTION 2.1	GROUND WATER DEFINED	3
SECTION 3.0	PRELIMINARY ASSESSMENT (PA)	3
PRELI	MINARY ASSESSMENT WORKSHEET	5
SECTION 3.1	PRELIMINARY ASSESSMENT SCORE	9
SECTION 3.2	FURTHER ASSESSMENT	9
SECTION 3.3	SOURCE EVALUATION	10
SECTION 3.4	PROPOSED GROUND WATER SOURCES	12
SECTION 4.0	HYDROGEOLOGIC ASSESSMENT (HA)	12
SECTION 4.1	EVALUATION OF THE HYDROGEOLOGIC ASSESSMENT	12
SECTION 4.2	RESOURCES USED IN ASSESSMENTS	14
SECTION 5.0	WATER QUALITY ASSESSMENT (WQA)	15
SECTION 5.1	WQA FOR EVALUATION OF HYDROGEOLOGIC CONNECTON UNDER THE GWUDISW DETERMINATION PROCESS	15
SECTION 6.0	MICROSCOPIC PARTICULATE ANALYSIS (MPA)	23
MICR	OSCOPIC PARTICULATE ANALYSIS (MPA) SAMPLING DATA	24
SECTION 6.1	MPA SAMPLE COLLECTION INSTRUCTIONS	26

SECTION 1.0 PURPOSE

The purpose of this Circular is to protect public health by classifying those ground water sources that have a potential to be influenced by surface water as defined by 40 CFR § 141.2 and to apply the surface water treatment requirements (40 CFR § 141.70) to those systems that are directly influenced by surface water. The Ground Water Under the Direct Influence of Surface Water (GWUDISW) determination process will examine all public water supply systems (PWSs) and proposed water supply systems that have ground water sources reviewed under Department of Environmental Quality (DEQ) Circular, DEQ-3.

Under this process, the DEQ PWS Section, will evaluate existing ground water sources in community PWSs first, then non-transient non-community PWSs, and finally transient non-community PWSs. The process will begin with a Preliminary Assessment (PA) conducted by DEQ personnel or contractors working for DEQ. Depending on the results of the PA, the DEQ may require the following options: the source may be studied further; additional source information may be requested; or repair of source construction deficiencies may be required. The options for further study include Hydrogeologic Assessment (HA), Water Quality Assessment (WQA), and Microscopic Particulate Analysis (MPA). Proposed systems must pass a number of assessments specified by DEQ, and applicants must submit the analytical results from the assessments to the DEQ for review and approval. DEQ may conduct an independent investigation in addition to that required by the applicant or PWSs.

SECTION 2.0 SURFACE WATER DEFINED

Throughout the GWUDISW process a key concept will be the definition of "surface water." Surface water is defined as any water that is open to the atmosphere and is subject to surface runoff. This includes perennial streams, rivers, ponds, lakes, ditches, and some wetlands, as well as intermittent streams and natural or artificial surface impoundments that receive water from runoff.

When intermittent streams are flowing, they may be important sources of recharge to the aquifer. Perennial streams are generally fed by ground water (i.e., base flow) throughout the year. The beds of intermittent streams are above the water table throughout a portion of the year, flowing only when either the water table rises to intersect the streambed, or rainfall occurs at a rate that exceeds infiltration and as a consequence runs off, directed to the channels of the intermittent stream. In either case, infiltration to the aquifer can occur through the streambed and banks.

Surface water classification will be decided by the DEQ on a case-by-case basis.

SECTION 2.1 GROUND WATER DEFINED

For purposes of the GWUDISW process, ground water is defined as a source of water that has not been determined by the DEQ to be surface water or ground water under the direct influence of surface water as defined in this Circular. Proper construction details for ground water sources are discussed in the DEQ Circulars DEQ-1 and DEQ-3. Questionable sources that have been constructed without DEQ approval will be evaluated for direct influence of surface water in accordance with the provisions of this Circular.

Ground water sources may be influenced by surface water. Direct surface water influence is that influence that may cause the risk of pathogenic organism (*Giardia Lamblia*, *Cryptosporidium*) transfer from a surface source to a ground water source. If the procedures outlined in this Circular indicate that the source is directly influenced by surface water, it will be subject to the Surface Water Treatment Rule (SWTR) requirements, as discussed later in this Circular.

Due to the wide variety of ground water collection sources (wells, infiltration galleries, spring boxes), it is difficult to physically define a ground water source. However, ground water sources generally have the following characteristics:

- a. The initial intake location is below ground surface or below the bottom of a surface water; or
- b. For springs that discharge at ground surface, a sealed spring box must properly isolate the source from surface influences; and
- c. There is natural or engineered soil/geologic material completely surrounding and protecting the initial source intake.

Any form of surface water diversion for use in a ground water system may cause that source to be classified as surface water that must meet all the applicable treatment regulations required of surface water sources under the SWTR, 40 CFR § 141.70, and Administrative Rules of Montana (ARM) 17.38.201, et seq.

SECTION 3.0 PRELIMINARY ASSESSMENT (PA)

The GWUDISW determination process begins with a Preliminary Assessment (PA). The DEQ, its contractors, or the applicant (for new proposed sources only) must complete a PA form for each existing or proposed ground water source that serves PWSs, proposed water supply systems, and multi-family water supply systems reviewed under Circular DEQ-3. A copy of the PA form and directions for completing the PA form for ground water sources are shown on Pages 5-8 of this Circular.

The PA uses a point system to evaluate the water sources based on the results of

the PA. Sources that score less than 40 points are classified as ground water. Sources that score higher than 40 points will require further analysis, source rehabilitation, or additional source information to complete the PA. PWS operators and owners may be asked to provide well log records and other information as necessary to assist in completing the PA form.

MONTANA DEPARTMENT OF ENVIRONMENTAL QUALITY

Metcalf Building 1520 East Sixth Avenue P.O. Box 200901 Helena, MT 59620-0901

PRELIMINARY ASSESSMENT WORKSHEET

Preliminary Assessment of Ground Water Sources that may be Under the Direct Influence of Surface Water

SYS	STEM NAME			PW	S ID#
SOU	JRCE NAME			CO	UNTY
DA	ГЕ	NC	NTNC	C	POPULATION
Inde	ex Points				
A.	TYPE OF STRU	JCTURE (Circle <u>C</u>	NE that Applies)		
					GO TO SECTION B
					40
В.	HISTORICAL I	PATHOGENIC OF	RGANISM CONTA	MINATION	
C.	associated with a No history or su	surface water, with spected outbreak of MICROBIOLOGIC	of Giardia or other p	ofiguration athogenic org	nisms 40 ganisms 0
	Rule during the	last 3 years (Circle	e ONE that Applies))	
	One violation Two violations				
			positive samples in t 3 years (Circle ON		MCL violations of the es)
					0
					10
	DEQ-verified co	omplaints about tur	bidity		5

D.	HY	DROLOGI	CAL FEATURES				
			ance between surface water and the source greater than 250 feet				
			et				
E.	WE	LL CONST	RUCTION				
	Poo	rly construc	eted well (uncased, or annular space not sealed to depth of at				
	leas	t 18 feet bel	low land surface), or casing construction is unknown	15			
			g unconfined or semi-confined aquifers, depth below land	0			
			f perforated interval or screen greater than 100 feet				
	unk	nown		15			
F.	WE	LL INTAK	E CONSTRUCTION				
			g unconfined or semi-confined aquifers, depth to static				
			ow land surface greater than 100 feet				
	50 - 100 feet						
	unk	unknown10					
G.	WE	LL CAP CO	ONSTRUCTION				
	Poo	r sanitary se	eal, seal without acceptable material, or unknown sanitary seal type	15			
		ТОТ	AL SCORE				
H.	PRI	ELIMINAR	Y ASSESSMENT DETERMINATION (Circle ONE that Applies)				
	1.	PASS:	Well is classified as ground water.				
	2.	FAIL:	Well must undergo further GWUDISW analysis.				
	3.	FAIL:	Spring or Infiltration Gallery; must undergo further GWUDISW				
	ana	lysis.					
	4.	FAIL:	Well will PASS if well construction deficiencies (section E or F) are	;			
	_		repaired.				
	5.	FAIL:	Well <u>may</u> PASS if well construction details (section E or F) become				
			available.				
ANA	ALYS	Т					
ANA	ALYS	T AFFILIA	TION				
CON	ИМЕ]	NTS:					

DIRECTIONS FOR COMPLETING PRELIMINARY ASSESSMENT OF GROUND WATER SOURCES THAT MAY BE UNDER THE DIRECT INFLUENCE OF SURFACE WATER

A. TYPE OF STRUCTURE

- 1. If the structure is classified as a Spring or Infiltration Gallery, do not fill out sections B through G. Give a score of 40 and circle option 3 in section H.
- 2. A well with collection laterals is classified as an Infiltration Gallery. Give score of 40 and circle option 3 in section H.

B. HISTORICAL PATHOGENIC ORGANISM CONTAMINATION

Self-explanatory.

C. HISTORICAL MICROBIOLOGICAL CONTAMINATION

Base the acute and non-acute MCL violations on DEQ records for the three years preceding the date the PA form is being filled out. Acute violations typically are related to Boil Orders issued because of fecal or E-coli presence. Non-acute violations are typically health advisories issued because of at least two coliform positive samples in a one-month period, or failure to sample violations.

D. HYDROLOGICAL FEATURES

Use available information to determine nearest surface water. Surface water is defined as any water that is open to the atmosphere and is subject to surface runoff. This includes perennial streams, intermittent streams, rivers, ponds, lakes, ditches, some wetlands, and natural or artificial impoundments that receive water from surface runoff. In cases of doubt, the deciding factor will be whether the DEQ determines that the surface source may contribute surface organisms to the ground water source.

E. WELL CONSTRUCTION

If well construction is unknown, score 30 points and go to section F. However, if the data is available to answer at least one of the two questions in this section, do not score 30 points for "unknown well construction" and score the two questions in this section. A confined aquifer would score 0 under the depth to screened interval portion of this section.

F. WELL INTAKE CONSTRUCTION

If well intake construction is unknown, score 10 points and go to section G. However, if the data is available to answer at least one of the two questions in this section, do not score 10 points for "unknown intake construction" and score the two questions in this section. A confined aquifer would score 0 under this section.

G. WELL CAP CONSTRUCTION

Is the top of the well properly sealed and vented to prevent contamination from entering the well? If not, score 15 points.

TOTAL SCORE	

Add up all the points accumulated in sections A through G and enter the sum here.

H. PRELIMINARY ASSESSMENT DETERMINATION

- 1. Well scored less than 40 points, and therefore is classified as ground water.
- 2. Well scored 40 points or more and could not mathematically score less than 40 points even if:
 - a. Information not available to answer questions in sections E and/or F becomes available and that information indicates the lowest point penalty should be applied; or
 - b. Well intake construction (section F) deficiencies are repaired.
- 3. Source automatically fails if it is a spring or infiltration gallery.
- 4. Well scored 40 points or more, but will score under 40 points if well intake construction deficiencies are repaired.
- 5. Well scored 40 points or more, and could mathematically score under 40 points if unknown information in section E becomes available.

SECTION 3.1 PRELIMINARY ASSESSMENT SCORE

If a source scores 40 points or more on the PA and the score can be decreased to below 40 by supplying information not originally available for the PA (in most cases this will be a copy of the source well log or replacing the well cap with an approved model), the source will be classified as ground water. If the new information does not result in a PA re-score below 40 or the information is not made available, the source must undergo further assessment.

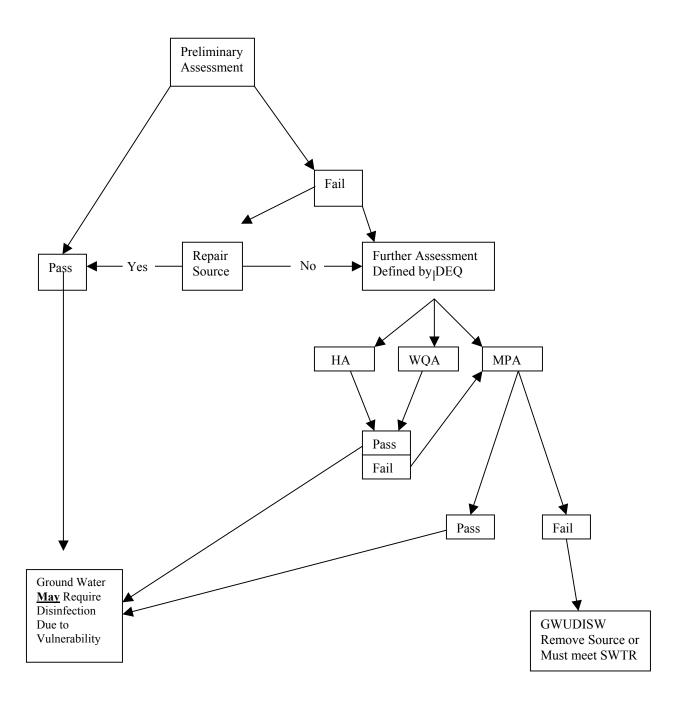
All existing and proposed springs and infiltration galleries will automatically score 40 points, at a minimum, on the PA and must undergo further assessment. All other existing and proposed sources that score 40 or more points must also undergo further assessment.

SECTION 3.2 FURTHER ASSESSMENT

The DEQ must review and approve the evaluation methods a system uses to make the GWUDISW determination. The Water Quality Assessment (WQA) and/or the Hydrogeological Assessment (HA) are the general methods used by systems for existing and proposed sources requiring further assessment.

The procedure for the WQA involves frequent and simultaneous measurements of water quality parameters in ground water and nearby surface water to determine if a connection exists. A hydraulic connection is a pathway through which water can travel between surface water and an aquifer. The HA uses both geological and hydrologic information to determine if a possible hydraulic connection exists between ground water and surface water. Microscopic particulate analysis (MPA) sampling for surface water organisms is required for sources that have a hydraulic connection to surface water. MPA sampling may be used as the first and final step in the evaluation process.

The data collected during the WQA and the HA is analyzed to determine if a ground water source is in hydraulic connection with surface water. If the WQA or HA results indicate a hydraulic connection, MPA testing will be necessary to determine if surface water organisms are present. A hydraulic connection alone, however, does not establish direct surface water influence. The DEQ will give further guidance to applicants if a hydraulic connection is determined.


SECTION 3.3 SOURCE EVALUATION

If a source scores 40 points or more on the PA and the score can be decreased to below 40 by repairing source construction deficiencies noted in the PA, the source may be classified as ground water. (This assumes the owner will perform the repairs rather than risk being classified as GWUDISW if the determination process is allowed to continue beyond the PA).

Figure 1, on the following page, presents the options for those PWS sources with PA scores of 40 or higher when source rehabilitation or supplying additional source information cannot bring the PA score below 40. These options address two questions: First, does a hydraulic connection exist between the ground water source and surface water? If the answer to this first question is "yes," then, are there unacceptable numbers of surface water organisms present in the ground water?

A WQA or a HA is required in order to answer the first question. Sources such as infiltration galleries and springs are typically hydraulically connected to surface water; therefore, water suppliers may elect not to conduct either of these assessments. The main question for these sources is whether unacceptable numbers of surface water organisms are influencing the ground water. MPA sampling addresses this question and may be conducted as the first and final step for GWUDISW determination. Ground water wells are less prone to surface water influence than infiltration galleries and springs; therefore, for well sources, water suppliers also have the option of conducting a WQA or HA initially or bypassing those assessments and going directly to the MPA stage of the GWUDISW determination for well sources.

Figure 1- Source Evaluation

SECTION 3.4 PROPOSED GROUND WATER SOURCES

The suitability of new ground water sources must also be addressed relative to the GWUDISW classification. The approach to classifying proposed sources may vary more than existing sources. The supplier proposing the source must submit to DEQ a PA as part of the Circular DEQ-1 or DEQ-3 submittal requirements. The information for the PA must be submitted with, or prior to, the submission of the plans and specifications for review. In all cases, the PA information must be provided before DEQ approval is granted. It may be in the best interest of the supplier to complete the PA prior to completion of the plans and specifications, as the PA results might influence the supplier's decision to pursue development of the source

SECTION 4.0 HYDROGEOLOGIC ASSESSMENT (HA)

If the HA indicates that the aquifer supplying the source is not in hydraulic connection with surface water (that is, a "negative" result for the assessment), the source is classified as ground water. If the HA indicates the potential for hydraulic connection (that is, a "positive" result), the system must be further analyzed for surface water organisms by MPA testing. Hydrogeologic factors (such as those listed below) are examined under this assessment. Any system proposing to conduct a HA must submit a plan of action to the DEQ for review and approval prior to conducting the HA.

SECTION 4.1 EVALUATION OF THE HYDROGEOLOGIC ASSESSMENT

- a. Regional Geology
 - 1. Lithologies of hydrostratigraphic units (aquifers)
 - 2. Lateral extent of units
 - 3. Thickness of units
 - 4. Vertical succession of units
 - 5. Structural trends (fractures, faults, folds, etc.) affecting permeability of, or
 - 6. Hydraulic connection between units
 - 7. Local topography
- b. Regional Ground Water Flow System (Deep System)
 - 1. Configuration of flow system (potentiometric map)
 - 2. Horizontal and vertical flow directions
 - 3. Hydraulic conductivity or transmissivity

- 4. Proximity of surface water bodies to regional flow system
- Hydraulic connection among regional, intermediate and local flow systems
- c. Intermediate Ground Water Flow System (Intermediate Depth)
 - 1. Configuration of flow system (potentiometric map)
 - 2. Horizontal and vertical flow directions
 - 3 Hydraulic conductivity or transmissivity
 - 4. Proximity of surface water bodies to intermediate flow system
- d. Local Ground Water Flow System (Shallow)
 - 1. Vadose zone characteristics
 - A. Soil type
 - B. Thickness
 - C. Moisture content
 - D. Unsaturated hydraulic conductivity
 - 2. Configuration of flow system (potentiometric map)
 - 3. Horizontal and vertical flow directions
 - 4. Hydraulic conductivity or transmissivity
 - 5. Proximity of surface water bodies to the local flow system
- e. Surface Water Body (SWB)
 - 1. Seasonal head (or stage)
 - 2. Relationship between SWB head (or stage) and local and regional water table elevations (i.e. stream or irrigation canal)
 - 3. Flow direction
 - 4. Bed load or canal bed material
 - 5. Channel or canal morphology
- f. PWS Well Construction
 - 1. Depth
 - 2. Perforated interval
 - 3. Interval of sand or gravel pack
 - 4. Grout type and grouted interval
 - 5. Condition of casing and cap
 - 6. Land use in vicinity of well

- 7. Surface runoff flow patterns in vicinity of well
- 8. Lithologic log
- 9. Well diameter
- g. PWS Pumping Well
 - 1. Pumping discharge and duration of cycling periods
 - 2. Pump characteristics
 - 3. Configuration of steady state capture zone (zone of influence)
 - 4. Intersection with SWB
 - 5. Time of travel (TOT) between SWB and pumping well
 - 6. Well interference affect on zone of influence
 - 7. Distance between well and SWB

SECTION 4.2 RESOURCES USED IN ASSESSMENTS

- 1. Geologic maps
- 2. Well logs
- 3. Ground water and surface water reports (MBMG, USFS and USGS)
- 4. Soil Conservation Service (SCS) soil maps
- 5. Seismic surveys
- 6. Site inspections
- 7. Physical and chemical analysis of water parameters

The WQA is more rigorous than the HA. If the WQA is negative (a hydraulic connection is not found), the source is declared ground water. This will happen even if the HA had "indicated" an apparent hydraulic connection. If the WQA is positive (indicates a hydraulic connection), the source must undergo MPA testing or be classified as surface water. The results of the MPA will, in most cases, dictate the final classification of the source. Refer to Section 6.0 on MPA testing for a discussion of the results and classification process.

SECTION 5.0 WATER QUALITY ASSESSMENT (WQA)

In general, ground water exhibits only minor variations in chemical and physical parameters. Surface water tends to experience more substantial variations as a function of season, rainfall and snowmelt events. If ground water is connected to surface water, the ground water quality should vary with surface water quality. There may be a time lag, but a consistent pattern of influence will be reflected.

The procedure for conducting the WQA involves frequent and simultaneous measurement of water quality parameters in ground water and nearby surface water. Taking and recording these measurements is the responsibility of the PWS for existing sources, or the applicant for proposed sources. Because of travel time between surface water and the ground water source, the variations in these two water sources will not necessarily occur at the same time. However, frequent measurements over a maximum period of one year should establish similar variation patterns if the two are in hydraulic connection. Any system considering a WQA must submit plans to the DEQ for review and approval prior to starting the process.

SECTION 5.1 WQA FOR EVALUATION OF HYDROGEOLOGIC CONNECTON UNDER THE GWUDISW DETERMINATION PROCESS

Background.

The variation in water quality parameters (i.e. temperature, turbidity, conductivity and pH) in ground water, isolated from the nearby influence of surface water, tends to be minimal (i.e. old ground water is generally very stable). The actual variation exhibited decreases with the increasing depth of the ground water. With respect to temperature for example, ground water that is at a depth of 25 to 50 feet may show a variation of several degrees centigrade throughout the year. Ground water at a depth greater than 100 feet may vary on the order of one degree centigrade over the same period. Surface water typically has considerably greater temperature variation because the water is in contact with the atmosphere.

In addition, isolated ground water undergoes only small variations in water quality parameters such as pH, and dissolved constituents (i.e. total dissolved solids, calcium, chloride, sulfate, etc.). Because of differing levels of runoff versus inflow from ground water, or because of differing levels of biological activity, surface water may undergo significant variations in these parameters.

Ground water that is in hydraulic connection with surface water will show greater variations in water quality parameters than isolated ground water. Further, variations in hydraulically connected ground water are correlated to variations in the surface water source. Because of chemical reactions in the subsurface and a time lag due to travel from the surface water to the aquifer, the influenced ground

water will not show the variations identical to the surface water, and ground water variation will not occur at the same time. For example, if the temperature of the surface water increases, the temperature of influenced ground water may not reflect that change for several days to several weeks, and then the variation may be significantly less than that observed in the surface water.

To evaluate whether or not a particular ground water source in proximity to a surface water source is hydraulically connected to surface water, periodic monitoring of both the ground water and surface water must be conducted. The data for the two should be compared to see if variations that occur in surface water throughout the year are also seen in the ground water.

Requirements.

At a minimum, for the WQA, the PWS system or proposed source developer must make weekly measurements of temperature, turbidity, and conductivity or temperature, turbidity and pH from both the ground water source and the nearby surface water source. These weekly measurements must be made over a period of one year; if data is conclusive in less than one year, the WQA can be terminated at that time. Data should be recorded by the PWS or proposed source developer and submitted to the DEQ using the form depicted in the following Table (Table 1), or any other spreadsheet having the same format.

Montana Department of Environmental Quality Public Water Supply Program

Water Quality Assessment Data Report Form for GWUDISW Determinations

System Name	Repo	rt Prepared By
Source Name/ID		h/Year
PWSID No.		

TABLE 1

Day	Weather Conditions/	Source Water	Surface Water	Source Water	Surface Water	Source Water	Surface Water	Source Water Conductivity	Surface Water
	Air Temp	Temp	Temp	Turbidity	Turbidity	рН	pН		Conductivity

Table 1 - Spread-sheet Example

The PWS or proposed source developer shall also submit graphs showing temperature variation (see Figures 1a and 1b), conductivity, and turbidity on the y-axis, and time on the x-axis. On each graph, the appropriate data for both the surface water and the ground water must be displayed. If there is more than one ground water source, separate sets of graphs for each source must be submitted.

In the example in Figure 1a, a ground water source is portrayed that is not in hydraulic connection with a surface water source. Ground water exhibits a small temperature variation that is not related to the significant variation that characterizes the surface water. The example in Figure 1b, however, reflects ground water in hydraulic connection. Note in both examples that the conductivity of the ground water varies in a similar fashion to the surface water source

Figure 1 a - No Hydraulic Connection

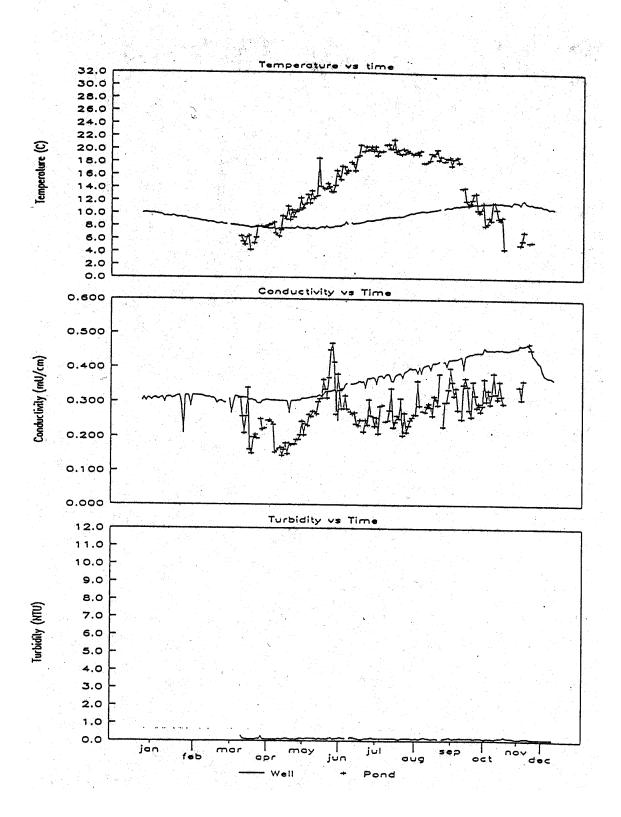
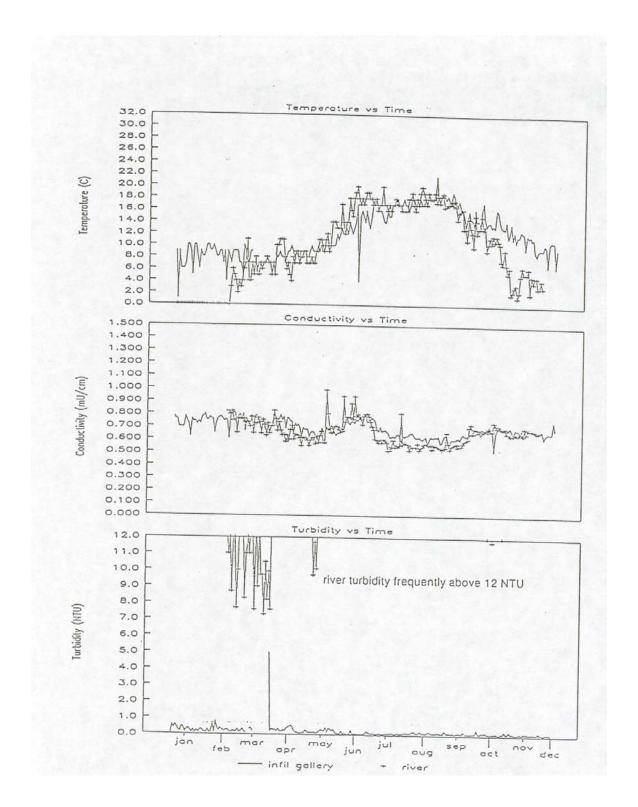



Figure 1 b - Probable Hydraulic Connection

Sampling Method.

For purposes of the GWUDISW determination process, both the water from the wells, infiltration galleries and/or springs in question and the potential surface water source(s) must be sampled/measured during the same time period. To adequately assess the potential of hydraulic connection, samples must be carefully and consistently collected. Samples collected from the surface water source must represent the water volume that is in or moving through the source.

Sample Site and Equipment.

When collecting WQA data it is important to collect surface water information that is representative of the bulk of the water that is in the lake, stream, or spring. A stream bottom is often irregular in form, consisting of deep pools, the active channel, and shallows. A sample collected in the main portion of the channel is more likely to reflect the water that is infiltrating because it is more representative of the bulk of the water that is flowing through the stream or river. On the other hand, a sample from the shallows can potentially be quite different from the bulk of the water in the system due to more stagnant conditions or a higher level of biological activity. The same applies to a lake or pond. Therefore, samples need to be collected deep enough to be representative of the main water body.

Detailed studies of surface water quality generally involve more rigorous methods of sampling to more accurately represent the mass of water moving through the stream (i.e. several depth-integrated samples weighted to reflect the various masses of water each sample represents). For this study, however, only a single sample site is required, preferably in the mid-channel portion of the stream.

The mid-channel sample can be collected in the zone of analysis. The zone of analysis is delineated from a point on the stream with the shortest distance to the water source and extends one mile upstream and .25 miles downstream from that point. The analysis zone cannot have any other tributaries entering the stream within that distance. The sample may be collected from a bridge, dock, or boat. Because the data from the surface water source is compared with data from the ground water source(s), it is very important that once a sample site is selected, the same site and procedures are used each time. A topographic map showing the source location(s) and sampling sites should be submitted when the data is submitted.

Test equipment should be portable and suitable for field measurements. Temperature measurements should be collected using a digital thermometer capable of recording to the nearest tenth of a degree centigrade. Conductivity measurements should be collected using a digital conductivity meter capable of reporting to the nearest microsiemen (or micromho) per centimeter, over the range of 0 to 2000 S/cm, and preferably temperature compensated. Turbidity measurements should be collected using a turbidimeter capable of reporting to the nearest tenth of a nephelometric (NTU). For pH measurements, a digital pH meter capable of measuring pH to 0.1 pH units should be used.

Surface Water.

Surface water samples analyzed for temperature should be collected by bailing, using a previously cleaned bucket with a minimum capacity of one gallon. The bucket should be rinsed a minimum of three times in the surface water source so that the temperature of the sample may be brought as near as possible to the temperature of the water. (Filling the bucket with the source water, letting it sit for several minutes, and then dumping and refilling should obtain a representative sample of the water). Sampling or bailing procedures should be accomplished without stirring up bottom sediments.

Each measurement event must continue until the results of three successive bailings agree within 0.5 degrees centigrade. Similar procedures should be followed for conductivity and turbidity.

Ground Water.

Routine weekly measurements of source water should occur under flowing conditions. If the well flow is off, it will be necessary to allow it to pump until the well bore is filled with water solely from the aquifer (i.e. the well should be purged). Normally this is accomplished after pumping an equivalent of three to five well volumes.

Calculation of the well volume is as follows:

Depth of Water in Well (Dw) = Depth of Well - SWL

where SWL = static water level, the level of water in the well, measured from the surface, when the well is at rest (i.e. the pump has been off for at least 12 hours)

Well Volume (in gallons) = Dw x πr^2 x 7.48

where $\pi = 3.14$ and r = radius of the well bore in feet. The time required to pump 3 well volumes is given by

Time (minutes) = $3 \times \text{well volume/pump rate (gpm)}$

Direct Surface Water Influence Determination.

Weekly monitoring of temperature, turbidity, specific conductivity, and pH is required up to twelve consecutive months on sources undergoing the WQA. These parameters must be monitored on both the ground water and the nearby surface water source.

Surface water measurement must be conducted consistently. Each water measurement should be collected at the same time each day. The measurement should be taken at a depth of approximately one foot or more. Measurement of well water should occur after the well has been flowing long enough for the temperature to stabilize (normally 3 to 5

well volumes).

If the data from the ground water shows little or no correlation with data from the surface water (i.e. a "negative" result), then there is not a hydraulic connection and the source will be classified as ground water. If a correlation does appear between the data (i.e. a "positive" result) or the results are ambiguous, a MPA will be required. (See Section 5.0, et seq. on WQA for a discussion of the results and classification process).

SECTION 6.0 MICROSCOPIC PARTICULATE ANALYSIS (MPA)

Microscopic Particulate Analysis (MPA) testing is used to determine if surface water organisms are present in a ground water. The Environmental Protection Agency (EPA) has published a detailed technical document on methods for using particulate analysis to establish direct surface water influence (EPA 910/9-92-029: Consensus Method for Determining Ground waters Under the Direct Influence of Surface Water Using Microscopic Particulate Analysis (MPA)). This document must be followed when conducting MPA tests. It states that because ground water under the direct influence of surface water is indicated by the significant occurrence of "...insects, algae, or other large-diameter pathogens," the MPA cannot be used as a presence-or-absence criterion. The document specifies a risk factor, which is based on the number of various bio-indicators (i.e. *Giardia Lamblia*, coccidia, diatoms, algae, insects/larvae, rotifers, and plant debris). Based on the risk factor associated with the results of each MPA, the source will receive a designation as a low, moderate, or high risk of surface water influence.

In completing the MPA, it is necessary for the PWSs to conduct between two and four analyses, as specified by the DEQ, per ground water source. This must occur over a 12 to 18 month period. The MPA must be performed during the periods of the year when surface water most likely influences ground water (i.e. spring and fall). For each MPA, the PWSs must collect the sample and send it to a qualified laboratory. The field sampling technique is outlined in Table 2 below; however, most laboratories provide a data sheet when they are contacted to provide MPA services. Sampling apparatus are available from the DEQ, and most laboratories that conduct microscopic work also rent sampling units.

MICROSCOPIC PARTICULATE ANALYSIS (MPA) SAMPLING DATA

		SAMPLE LOCATION: SAMPLE ID (LAB USE):		
I.	WATER DATA WATER TYPE: WATER SOURCE: Spring River			
	If Well, Type:Depth:	Distance from Surface Water Source:		
II.	SAMPLING DATA Start Time: Start Turbidity: Start pH: Meter Reading Start: Start Flow (Manual): Total Gallons Filtered:	End Turbidity: End pH: Meter Reading End:		
III.	NAME & ADDRESS OF PERSO	ON TO RECEIVE REPORT:		

Table 2 - Sampling Technique

The risk factor assigned to a source is based on the MPA results. If the first two MPA results indicate the same risk factor, the source is considered to have that risk factor. If the first two MPA results do not indicate the same risk factor, additional MPA testing (up to a maximum total of four, per source) will be required until consistent results are evident in at least two samples.

Low Risk

Consistent MPA results of low risk will result in a classification of the source as ground water. Although a ground water classification may be appropriate because of the lack of evidence for direct influence, other information may indicate the need for treatment of the ground water source. A source that has scored low risk on the MPA may also have shown a connection to surface water or other contamination sources via WQA, or historical information regarding bacteriological or chemical contamination of the water source. In these situations, the DEQ may still require additional treatment, such as full-time disinfection, to provide adequate treatment for the potential contamination.

Moderate Risk

Consistent MPA results of moderate risk will result in an investigation of source construction. If it is found that the source construction could be causing surface water organisms to contaminate the ground water, then it will be necessary to determine if reconstruction can occur. If reconstruction is possible, the MPA evaluation will be repeated following the reconstruction. If reconstruction is not possible, the source may be classified as ground water, with the recommendation of full-time disinfection or increased coliform monitoring. In addition, the source will be required to provide approved surface water filtration if there are other indications that the source may be directly influenced by surface water for all or part of the year.

Evidence of surface water influence that would lead to mandatory full-time disinfection and/or approved surface water filtration includes, but is not limited to, evidence of flooding around the source; a lack of natural filtration between surface water and the source; and inability to adequately seal/protect the source from potential contamination sources.

Those systems that choose or are required to disinfect must meet 4-log removal of viruses at a minimum. Sources that are determined to be at risk for containing *Giardia Lamblia*, are required to meet 3-log (99.9%) removal of *Giardia Lamblia* in accordance with ARM 17.38.208, 40 CFR § 141.70, and "Guidance Manual for Compliance with the Filtration and Disinfection Requirements for Public Water Systems using Surface Water Sources," EPA, 1991.

High Risk

An MPA result of high risk will result in a classification of the source as GWUDISW.

In the unlikely occurrence that a source scores high-risk on only one MPA sample and has two other low- or moderate-risk results, the DEQ may require additional testing to determine if the high-risk sample was an anomalous situation or indicates a definite health risk during specific atmospheric or hydrologic conditions that affect the water source. Additional testing will be required on a case-by-case basis but may, for example, consist of turbidity or particle counting for up to 12 months to determine the daily and seasonal water quality variation of the water source. Testing results are used to determine whether additional treatment is needed. All MPA testing should be scheduled with the laboratory performing the analysis prior to sample collection and shipping. The MPA sample collection protocol is defined below.

SECTION 6.1 MPA SAMPLE COLLECTION INSTRUCTIONS

- 1. The sampling device should be connected to a sampling point as close to the source as possible.
- 2. Assemble the sampling apparatus and other equipment as shown in Figure 1 without a filter in the filter housing. BE CERTAIN the sampler is assembled with the correct direction of the flow at the filter housing and the water meter, as indicated by the arrows on both devices.
- 3. Flush the equipment with water from the source to be filtered, without a filter in the housing. Flushing should continue for 3 minutes, minimum. Check all connections for leaks, repairing any leaks found. It is best to use an in-line, 1 gpm, flow restrictor to accomplish the desired rate.
- 4. Filtering should be conducted at a flow rate of approximately 1 gpm. During the flushing stage, the flow rate can be checked with a stopwatch and graduated bucket.
- 5. Shut off flow to the sampler. Wash hands or put on gloves. Install the filter in the housing. Make sure a rubber washer or o-ring is in place between filter housing bowl and base.
- 6. Using a water-resistant marking pen record the start time, meter reading, pressure, flow, (turbidity and pH if available) on the MPA data sheet.
- 7. Turn water on slowly to the sampler with the unit in an upright position. Invert unit to make sure all the air within the housing has been expelled. When the housing is full of water, return unit to upright position and turn flow on completely.
- 8. Filtering should be conducted at a pressure of 10 psi. If the pressure is not 10

- psi, adjust the pressure regulator.
- 9. Allow the sampler to run until 1,000 to 1,500 gallons have been filtered. Turn off the flow to the sampler. On the data sheet record the meter reading and the time that filtering was stopped.
- 10. Disconnect the filter housing and pour the water from the housing into a ziploc plastic bag. Carefully remove the filter from the housing and place it in the bag with the water. Seal this bag, trying to evacuate all air, and place it in a second ziploc bag. Make sure that neither bag leaks.
- 11. Pack the filter in a small, insulated container or ice chest with a bag of ice and/or blue ice packs taking care that the filter is not in contact with the ice or the filter may freeze. Frozen filter fibers cannot be analyzed. Transport the filter (and data sheet) to the laboratory so that it is received at the laboratory within 48 hours. A supplier with a source designated as GWUDISW must comply with all applicable PWS requirements pursuant to ARM, 17.38.201, et seq.

GLOSSARY

Coccidia - A subclass of intracellular parasites that occur primarily in vertebrates.

Cryptosporidium - A single-celled, protozoan parasite that occurs primarily in vertebrates.

Diatoms - The most resistant group of algae; they are able to withstand a large amount of chemical, mechanical, and environmental insult.

Other algae - A large number of chlorophyll containing filamentous colonial and unicellular divisions of algae; they require sunlight for their metabolism.

Giardia Lamblia - A flagellated protozoan that colonizes the upper small intestine of many warmblooded animals.

GWUDI/GWUDISW - Ground water under the direct influence of surface water. Any water beneath the surface of the ground with significant occurrence of insects or other macroorganisms, algae, or large-diameter pathogens such as *Giardia Lamblia* or *Cryptosporidium*, or ground water that shows rapid and significant shifts in water characteristics such as turbidity, temperature, conductivity, or pH which closely correlate to climatological or surface water conditions.

Insects/Larvae - Insects, insect parts, larvae, eggs and another group of Arthropods, the Arachnids.

Plant Debris - The undigested fecal detritus from herbivorous animals, usually muskrat and beaver.

Rotifers - A major taxonomic group; there are over 2500 species, of which greater than 2375 species are restricted to fresh waters. They are associated with a variety of habitats including small puddles, damp soils, vegetable debris, and mosses.

Specific Conductivity - A rapid method of estimating the dissolved-solids content of a water supply. The measurement indicates the capacity of a sample of water to carry an electrical current, which is related to the concentration of ionized substances in the water.

Surface Water - Any water that is open to the atmosphere and is subject to surface runoff. This includes perennial streams, rivers, ponds, lakes, ditches, and some wetlands, as well as intermittent streams and natural or artificial surface impoundments that receive water from runoff. If there is a question whether or not a particular body of water will be considered surface water in the context of the GWUDISW process, the deciding factor is: whether channelized drainage contributes water to the body. If the answer is "yes," the body is surface water.

TOT - Time of travel.

Turbidity - The cloudy appearance of water caused by the presence of suspended and colloidal matter. Technically, an optical property of the water based on the amount of light reflected by suspended particles. Turbidity cannot be directly equated to suspended solids because white particles reflect more light than dark-colored particles, and many small particles will reflect more light than an equivalent mass of larger particles.

Appendix 9

WELL-STATUS (3/93) Page 1 of 3

STATE OF NEW JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION AND ENERGY BUREAU OF SAFE DRINKING WATER CN-426

TRENTON, NEW JERSEY 08625

SURFACE WATER TREATMENT RULE CHECKLIST FOR THE DETERMINATION OF GROUND WATER STATUS

In order to comply with the provisions of the federal Surface Water Treatment Rule, all public water systems must fill out this survey to determine which of the wells in their system must be monitored for the direct influence of surface water. The form should be completed by either 1) a Professional Engineer licensed in the State of New Jersey; 2) the appropriate licensed operator for the water system; or 3) another responsible individual familiar with the water supply system.

Α.	Please provide the following system information:	
	Name of purveyor	
	Address	
	PWS-ID Number	
	Name of Individual Completing Checklist	
	Title of Individual	
	Name of Individual's Firm	
	P.E. or Operator Registration Number	
В.	Please provide a list of all the <u>non-sealed</u> produin the system, whether or not they are currently enclosed state inventory list should be updated at this purpose). This list should include for each	in use (The
	 well name or number, NJDEPE well drilling ber, and location (street and municipality 	
	<pre>well); 2) construction of well, including well depth, and length, screen size and length and appro</pre>	
	of construction; 3) capacity of well (in MGD);	

aquifer from which the well draws; and

operational status of well (permanent, intermittent or

4)

emergency).

c.		se answer the following questions named and water sources:	regarding the system's
	plea	he answer to any of the questions is se indicate on the provided inv rate sheet(s) elaborate on your "Ye	ventory list, and or
4	1.	Is any source listed in Item B an spring, cistern, catchment, or due	
		[] YES	[] NO
	2.	Has any source listed in Item B any of the following in the lacoliform, <u>Giardia</u> cysts, <u>Cryptos</u> pathogenic organism associated with	ast 60 months: fecal poridium or any other
		[] YES	[] ио
1	3.	Does any source listed in Item B (50) feet of casing?	have less than fifty
		[] YES	[] ио
	4.	Does any source listed in Item B space between the well casing and grouted?	
		[] YES	[] ио
	5.	Are any of the sources listed in feet horizontally from a surface water continuously for at least s year? (i.e., streams, rivers, by reservoirs, ponds or impoundments	water body that holds sixty (60) days in any rooks, creeks, lakes,
		[] YES	[] ио
	6.	Are any of the sources listed in feet horizontally from a source of (i.e., septic systems, cesspools, detention basins or point discharage)	f microbial pollution? feedlots, stormwater

NOTE: Questions 5 and 6 may be answered "No" if the well in question draws water from a "low-risk formation". A low-risk formation is defined as:

] YES

I

 An aquifer which has been determined to be confined by an overlying layer or bed of distinctly lower permeability. Said confinement may be based

[] NO

upon an acceptable pump test report, or given validity in published reports and/or technical memoranda of the N.J. Geological Survey or published reports of the U.S. Geological Survey; or

ii. An unconsolidated formation where the source in question is a well with at least 200 feet of casing.

Wells that received a "Yes" answer under any of the categories listed above will be considered as possibly being under the direct influence of surface water, and subject to the monitoring provisions of the Surface Water Treatment Rule.

D. Please return the completed survey, together with all pertinent background information, to:

Bureau of Safe Drinking Water CN-426 401 East State St., 3rd Floor Trenton, New Jersey 08625

Attention: SWTR Monitoring Program

E. Please sign and seal the Certification Statement as printed below:

I hereby certify that, to the best of my knowledge, the answers to the above questions are true and accurately reflect the system as it exists. I also certify that adequate documentation for the answers (i.e., maps, well logs, test results, etc.) is on file with the water purveyor, and will be forwarded if requested by the Department.

Signature of P.E. or Operator
Print Name of Individual
Name of Firm
Address
Address
Phone

Appendix 10

Groundwater under the Direct Influence of Surface Water Flow Chart Explanation

<u>Objective of Procedure</u>: To develop a step-wise procedure that would identify systems that are <u>vulnerable</u> to direct surface water influence and that would yield information that the system would be able to apply to other programs.

A vulnerability assessment with respect to groundwater under the direct influence of surface water (GWSWI) comprises the two traditional steps: is the contaminant present and is the aquifer susceptible to contamination? While the presence of the contaminant will likely rely on a particulate analysis, the susceptibility analysis will be accomplished through a determination of whether or not the aquifer is in hydraulic connection (through natural or induced infiltration) with a surface water body. The confirmation of a hydraulic connection has implications not only with respect to susceptibility to contamination by Giardia , but also other contaminants that may be in the water. Systems with such susceptibility need to have this information for proper management of their resource (e.g. under the wellhead protection program).

Procedure:

1. State Level Review: The first step in determining those sources that are potentially vulnerable to GWSWI was to identify those systems with groundwater sources that are within 500 feet of a surface water source. The next step was to evaluate those systems in terms of a history of coliform bacteria in the source. Monitoring data and information from the most recent sanitary survey were used in this process. Systems that currently disinfect are considered to be doing so because of source problems unless demonstrated otherwise.

Wells

The well logs of those wells within 500 feet of surface water, but without obvious problems with coliform bacteria in the source were reviewed to determine whether or not the grout seal was emplaced in a manner that affords adequate protection from surface or near-surface water gaining access to the well bore. In general an adequate seal was considered to be one that was emplaced into a low permeability layer that is at least five feet thick.

Those wells that have <u>neither</u> source-related bacteria problems <u>nor</u> inadequate seals were not considered further. However, for systems where <u>either</u> source-related coliforms were suspect <u>or</u> the seal adequacy is questionable, further study is required. The system is responsible for this study. As indicated in the accompanying flowchart, two options exist. The first involves a detailed hydrogeologic assessment that addresses the potential of surface water migrating to the aquifer. The second option entails an evaluation of water quality parameters over a period of 12 months.

<u>Springs</u>

Though there are obvious construction standard differences between well and spring

development, the standards for developing the aquifer are virtually the same. For instance, where a casing grout seal is used to prevent surface water from entering a well, an impervious backfill is used as a barrier over the collection pipe for spring construction. Both methods achieve the same goal of aquifer protection from surface water influence through different aspects of construction.

<u>Infiltration Galleries</u>

By virtue of the reasonable assumption that infiltration galleries are constructed to enhance a hydraulic connection, these sources must be evaluated with the Division on a case by case basis.

2. **Hydrogeologic Assessment.** This option will allow the system to arrive at a determination concerning whether or not they should be classified as under direct surface water influence in a relatively short period of time. It requires the assessment of hydrogeologic factors (see below) and will require the services of a professional geologist or hydrogeologist.

The factors of concern include, but are not limited to, the following:

Well Characteristics:

Well Depth Screened/Perforated Interval Grout Seal

Aquifer Characteristics:

Thickness of the Unsaturated Zone
Hydraulic Conductivities of the Unsaturated
Zone and Aquifer
Presence of Low Permeability Zones in the
Unsaturated Zone
Degree of Connection Between the Surface Water
Source and the Aquifer (i.e. does the surface
water body penetrate the aquifer?)

Hydraulic Gradient:

Vertical Gradient under Pumping Conditions Horizontal Gradient between the Aquifer and the Surface Water Source under Pumping Conditions Variation of Static Water Level and Surface Water Level with Time

Groundwater Flow:

Does the Well's Steady State Capture Zone intersect the surface water source? What is the Estimated Time of Travel for Water between the Surface Water Source and the Well? If the hydrogeologic assessment indicates in OHD's opinion that the aquifer supplying the system's well is not in hydraulic connection with surface water, the system will not be required to perform any further analysis. If the hydrogeologic assessment indicates the potential for hydraulic connection, the system will be required to initiate a water quality assessment.

3. **Water Quality Assessment:** This option requires a more lengthy period of data collection and stresses water quality measurements. The data can be collected by water system staff.

Although exceptions do occur, groundwater that is not in a short term connection to surface water generally exhibits only minor variations in chemical and physical parameters. Surface water, on the other hand, tends to undergo more substantial variations as a function of season, or rainfall or snowmelt events. If groundwater is hydraulically connected to such surface water, then that groundwater should vary sympathetically with surface water.

The procedure that has been developed in Oregon requires frequent and simultaneous measurement of water quality parameters in ground water and nearby surface water. Because of some finite amount of travel time from surface water to the groundwater source, we should not expect the variations in these two water sources to be precisely at the same time. However, weekly measurements over a year's time should establish similar variation patterns if the two are in hydraulic connection. Recording the weekly rainfall during this time will also help interpret spikes or patterns in the data.

As an example, data collected from a small perennial stream in west Texas is compared to water collected from a monitoring well (M/Well in Fig. 1) completed within the adjacent alluvium. It is evident from figure 1 that the groundwater and surface water undergo very similar, though not exact, variations with time.

Note that the compositions of the groundwater and surface water in figure 1 are not the same. This is to be expected given the potential of chemical and biological reactions that can take place within a few feet of travel through soil or stream bed deposits. The key factor indicating hydraulic connection is the similar pattern of compositional variation.

OHD is requiring a minimum of weekly monitoring of rainfall, temperature, and an additional parameter in both the groundwater and surface water over a one year period (see Water Quality Assessment protocol). Procedures for intermittent surface sources are discussed in the following section.

It is important that the surface water measurement be consistently taken. Water temperature should be measured at the same time of day each time. Measurement of well water should be accomplished after the well has been on long enough for the temperature to stabilize (normally 3 to 5 well volumes). The measurement of surface water should be taken at a depth of approximately one foot or more. A simple rainfall gage can be used to measure the cumulative rainfall for each week.

The system may choose from a number of parameters to be monitored along with temperature, such as pH, conductivity, dissolved oxygen, hardness, or other dissolved constituents. Previous data has shown that turbidity is not a good indicator of hydraulic connection and will therefore not be used.

If a system appears to be in hydraulic connection based on water quality data, a detailed evaluation of well construction (or source development) should be undertaken to determine its role in producing the variability. The rainfall data will be very useful here. It is possible that a poorly constructed source may be allowing inflow of rainfall or runoff into the aquifer. Although clearly a water quality problem, this may not mean that the system is in hydraulic connection to the surface water body.

4. **Particulate Analysis**. Either the hydrogeologic or water quality assessments may end up with a determination that the source's characteristics indicate that the aquifer is in hydraulic connection with surface water. Whether or not the source is also under the direct influence of surface water will depend on the results of the particulate analysis.

The EPA has published a detailed technical document on methods for using particulate analysis for establishing direct surface water influence (EPA 910/9-92-029: Consensus Method for Determining Groundwater Under the Direct Influence of Surface Water Using Microscopic Particulate Analysis (MPA)).

OHD is recommending that a minimum of two samples be taken during a one year period. Actual sampling times should be dictated by the results of water quality monitoring. In other words, MPA should be accomplished at those periods when the water quality data indicate the greatest probability that surface water is impacting groundwater.

EPA's technical document states that since groundwater under the direct influence of surface water is indicated by the <u>significant</u> occurrence of "...insects, algae or other large-diameter pathogens...", the MPA can not be used as a presence or absence criterion. The document arrives at a risk factor based on the number of the various bio-indicators per 100 gallons of water, i.e. *Giardia*, coccidia, diatoms, algae, insects/larvae, rotifers and plant debris. If a hydraulic connection is established by hydrogeologic and/or water quality evaluations, the determination of whether or not the source is under the direct influence of surface water will likely be based on a threshold value of the cumulative risk factors associated with the identified abundances of the surface water indicators.

GB 1025 .T2G84

Appendix 11

DANCE FOR DETERMINING IF A GROUND WATER SOURCE IS UNDER THE DIRECT INFLUENCE OF SURFACE WATER

NOTICE

WARNING CONCERNING COPYRIGHT RESTRICTIONS

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy of reproduction is not to be "Used for any purpose other than private study, scholarship, or research." If a user makes a request for. or later uses, a photocopy or reproduction for purposes in excess of "fair use," that user may be liable for copyright infringement-

This institution reserves the right to refuse to accept a copying order if, in its judgement, fulfillment of the order would involve violation of copyright law.

Publication Authorization No. 305191

TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION DIVISION OF WATER SUPPLY

August, 1991

GUIDANCE FOR DETERMINING IF A GROUND WATER SOURCE IS UNDER THE DIRECT INFLUENCE OF SURFACE WATER

TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION
DIVISION OF WATER SUPPLY
150 9TH AVENUE, NORTH
NASHVILLE, TENNESSEE 37243-1549

W. David Draughon, Jr., P.E.
Director
August, 1991

de 100: .46324

TABLE OF CONTENTS

				Page
Introduction .				. 1
Responsibiliti	es of Public Water Systems			. 2
	Indicators of a Ground Water Source Under the Direct of Surface Water			. 3
Seasonal Source	ces		• (. 4
	ine If a Ground Water Supply is Under Influence of Surface Water		•	. 4
	1. Review of Well Sources			
	2. Review of Spring Sources	• •	•	. 6
1	Particulate Analysis			
	Methods			
(Interpretation of Results			
	of Ground Water Sources to Eliminate			٩

Department of Environment and Conservation, Authorization No. 327338, 850 copies, November, 1991. This public document was printed at a cost of \$0.70 per copy. This document is printed on recycled paper.

TENNESSEE DIVISION OF WATER SUPPLY GUIDANCE FOR DETERMINING IF GROUND WATER IS UNDER THE DIRECT INFLUENCE OF SURFACE WATER¹

Introduction

This guidance supplements the filtration and disinfection requirements described in Chapter 1200-5-1-.17(30) and 1200-5-1-.31 of the Public Water Supply Regulations which are otherwise referred to in this guidance document as the Surface Water Treatment Rules (SWTR). These rules require all public drinking water systems using wells or springs to determine if their ground water sources are under the direct influence of surface water. If a source is under the direct influence of surface water, either of two things must happen: (1) Appropriate filtration facilities must be installed, or (2) a major program must be undertaken and continued to avoid filtration.

The traditional concept that all water in subsurface aquifers is free from pathogenic organisms is based upon soil being an effective filtering agent such that it removes microorganisms as well as other solid particles from circulating ground water. In most cases, bacteria that enter the soil from the surface find themselves in a hostile environment. They are not able to multiply so eventually they die. Some underground sources of drinking water, however, may not have experienced effective soil filtration. Instead, the water may be subject to contamination by pathogenic organisms due to the lack of proper soil coverings. Such ground water sources are said to be under the direct influence of surface waters.

A ground water source is considered to be under the direct influence of surface water if the supply is characterized by (1) a significant occurrence of insects or other macroorganisms, (2) algae, (3) organic debris, or (4) large diameter pathogens such as <u>Giardia lamblia</u>. Other indicators of direct influence include relatively rapid fluctuations in the chemical or physical characteristics of the water such as temperature, conductivity, turbidity or pH which closely correlate to changes in local weather or surface water conditions. Only those subsurface sources which are at risk to contamination from pathogenic macroorganisms will be subject to the requirements of the SWTR.

The presence or absence of direct surface water influence must be determined for each individual ground water source used to supply public water systems (PWS).

TAdapted from "Guidance Manual For Compliance with Filtration and Disinfection Requirements For Public Water Systems using Surface Water Sources" October, 1989, Edition, U.S. EPA Office of Drinking Water, Washington, D.C.

There are several ways to determine whether or not a ground water source is under the direct influence of surface water. They include:

- 1. Particulate analysis of the untreated water for the presence or absence of macroorganisms including insects, algae, organic debris, or large diameter pathogens.
- Long term monitoring of untreated water [characteristics for] fluctuations in temperature, conductivity, turbidity and pH that do or do not correlate closely with changes in local weather conditions.
- 3. A determination that the local geology in conjunction with the well depth and design favors or precludes surface water influence.

Responsibilities of Public Water Systems

Unless a public water system (PWS) qualifies for an exemption, it must employ individuals, firms, or organizations with demonstrated expertise in well development, hydrogeology, water chemistry or biology to acquire the data necessary for the state to make the determination of the presence or absence of direct surface water influence on ground water. Community water systems in west Tennessee must submit the information required by January 1, 1993. Community water systems in middle and east Tennessee must submit to the state the data necessary for these determinations to be made as soon as possible but not later than January 1, 1994. Noncommunity water systems in Tennessee must submit this data by January 1, 1999.

Recognized diagnostic indicators of the presence of direct surface water influence are summarized in the following page.

Summary of Indicators of a Raw Water Source Under The Direct Influence of Surface Water

Biological

The presence of: Giardia lamblia, Diphilobothrium, Cryptosporidium,

algae, rotifers, coccidia, diatoms, insects, insect parts, chironomids or other living macroorganisms.

Temperature

Temperature fluctuations of 4 degrees Centigrade or more over the course of a year.

Chemical parameters

Fluctuations in pH, conductivity, hardness or other chemical parameters over the course of a year that can be correlated with weather conditions, particularly rainfall.

Turbidity

Turbidity of the raw water exceeding 5 NTU. Turbidity fluctuations of greater than 1.0 NTU over the course of a year may also be indicative of surface water influence.

Other indicators of the possible presence of direct surface water influence are as follows:

- 1. Wells that produce water from depths less than 50 feet.
- Wells located in an unconfined aquifer and within 500 feet of a surface body of water where the static level of water in the well is equal or less than the level of water in the surface body of water.
- 3. Wells with casings cut off just above, at or below ground level.
- 4. Springs that have faulty spring boxes.
- 5. Wells that are not properly cased and backfilled.
- 6. Wells or springs located in karst areas, in other words, in areas of limestone or dolomite geology.
- 7. Wells without sanitary seals.
- 8. Customer complaints regarding water quality or water-related infectious illnesses.
- 9. Wells or springs that become milky or muddy after a rain.
- 10. Wells or springs with yields that rise rapidly after rains.

Seasonal Sources

Some sources may only be used for part of the year, for example, during the summer months when water demand is high. These sources should not be excluded from evaluation and, like other sources, should be evaluated during their period(s) of highest susceptibility, even if not in use at the time. Particular attention should be given to those sources which appear to be directly influenced by surface water during part of the year. There may be times during which these subsurface water sources do not exhibit influence by surface water and other times when they are part or all surface water. If that is the case, then it is critical that careful testing be done prior to, during and following the end of the use of the source. This should be done over several seasons to account for seasonal variation.

How to Determine If a Ground Water Supply is Under the Direct Influence of Surface Water

The following section presents a recommended procedure for determining whether or not a raw water source is subject to the direct influence of surface water. These determinations are to be made for each individual raw water source. If the determination will involve an evaluation of water quality (for example, particulate analysis), it is important that these analyses be made on water taken directly from the source and not on water from the distribution system.

All wells and springs are considered to be ground water sources and must be evaluated for direct influence of surface water. If the source is a well or spring, go to Procedures 1 or 2 as appropriate. If the source is an abandoned mine, or any other similar subsurface source, proceed to Procedure 3 for a detailed analysis.

Procedure 1. Review of Well Sources

Systems that do not Disinfect

A system using ground water that does not disinfect the water and has not had a violation of the coliform MCL for the past year is not subject to the SWTR. Systems claiming exemption from the SWTR must do so in writing. Systems which experience coliform violations after claiming to be exempt from the SWTR will be given three months to initiate a study to determine surface water influence.

2. Systems that Disinfect Water Pumped From Sand and Gravel Aquifers

Systems using properly constructed and protected wells producing coliform bacteria free water from depths greater than 50 feet and located in sand and gravel aquifers are not subject to the SWTR. A minimum of three samples of untreated water collected and analyzed by an independent evaluator for coliform bacteria collected over a three month period will be required to demonstrate the well is coliform free.

3. Systems that Disinfect Water From Wells in Middle and Eastern Tennessee

Systems using wells that meet the following criteria will not be considered subject to the SWTR.

- a. It produces water from aquifers at depths greater than 50 feet,
- b. The well is properly located, constructed and protected from surface contamination,
- c. The well is not within 500 feet of a body of surface water and does not have a static water level less than the stage of the nearby surface water body, and
- d. Water quality records indicate:
 - (i) No coliform contamination in untreated water samples over at least the past three years,
 - (ii) No reports or history of turbidity problems associated with the source,
 - (iii) No history of known or suspected disease outbreaks that could be associated with surface water,
- e. If data are available for particulate matter, turbidity, temperature or other chemical parameters, there shall be no:
 - (i) Evidence of particulate matter associated with surface water.
 - (ii) Turbidity, temperature or other data which correlates to that of a nearby surface water.

Wells that meet the criteria listed above are not subject to the requirements of the SWTR, and no additional evaluation is needed. The public water system owner must make a declaration in writing to the Department supported by the record of the professional evaluator that these criteria are met. Wells that do not meet all the criteria listed require additional analysis of water samples collected after major rain events.

4. Systems With Wells That Produce Water From Aquifers at Depths Less Than or Equal to 50 Feet

Wells producing water from shallow aquifers must be evaluated for the presence of coliform bacteria by an independent evaluator. The coliform analyses must be performed on samples collected after a major rain event. Physical and biological parameters must be measured with sufficient frequency during and after the storm event to document any transient changes in water quality. If coliform are present, then particulate analyses as described in Procedure 3 is required. If coliform are absent, then the source will not be subject to the SWTR and the public water system owner must inform the state accordingly.

Procedure 2. Review of Spring Sources

Springs must also be evaluated to determine if they are under the direct influence of surface water. In order for springs to be determined not to be under the influence of surface water, historical water quality data must be available for Departmental review documenting the absence of coliform and changes in conductivity, turbidity, temperature, pH or character of the water, after heavy rains. In addition, the spring must not be in a flood plain and the spring house must be properly constructed to prevent contamination from surface water, animal intrusions or other influences. If coliform are present in the untreated water or if the water undergoes changes in temperature or other parameters, then a particulate analysis as described in Procedure 3 is required.

Procedure 3. Evaluation of Sources Subject to Direct Influence

Particulate Analysis

Particulate analysis is intended to identify organisms which only occur in surface waters as opposed to ground waters and whose presence in a ground water would clearly indicate that at least some surface water has been mixed with it. It is recommended that the presence of any of the biological parameters listed on page 3 be used as an indicator of direct surface contamination.

1. Methods

Since standard methods have not been developed specifically for particulate analysis, there has not been consistency in the way samples have been collected and analyzed. Differences in the degree of training and experience of the microbiologists have added further to the difficulty in comparing results from sample to sample and from system to system. The current limitations in sampling and analytical procedures must be considered when interpreting the results. Until standardized methods are developed, the EPA Consensus Method is recommended as the analytical method for particulate analysis.

2. Sampling Procedure

Samples should be collected using the equipment outlined in the EPA Consensus Method. Samples should always be collected as close to the source as possible and prior to any treatment. If samples must be taken after disinfection, such samples should be noted and analyzed as soon as possible.

Samples must be collected during two separate storm events. Such critical events will vary from system to system and will need to be determined case by case. For most systems, it may be one or more days following a significant rainfall (for example, 2 inches or more in 24 hours). In each case, particulate samples should be collected when the source in question is most affected. A surrogate measure such as source turbidity or depth to water table may be useful in making the decision to monitor. If there is any ambiguity in the particulate analysis results, additional samples must be collected when there is the greatest likelihood that the source will be contaminated by surface water.

The sample is collected by filtration. The filtered volume must be between 500 and 1000 gallons and should be collected over a 4-to 8-hour time period. It is desirable to analyze a similar (+/-10\$) volume of water for all sources, preferably a large volume, although this may not always be possible due to elevated turbidity or sampling logistics. The volume filtered should be recorded for all samples.

3. Interpretation of Results

Identification of a <u>Giardia</u> cyst in any source water should be considered conclusive evidence of direct surface water influence. There also is general agreement that the presence of diatoms in source water is conclusive evidence of direct surface water influence. However, it is important that this determination be based on live diatoms and not empty silica skeletons which may only indicate the historical presence of surface water.

Bluegreen, green, or other chloroplast-containing algae require sunlight for their metabolism as do diatoms. For that reason their presence in source water should also be considered as conclusive evidence of direct surface water influence.

Rotifers, insects, and insect parts are indicators of surface water. Some rotifers do not require sunlight, and not all rotifers require a food source such as algae which originates in surface water. Their nutritional requirements may be satisfied by organic matter such as bacteria or decomposing organic soil material not necessarily associated with surface water. More precise identification of rotifers, i.e., to the species level, is necessary to determine the specific nutritional requirements of the species present. Further information on identifying rotifer species and which species require food sources originating in surface water would be valuable, but is not readily available at this time. Without knowledge of which species is present, the finding of rotifers indicates that the source is either a) directly influenced by surface water or b) it contains organic matter sufficient to support the growth of rotifers. It could be conservatively assumed based on this evidence alone that such a source is directly influenced by surface water. However, it is recommended that this determination be supported by other evidence, for example, the source is near a body of surface water, the turbidity fluctuations are significant, etc.

Insects or insect parts likewise may originate in surface water, from the soil, or they may be airborne in uncovered sources. If insects are observed in a particulate analysis sample, it should be confirmed, if possible, that there is no other route by which insects could contaminate the source other than surface water. For example, if a spring is sampled and the cover is not well constructed, it is possible that insects found in a sample were airborne rather than waterborne. Insects which spend a portion of their lifecycle in water are the best indicators of direct surface water influence, for example, larvae of mayflies, stoneflies, damselflies, and dragonflies. Terrestrial insects should not be ruled out as surface water indicators however since their accidental presence in surface water is common.

Some researchers have indicated that some insects may burrow and the finding of eggs or burrowing larvae, for example chironomids, may not be good indicators of direct surface water influence. For some insects this may be true, but the distance which insects burrow in subsurface sediments is expected to be small and insect larvae are generally large in comparison to Giardia cysts. Until further research suggests otherwise, it is recommended that insects or insect parts be considered strong evidence of surface water influence if not direct evidence in and of themselves. The strength of this evidence would be increased if the source in question is near a surface water and particulate analysis of the surface water found similar insects.

Coccidia are intracellular parasites which occur primarily in vertebrates, for example, animals and fish, and live in various tissues and organs including the intestinal tract, for example, Cryptosporidium. Although not frequently identified by normal particulate analysis techniques, coccidia are good indicators of direct surface water contamination since they require a vertebrate host or hosts and are generally large in size (10 to 20 um or greater). Crytosporidium is commonly found in surface water, but due to its small size (4 to 6 um) it is not normally identified without specific antibody staining techniques.

Other macroorganisms (>7 um) which are parasitic to animals and fish may be found and are good indicators of surface water influence. Examples include, but are not limited to, helminths (for example, tape worm cysts), ascaris, and Diphilobothrium.

Other Indicators of Direct Influence

While particulate analysis probably provides the most direct evidence, a number of other indicators could be used to provide supportive evidence of direct surface water influence. Supportive indicators include turbidity, temperature, pH, hardness and conductivity. A record of measurements of these parameters daily for one year is required, along with concurrent weather measurements.

Turbidity fluctuations of greater than 1 NTU over the course of a year may be indicative of surface water influence. Considerable caution should be used when evaluating turbidity changes, since the turbidity could be caused by the presence of very small particles (< 1 um) not originating in a surface water source. Also, larger particles may be settled or filtered out and only the very smallest particles migrate into the ground water source. Only ground water sources at risk to contamination from Giardia or other large pathogens (> 7 um) will be subject to the SWTR requirements.

Temperature fluctuations may also indicate surface water influence. Fortunately, temperature flucuations are easy to obtain and if there is a surface water source within 500 feet of the ground water source, measurements of both should be recorded for comparison. Changes in surface water temperature closely followed by similar changes in ground source temperature would be indicative of surface water influence. Also, temperature changes of greater than 4 degrees Centigrade over the course of a year appear to be indicative of direct surface water influence.

Changes in other chemical or physical parameters, including pH, conductivity and hardness, should also be monitored and records kept. Again, these would not give a direct indication of whether pathogens originating in surface water sources were present, but they could indicate whether the ground water chemistry was or was not affected by a nearby surface water source, namely, whether the ground water source chemistry changed in a pattern similar to the surface water source chemistry. At this time, no numerical guidelines are available to differentiate what is or is not similar, so these comparisons are more qualitative than quantitative.

Modification of Ground Water Sources To Eliminate Direct Surface Water Influence

Sources directly influenced by surface water may be modified in some cases to eliminate the surface water contamination. The Department may elect to allow systems with such sources to modify the construction of the source or the area surrounding the source in an effort to eliminate conditions favoring surface water infiltration. As this could be expensive and take considerable time to evaluate for effectiveness, careful consideration should be given to the decision to modify a source. In deciding whether source modification is appropriate, systems should consider the following points:

Is the cause of the surface water contamination known? If the specific cause or point of surface water contamination is not known, it will not be possible to determine an effective control strategy. Further, there may be several reasons why the source is susceptible to direct surface water influence. For example, an infiltration gallery may receive surface water because some of its laterals are exposed in the bed of a nearby stream and also because laterals distant from the stream are shallow and are affected by surface runoff. Simply modifying or eliminating one or the other set of laterals in this case would not entirely eliminate surface water influence.

what is the likelihood that modification of the source will be effective? Assuming that the source of contamination has been identified, the expected effectiveness of control measures should be evaluated. If the cause is relatively evident, a crack in a well casing or an uncovered spring box for example, then there is a high degree of confidence that an effective solution could be developed. Should the nature of the contamination be more diffuse or widespread, then the merits of spending time and money to modify the source should be carefully considered. In the case of the example above, eliminating the use of the laterals under the stream will solve part of the problem. However, without considerably more hydrogeologic information about the aquifer and the placement of the other laterals, it is not clear what, if any, control measures would effectively eliminate direct surface water influence in those laterals distant from the stream.

If a source is identified as being directly influenced by surface water and the water system decides to attempt to modify the source, interim disinfection practices which will ensure at least 99.9% inactivation of Giardia must be used. Methods and levels of disinfection which can be used to achieve such removals can be found in Section 1200-5-1-.31 of the Tennessee Public Water Supply Regulations.

A partial listing of types of modifications which could be undertaken includes:

- Diverting surface runoff from springs by trenching, etc.
- Redeveloping springs to capture them below a confining layer.
- Covering open spring collectors.
- Reconstructing wells to install sanitary seals and/or to screen them in a confined (protected) aquifer.
- Repairing cracks or breaks in any type of source collector that allows the entry of surface contaminants.
- Discontinue the use of infiltration laterals which intercept surface water.

An extended period of monitoring through at least two years or critical periods should follow reconstruction to evaluate whether the source is still directly influenced by surface water. It would be preferable to use particulate analysis to make such evaluations, but it may be as helpful to use measures such as temperature and turbidity as screenining tools. Long term monitoring at critical times may also be an appropriate agreement between the water system and the Department if there is still doubt about the long term effectiveness of the solution.

If modification is not feasible, another alternative to avoid having to comply with the SWTR may be to develop a new well that is either deeper or at a different location.

Appendix 12

Utah Division of Drinking Water Protocol for Determining Ground Water Under the Direct Influence of Surface Water

INTRODUCTION

In recent years, we have undertaken a number of initiatives to better protect the public from waterborne disease. One of these initiatives centers upon controllingiardia lamblia and Cryptosporidium parvumevels in drinking water delivered to consumers. Both of these organisms are intestinal parasites that often cause severe symptoms in infected individuals.

Giardia lamblia and Cryptosporidium parvumbreed and multiply in the intestines of infected hosts. The host sheds Giardia cysts or Cryptosporidiumoocysts in feces. The cysts or oocysts find their way into surface waters, such as a lakes or streams. A direct., insufficiently filtered connection may exist between a surface water body and a well or spring. Under these conditions, persons consuming water from one of these wells or springs may become infected with one of these parasites. This protocol attempts to outline the method by which the Utah division of Drinking Water determines which subsurface water sources may possess significant risk of such contamination.

The United States Environmental Protection Agency states, in the Guidance Manual for Compliance with the Filtration and Disinfection Requirements for Public Water Systems Using Surface Water, "Only those subsurface sources which are at risk to contamination from a cysts will be subject to the requirements of the Surface Water Treatment Rule... Subsurface sources which may be at risk to contamination from bacteria and enteric viruses, but which are not at risk from Giardia cysts, will be regulated either under the Total Coliform Rule or forthcoming disinfection treatment requirements for ground waters." The Interim Enhanced Surface Water Treatment Rule expands the contaminant list for which this protocol applies to include yptosporidium.

We have divided this document into five sections, as follows:

1.	Introduction	This section provides rationale for identifying surface water influence, and provides an overview of the program.
2.	Screening	This section provides a method to rapidly determine which sources may require detailed analysis to evaluate. This step will usually involve a file search and review of construction plans or source protection plans. Sources that "pass" Screening can be considered ground water. The screening step will sometimes identify remedial measures a system can take to eliminate surface water from their water supply.
3.	Intermediate Analysis	This section provides means to obtain missing data for screening, and, in some cases, identify where influence may originate. Intermediate Analysis may also provide clues about how much surface water a source receives relative to the ground water component. Intermediate Analysis can provide significant data to supplement Final Analysis in making determinations where unclear conditions prevail. For example, if several microscopic particulate analyses produce indeterminate results (moderate risk), and no analysis clearly indicates surface water influence, Intermediate Analysis may provide the required clarity.
4.	Final Analysis	For most sources that fail Screening, this step will prove most useful. Final analysis relies primarily upon microscopic particulate analysis, augmented by information gathered during Screening and Intermediate Analysis. You may elect to skip Intermediate Analysis, and proceed directly to Final Analysis without loss in most cases.
5.	Remedies	This section discusses options systems have if we declare one of their sources to be under the direct influence of surface water.

ACRONYMS

DDW Utah Division of Drinking Water

GW ground water

GWUDI ground water under the direct influence of surface water MPA microscopic particulate analysis, consensus method

SS sanitary survey
SW surface water
TOT time of travel

DEFINITIONS

Ground water under the direct influence of surface water

Any water beneath the surface of the ground with (1) significant occurrence of insects or other macroorganisms, algae, or large-diameter pathogens such as *Giardia lamblia*, or (2) significant and relatively rapid shifts in water characteristics such as turbidity, temperature, conductivity, or pH which closely correlate to climatological or surface water conditions. Direct influence must be determined for individual sources in accordance with criteria established by the State. The State determination of direct influence may be based on site-specific measurements of water quality and/or documentation of well construction characteristics and geology with field evaluation.

2. Surface water

DDW uses distance to surface water as a key criteria at the screening level of the GWUDI protocol. The following definition and examples apply:

EPA defines surface water as: "...any water open to the atmosphere and subject to surface runoff..."

DDW interprets this to include the following, as a minimum:

- all perennial surface waters including lakes, streams, ponds, creeks, rivers, ditches, drains, etc.
- intermittent surface waters such as ponds, streams, ditches, drains, etc.
- wastewater treatment lagoons
- other natural or manmade lagoons, ponds, or reservoirs

For determining distances between the surface water and the groundwater source, measurements should be made from the annual high water level.

3. Source of *Giardia* Contamination

At the screening level, nearby sources of contamination may trigger a more detailed (Intermediate) evaluation. The following is a partial list of *Giardia* contamination to consider:

- surface water
- Livestock
- on-site sewage systems
- Feedlots
- injection wells
- sewage sludge pits

SCREENING

Obvious surface waters. All surface water sources must comply with the SWTR.

Waterborne disease outbreak related to surface water. Systems which have experienced outbreaks of *Giardiasis, Cryptosporidiosis*, or other diseases caused by pathogenic organisms strictly associated with surface water are automatically classified as GWUDI sources unless the source has been modified since the outbreak, and testing has shown that the source is no longer directly influenced by surface water. Bacterial and viral outbreaks are not exclusively associated with surface water, so they should not automatically trigger the GWUDI determination, but should trigger at least an Intermediate level analysis.

Springs and infiltration galleries. Due to the more vulnerable nature of these sources, we must complete Intermediate and/or Final level analysis before making a final determination.

Wells. <200' to SW

EPA guidance indicates that sources less then 200 feet from a surface water are more susceptible and should undergo a more detailed evaluation. This requires Intermediate and/or Final level analysis prior to making a determination.

<100' deep

EPA guidance and DDW experience indicates these sources are more vulnerable than deeper wells; therefore, staff should review these sources even if they are <200' from surface water to determine whether to conduct an Intermediate level analysis. Make depth measurements from the ground surface to the first screened or perforated interval.

Problems

If staff are aware of previous problems with any source, regardless of location, which could indicate surface water contamination, we will conduct an intermediate analysis. Such problems could include, but are not limited to, the following:

- sanitary defects in source construction
- bacterial and virus outbreaks not necessarily related to surface water contamination
- coliform occurrence of the source (Staff will judge relevance of these occurrences)
- Giardia sources nearby (see listing)
- elevated or fluctuating turbidity
- significant changes in flow rate

Due to general nature of the criteria above, some sources greater than 200 feet from surface water may still be at risk of Giardia contamination due to high aquifer porosity and flow rates. At their discretion, field staff may perform further evaluation of these sources using any of the steps outlined later in this document.

Hydrogeologic evaluation. At their discretion, the system may choose to document that the source is not subject to surface water influence due to confining layers, hydraulic barriers, gradients, etc. DDW may use any information the System elects to submit, including Drinking Water Source Protection Plans. DDS may also perform its' own analysis. In either case, a hydrogeologist must prepare the report. The hydrogeologic evaluation may prove sufficient for final determination of source status, or may be supplemented with other tests. In cases where MPA results disagree with hydrogeologic analysis, the MPA results will receive preference.

DECISION CRITERIA (use the form on the following page):

1.	Screening score less than 40	GW
2.	Screening score near or equal to 40, or screening incomplete	Intermediate Analysis
3.	Screening score much greater than 40	Final analysis

UTAH DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF DRINKING WATER

SUBSURFACE WATER SOURCE ASSESSMENT FOR SURFACE WATER INFLUENCE SCREENING CRITERIA

SISIEM INFORMATION.	INA	IVIE		
	NU	MBER	COUNTY	CLASSIFICATION
SOURCE INFORMATION:	NA	ME		
	TO	TAL INDEX POIN	NTSCLASS	IFICATION
CLASSIFICATION CRITERI	A:			INDEX POINTS
	A.		SURFACE WATER SOURCE	` /
)
				QUIFER)
	В.	MICPORIOI OG	GICAL HISTORY (CIRCLE A	II THAT ADDIV
	В.			WATER RELATED PATHOGENIC ORGANISM
				M CONFIGURATION 50
				LATIONS OVER LAST THREE YEARS 30
				VIOLATIONS LAST THREE YEARS (CIRCLE ONE)
	C.	IIVDBOCEOLO	OGICAL FEATURES (CIRCL	E ALL THAT ADDIV
	C.			SOURCE TO CASING/COLLECTOR LATERAL
		DISTANC		
		INTAKE I	LOCATED ON FLOOD PLAI	N AT APPROXIMATE ALTITUDE OF STREAM 20
				D INTAKE1:
			,	DIS COARSE ALLUVIAL, CAVERNOUS OR
		FRACTOR	ŒD	1.
	D.		E STRUCTURE (CIRCLE AI	
				ON CHAMBER OR UNCASED/POORLY GROUTED
			*	UNACCEPTABLE MATERIAL 1:
				1: LLOWING ENTRY OF SURFACE WATER 1:
				TOTAL INDEX POINTS
COMMENTS.				
COMMENTS:				
			DATE:	ANALYST:

INTERMEDIATE ANALYSIS

DDW may choose to proceed directly to Final Analysis prior to implementing any part of the Intermediate Analysis.

Sanitary Survey: A recent sanitary survey or one conducted within the past 2 years should be used to:

- identify obvious surface water influence, i.e. whether construction of the source allows surface water intrusion etc.
- identify potential *Giardia* sources in the vicinity
- verify distances to surface water and *Giardia* sources.
- Gather information about relevant water quality parameters and monitoring locations.

Water Quality Parameter Monitoring: The following list includes parameters THAT DDW may monitor. Ideally, DDW will monitor for one year to establish seasonal variations, but may monitor for shorter periods.

Total/fecal coliforms:

- Collect samples once per week.
- Collect samples from the source prior to any treatment.
- Use only State-certified laboratories coliform analysis.
- Report results as densities rather than present or absent.

Temperature:

- Take measurements daily; minimum of 4 out of 7 days per week.
- Monitor the source and nearest surface water (no more than 1,000 feet distant)
- A mercury thermometer or electric probe may be used.
- Use an instrument capable of reading 0.5° F or C increments.
- Use the same instrument for all readings.

Conductivity:

- Take measurements once per week minimum.
- Monitor the source and nearest surface water (nor more than 1,000 feet distant)
- Calibrate the instrument per manufacturers recommendations, or submit to a State-certified laboratory. Turbidity:
- Take measurements daily; minimum of 4 out of 7 days per week.
- Monitor the source and nearest surface water (no more than 1.000 feet distant)
- Use an instrument capable of reading 0.1 NTU increments.
- Standardize and calibrate instrument per manufacturer's recommendations.

Specific ions:

Ions known to differ in concentration between the surface water ground water.

DDW will determine applicability of these analyses.

Establish frequency, accuracy and calibration requirements on a case by case basis.

Plot data to show variations between source water and surface water characteristics over the sampling period. For specific ions, use a "radar plot" showing both surface and ground water test results. Until development of a more refined method, inspect graphs for rapid changes and obvious similarities or differences between the surface water and groundwater source data.

DECISION CRITERIA:

1.	Survey shows SW influence	GWUDI
2.	Survey ok; no other problems; monitoring shows potential influence	Final Analysis
3.	Survey ok; other problems exist; monitoring shows potential influence	Final Analysis
4.	Survey ok; other problems exist; monitoring okay	GW
5.	Survey ok; no problems; monitoring okay	GW

FINAL ANALYSIS

Use the following criteria, along with all other information generated to this point, to render the GWUDI determination.

MPA results form the most conclusive evidence for determining GWUDI. If MPA results conflict with hydrogeologic analysis or water quality parameter monitoring results, use the MPA results. However, systems with coliform contamination which test negative for GWUDI under MPA must disinfect. The MPA, likewise, cannot be used to overrule the 5 NTU ground water turbidity standard.

Certain organisms and debris occur primarily in surface water. Rarely, if ever, will you find these organisms in groundwater. Examples include *Giardia*, coccidia (the family which includes *Cryptosporidium*), diatoms, rotifers, insect parts, and chlorophyll containing algae. For that reason, the EPA definition states that the "significant occurrence of insects of other macroorganisms, algae, or large-diameter pathogens such as *Giardia lamblia*" may be used to show a groundwater is directly influenced by surface water". MPA involves filtering 500 to 1000 gallons of water to collect and concentrate organisms and debris. MPA is the best tool available for determining GWUDI. Consider MPA results conclusive.

EPA published a consensus method for collecting, analyzing and interpreting MPA results (EPA, 1992). All MPA samples used in the Final analysis must adhere to this protocol. Collect all filter samples prior to disinfection and prior to blending with other waters. Also, collect the sample as close to the source as possible since the particulates may settle out in reservoirs, or defects in the system may contribute particulates. Both situations could result in incorrect source classification. Submit analyses thus collected to the Utah Division of Laboratory Services.

If you cannot collect the MPA from the source prior to blending with other waters, you must exercise care in interpreting the results. If the blend includes surface water, you will likely see large numbers of algae in the filter sample. If the blend includes ground water, you will see dilution of the sample, and may not be able to clearly identify which source contributes the indicator species.

In the consensus method, EPA has developed a procedure to quantify and interpret MPA results using "risk factors". Risk factors depend on the concentration of the organism and the significance of that type of organism, e.g. The presence of even a few *Giardia* is more significant than high numbers of algae. The risk factors were assigned based on the cumulative experience and judgement of the microbiologists who developed the consensus method (see pp. 30 & 31 of the Method). Based on the sum of the relative risk factors for a sample, the consensus method ranks the risk of surface water contamination as high, moderate, or low. However, the method does not indicate at what relative risk a source should be classified as GWUDI. **DDW considers a source to be GWUDI if any MPA sample has a relative risk score of > 20.**

DECISION CRITERIA:

1.	MPA score < 10 (low risk)(minimum 3 analyses preferred)	GW
2.	MPA score between 10 and 19 (moderate risk)	Repeat analysis; Perform Intermediate
		Analysis if not already done*
3.	MPA score >20 (high risk)	GWUDI

^{*} Some cases may require numerous MPAs and extensive Intermediate Analysis. This will usually occur if the MPA results consistently show moderate risk of surface water influence, or some show moderate risk while others show low risk. Clearly, the presence of indicator species sufficient to rate the risk as moderate will occur only if the source has a defect somewhere. In the absence of compelling evidence to the contrary, theses sources should receive classification as GWUDI after the third round of MPA sampling.

REMEDIES

Surface water influence is a serious concern. Therefore, if we declare your source GWUDI, you must act quickly to prevent potential waterborne disease. You cannot predict when an infected animal may traverse your watershed. Even though you may have never observed waterborne illness in your community, one sick animal could change that in a big way.

Upon receiving a Notice of Finding of Surface Water Influence, you must **IMMEDIATLEY** begin disinfecting sufficiently to inactivate 99.9 per cent of the *Giardia* your water may contain. We can provide assistance in determining the required disinfectant dose. You must provide us with a report by the tenth of the month detailing the degree of inactivation provided each day of the preceding month. Again, we will assist you with this. Your chemical monitoring schedule for this source will also change. Alternatively, you can turn the source out of the system.

By law, within eighteen months of the date of notification of a finding of surface water influence, you must have fully remedied the problem. The remedy must remove the threat of *Giardia* and/or *Cryptosporidium* contamination, and must take one of three forms:

- 1. Permanently abandon the source as a part of your drinking water supply.
- 2. Locate where the surface water intrusion occurs, and eliminate it from the source.
- 3. Install and operate conventional complete treatment facilities, or their equivalent. Conventional complete treatment includes coagulation, flocculation, sedimentation, filtration and disinfection.

Whichever option you choose, consult with us. A number of issues exist, including plan review, which you will need to consider as you attempt to correct a surface water influence condition.

REFERENCES:

EPA 1989. Federal Register. 54 FR 124, pp. 27486-27541. June 29, 1989.

EPA 1991. Guidance Manual for Compliance with the Filtration and Disinfection Requirements for Public Water Systems Using Surface Water Sources. U.S. Environmental Protection Agency, Office of Drinking Water. March 1991.

EPA 1992. Consensus Method for Determining Groundwater Under the Direct Influence of Surface Water Using Microscopic Particulate Analysis (MPA). U.S. Environmental Protection Agency. EPA 910/9-92-029. October 1992

Rapacz, 1991. Rapacz, M.V., and Stevens, H.C. <u>Groundwater</u> To filter or Not to Filter: That is the Question. Massachusetts Department of Environmental Protection. November 1991.

ACKNOWLEDGEMENT: The organization of much of this document was adapted from a February, 1993 draft document prepared by the Idaho Department of Environmental Quality. The screening criteria form was adapted from a procedure developed by USEPA region VIII.

Appendix 13

Drinking Water Section Guidance For The Determination Of Groundwater Under The Direct Influence Of Surface Water

State of Connecticut

Department Of Public Health

Drinking Water Section

May 2005

Background

The United States Environmental Protection Agency (USEPA) promulgated the Surface Water Treatment Rule (SWTR) in June 1989, with an effective date of December 1990. The overall goal of the SWTR is to protect consumers from pathogens in surface water. For most affected public water systems, protection entails the use of a multiple-barrier approach including source water protection, filtration and disinfection when surface water is used as a public drinking water source. The requirements of the SWTR also apply to groundwater under the direct influence (GWUDI) of surface water.

The SWTR defines **Groundwater Under The Direct Influence Of Surface Water** as "any water beneath the surface of the ground with:

- 1. "significant occurrence of insects or other microorganisms, algae or large-diameter pathogens such as *Giardia*, or
- 2. significant and relatively rapid shifts in water characteristics such as temperature, conductivity, turbidity, or pH which correlate closely with climatological change or surface water conditions."

"Under the direct influence of surface water" also means the groundwater source is located close enough to nearby surface water, such as a river, lake or wetland, to receive direct surface water recharge. Since a portion of the groundwater source's recharge is presumed to be from surface water, the groundwater source is considered at risk of contamination from pathogens such as *Giardia, Cryptosporidium* and viruses, which are not normally found in true groundwaters. Groundwater sources determined to be GWUDI by the Drinking Water Section (DWS) are subject to the provisions of SWTR and must be treated pursuant to Section 19-13-B102(j)(2)(D) of the Regulations of Connecticut State Agencies (RCSA).

GWUDI Determination Criteria

The Drinking Water Section uses criteria developed pursuant to the USEPA SWTR to determine if groundwater sources are under the direct influence of surface water. The intent is to apply the SWTR to any groundwater sources, which are at risk to contamination from *Giardia, Cryptosporidium*, or other pathogenic organisms associated with surface water. The DWS criteria listed in Table 1 are applicable to the following well types: existing, new, or replacement wells. All proposed new wells must comply with the separation distances provided in Section 19-13-B51d of the RCSA and Section 19-13-B102 (d)(1)(A) of the RCSA.

The criteria listed in Table 1 also apply to existing sand and gravel wells that have not yet undergone an evaluation to determine if the source is under the direct influence of surface water and bedrock wells that do not comply with Section 19-13-B51d of the RCSA. Any existing groundwater source determined to be under the direct influence of surface water that is presently filtering and disinfecting must reliably achieve the levels of removal and inactivation specified in Section 19-13-B102(j) of the RCSA. Sources determined to be under the direct influence of surface water that disinfect only are not in compliance with Section 19-13-B102(j) of the RCSA.

The criteria in Table 1 do not apply to existing bedrock wells that are in compliance with Section 19-13-B51d of the RCSA.

Table 1 GWUDI Determination Criteria For A New, Existing Or Replacement Well

Item	Criterion	New, Existing Or Replacement Well In An Existing Wellfield ^(a)	New Well In A New Wellfield
1.	The casing or nearest collector lateral of the proposed new well is over 200 feet horizontally from the high water mark ^(b) of any surface water body as measured from the water surface elevation for a flood event with a one-year frequency of occurrence or the top of the bank of the surface water body; whichever is closest to the source.	$\sqrt{}$	V
	The casing or nearest collector lateral is over 50 feet horizontally from the high water mark ^(b) of any surface water body, as measured from the water surface elevation for a flood event with a one-year frequency of occurrence or the top of the bank; whichever is closest to the source and the well screen is separated from the surface water body by a confining layer		
2.	"Confining layer" means a continuous areally extensive, permanent geologic unit of low permeability. A written report of how and why the confining layer separates the well from any surface water body located within 200 feet must be provided to the DWS. The report's conclusion must be based on an adequate number of borings and documented by a geologist's or driller's log for any observation or monitoring wells confirming the continuity and areal extent of the confining layer and any other evidence such as surficial geological maps or pump test data which confirms existence of the confining layer.		V
3.	Source construction and separation distances meet the requirements of Section 19-13-B51(d) of the Regulations of Connecticut State Agencies (RCSA)	V	V
4.	There is no history of a known or suspected waterborne disease outbreak due to <i>Giardia</i> or other pathogenic organisms for existing wells.	V	N/A
5.	There is no history of total coliform or <i>E. coli</i> bacteria in the raw source water of an existing well (i.e., before treatment and distribution). Where total coliform or <i>E. coli</i> bacteria have been confirmed in distribution system samples, the presence of these bacteria shall be considered to be from the source unless documentation is submitted to and conferred upon by the Drinking Water Section that untreated source samples indicate otherwise.	V	N/A
6.	The source water turbidity has not exceeded 1.49 NTU within the past 3 years. If this is the only criterion that the source fails to meet and if the utility can demonstrate to the satisfaction of DPH that the turbidity is due to iron and/or manganese then the source is not considered potentially under the direct influence of surface water.	V	N/A

⁽a) "Wellfield" means one or more wells in reasonable proximity to one another and under the control of the same Public Water System

⁽b) If the location of the high water mark cannot be reliably determined, then the public water system must retain a qualified consultant to make the determination. The consultant's findings must be concurred upon by the DWS.

Applying The GWUDI Determination Criteria

If an existing or new groundwater source fails to meet <u>any</u> of the applicable criteria in Table 1, it is potentially under the direct influence of surface water and the public water systems must take one of the actions outlined in Table 2. Alternatively, an existing or new groundwater source, which meets all of the applicable items listed in Table 1 is not under the direct influence of surface water. If an existing or new groundwater source is considered not to be under the direct influence of surface water based on the criteria in Table 1, that does not preclude a future determination of potential direct surface water influence should any of factors listed in Table 1 change or new information suggests that the well may be GWUDI.

After completing a review of the GWUDI criteria listed in Table 1 the public water system must evaluate and select one or more of the options presented in Table 2. If the DWS makes a determination in writing that a source is potentially under the direct influence of surface water, the public water system must also take one or more of the actions specified in Table 2 within 18 months of the determination.

In the case of a wellfield with more than one source, if any of the sources in the wellfield fail to meet any of the criteria in Table 1, except for certain correctable source construction deficiencies, those sources and any sources within 200 feet (inclusive) radially are potentially under the direct influence of surface water. For this scenario, the public water system must take one of the actions in Table 2. Examples of single and multiple wells relative to nearby surface water bodies are illustrated in Figure 1.

A single well with a correctable construction deficiency per 19-13-B51 of the RCSA does not necessarily mean the entire wellfield is potentially under the direct influence of surface water. However, that particular well is potentially under the direct influence of surface water and must either be reconstructed or replaced. If DPH determines that reconstruction or replacement is not feasible, the source is then considered to be potentially under direct influence of surface water for the purposes the demonstration study.

Table 2 Options For New Or Existing Groundwater Wells Determined To Be Potentially Under The Direct Influence Of Surface Water

Option Number	Option
(1)	Perform a GWUDI demonstration study pursuant to the criteria presented in the GWUDI Demonstration Study section
(2)	Replace the source with a source that is more than 200 feet horizontally from the high water mark of any surface water body or is hydraulically separated from surface water by an impervious layer or interconnect with another public water system
(3)	Reconstruct the source pursuant to Section 19-13-b51 of the RCSA
(4)	Install treatment pursuant to the Section 19-13-B102(j) of the RCSA within 18 months after notification by the DWS that filtration is required.

Conducting A GWUDI Demonstration Study

A GWUDI demonstration study entails the collection and analysis of weekly surface and groundwater samples for select physical parameters, weekly testing for total coliform and *E. coli* bacteria, and quarterly testing for microscopic particulates. These tests are intended to show if: a) there is a relationship between surface and groundwater physical parameters; b) bacteria are present in the untreated groundwater; and c) biological indicators of surface water are present in the groundwater. The

demonstration study must be based on testing, which includes, at a minimum, the following analytical determinations at the specified frequencies:

- 1. Microscopic Particulate Analysis (MPA) conducted according to EPA approved methods by a laboratory certified to conduct MPA testing. Raw water samples must be taken once per quarter for a period of one year from each well and analyzed for the surface water indicators listed below. The quarterly MPA samples must be taken at least 60 days apart.
 - a. Giardia cysts
 - b. Live diatoms
 - c. Insect parts including larvae
 - d. Blue green algae, green algae or other algae containing chloroplasts
 - e. Coccidia
 - f. Cryptosporidium

Note: If any other particulates or microorganisms greater than 7 microns are found during the course of the MPA analysis, they must be identified and reported.

- 2. Weekly physical analyses of untreated groundwater and surface water samples for a period of 12 months according to the most recent Edition of Standard Methods for the following parameters:
 - a. Temperature
 - b. Conductivity
 - c. Turbidity
 - d. pH
 - e. Color
 - f. Rainfall (optional)

Note: Raw water samples prior to treatment must be taken from each well and from all surface water bodies within 200 ft. of the well(s) being evaluated or the nearest surface water body within 500 feet if there are none within 200 ft. If no surface water bodies are within 500 feet or a potential surface water contributor has not been identified, sampling locations shall be discussed on a case-by-case basis with the DWS. The location of surface sampling sites shall be based on the estimated limits of the area of influence and the suitability of the site for taking accurate measurements and samples. Surface water samples shall be collected at mid-depth if the surface water is a body of standing water. Sample collection is not required if the surface water body is inaccessible due to the presence of thick ice.

3. Weekly analysis for a period of one year of untreated groundwater samples for total coliform and *E. coli* bacteria according to the most recent Edition of <u>Standard Methods</u>.

Prior to weekly coliform bacteria and quarterly MPA sampling of a well that is not in continuous operation, the well must be pumped to waste until a stabilized drawdown is achieved pursuant to Section 25-32d-1a(32) of the RCSA. When sampling a well that is not in continuous operation for the weekly physical analyses, the well must be pumped to waste for a minimum of 2 hours before any samples are taken.

The final GWUDI demonstration study report must include the following elements and be submitted on a form provided by the DWS:

- 1. Analytical test reports from a certified laboratory for the 4 quarterly MPA samples;
- 2. Determination of relative risk factors as presented in EPA's Guidance Manual and shown in Tables 4 and 5);

- 3. Separate graphs of the weekly physical test data for a period of year, one (52 weeks), comparing the surface water to each well/spring for each physical parameter (i.e., temperature, conductivity, turbidity, pH, and color),
 - (*Note*: if surface water data could not be obtained because the source was covered by ice or was dry, the report must list the dates and reasons why such data could not be obtained);
- 4. A graph showing the seasonal temperature variation of the groundwater for each well/spring over the course of one year. The graph shall include boundary lines set at \pm 15 to 20% of the mean groundwater temperature;
- 5. Compilation of weekly raw groundwater test results for total coliform and E. coli bacteria;
- 6. A discussion of the data presented and a conclusion stating that the well/spring is or is not GWUDI, and what action the PWS intends to take based on the study outcome; and
- 7. Additional supporting information, if available, should be provided including:
 - a. Well construction records;
 - b. Sanitary survey reports;
 - c. Raw water quality data (i.e., bacteria) for past three years if available;
 - d. Geologic features of the aquifer; and
 - e. Historic records of a known or suspected disease outbreak due to a pathogenic organism.

The DWS determination of groundwater under the direct influence of surface water, based on the findings of the demonstration study, will be made on a case-by-case basis.

Well Use During GWUDI Demonstration Study

The DWS may issue a well use approval for an existing, new, or replacement well while a GWUDI demonstration study is underway if the public water systems installs an approved interim disinfection system and meets the criteria listed below under items 1-3. Samples for a new or replacement well must be taken at the conclusion of the required well yield test.

- 1. Initial MPA test results indicate that the total relative risk factors for the well are low (i.e., \leq 9);
- 2. No Giardia or Cryptosporidium or Coccidia are present in the initial MPA sample; and
- 3. Results of an initial water quality test are negative for *E. coli* bacteria.

A well use approval will not be issued for new or replacement wells until the interim disinfection system has been installed and approved by the DWS, and all initial water quality and MPA test results are submitted to the DWS for review, and determined by the DWS to be in compliance with Section 19-13-B102 of the RCSA.

Conditions for the continued use of an existing, new, or replacement well during a GWUDI demonstration study shall include:

- 4. Interim disinfection, as approved by the DWS, must remain on-line throughout the entire demonstration study period. (*Note*: If the PWS elects to chlorinate the groundwater to satisfy its requirement for interim disinfection, chlorination must be provided pursuant to Section 19-13-B102(e)(7)(M) of the RCSA);
- 5. Daily turbidity test shall be performed at the entry point to the system as required in Section 19-13-B102(e)(7)(H)(ii) of the RCSA. When the turbidity of any such test exceeds one (1) nephelometric turbidity unit (NTU) then the system's certified operator shall collect at least one

- (1) total coliform sample near the first service connection within twenty-four (24) hours of the turbidity exceedance, as required in Section 19-13-B102(e)(7)(H)(i) of the RCSA;
- 6. Quarterly MPA test results must continue to indicate that the total relative risk factors for the well remain low (i.e., ≤ 9) with no more than 1 quarterly sample indicating a moderate relative risk factor for the duration of the GWUDI demonstration study;
- 7. *Giardia* or *Cryptosporidium* or Coccidia are not present in any of the subsequent MPA samples;
- 8. There are no occurrences of a known or suspected waterborne disease outbreak due to *Giardia* or other pathogenic organisms while the well is in use;
- 9. Weekly tests of untreated groundwater for *E. coli* bacteria must continue to be negative for the duration of the GWUDI demonstration study; and
- 10. A preliminary analysis of weekly temperature and conductivity tests taken over the first quarter that the well is in operation, and quarterly thereafter, does not indicate a correlation with surface water test results.

The DWS may order that use of the well be suspended immediately or that treatment be installed pursuant to Section 19-13-B102(j) of the RCSA prior to completion of the full 12-month GWUDI demonstration study if:

- 1. Test results from any MPA sample indicate that the well is under the direct influence of surface water;
- 2. A known or suspected waterborne disease outbreak occurs due to *Giardia* or other pathogenic organisms; or
- 3. E. coli bacteria are detected in the untreated groundwater.

The system shall notify the department by the end of the day on which the system is notified of a positive test result for *E. coli* bacteria but no later than ninety-six (96) hours from the time of sample collection. If the department office is closed, notification shall be made before the end of the next business day. The system shall notify the department whenever a quarterly MPA sample result indicates a high total relative risk factor based on Table 5. Such results must be reported by the end of the day on which the system is notified of the result. If the department office is closed, notification shall be made before the end of the next business day. Test results for weekly physical samples need not be submitted to the DWS until the entire 12-month GWUDI demonstration study is completed.

Pursuant to Section 19-13-B46 of the RCSA, the department must also be notified by the system whenever there are interruptions in treatment or other water supply emergencies occur while the demonstration study is underway.

Note: If any quarterly MPA sample result indicates a high relative risk factor, the PWS is not allowed to re-test in order to possibly obtain results indicating a lower relative risk factor. If additional MPA samples are taken in addition to the four quarterly samples required by the demonstration study, all MPA test results must be reported to the DWS.

Review of GWUDI Demonstration Study Results

A well/spring is considered to be groundwater under the direct influence of surface water if either item 1 or 2, as stated below, is determined:

- 1. The total of the relative risk factors, as determined by Appendix A for one or more quarterly MPA analyses, is ≥ 20 (i.e., high risk) and the sample cannot be invalidated;
- 2. The total of the relative risk factors, as determined by Appendix A for two or more quarterly MPA analyses, is 10-19 (i.e., moderate risk), and the temperature of the well/spring water correlates with that of the surface water and/or has seasonal variations (in °C) of 15-20% over the course of the year, and/or the conductivity of the well/spring water correlates with that of the surface water; and

Additional monitoring may be required before a final GWUDI determination can be made when the relative risk factors specified in items 1 and 2 are not exceeded but physical monitoring and MPA data indicate that:

- a) water temperature of the well/spring correlates with that of the surface water and/or has a seasonal variation (in °C) of 15-20% over the course of the year, or
- b) conductivity of the well/spring water correlates with that of the surface water; or
- c) at least one quarterly MPA sample from the demonstration study indicates a moderate relative risk factor

Note: The conclusion rendered by the PWS, based on the outcome of the demonstration study, is subject to the DWS's discretion. Therefore, the DWS may consider additional monitoring as a step to undertake prior to requiring the installation of filtration and disinfection for removal and inactivation.

The GWUDI demonstration study final study report must be submitted to the DWS within 18 months after being notified by the DWS that a source has been determined to be groundwater potentially under the direct influence of surface water. Therefore, if the study report is not submitted to the DWS within this timeframe, the PWS may be required to replace the source or install treatment pursuant to the Section 19-13-B102(j) of the RCSA within 18 months after the report's due date.

If the DWS concurs with the findings of the demonstration study that the well is under the direct influence of surface water, the public water system will have 18 months from the date of determination by the DWS to install filtration and disinfection pursuant to Section 19-13-B102(j) of the RCSA or replace or abandon the source.

References

U.S. Environmental Protection Agency. 1991. *Guidance Manual For Compliance With The Filtration and Disinfection Requirements For Public Water Systems Using Surface Water Sources*. Washington, D.C.

Vasconcelos, J.T. and S. Harris. 1992. *Consensus Method For Determining Groundwater Under The Direct Influence of Surface Water Using Microscopic Particulate Analysis*. Port Orchard, Washington: U.S. Environmental Protection Agency.

May 9, 2005

Appendix A - Interpretation of MPA Test Results

Table 4. Numerical Range Of Each Primary Bio-Indicator (Particulates)
Counted Per 100 Gallons Water (see key)

Indicators of surface water ¹	ЕН	Н	M	R	NS
Giardia or Cryptosporidium ²	>30	16-30	6-15	1-5	<1
Coccidia ²	>30	16-30	6-15	1-5	<1
Diatoms ³	>150	41-149	11-40	1-10	<1
Other Algae ³	>300	96-299	21-95	1-20	<1
Insects/Larvae	>100	31-99	16-30	1-15	<1
Rotifers	>150	61-149	21-60	1-20	<1
Plant Debris ³	>200	71-200	26-70	1-25	<1

- 1. According to EPA "Guidance Manual for Compliance with the Filtration and Disinfection Requirements for Public Water Systems Using Surface Water Sources", March, 1991 ed.
- 2. If *Giardia, Cryptosporidium* cysts or coccidia are found in any sample, irrespective of volume, score as above.
- 3. Chlorophyll containing

Table 5. Relative surface water risk factors associated with scoring of primary bio-indicators (particulates) present during MPA of subsurface water sources (see key)

Indicators of		Re	lative Risk Fac	etor ³	
surface water ¹	EH ²	Н	M	R	NS
Giardia or Cryptosporidium	40	30	25	20	0
Coccidia	35	30	25	20	0
Diatoms	16	13	11	6	0
Other Algae	14	12	9	4	0
Insects/Larvae	9	7	5	3	0
Rotifers	4	3	2	1	0
Plant Debris	3	2	1	0	0

- 1. According to EPA "Guidance Manual for Compliance with the Filtration and Disinfection Requirements for Public Water Systems Using Surface Water Sources", March 1991 ed.
- 2. Refer to Table 1 for range of indicators counted per 100 gallons.
- 3. Scoring for risk of surface water contamination:

>20 - high risk 10-19 - moderate risk <9 - low risk

Key	EH = extremely heavy	$\mathbf{H} = \mathbf{Heavy}$	$\mathbf{M} = \mathbf{Moderate}$
	$\mathbf{R} = \mathbf{Rare}$	NS = not significant	

EPD Source Water Assessment Implementation Plan

High Priority: Non-point source run-off from the Urban Area and the Wastewater Treatment

Plant

Medium Priority: Confined Animal Feeding

Low Priority: Local Landfill and Chemical Manufacturing Facility

Since greater than 40% of the sources charted in grid squares 7, 8 and 9, the overall source water susceptibility score would be **High**. This score would be published in the Consumer Confidence Report.

4.7 Legal Authority Evaluation

EPD, with assistance of the Georgia Water Campaign, will conduct a legal authority evaluation to assist local governments in the development of a foundation for local watershed protection programs. The evaluation will include a collection of range of typical local ordinances used (or that could be used) in Georgia for addressing various aspects of watershed protection measures, and an evaluation of the strengths and weaknesses of a range of ordinances. The Georgia Water Campaign will develop model ordinances for use in watershed protection programs. They will also conduct a constitutional, legislative and legal review of the measures and ordinances to determine whether or not local governments have the authority to implement such protection measures and programs, and report the findings to EPD.

5.0 Groundwater Under the Direct Influence of Surface Water

Groundwater Under the Direct Influence of Surface Water (GWUDI) is defined as any water beneath the surface of the ground with either: significant occurrence of insects or other microorganisms, algae, or large diameter pathogens such as *Giardia lamblia* or significant and relatively rapid shifts in water quality characteristics such as turbidity, temperature, conductivity, or pH which closely correlate with climatological or nearby surface water conditions.

The EPD is currently conducting investigations to determine those public groundwater sources that are under direct surface water influence. These determinations are based on evaluations of information from system records, site inspections, and water quality analysis. Water quality analysis includes Microscopic Particulate Analysis (MPA), a technique that examines groundwater for the presence of living biological surface water indicators. Water sources are tested using a special sampling device that non-destructively captures indicators such as plant debris, algae, protozoa, cyanobacteria, living diatoms, nematodes, rotifers, crustaceans, insects, insect parts, spores, pollen, and human pathogens such as *Amoeba*, *Giardia cysts*, and *Cryptosporidium*. A significant occurrence of indicators would mean that a groundwater source is under the direct influence of surface water (GWUDI).

Section A, Page 46

Date Submitted: March 28, 2000

Sources found to be GWUDI are given the options of taking corrective measures to remove the influence, finding a new source, or adding filtration and other additional treatment as required. Most of the sources found to be GWUDI are poorly protected springs, wells located in karst regions, wells in flooded river basins, poorly constructed wells, and old wells that have failing casings or grout. Most groundwater sources found to be under the direct influence of surface water have either been taken out of service or have added the necessary surface water treatment including filtration. However, at least 12 groundwater sources, that have been found under the direct influence of surface water, are still active and currently under enforcement action to correct the problem.

5.1 Delineation of Assessment Areas

The delineation of sources found to be GWDUI will consist of a wellhead zone delineation and surface watershed delineation mentioned in sections 3.3 and 4.2.1.

5.2 Potential Contaminant Source Inventory for GWUDI

The potential pollution and contaminant source list for both groundwater and surface water. The same lists are found in section A.3.4 and sections A.4.4.

5.3 Significant Potential Pollution Sources

Significant potential pollution sources will be determined using the susceptibility determination methodology. (Section A.4.6)

5.4 Susceptibility Determination

The susceptibility of the GWUDI source to potential pollution sources will be based upon a combination of sample history, the distance from the potential pollution source and the nature of the potential pollution source, as well as the methodology defined for surface water sources.

6.0 Coordination Efforts With Bordering States

States that border Georgia with common watersheds and aquifers include Alabama, Florida, South Carolina, North Carolina and Tennessee.

6.1 Alabama and Florida

Section A, Page 47

Date Submitted: March 28, 2000

Appendix 15

Drinking Water Bureau Determining Groundwater under Direct Influence (GWUDI) November 20, 1998

A (GWUDI) is used to identify ground water under the direct influence of surface water. This analysis will be used to control waterborne viruses, i.e. Cryptosporidium and Giardia lamblia. This analysis will apply both to known surface water and groundwater sources utilizing collection devices (spring houses, infiltration galleries, horizontal and vertical wells) or sources (aquifers) that may be at risk for contamination of Giardia. If groundwater system is confirmed to be under the direct influence of surface water it will be required to meet the Surface Water Treatment Rule (SWTR).

Required Sampling Locations for Vulnerable Sources

- Spring houses
- Infiltration galleries
- Shallow wells less than 100 feet in depth in known bedrock or karst conditions.
- Wells located within 200 feet of known surface waters.
- Wells located in areas that are periodically flooded shall undergo (GWUDI) sampling.
- Wells without a sanitary seal surrounding the well casing.
- Wells that may be suspect due to waterborne sickness, outbreaks or TCR violations

Microbiological and Chemical Assessment

The Microscopic Particulate Analysis (MPA). There are six protozoa indicators produced by the MPA sample to determine if a system fall into the GWUDI category these are: diatoms, rotifers, coccidia, plant debris, insect parts, Giardia and Cryptosporidium cysts. MPA tests should be performed twice a year. Once during a wet period and one during the dry period of the year, with 4-6 months between sampling events. Sampling will continue until the system is classified as surface water or two consecutive samples have been classified as "Non-detect".

A system will continue to undergo periodic MPA's (every 4-6 months) until there is a confirmed hit or get 2 (consecutive) Non-detects. A confirmed hit will result in the classification of the system as Groundwater Under the Direct Influence of surface water. Two consecutive Non-detects will result in classification of the system as a groundwater system.

Based on the Microscopic Particulate Analysis (MPA). If the laboratory analysis is presumptive for Cryptosporidium or Giardia at any level, a confirmation sample will be performed immediately upon notification from the certified laboratory. If the second laboratory analysis indicates again presumptive for Cryptosporidium or Giardia it will be classified as a surface water system and be required to meet the Surface Water Treatment Rule (SWTR). Additionally, if the laboratory returns a confirmed positive sample for Cryptosporidium or Giardia it will be classified a surface water system and will be required to meet the (SWTR). If a suspected groundwater system tests negative for Cryptosporidium, Giardia or any microbiota during both sampling periods it will be classified as a groundwater system.

Turbidity, pH, and temperature are also used in conjunction with the (MPA) to determine if a groundwater source is under the influence of surface water. Turbidity particles found inside a source are typically surface water indicators. However, this collection practice used by it self must be used with caution because flocculated particles could give false values. The pH is used to determine the acidity and alkalinity within the water.

If a system has between moderate(M) to extremely heavy (EH) volumes of Coccidia, Diatoms, Algae, Insect/Larvae, Rotifers or Plant Debris it will be classified as a surface water system and be required to meet the Surface Water Treatment Rule (SWTR).

Attachment E Page 1 of 1

Appendix 16

Wilkes University Center for Environmental Quality Environmental Engineering and Earth Sciences

Groundwater Under the Influence

Groundwater Under the Influence - SWIP Studies

and Wellhead Protection Analysis

The MPA Test - Microscopic Particulate Analysis or Microscopic Evaluation Technique

During the past 15 years giardiasis has been recognized as one of the most frequently occurring waterborne diseases in the United States. The occurrence and detection of this parasite and drinking water source identification and protection has become a matter of urgent concern to those responsible for water utility operation in endemic areas. Because of these concerns the Surface Water Filtration Rule was established and protocols were developed for determining if a source was characterized as surface water, groundwater, or groundwater under the influence of source water. These procedures are called the SWIP - Surface Water Investigation Protocol and the MET - Microscopic Evaluation Technique. During the MET, the number of a variety of surface water indicators (algae, diatoms, organic debris, plant material, crustacea, insects, larvae, etc) are identified and enumerated.

Wilkes University and Mr. Brian Oram has been involved with conducting over 400 SWIP, MPA/MET, Wellhead Protection Studies (Zone I, II, and III), and Groundwater Under the Influence Investigations. If you would like more information, please contact Mr. Brian Oram, Professional Geologist.

Evaluation - A Three Step Process

Evaluation of groundwater sources (springs, wells, etc) to determine the degree of influence from a surface water source. For the Groundwater Under the Influence evaluations, a three step process is recommended. The steps include:

- 1) Initial evaluation of hydrogeological settling, water quality, and a MET Particulate Analysis.
- 2) Long-Term daily monitoring.
- 3)Follow-up water quality and particulate analysis during the conditions when the source is most vulnerable to surface water influence.

Step 1

The first step is an initial sampling of the source following a major recharge event, such as a heavy rain fall (> 2 in/wk) and one sample collected during the summer following an extended period of little or no rainfall. The data is evaluated using the MET Technique. The Microscopic Evaluation Technique (MET) involves the identification, sizing, and population estimates of microorganisms and organic or inorganic debris found in water. The results of the laboratory data is then used in a series of risk assessment tables to establish the potential risk to surface water influence. In addition to the MET, a preliminary hydrological assessment is conducted to determine the potential sources of contamination, possible routes of contamination, and overall security of the source.

Step 2

The second stage is daily monitoring of the source for temperature, pH, turbidity, conductivity, static water level, pumping rate, flow rate or any other relevant parameters. In addition, routine bacterial analysis is performed and climatic data is recorded. This monitoring is conducted for a period of 6 months or more. Following the 6 month period, the data is evaluated.

Step 3

If a trend is observed, such as increase in temperature or turbidity, a few days following a recharge event, the source is then sampled using the MET procedure during the time when the source is most vulnerable to influence.

Recommendations For Conducting a MPA / MET for a Well

Samples should be collected during the last 12 hour period of a typical 72 hour pump test. It is advisable to collect samples for pH, conductivity, bacteria and turbidity prior to and during the sample collection to determine if the quality of the water is changing. If a surface water body is nearby, it would be advisable to monitor stream flow monitoring, collect a comparison composite sample from the stream, and collect a grab sample that should be tested for pH, conductivity, bacteria, and turbidity.

At least 300 gallons of water is passed though an AMF Cuno Micro Wynd II filter (DPPPY, 1 micron polypropylene core) mounted in a Carborundum Fulflo Filter Housing (Model LT-10) collected over an 8 to 24 hour period. The inlet hose is connected to an appropriate tap and the pressure should not exceed 10 - 30 psi. Pressure over the filter face should be controlled by a pressure regulator and monitored with a pressure gauge. If the sample must be taken from a pump, it is recommended that the pump be situated downstream from the filter housing pulling water through it so that the pump and hoses will not introduce errors due to cross-contamination. If the sample is being collected from a spring box, the spring box should be clean prior to sampling and allowed to flush.

Prior to sampling, flush the main line to the filter for 15 minutes. Record time and meter reading before opening the sampling tap. Set flow rate to 0.5 - 1.0 gallons per minute depending on source water quality. After sufficient sample is collected, turn off sampling tap, record time and meter reading, and disconnect sampling apparatus. Take care to maintain the opening on the inlet hose above the level of the opening on the outlet hose to prevent backwashing and to allow residual water to drain out of the filter canister.

With the bowl of the filter housing sealed, turn unit upside down and allow excess water to drain into the Ziploc sampling bag from the filter housing. Open the filter housing and remove the filter, the filter should be handled with plastic disposable gloves and stored in a double Ziploc bag along with any residual water and rinsings from the filter housing. If the sample is chlorinated, it is advisable to add 50 ml of 1 % sodium thiosulfate to the bag and shake before bringing the sample back to the laboratory (recommended holding time is 48 hours). Since cysts are destroyed if they are allowed to dry or if they reach room temperature for any period of time, all samples should be transported on wet ice and stored in a refrigerator until they are processed. If blue ice is used, the filter must not be in direct contact with the blue ice packs because it could freeze. If the sample is received frozen, the filter can not be analyzed.

Risk Ranking for GWUI and MPA/ MET Evaluations For Surface Water Influence Testing

The following are the tables used to develop a risk ranging to determine the potential for surface water influence. The following tables are based on the number of specific

particles observed in the equivalent of 100 gallons of raw water. These tables are used to access springs and wells, but not filtration systems.

Table 1. Numerical Range of Each Bio-Indicator Based on Numbers Counted per 100 gallons of Water.

	EH	Н	М	R	NS
Giardia	> 30	16 to 30	6 to 15	1 to 5	0
Coccidia	> 30	16 to 30	6 to 15	1 to 5	0
Diatoms	> 150	41 to 149	11 to 40	6 to 10	0 - 5
other Algae	> 300	96 to 299	21 to 95	6 to 20	0 - 5
Insects/ Larvae	> 100	31 to 99	16 to 30	1 to 15	0
Rotifiers/ Crustacea	> 150	61 to 149	21 to 60	1 to 25	0
Plant Debris	> 200	71 to 200	26 to 70	1 to 25	0

Source: PADEP "Surface Water Identification Procedure: Interpreting the Microscopic Particulate Analysis, (WSCH1/93), 1993.

EH - Extremely Heavy; H- Heavy; M - Medium; R- Rare; NS - not significant.

Table 2. Relative Risk Factors Associated with Bio-Indicator Based on Numbers Counted per 100 gallons of Water.

	EH	Н	М	R	NS
Giardia	40	30	25	20	0
Coccidia	35	30	25	20	0
Diatoms	16	13	11	6	0
other Algae	14	12	9	4	0
Insects/ Larvae	9	7	5	3	0
Rotifiers/ Crustacea	4	3	2	1	0
Plant Debris	3	2	1	0	0

Source: PADEP "Surface Water Identification Procedure: Interpreting the Microscopic Particulate Analysis, (WSCH1/93), 1993.

EH - Extremely Heavy; H- Heavy; M - Medium; R- Rare; NS - not significant.

Risk of Surface Water Contamination:

Old Method (1992)	New Method (1993)
> 20 - high risk	> 10 - Surface Indicators Present
10 - 19 - moderate risk	< 9 - Surface Indicators Absent
< 9 - low risk	

For More information about the Environmental Quality Center, please contact:

Attn: Mr. Brian Oram, Professional Geologist (PG) Laboratory Director Wilkes University

Environmental Engineering and Earth Sciences

PO Box 111 84 West South Street Wilkes-Barre, PA 18766

Research Interests, Funded Research and Applied Research
Homeowner Information Water Testing
Environmental Topics - Infiltration, Soils,
Wellhead Protection, Groundwater, Watersheds
PowerPoint Presentations

<u>Watershed Monitoring, Research, Training,</u>
Lake and Watershed Studies, Volunteer Monitoring Programs

The Water Library - Pdf files on Water Issues and Topics
Tools for Undergraduate Students
Field Training and Workshops in Earth Science
Affiliations and Hot Links

Search Our Site

Website Designed by: Web Design Pros.net

http://www.water-research.net/gwui.htm

Appendix 17

VERMONT WATER SUPPLY RULE - CHAPTER 21

- (c) Infiltration galleries shall be regarded in the same manner as wells as far as sanitary isolation distance and land uses are concerned.
- (d) Flow in the galleries shall be by gravity to the collecting well.
- (e) Review Process
 - Infiltration galleries should only be considered when development of alternative sources are is shown not to be technically viable.
 - (1) Groundwater induced infiltration galleries will be reviewed in a similar manner to wells.
 - (2) Surface water infiltration galleries will be reviewed on a case by case basis and may be considered surface water intakes.

3.4 Groundwater Under the Direct Influence of Surface Water (GWUDI)

3.4.1 <u>Public Community Water Systems and Public Non-Transient Non-Community Water Systems</u>

3.4.1.1 Criteria

All systems not otherwise exempted under <u>Appendix A Subpart 3.4.1.2</u>, and using groundwater sources, shall use the <u>Microscopic Particulate Analysis (MPA)</u> test when the source meets any one or more of the following criteria:

- (a) The source has a history of water-borne disease;
- (b) The source, within the most recent 3 year period, has had one or more violations of total coliform MCL or has failed to meet any total coliform monitoring requirements;
- (c) The source is subject to annual flooding;
- (d) There are construction defects or deficiencies that could allow surface water to directly enter the source;
- (e) The source is a spring or infiltration gallery;
- (f) The source has a tested capability to yield more than 500 gallons per minute;
- (g) The source is less than 150 feet from a surface water body and:
 - (1) has less than 50 feet of soil over the screen, end of casing, or bedrock surface;
 - (2) has no confining layer; or
 - (3) has a direct hydraulic connection;
- (h) The source is a bedrock well farther than 150 feet from the nearest surface water but has:
 - (1) less than 50 feet of watertight casing; and
 - (2) no confining layer.
- (i) The source exhibits other convincing evidence of being under the direct influence of surface water.

3.4.1.2 Exemptions

- (a) Systems are exempt from further testing when all available sources:
 - (1) are groundwater sources, but not springs or infiltration galleries; and

VERMONT WATER SUPPLY RULE - CHAPTER 21

- (2) are farther than 150 feet from the nearest surface water body; and for rock wells
- (3) have more than 50 feet of watertight casing or a confining layer.
- (b) Systems which pass the Microscopic Particulate <u>aA</u>nalysis tests are exempt from further testing.

3.4.2 **Public Transient Non-Community** Water Systems

3.4.2.1 Criteria

A water system shall conduct water quality testing if the Secretary determines a source is at risk of GWUDI. Sources are at risk of GWUDI when:

- (a) there are construction defects or deficiencies exist that could allow surface water to directly enter the source;
- (b) there are indications of water-borne disease outbreaks associated with the source;
- (c) there is evidence of direct surface water contamination;
- (d) there are surrounding sources of fecal contamination;
- (e) the source is an infiltration gallery or dug well;
- (f) the source is a gravel well or well point and less than or equal to 50 feet from surface water, and exhibits criteria listed in (a) through (e); or
- (g) there is not enough information to make the determination.

3.4.2.2 Water Quality Testing

- (a) Systems shall make improvements to obvious source construction defects that increase the source's vulnerability to surface water contamination before beginning testing;
- (b) System shall perform six months of total coliform testing, including e-coli testing if fecal coliform-positive;
- (c) System shall perform one spring MPA test if any confirmed total coliform-positive occurs during step (b) testing;
- (d) System shall perform hydraulic connection analysis if the MPA laboratory is unable to adequately examine the requisite amount of sample.

3.4.2.3 GWUDI Determination

The Secretary will determine if the source is GWUDI based on the available information, site visits, and water quality testing data. The system shall provide the Secretary with the information needed to make this determination.

3.5 Standards for Public Non-Community Water **SupplySystem** Sources

3.5.1 Water <u>supplysystem</u> sources for **Public Non-Community** water systems shall comply with the <u>Small Scale Water Supply</u> requirements found in Part 11 of <u>this</u> Appendix A.

Appendix 18

West Virginia: Environmental Engineering Division http://www.wvdhhr.org/oehs/eed/

Conjunctive Delineations (Ground Water Under the Influence of Surface Water)

This is an event where a hydraulic connection of surface water to a well pumping ground water

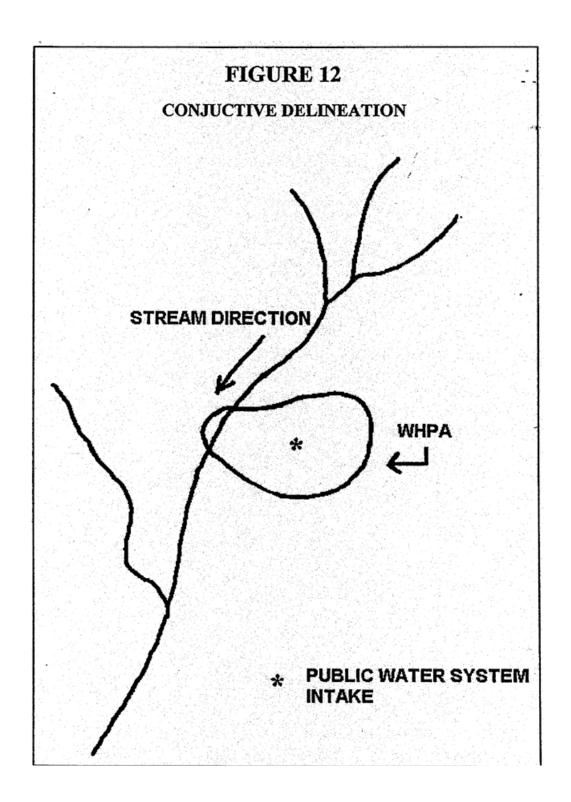
has been determined. The SWAP guidance requires the watershed for that surface water that is

impacting the well(s) should have a surface water delineation performed. In West Virginia, the

State is in the process of determining PWSS wells that are under the direct influence of surface

water, under the Surface Water Treatment Rule. The criteria that the state uses for this

determination are the identification between selected physical parameters in the wells and in


surface water in the nearby streams. Using this information, West Virginia has developed a

statewide standard for the GWUDI designation. Therefore, if a PWSS has been determined to be

under the influence of surface water and its WHPA intersects the surface water body, than this

system will be required to do a surface delineation in addition to the ground water delineation

(Figure 12).

Sanitary Surveys and Inspections – The five (5) District Offices, located throughout the State,

conduct comprehensive sanitary surveys to ascertain PWS compliance with State and Federal

Drinking Water Standards.

Community surface and groundwater-under-the-influence water systems are surveyed every three

years; community groundwater, purchase, non-community surface, and groundwater-under-theinfluence

systems are surveyed every five years; and non-community ground and purchase

systems are surveyed every ten years.

Briefer annual inspections and "spot" site visits are also conducted to check on specific problems

and consistency issues associated with certain PWS. Disinfection By-Product (DBP) compliance is

a prime example of this more hands-on approach.

Upon completion of the inspection or survey, the Engineer outlines his/her findings, conclusions,

and recommendations in a report sent to the PWS. State code mandates that the PWS respond to

significant sanitary survey deficiencies, in writing within forty-five days from receipt of the report,

with an implementation plan (including possible equipment procurement, benchmark schedule, etc)

to correct the deficiencies.

The Ground Water Under the Direct Influence (GWUDI) Program, another subset of SWAP.

implements monitoring requirements (bacti tests) to determine which ground water sources are

affected by surface water sources, and to designate them as GWUDI sources (GWUDI sources are

subject to more extensive monitoring requirements than ground water sources). As of 2005, the West Virginia Bureau for Public Health has essentially classified almost one

hundred percent of all public groundwater sources. The West Virginia Bureau for Public Health

expects to classify all of the existing sources, active before January 1, 2004, by the end of 3rd

Quarter, 2006. New sources will be tested/classified within eighteen (18) months of being

activated.

Appendix 19

GROUNDWATER UNDER THE DIRECT INFLUENCE OF SURFACE WATER

FINAL REPORT

Prepared by: Lee Boushon Public Water Supply Section December, 1992

Special Thanks to:

- The water utilities and operators of the water systems that were sampled.
- The State Laboratory of Hygiene for conducting the water analyses.
- The DNR Word Processing staff for the preparation of this manuscript, and
- Mr. Rich Roth for the coordination of the water sample collection and analysis.

ABSTRACT

As part of the June 29, 1989 Amendments to the Safe Drinking Water Act each state was required to determine which community and non-community public water supply systems use groundwater which is under the direct influence of surface water. Because of the large number of systems to be evaluated in Wisconsin (approximately 15,000) it was necessary to develop a methodology for evaluating all the public water supplies without conducting a site specific investigation of every supply.

A study was conducted to aid in developing the proposed methodology. Eighteen wells were selected for a one time evaluation based on recurring total coliform positives and proximity to a surface water. Of the original eighteen wells three were selected for longer term sampling and more intensive hydrogeologic evaluation. While the hydrogeologic evaluation indicated that the three wells would be influenced by surface water, the sampling results showed that the wells were not under the direct influence of surface water. The study concluded that:

- Giardia cysts are not routinely present in the most susceptible municipal groundwater supplies.
- Multiple sampling events cannot adequately determine the potential for giardia contamination of groundwater supplies.

Based on this study, the State of Wisconsin has developed a methodology for classifying a groundwater as under the direct influence of surface water. The methodology evaluates:

- Raw water total coliform test results
- Well construction, and
- Well location

Using this methodology the State has determined that there are no municipal groundwater systems under the direct influence of surface water. Because the wells serving other-than-municipal (OTM) and non-community water systems were also constructed under long standing well construction codes and are constructed in the same aquifer systems as the municipal wells, the same rnethodology will be employed by the state to evaluate the OTM and non-Community wells.

TABLE OF CONTENTS

INTRODUCTION	
BACKGROUND	
STUDY GOALS	
STUDY DESIGN	
PHASE I	
SITE SELECTION	
SAMPLE COLLECTION	
PHASE I SAMPLE RESULTS	
DISCUSSION AND CONCLUSIONS	
PHASE II	
PHASE II RESULTS	
PHASE II DISCUSSION AND CONCLUSIONS	
PHASE III	
PHASE III RESULTS	
PHASE III DISCUSSION AND CONCLUSIONS	
SUMMARY OF INVESTIGATION	
CONCLUSIONS	
EVALUATION OF STUDY GOALS	
PROPOSED METHODOLOGY	14

GROUNDWATER UNDER THE DIRECT INFLUENCE OF SURFACE WATER

INTRODUCTION

This study is intended to establish a methodology for determining if specific groundwater systems should be classified as under the direct influence of surface water. This report is a compilation and analysis of results collected between May 1990 and May 1992 as part of a study of groundwater throughout the State of Wisconsin. Those wells most likely to be influenced by surface waters were chosen for investigation. The study was conducted in response to the requirements established in the Federal Register, Volume 54, No. 124, June 29, 1989, Amendments to the Safe Drinking Water Act. These amendments require that "by June 29, 1994 and June 29, 1999 each state must determine which community and non-community public water systems, respectively, use groundwater which is under the direct influence of surface water".

BACKGROUND

The study design and goals were based on a number of issues illustrated by the following quotes from the Federal Register, Volume 54, No. 124:

- "The State determination of direct influence may be based on site-specific measurements of water quality and/or documentation of well construction characteristics and geology with field evaluation." page 27489
- "There is no analytical method for measuring Giardia lamblia cysts for which the precision, efficiency, and sensitivity have been adequately defined; no reliable validation procedures or laboratory certification procedures are available, and very large numbers of samples would be needed to accurately quantify levels of cyst occurrence. page 27494
- 'Giardia lamblia cysts pose significant risks to health for systems using surface waters, but usually not
 for systems using groundwater because these protozoan cysts are removed from water by natural
 filtration processes... page 27498
- 'Turbidity is not a useful indicator of treatment effectiveness for most groundwater systems since most particulates are already being removed by natural filtration processes..." page 27488
- "Simply put, if a groundwater system is subject to Giardia contamination (unless the contamination originates within the distribution system), states should classify it as a source under the direct influence of surface water and thus subject to the treatment requirements of this rule. It is important to note that the intent of this rule is not to regulate viral and bacterial contamination in systems using groundwater..." page 27489

Because of the large number of systems in Wisconsin to be evaluated, approximately 1,300 community systems and 14,000 noncommunity systems, a study was proposed to evaluate a screening mechanism for determining groundwater under the direct influence of surface water. In the Wisconsin Department of Natural Resources comments to the U. S - EPA on the proposed surface water treatment rule, it was estimated that , because 99% of Wisconsin's wells are constructed in "unconfined" aquifers, it would take 87 full time employees one year to evaluate all community wells in Wisconsin.

Coliform bacteria was chosen as a potential screening mechanism because of its ubiquitous nature, its smaller size when compared to Giardia and because of its short time to inactivity when compared to Giardia (Coliform 17 days @ 9.5-12.5°C till 99% ineffectivity), Berger, P.S., and Argaman, Y., "Assessment of Microbiology and Turbidity Standards of Water", USEPA 570/9-83-001 (July 1983) vs. (Giardia 2 months @ 8°C) Bingham, A.K., et al 1979, Giardia. Exp. Parasitol. 47:284.

STUDY GOALS

The overall study goals are to evaluate three issues in order to develop a methodology for classifying groundwater as under the direct influence of surface water. These issues are:

- The extent of groundwater systems in Wisconsin that may be classified as groundwater under the direct influence of surface water as defined in Federal Register, Vol. 54, No. 124 and NR 109.04(20) WAC.
- The use of chronic bacteriologically "unsafe' (total coliform positive) water problems as a screening mechanism for groundwater systems to be classified under the direct influence of surface water.
- The use of other indicator parameters as potential surrogates to be used when determining groundwater as under the direct influence of surface water.

STUDY DESIGN

The study is to be accomplished in three phases. <u>Phase I</u> will consist of a one-time investigation at a number of sites throughout the state. <u>Phase II</u> will consist of a longer duration investigation at a select number of the worst case sites identified in Phase I. <u>Phase III</u> will consist of collecting and assessing hydrogeologic data for the sites investigated in Phases I and II.

Phase I: One time sampling, 8 hours in duration under continuous pumping conditions.

Parameter

Sampling, Frequency

Macroorganisms
(Giardia, insects, algae, crustaceans, etc.)

Continuous collection for 8 hours

Hourly

Temperature Every 15 minutes

Turbidity Every 15 minutes

Conductivity Every 15 minutes

Hardness Hourly

Temperature, turbidity, conductivity. and hardness were selected because influence of surface water could be shown by significant variations of these parameters during a pumping cycle making these parameters potential surrogates for giardia when determining groundwater under the direct influence of surface water.

<u>Phase II:</u> 6 sampling events, 8 hours in duration for each event under continuous pumping conditions.

<u>Parameter</u> <u>Sampling Frequency</u>

Macroorganisms Continuous collection for 8 hours

Total Coliform Bacteria Two samples (one at the start and one at

the end of the 8 hour filtration run)

Phase III:

Collect: Well depth, casing depth, aquifer type, transmissivity, specific capacity, storativity, physical proximity to surface waters, and total pumpage (during the sampling and during normal operation).

Calculate: Zone of influence and time of travel.

PHASE I

SITE SELECTION

The Phase I investigation consisted of 20 separate samplings. The sampling sites were selected primarily on 1989 bacteriological raw water sampling results. Eighteen sites were selected. The sites represent locations with periodic raw water total coliform positives with the exception of Neillsville well #4 and Madison well #19. Repeat sampling was conducted at two locations, well #3 at Neillsville, and well #3 at Marathon. Of the 18 sites, 10 locations were proximate to surface water. One site, Madison well #19, was selected as a control.

<u>'Unsafe' Sites</u> <u>'Unsafe' and</u> <u>Control</u>

Proximate to Surfare Water

Dickeyville #2 Cadott #3 Madison #19

Durand #4 Greenwood #1
Kellnersville #1 Kewaunee #2
Pepin #2 Loyal #1
Sherwood #1 Maiden Rock #1

Sturgeon Bay #10 Marathon #3
Thorp #8 Marshfield #16
Neillsville #3

Neillsville #4 (only proximate to surface water)

Rhinelander #4

SAMPLE COLLECTION

Macroorganisms: A portable 1 micron filter was attached to a hose bib within the pumphouse at each well. The flow was throttled to provide a flow rate of approximately 2 gpm through the filter and water was filtered for 8 hours. Approximately 1,000 gallons was filtered. Upon completion the filter was iced and packaged for delivery to the State Laboratory of Hygiene.

Bacteriological: Eight samples were collected for bacteriological analyses (1 per hour).

Hardness: Eight samples were collected for hardness analyses (1 per hour).

Turbidity, conductivity, and temperature: Water was drawn from a sample tap every 15 minutes and analyzed for turbidity, conductivity, and temperature using a Hach portable turbidimeter, and a Hach portable conductivity/temperature meter. This did not occur at Neillsville and Cadott because the equipment was not available in the early stage of the study.

PHASE I SAMPLE RESULTS

The turbidity, conductivity, and temperature results shown in Table 1 are ranges of results of samples collected at 15 minute intervals for the 8 hour sample period. The bacteriological results shown in Table I are the highest count identified in the 8 samples collected during the 8 hour sample period.

As can be seen in Table 1 all of the wells experienced changes in turbidity, conductivity, and temperature. The most significant change was experienced in the turbidity level at Greenwood well #1 (from 0.23 to 82 NTUs). However, rather than an indicator of surface water influence, the reading resulted from overpumping of the dug well and disturbing the collected bottom sediments. Maiden Rock well #1 (a Sandstone well) experienced a significant increase in turbidity (0. 18 to 40 NTUs). The turbidity increase was a result of a pump surge caused by a significant pressure drop within the distribution system. The water utility was flushing fire hydrants at the time and the pressure dropped from 60 psi to 38 psi. A large temperature difference was also noted at Loyal well #1 (9.5'C to 11.6'C). The increase in temperature was not accompanied by a corresponding increase in turbidity or conductivity and no organisms that would confirm the direct influence of surface water were present. Free living bacteria (unspeciated, nonpathogenic bacteria), iron bacteria, and iron oxides were reported at a number of the

sampling locations. However, at three locations significant macroorganisms were identified; Greenwood (fungal spores, plant cells and diatoms); Loyal (fungus); and Marathon (Giardia). The organisms detected at Loyal and Greenwood are most likely inhabiting the wells as the wells are large diameter (24'-Greenwood #1, 14'-Loyal #1) and would provide habitat for the organisms. Giardia was detected in the original sampling at Marathon #3. 'Me well was resampled during Phase I and no Giardia were observed. The detection of giardia at Marathon #3 made this location a candidate for additional sampling proposed for Phase II of this study.

DISCUSSION AND CONCLUSIONS

The data collected do not indicate a continuing direct influence of surface water at any of the sampling locations. The Giardia positive at Marathon was not confirmed in the second sampling. The positive giardia result is puzzling, especially, because the coliform sampling was *safe" (total coliform negative) during both sampling events. As previously discussed the data collected do indicate variations in temperature, conductivity, and turbidity at a number of the sampling sites and, macroorganisms were present in 3 of the 20 filtered samples. However, the data were insufficient to substantiate direct influence of surface water at any of the 18 sampling sites.

Based on the sampling conducted it is concluded:

• Data from turbidity, conductivity, and temperature collected during an 8 hour sampling period is not sufficient to determine the potential for surface water influence.

It can also be conjectured that routine monitoring of these parameters would not adequately reflect the potential for Giardia contamination of groundwater since conductivity and temperature are not affected by filtration and the turbidities encountered are extremely low.

- Giardia contamination is not routinely present in the most susceptible groundwaters serving municipal wells in Wisconsin.
- The coliform bacteria test is not an ideal surrogate for the Giardia test because it appears from the results of sampling Marathon #3 that it is possible to have giardia present without the presence of coliform bacteria.
- Single sampling events are insufficient to determine the direct influence of surface water on groundwater.

TABLE I SAMPLE RESULTS FROM PHASE I

Location	Well	Well Depth(ft)	Well Type	Turbidity	Conductivity	Temperature	Bacteriology	Macro-
	Number			(NT"	(Ps/cml	(°C)		organisms
NT 211 - 211	2	20.5	0 100 1	. 0. 5 %	*	*	5 05	Iron Oxides
Neillsville	3	30.5	Sand & Gravel	< 0.5*			5 of 5	Iron Bacteria
Neillsville	4	47	Sand & Gravel	5*	*	*	Safe	Iron Oxides
Cadott	3	50	Sand & Gravel	< 0.5*	8	8	98/100 ml	None
								Iron Bacteria &
Marshfield	16	56.5	Sand & Gravel	.09 to .55	.247 to .290	8.6 to 9.1	1/100 ml	Free Living Bact.
								Giardia,
								Iron Bacteria
Marathon	3	75	Sand & Gravel	.055 to .09	.217 to .231	8.8 to 9.5	0/100 ml	Free Living Bact
								Iron Bacteria,
								Iron Oxides
Neillsville	3	30.5	Sand & Gravel	.07 to .22	.151 to .160	7.2 to 8.0	0/100 ml	Free Living Bact
								Iron Oxides,
								Fungai,
			Dug				overgrown	Spores, Plant
Greenwood	1	34	(Granite)	.23 to 82	.191 to .202	8.6 to 9.3	22/1 00 ml	Cells, Diatoms
			,					Iron Oxides,
							overgrown	Iron Bacteria,
Sherwood	1	87	Limestone	.06 to .17	.06 to .17	9.6 to 10.0	8/100 ml	Free Living Bact
								Iron Oxides,
								Iron Bacterial
Marathon	3	75	Sand & Gravel	.05 to .11	.222 to .238	9.0 to 9.9	0/100 ml	Free Living Bact
								Iron Oxides,
							overgrown	Iron Bacteria,
Sturgeon Bay	10	477	Limestone	.13 to .40	.494 to .559	8. 8 to 9.2	5/100 ml	Free Living Bact
2 tin 8 t a a a a a a				110 10 110	712 10 10 0	0.000		Iron Oxides,
								Iron Bacteria,
Rhinelander	4	80	Sand & Gravel	.06 to .1 6	.210 to .241	7.8 to 8.7	8/100 ml	Free Living Bact
	-		2 332 4 6 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6	.50 10 .1 0			5.1001111	Iron oxides,
								Iron Bacteria,
Kellnersville	1	450	Limestone	.05 to .81	.567 to .628	9.1 to 9.6	2/100 ml	Free Living Bact
		- *						Iron Oxides,
			Dug				overgrown	Fungus,
Loyal	1	30	(Sandstone)	.05 to .1 4	.537 to .560	9.5 to 11.6	1/100 ml	Bacterial
20,41	1		Dug	.55 to .1 1	.537 10 .500	2.5 to 11.0	overgrown	Iron Oxides,

Location	Well	Well Depth(ft)	Well Type	Turbidity	Conductivity	Temperature	Bacteriology	Macro-
	Number			(NT"	(Ps/cml	(°C)		organisms
Thorp	8	40	(Sandstone)	.11 to .40	.255 to .261	7.5 to 8.0	13/100 ml	Iron Bacteria
Durand	4	138	Sand & Gravel	.10 to .30	.488 to .509	9.4 to I 0.0	16/1000 ml	Iron Oxides, Iron Bacteria
Kewaunee	2	612	Dolomite	.03 to .10	.673 to .780	8.2 to 8.6	17/1 00 ml	None, Iron Oxides
Maiden Rock	1	361	Sandstone	.18 to 40	.531 to .537	9.7 to 10.1	overgrown 58/100 ml	Iron Bacteria, Heavy Particulate
Pepin	2	121	Sand & Gravel	.04 to .10	.509 to .536	11.0 to 11.7	0/100 ml	None, Iron Oxides
Dickeyville	2	902	Limestone/ Sandstone	.05 to .50	.589 to .606	12.1 to 12.6	0/100 ml	No Test
Madison	19	808	Sandstone	.05 to .15	.522 to .549	10.8 to 11.1	0/100 ml	Iron Bacteria

PHASE II

Phase II of the study consisted of 6 individual sampling events at 3 of the Phase I sampling locations. As in Phase 1, the filter sample for giardia and macroorganisms was collected during an 8 hour sampling period with approximately 1,000 gallons of water passing through the filter. Coliform bacteria samples were collected at the beginning and the end of each sample period. The three sampling locations were selected to represent a "worst case" representation of the original 18 sampling locations. Cadott well #3 had the highest coliform bacteria count (98/100 ml). Marathon well #3 had an unconfirmed giardia detect in phase I. Rhinelander well #4 has been documented to be subject to color changes during high-water conditions. All three locations have had recurring raw water total coliform positives and are proximate to surface water.

PHASE II RESULTS

The results of phase II are presented in Table 2. As can be seen in the table none of the sampling locations test positive for coliform bacteria, giardia or macroorganisms during any of the sampling events.

PHASE II DISCUSSION AND CONCLUSIONS

Because no giardia were detected in any of the samples, the Phase II sampling provides little information for development of a method for predicting which groundwaters are under the direct influence of surface water. This is especially true given the detect of giardia at Marathon well #3 during Phase I of this investigation. However, the data do support the conclusions of Phase I of this study. Therefore, based on the results of the Phase II sampling, it is concluded that:

• Giardia is not routinely present in the most susceptible municipal groundwater supplies in Wisconsin.

TABLE 2
RESULTS OF PHASE II SAMPLING

Location	Well	Sampling	Coliform	Giardia &
	Number	Date	Bacteria	Macroorganisms
Cadott	3	9/19/91	0/100 ml	None
	3	10/21/91	0/100 ml	None
	3	11/18/91	0/100 ml	None
	3	3/16/92	0/100 ml	None
	3	4/20/92	0/100 ml	None
	3	5/18/92	0/100 ml	None
Marathon	3	9/12/91	0/100 ml	None
	3	10/15/91	0/100 ml	None
	3	11/12/91	0/100 ml	None
	3	3/9/92	0/100 ml	None
	3	4/13/92	0/100 ml	None
	3	5/11/92	0/100 ml	None
Rhinelander	4	9/5/91	0/100 ml	None
Rhinelander	4	10/7/91	0/100 ml	None
	4	11/4/91	0/100 ml	None

Location	Well	Sampling	Coliform	Giardia &
	Number	Date	Bacteria	Macroorganisms
	4	12/2/91	0/100 ml	None
	4	1/6/92	0/100 ml	None
	4	2/3/92	0/100 ml	None

PHASE III

Phase III of the study consisted of collecting well construction, aquifer characteristics, and locational information for the 18 sampling locations and calculating impacts of pumping on the surface water and time of travel from the surface water to the well for the three sites sampled in Phase II of the study.

PHASE III RESULTS

As can be seen in Table 3, Phase I was conducted at a wide cross section of locations to evaluate susceptibility under a variety of conditions. All three of the Phase II locations were near a surface water source. As can be seen in Table 4, provided the surface water and groundwater are hydrogeologically connected, the results of the theoretical calculations indicate that an influence of surface water on the groundwater would occur during normal operation of the three wells. This assumption is supported at Rhinelander well #4 by the reported color changes during periods of high surface water levels and at all three locations by recurring total coliform positives (unsafes).

PHASE III DISCUSSION AND CONCLUSIONS

The calculated time of travel from the surface water to the well in Phase II was 12.5 days at Marathon, 3.8 days at Cadott, and 2.8 days at Rhinelander. With the potential for giardia cysts to survive 2 months at 8°C (Bingham, A. K., et al 1979, Giardia, Exp. Parasitol. 47:284) it is evident that the separation from surface water does not provide adequate time for giardia inactivation unless the cysts are filtered by the aquifer material. The calculations also support the hydrogeologic interconnection between surface and groundwater as evidenced by the theoretical drawdown occurring at the surface water during the normal operation of the wells.

Based on the evaluation of construction and location data it can be concluded that:

- The separation distance between the surface water sources and the wells sampled in Phase H would not allow sufficient time for inactivation of giardia cysts.
- The wells sampled in Phase II will be influenced by the surface water provided they are hydrogeologically interconnected.

TABLE 3 WELL CONSTRUCTION AND LOCATION INFORMATION

Location	Well Number	Well Depth	Well Type	Casing Length	Screen Length	Pumping Rate	Specific Capacity	Distance to Surface Water
	1 (41110 01	(ft)	- 3 P C	(ft)	(ft)	(GPM)	(GPM/ft)	(ft)
Cadott	3	50	Sand & Gravel	38	12	225	19	Stream at 60
			Limestone/		552			
Dickeyville	2	902	Sandstone	350	(open hole)	315	12	None Nearby
Durand	4	135	Sand & Gravel	114	24	800	164	None Nearby
Greenwood	1	34	Dug (Granite)	Unknown	None	160	Unknown	Spring at 250
Kellnersville	1	450	Limestone	120	330 (open hole)	225	2	None Nearby
Kewaunee	2	612	Dolomite	59	553	600	64	Lake at 300
Loyal	1	95	Dug (Sandstone)	Dug Well to 30	Drillhole to 95	90	Unknown	Stream at 180
Madison	19	718	Sandstone	260	458 (open hole)	2200	14	None Nearby
Maiden Rock	1	361	Sandstone	73	285 (open hole)	300	Unknown	River at 400
								Improperly Aban-
Marathon	3	75	Sand & Gravel	37	38	289	18	-doned Well at 70
Marshfield	16	56.5	Sand & Gravel	41	15.5	500	Unknown	Stream at 30
Neilliville	3	30.5	Sand & Gravel	25.5	5	175	16.1	River Meander at 50
Neillsville	4	46.5	Sand & Gravel	32.5	14	400	32.9	Pond at 250
Pepin	2	121	Sand & Gravel	110	11	360	Unknown	None Nearby
Rhinelander	4	80	Sand & Gravel	50	30	1500	133	Swamp at 100
Sherwood	1	87	Limestone	59	28 (open hole)	106	12.9	None Nearby
Sturgeon Buy	10	477	Dolomite	170	307 (open hole)	700	7.1	None Nearby
Thorp	8	40	Dug (Sandstone)	20	20	75	Unknown	None Nearby

TABLE 4
Summary of Aquifer Calculations for Phase II Wells

Community	Cadott	Marathon City	Rhinelander
Well Number	3	3	4
Distance to nearest surface water (ft)	60	75	100
Distance of travel during sampling			
period (ft)	35	22.7	59
Distance of travel during normal			
operation (ft)	30.7	19.8	59.5
Time of travel from nearest surface			
water during normal pumping (ft)	3.8	12.5	2.8
Resultant draw-down at surface			
water during sampling period (ft)	1.36	1.33	2.0
Resultant draw-down at surface			
water during normal operation (ft)	1.14	1.02	2.0

SUMMARY OF INVESTIGATION

The results of the investigation did not confirm the presence of giardia cysts in water from any of the wells sampled. Giardia were present in a single sample from well #3 at Marathon. The lack of giardia cysts could potentially be attributed to one or more of the following:

- Inadequate sampling and handling procedures (causing a failure to capture and preserve the giardia cysts).
- Inadequate analytical techniques (causing a failure to identify the giardia cysts).
- Absence of or insufficient concentrations of giardia cysts in the surface water source (preventing detection of giardia under any circumstances).
- Adequate separation between wells and surface water to allow for inactivation of giardia cysts (causing the cysts to be eliminated before reaching the well).
- Adequate well construction methods and aquifer materials to retain giardia cysts within the aquifer and allow inactivation to occur (causing the cysts to be eliminated before reaching the well).
- Absence of a direct hydrogeological connection between the surface water source and the well (preventing giardia cysts from entering the groundwater).

Because of the difficulty in sampling and analyzing for giardia cysts and the complexity of the interrelationship between groundwater and surface water it is unlikely that any study design could guarantee that a single sampling event would accurately evaluate the potential for giardia cyst presence in a groundwater supply. Increasing the information on the inter-relationship between groundwater and surface water and increasing the number of samples collected would increase the accuracy of determining the presence of giardia in groundwater. However, based on the data collected during this study, the potential for changing hydrogeological conditions (due to variations in pumping, groundwater levels, surface water levels, and recharge), and the lack of precision inherent in the sampling and analytical techniques for giardia it is unlikely that sufficient sampling and investigation could be conducted to accurately predict the susceptibility of every well to giardia cyst contamination under all conditions. The following, however, were used to reduce the influence of unknowns during this study:

- The sampling and analytical methods used during this study were selected based on an evaluation of sampling and analytical techniques to maximize the detectibility of giardia cysts.
- The calculations done during Phase III of the study show that the time of travel from the surface water to the well would not allow for inactivation of giardia cysts.
- The calculations done during Phase III and the historical recurring total coliform positive raw water samples support the assertion of a hydrogeological connection between the surface water and the groundwater supplied to the wells.

Two potential rationales remain for the lack of giardia detection during the study. They are:

• Absence of or insufficient concentrations of giardia in the surface water.

• Adequate well construction methods and aquifer materials to retain giardia cysts within the aquifer.

CONCLUSIONS

Based on an evaluation of the information from Phases I, II and III, the following conclusions are drawn:

- Giardia cysts are not routinely present in the most susceptible municipal groundwater supplies in Wisconsin.
- Multiple sampling events cannot conclusively determine the <u>potential</u> for giardia contamination of groundwater supplies.

EVALUATION OF STUDY GOALS

As stated earlier in this report there were three goals to this study. They were:

- 1. To evaluate the extent of groundwater systems in Wisconsin that may be classified as groundwater under the direct influence of surface water as defined in Federal Register, Vol. 54, No. 124, and NR 109.04(20) WAC.
- 2. To evaluate the use of chronic bacteriologically 'unsafe' (total coliform positive) water problems as a screening mechanism for groundwater systems to be classified under the direct influence of surface water.
- 3. To evaluate the use of other indicator parameters as potential surrogates to be used when determining groundwater as under the direct influence of surface water.

The sites chosen for sampling during this study were selected to represent the 'worst case" sampling history. The sites selected represent those wells most likely to be under the direct influence of surface water. The results of the study offer no conclusive evidence of continuing influence of surface water at any of the sampling sites. Therefore, the potential for detection of giardia in any municipal well in Wisconsin is small. Additionally, because the other-than-municipal and non-community wells are constructed under existing well construction codes and utilize the same aquifer systems as the municipal wells the likelihood of detection of giardia in any OTM or non-community well is small. As the sites represented the worst case locations it can be conjectured that there are no municipal groundwater systems in Wisconsin that may be currently classified under the direct influence of surface water.

Results of raw water total coliform sampling during Phase I of the study indicate that 13 of the wells were producing bacteriologically unsafe water and 7 of the wells were producing bacteriologically safe water. The giardia positive at Marathon occurred when the well was producing bacteriologically safe water. Based on the sampling results there is no direct correlation between total coliform positive results and giardia positive results. However, based on the number of total coliform positive results, it appears that,

while raw water total coliform would not be an ideal surrogate, it would, because of the more frequent occurrence of total coliform positives, be a conservative screening mechanism especially if coupled with proximity to surface water determinations to compensate for the lack of correlation between raw water total coliform positives and giardia positives.

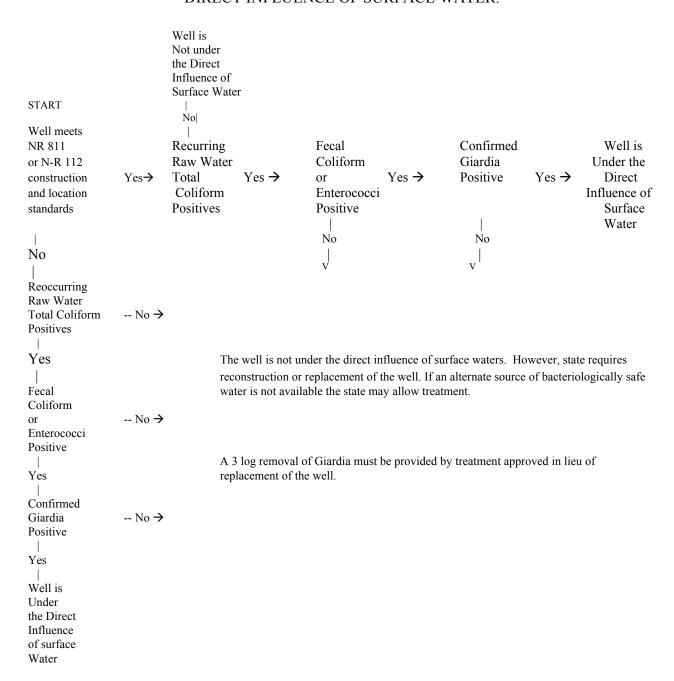
Turbidity, conductivity, and temperature were evaluated as potential surrogates for use when determining the influence of surface water on groundwater. During Phase 1, all three parameters varied at each of the sampling sites. However, there does not appear to be a correlation between the variations and the occurrence of giardia. Additionally, it is difficult to assess the gradual changes exhibited by the parameters during the Phase I sampling. Therefore the use of turbidity, conductivity, or temperature as a surrogate for giardia would appear to be of little value. More appropriately these parameters should be used in conjunction with a comprehensive evaluation using a number of investigative tools.

PROPOSED METHODOLOGY

In Phase I of the study, it was concluded that the coliform bacteria test is not an ideal surrogate for the giardia test. Additionally, based on the results of this study and examination of other research efforts on the occurrence and detection of giardia, it appears that there is no single approach (such as use of a surrogate) or combination of approaches (such as use of a surrogate in conjunction with a hydrogeological investigation) that would provide an accurate predictive tool for susceptibility to giardia contamination. Selection of an approach is hampered by the poor recovery rates for giardia sampling and analysis and the variability in environmental conditions (water levels, recharge rates, rainfall events, occurrence of giardia cysts, etc.). Increasing the number of approaches used and increasing the frequency of sampling should increase the accuracy and reliability of the predictive tool. The 'best' predictive tool would likely consist of collecting environmental data (rainfall events, water levels, occurrence of giardia, etc.), collecting hydrogeological data (aquifer characteristics, well construction data, pumping test results, etc.) collecting water quality data (temperature, pH, turbidity, coliform, etc.) and collecting giardia sampling data. The large effort involved with using this type of approach would be manageable for investigation of a single well or well field. It would not be manageable for a large scale evaluation, such as a review of the 15,000 public wells in Wisconsin.

Since the workload associated with implementing the "best" predictive tool would be unmanageable on a statewide basis and since no "ideal' surrogate exists for giardia testing, with the possible exception of cryptosporidium (see note), it is necessary that an alternate management approach be implemented to evaluate groundwater under the direct influence of surface water. To provide a manageable yet protective approach, the WDNR will assess each groundwater supply for the "direct influence of surface water: by evaluating:

- 1. Raw water total coliform positives,
- 2. Well construction, and
- 3. Well location.


Historic bacteriological sampling records will be reviewed to determine total coliform results. Well construction and location will be reviewed where it appears that they do not meet the appropriate requirements of the well construction codes, NR 811 and NR 112. Because the well construction and

locational requirements of NR 811 and NR 112 have been in effect in some form since the 1930's and the public water supplies are routinely inspected for construction and locational deficiencies, all wells will initially be considered to meet construction and location requirements.

Coliform bacteria was chosen because it has long been associated with the influence of surface water. Additionally, it is felt that its higher concentration in surface water, its higher occurrence frequency in surface water, and its higher analytical reliability and repeatability balance the longer viability of giardia making it a reasonable surrogate for routine giardia monitoring in <u>untreated</u> groundwater. The evaluation of groundwater under the influence of surface water will be incorporated into the current policy of the WDNR requiring upgrading or replacement of wells that do not meet the standards of NR 811 and NR 112 and requiring replacement of wells that, on a recurring basis, test bacteriologically unsafe (total coliform positive). The proposed state policy is illustrated in Figure 1. The replacement of wells that have recurring total coliform positives will be, in most cases, a more conservative approach than replacement or treatment of wells that would be susceptible to giardia contamination. This is supported by the Phase II sampling of three bacteriologically unsafe wells at Cadott, Rhinelander, and Marathon. The well at Cadott has been ordered to be replaced, the well at Rhinelander is receiving treatment (consisting of chlorination and detention) and the well at Marathon has been documented to produce bacteriologically safe water. None of these wells have been shown to be susceptible to giardia contamination.

Note: Concentrations of Cryptosporidium cysts and Giardia cysts were significantly correlated in a Survey of Potable Water Supplies for Cryptosporidium and Giardia, Rose, et al., Environ. Sci. Technol., Vol. 25, No. 8, 1991. Because of this Cryptosporidium may be a useful surrogate for Giardia. However, the difficulties in sampling for Giardia also exist for Cryptosporidium.

FIGURE I STATE POLICY FOR GROUNDWATER UNDER THE DIRECT INFLUENCE OF SURFACE WATER.

^{*} Recurring raw water total coliform positives - two or more raw water coliform positives in any two year period that are not attributed to work on the well.

Appendix 20

TERMS OF REFERENCE

HYDROGEOLOICALG STUDY TO
EXAMINE GROUNDWATER SOURCES
POTENTIALLY UNDER DIRECT INFLUENCE OF
SURFACE WATER

Date: October 2001

TERMS OF REFERENCE

for

Hydrogeological Study to Examine Groundwater Sources Potentially Under Direct Influence of Surface Water

October 2001

1.0 **DEFINITIONS**

The following Definitions apply throughout this document:

- Communal Well means a public water supply well subject to ODWS Section 52 for which an Engineers Report is required by regulation.
- **Director** means the Director of Environmental Assessment and Approvals Branch.
- Groundwater Under Direct Influence of Surface Water (GUDI) means groundwater having incomplete/undependable subsurface filtration of surface water and infiltrating precipitation.
- **Hydrogeological Study** means the study and report scoped by these Terms of Reference.
- Hydrogeologist means a person qualified to prepare a study in accordance with these terms of reference. Qualifications will be defined using the most current definition drafted by the Association of Professional Geoscientists of Ontario.
- ODWS means the Ontario Drinking Water Standards.
- Regulation means O.Reg. 459/00 ("Drinking Water Protection Regulation") made under the Ontario Water Resources Act.
- Surface Water means water bodies (lakes, wetlands, ponds including dug-outs), water courses (rivers, streams, drainage ditches), infiltration trenches and areas of temporary precipitation ponding.
- Wellhead Protection means the pro-active management of land to assess and mitigate potential risks posed to well water quality.

2.0 OBJECTIVES

To reduce the risk to human health attributable to disease causing microorganisms, Ontario has specified minimum treatment requirements for water works ¹. To ensure appropriate treatment is provided, the principal objective of this hydrogeological study is to determine whether a communal well should be managed as a supply "under the direct influence of surface water".

Well water is Groundwater is Under Direct Influence of surface water (GUDI) where it has:

- a) physical evidence of surface water contamination (eg. insect parts, high turbidity);
- b) surface water organisms (e.g. campylobacter, aerobic spores, cryptosporidium, giardia).

Communal wells are "flagged" as potentially under the direct influence of surface water if they:

- i) regularly contain Total Coliforms and/or periodically contain E. coli; or
- ii) are located within approximately 50 days horizontal saturated travel time from surface water or are within 100 m (overburden wells) or 500 m (bedrock wells) of surface water (whichever is greater) and meet one or more of the following criteria:
 - a) Wells may be drawing water from an unconfined aquifer;
 - b) Wells may be drawing water from formations within approximately 15m of surface;
 - c) Wells are part of an enhanced recharge/infiltration project;
 - d) When the well is pumped, water levels in surface water rapidly change or hydraulic gradients beside the surface water significantly increase in a downward direction;
 - e) Chemical water quality parameters (such as temperature, conductivity, turbidity, total dissolved solids, pH, colour, oxygen) are more consistent with nearby surface water than local groundwater and/or if they fluctuate significantly and rapidly in response to climatological or surface water conditions.

Potential GUDI wells will be considered to be under the direct influence of surface water unless this hydrogeological study proves otherwise to the satisfaction of the Director. In accordance with the Ontario Drinking Water Standards, water from GUDI wells must receive chemically assisted filtration and disinfection (or equivalent treatment process) unless this hydrogeological study shows, to the satisfaction of the Director, that the aquifer is providing effective *in situ* filtration (see section 3.5) ².

3.0 GENERAL REQUIREMENTS

This hydrogeological study must include, but not necessarily be limited to, the following:

- Characterization of the hydrogeologic setting (see Section 3.1);
- Description of local surface water features (see Section 3.2);
- Assessment of the physical condition of on-site wells (see Section 3.3);
- Evaluation of source groundwater quality (see Section 3.4);
- Determination of need for filtration (see Section 3.5).

The study should use maps, air photos, well records, reports and water level/quality data. This data should be supplemented as appropriate with test pits, boreholes, monitoring wells, minipiezometers installed in surface water, pumping tests, tracer tests, geophysical surveys, environmental isotopes (such as carbon-14, tritium, oxygen-18 and deuterium), and down hole investigations involving packers, video surveys, geophysics, flow meters and samplers ³.

In scoping study requirements, Hydrogeologists should consider that the report, including the recommendations in section 3.5, *should normally be completed within 3 months*. Questions regarding these Terms-of-Reference, appropriateness of planned work programs and other presubmission consultation issues should be directed to an MOE hydrogeologist at the appropriate MOE Regional Office.

3.1 CHARACTERIZATION OF THE HYDROGEOLOGIC SETTING

The purpose of this part of the study is to characterize local conditions to determine if:

- a) travel times from nearby surface water is significantly greater than 50 days;
- b) well(s) extract water from deep water bearing zones which have no effective hydraulic connection to surface water sources; and/or
- c) surface water organisms/contaminants are blocked from migrating to the wells due to effective filtration within the aquifer (see section 3.5), the presence of a competent aquitard that effectively protects the aquifer, or the configuration of the wells' zone of influence.

The study would typically include a description and assessment of:

- i) Quaternary and Bedrock Geology: Show key topographic/geological features describing overburden thickness, composition, grain size distribution and sedimentary textures. For each bedrock lithologic unit, describe at an appropriate level of detail: thicknesses, composition, texture and known relevant weathering/alteration/structural features (fractures, joints, bedding planes, faults, and shear zones).
- ii) Local hydrogeology: Define hydrogeologic features (aquitards and confined, unconfined and semi-confined aquifers) including details of their depth, thickness, lateral continuity, porosity, vertical/horizontal hydraulic gradients, hydraulic conductivity, transmissivity, storativity/specific storage and the location/nature of aquifer recharge supplying the well. Historical/seasonal groundwater level trends should be identified and pump test results / interpretations provided (including static water levels and pumping levels in the supply wells and relevant monitoring wells). Finally, the report must include the following descriptions of the study area: (1) a detailed map that is draw to scale, (2) hydrogeological cross-section with geology, borehole locations and water level measurements and (3) borehole logs with accurate geological descriptions.

iii) <u>Surface Water/Well Interactions</u>: interpret three dimensional flow patterns and assess hydraulic connections between aquifers and between water producing zones in wells and nearby surface water under pumping and non-pumping conditions. A map (with cross-sections) must be included showing the location of surface water, well(s) and 50-day capture zones for water supply wells.

3.2 DESCRIPTION OF LOCAL SURFACE WATER FEATURES

The purpose of this part of the study is to describe all surface water features in the vicinity of the supply well(s) and to quantify the potential risk that these features pose to supply well(s). The study should include, but not be limited to, a description of the:

- a. local topography and location (UTM), type and size of local surface water features;
- b. seasonal variations of surface water features and associated water levels or flow rates (based on field measurements, historical information, air photo interpretation etc);
- c. surface water quality, including analysis of historic/seasonal trends;
- d. surface runoff drainage patterns in the vicinity of the supply well(s);
- e. description of the local sub-watershed surface water catchment area;
- f. land uses in the surrounding catchment area that may affect the quality of surface water.

3.3 ASSESSMENT OF THE PHYSICAL CONDITION OF ON-SITE WELLS

The purpose of this part of the study is to determine whether supply well susceptibility to contamination from surface water sources can be mitigated by making structural changes to onsite supply, monitoring and test well(s). For each well, the study shall describe:

- a. Location ⁴, construction date, elevation, well depth, screened interval, casing depth, height above ground, describe any well pits and potential for flooding of the well site(s);
- b. Compliance with O.Reg. 903 requirements, including the integrity of the well annular seal. Corrective action must be taken immediately to rectify any construction/maintenance deficiencies that are found. The hydrogeological study should then assess whether the corrective action eliminated surface water influences on the supply well(s).
- c. Description of significant water-producing zones in wells, including their hydrogeologic characteristics, depth, yield, quality and susceptibility to contamination. This assessment should go beyond O.Reg. 903 requirements and should recommend any structural modifications that would reduce well susceptibility to potential contaminant sources. If recommendations to waive treatment requirements are made based on these corrective measures, they must be carried-out immediately and their effectiveness assessed as part of the hydrogeological study.

3.4 EVALUATION OF SOURCE GROUNDWATER QUALITY

The purpose of this section is to determine whether water quality reflects impacts from surface water. This discussion should include analysis of data included in the water supply system Engineer's Report and any relevant data collected during this study to:

- determine whether any observed significant or rapid shifts in water quality reflect impacts from infiltrating surface water or are caused by geochemical reactions within the aquifer. This would include correlation of source water quality data with seasonal variations, observed historical trends, precipitation events and pump use;
- ii) develop a clear conclusion as to whether source water quality is more closely representative of background groundwater or that of nearby surface water. This should include statistical comparison of water quality data and consideration of any correlations noted above;

Water quality characterization should include consideration of the usefulness of continuous data respecting electrical conductance, pH, turbidity, temperature along with water levels and rainfall.

3.5 DETERMINATION OF NEED FOR FILTRATION

The purpose of this section is to conclude whether supply wells are vulnerable to microbiological contamination from surface water sources and to make recommendations regarding whether there is a need to provide filtration. The hydrogeological study shall include a:

- i) conclusion clearly classifying each water supply well as being either:
 - a) under the direct influence of surface water; **OR**
 - b) not under the direct influence of surface water.

If there is **significant uncertainty**, Hydrogeologists should err on the side of public health and safety and consider wells to be vulnerable to direct surface water influence.

- ii) clear conclusion indicating whether raw water is effectively filtered. Raw water must not contain significant numbers of large particles which could shield embedded microbes from effective UV or chlorine disinfection. In order to conclude whether the aquifer is providing effective *in situ* filtration, all the following conditions must be met:
 - a) particle count data must show that the water consistently contains significantly less than 100 particles per ml in the size range 10 microns and greater in size;
 - b) the hydrogeologist must confirm that the particle count is not likely to change during storm, season or other regular environmental changes; and
 - c) the raw water is characterized by good microbiological quality.

This information will be used by the Director to determine if filtration is required.

4.0 PREPARATION AND SUBMISSION OF A REPORT

- i) The results of this study shall be compiled in a report which includes all supporting data (hydrogeological, chemical and bacteriological), maps, photographs and graphs.
- ii) The report shall be prepared and signed by a qualified Hydrogeologist.

5.0 SUGGESTED REFERENCES

Engineering Report(s) for the Water Supply.

Ontario Drinking Water Regulations.

O.Reg 459/00 for "Drinking Water Protection" made under the Ontario Water Resources Act

O.Reg 903 for "Water Wells Regulation" made under the Ontario Water Resources Act

Procedure B13-3 "Chlorination of Potable Water Supplies in Ontario"

6.0 ENDNOTES:

- 1. The definition of a water works (communal well) is provided in the *Ontario Water Resources Act*. Wells must be constructed, maintained and abandoned in compliance with O.Reg 903. "Springs" are wells where works are made or equipment installed for collection or transmission of water that is likely to be used for human consumption (OWRA 35-1).
- 2. Even if physical, chemical and bacteriological raw well water quality has consistently met Drinking Water Standards, effective protection must be provided against organisms such as giardia which can rapidly appear in surface water. This can be done by proving that the supply well(s) receive subsurface filtration that is as effective and reliable as chemically assisted filtration or by installing appropriate treatment works (such as ultraviolet treatment).

- 3. All well technicians and contractors constructing or completing repairs on water wells must be licenced in accordance with O.Reg. 903.
- 4. All UTM coordinates should be referenced to the NAD83 datum. Information regarding the method of data collection and accuracy of the data must also be provided.

Appendix 21

Groundwater Under the Direct Influence of Surface Water (GUDI) Assessment Guideline

To reduce the risk to human health. Saskatchewan has specified minimum treatment requirements for waterworks.

To ensure appropriate treatment is provided, the goal of this quideline is to assess if a communal well should be managed as Groundwater Under the Direct Influence of Surface Water (GUDI).

General

GUDI refers to groundwater sources (wells, springs, infiltration galleries, etc.) where microbial pathogens are able to travel from nearby surface water to the groundwater source. All GUDI municipal waterworks and wells and other waterworks, such as pipelines, which are regulated by Saskatchewan Ministry of Environment (Environment), shall meet the standards and requirements of a surface water source system as observed in The Environmental Management and Protection Act 2002, The Waterworks Regulations 2002, A Guide to Waterworks Design EPB 201 and other relevant Acts, regulations and publications.

This guideline presents a method for determining if a water source is GUDI or non-GUDI, as defined by The Water Regulations, 2002:

- Part 1 s 2 (3) For the purposes of these regulations, water beneath the surface of the ground is considered under the direct influence of surface water if that water, in the opinion of the minister, exhibits:
 - (a) a significant occurrence of insects or other macro-organisms, algae or large diameter pathogens, including Giardia lamblia and Cryptosporidium; or
 - (b) significant and relatively rapid shifts in water characteristics, including turbidity, temperature, conductivity or pH factors, that closely correlate to climatological or surface water conditions.

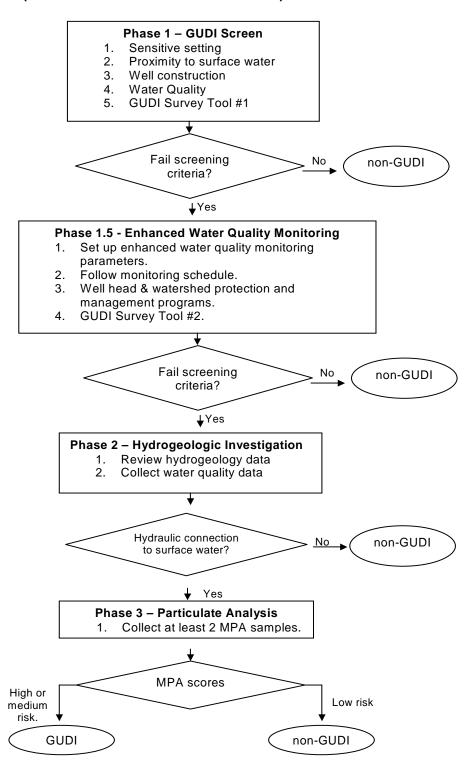
Part (a) of the definition is aimed at determining if there are particles present that are indicative of surface water. This may be determined using Microscopic Particulate Analysis (MPA) which analyzes for number of large macro-organisms, algae and other surrogate indicators of surface water.

Part (b) of the definition is aimed at establishing if a hydraulic connection exists between a groundwater and surface water sources. If groundwater is rapidly recharged by surface water. then microbial pathogens can enter the groundwater source.

The guideline should be carried out by, or under the supervision of, a gualified hydrogeologist. This would be a person with hydrogeology training and experience and licensed to practice in Saskatchewan by the Association of Professional Engineers and Geoscientists of Saskatchewan (APEGS). The assessment of water quality and water treatment should be carried out by a person with municipal drinking water training and experience, and licensed to practice in Saskatchewan by APEGS. A qualified consultant can modify this document with permission by Environment.

The quideline consists of three phases, beginning with a screening phase that provides a method to rapidly identify obvious non-GUDI sources that do not require a detailed investigation. Sources that fail the screening are considered potentially GUDI and proceed to Phase 1.5, which is a period of enhanced monitoring for specific indicators. After the period of enhanced monitoring, sources that fail must self declare GUDI or proceed to Phase 2.0 to determine whether there is a hydraulic connection that allows rapid recharge between the groundwater source and surface water. If there is no hydraulic connection the source is non-GUDI. If a hydraulic connection exists, Phase 3 is completed to determine if there are particles present in the groundwater source that are indicative of surface water. Figure 1 is a flowchart for the GUDI assessment protocol.

EPB 284 11/08



Phase 1.0: GUDI Screening Assessment

This phase identifies obvious non-GUDI sources that do not need further investigation. After this phase, the well should be classified as either non-GUDI or potentially GUDI. Phase 1 can involve a file search, review of well construction details, a site visit and remedial recommendations that would typically be carried out prior to Phase 2.

Figure 1 - GUDI (Groundwater Under the Direct Influence) Assessment Flowchart

For a groundwater source to be considered non-GUDI it must satisfy all of the criteria below. If the source does not meet these criteria it is considered potentially GUDI.

- 1. **Sensitive settings:** The source must not fall into any of the following categories: spring, infiltration gallery, horizontal collection well, wells in karst aquifers, wells in unconfined aquifers and wells that are part of an enhanced recharge/infiltration project.
- 2. Proximity to surface water: The source must be greater than 50 days horizontal travel time from surface water and overburden wells must be greater than 100 metres from the nearest surface water body (i.e. water open to the atmosphere and subject to surface runoff such as ponds, lakes, wetlands, lagoons, reservoirs, estuaries, rivers, streams, brooks, ditches).
- **3. Well construction:** The well must meet the current <u>A Guide to Waterworks Design EPB 201</u> and *The Water Regulations 2002* and *The Ground Water Conservation Act.* The well must be properly constructed, located and capped so as to prevent surface water entering the well or the annulus.
- **4. Water Quality:** Available data must show the raw well water does not regularly or periodically contain Total Coliform or *E. coli*.

Well owners may undertake repair and maintenance of wells prior to the GUDI evaluation. In the case of well repairs or maintenance made just prior to Phase 1.0 assessment, well owners are to coordinate with persons conducting subsequent GUDI assessments to ensure the assessment will represent typical well operating conditions. Assessors must differentiate between GUDI problems and historic maintenance problems. A survey for Phase 1.0 assessment is found in Appendix 1.

Wells may fail Phase 1.0 due to not meeting well construction requirements. It is acceptable to modify well construction to meet Phase 1.0 standards rather than declare the well GUDI or potentially GUDI. If well construction improvements are completed and the well still fails Phase 1.0, then Phase 1.5 may be completed. Wells may be declared GUDI without completing the GUDI guideline. This may be due to failure of a part of Phase 1.0, such as proximity to a surface water body, bacteria record, well construction, etc.

The information collected in Phase 1.5 and Phase 2.0 is needed to make a GUDI determination. Bypassing these and proceeding to the MPA analysis of Phase 3.0 is not recommended. The Phase 3.0 MPA analysis relies on the system lag time that is determined in Phase 1.5 Phase 2.0. Performing the MPA analysis during Phase 1.5 or 2.0 would significantly increase the number of MPA samples needed.

Options available if a well fails Phase 1.0 of the GUDI protocol include:

- declare the well as potentially GUDI and proceed to Phase 1.5;
- if the well failed Phase 1.0 because of well construction then modifications can be made; and
- declare the well as GUDI, Phase 2.0 and 3.0 study are not required and the standards and requirements of a surface water source will apply to the water system.

Phase 1.5: Water Quality Monitoring for GUDI Determination

This Phase identifies sources that need further investigation. After this Phase, the well should be classified as either non-GUDI or potentially GUDI. Phase 1.5 involves a comprehensive review of well construction details, a prolonged monitoring regime, site visits and identifies what must be done during Phase 2.0, if further investigation is needed. The enhanced monitoring during this Phase of the study provides the information needed to properly complete Phase 2.0, the Hydrogeologic Assessment.

The Water Regulations, 2002, do not require source water quality monitoring, which means that there is seldom an adequate amount of data for a proper hydrogeologic evaluation of the source water. Systems that are suspect for GUDI will be requested by Environment to enter into a period of raw water monitoring and well evaluation.

Hydraulic Connection to Surface Water

Water quality monitoring is a method of determining whether or not groundwater is hydraulically connected to surface water. In general, the closer a groundwater source is to surface water, the greater the likelihood of a hydraulic connection. This hydraulic connection to surface water means that water provided by a well or spring is actually coming from a nearby surface water source and the water pathway from the surface source to the well or spring is a short enough time span that pathogens can survive the trip.

Any contamination present in the surface water can travel through the subsurface soil and emerge in water drawn from the well or spring. This is how *Giardia lamblia*, *Cryptosporidium*, viruses and other microbial organisms contaminate what appear to be groundwater sources. This section will describe the general process and field methodology for determining hydraulic conductivity through water quality monitoring.

A monitoring program for water quality would require measurement of specific parameters at the potential GUDI source and each of the associated surface water bodies for at least one year. Several parameters including turbidity, temperature and conductivity need to be collected at a minimum of once a week for duration. This data would then need to be analyzed for statistical correlation and time trends, which would indicate or confirm hydraulic connection.

If a hydraulic connection is determined to exist, the source will be designated as groundwater under direct influence with surface water (GUDI). This will require treatment to surface water standards or other measures to ensure the safety of the water

If a hydraulic connection is determined not to exist, the source is no longer designated a potential GUDI source. It is instead designated as groundwater and is subject to the groundwater source monitoring and treatment requirements. The source will remain noted as susceptible, however, and may be subject to additional monitoring requirements including extra bacteriological sampling.

Purpose of Monitoring

The purpose of the monitoring program is to establish a baseline for the water quality, which includes seasonal changes in key physical, chemical and biological parameters in both the groundwater and nearby surface water sources. Analysis of this baseline data (statistical and graphical) should determine the existence of hydraulic connection between the surface and groundwater sources. This process will identify groundwater that is need of further evaluation by methods such as the Microscopic Particulate Analysis (MPA) to identify specific organisms typically found in surface water, in the groundwater source.

Monitoring Parameters

Temperature

All systems conducting water quality monitoring to determine hydraulic conductivity must monitor water temperature. Monitoring water temperature is the most useful indicator of potential surface water influence and it is relatively easy to measure with inexpensive equipment. Both the surface water and the groundwater source in question must be monitored. These readings should be correlated to atmospheric temperatures taken at the same time and location. This will help identify changes in water temperature due to seasonal changes in air temperature.

Conductivity

Since temperature variations in some cases, (shallow wells and springs), may be due to seasonal changes, more parameters must be monitored to determine hydraulic connectivity. Conductivity is the next best indicator and must be monitored at the same time as the temperature. Again, both the groundwater and the surface waters must be monitored.

pH and Turbidity

Circumstances may exist that require more parameters than temperature and conductivity to be monitored for positive identification of surface water connection to the groundwater source. In such cases, pH and turbidity may be monitored. Turbidity monitoring should be easily added to the program, as turbidimeters are standard equipment for most drinking water treatment facilities. This should be discussed with the local Environmental Project Officer (EPO) or the Environmental Protection Branch.

Other Parameters

In some cases, the surface water or groundwater in question may have a distinct parameter that can be used as a marker for the water quality monitoring. For example, high iron, manganese, chloride, etc., which are easily monitored may be used. Again, this should be discussed with the local EPO.

Coliform Bacteria

The presence of fecal coliform bacteria in the source water indicates that recent contamination has occurred. This may be from well construction deficiencies, failing to properly disinfect pump components upon installation or repair or it may indicate that the source is under the direct influence of surface water. For the purposes of a water quality monitoring program, coliform or heterotrophic plate count (HPC) samples from the source may be used as an additional data set for determining direct influence of surface water. However, presence or absence of total coliform or fecal coliform does not preclude the possibility of direct surface water influence.

Rainfall Events / Water Levels

Any system participating in a monitoring program must record precipitation (rainfall and snowfall) with the rest of the data. An inexpensive rain gauge may be sufficient if there are no local weather stations that would be representative of the source site. Systems also should record information about stream flow, surface water levels, groundwater levels and pumping activity. Relative changes in flow or levels over time are the primary interest.

Monitoring Equipment

Specifications

- Temperature measurements must be made with a digital thermometer and recorded to the nearest 0.1 degree Centigrade.
- Conductivity measurement must be made with a temperature-compensated conductivity meter with a digital readout. The meter must be able to measure conductivity to the nearest 1 micromho/centimeter over a range of 0 – 200 Micromho/cm.
- Sources monitoring pH must use a meter with a digital readout that is capable of measurement to the nearest 0.1 pH unit
- Turbidity measurements must be made with a turbidimeter with a digital readout over a range of 0 1000 NTUs. The meter must be able to measure to the nearest 0.1 NTU (nephelometric turbidity units).

Equipment

For systems that need to purchase equipment to conduct the monitoring program, relatively inexpensive models are available. Since the more expensive equipment tends to be more accurate, the less expensive equipment is acceptable for baseline monitoring since the interest is in relative changes over time, not absolute values.

Companies that handle equipment such as Cole-Parmer, Hach, etc. for environmental analysis would be good sources of needed equipment. All instruments and meters must be properly maintained and calibrated as in accordance with the manufacturer's specifications and instructions. Records of maintenance and calibration must be kept with the monitoring data files.

Monitoring Locations

Potential GUDI Source Sampling

Water samples and monitoring data from a potential GUDI source must be collected from the source (or as close to the source as practical) and prior to storage or treatment. If the system has more than one source well/spring, then each source must be sampled and monitored independently.

Surface Water Sampling

The samples for surface water ideally should be collected from mid-channel at the shortest horizontal distance from the potential GUDI source. Since mid-channel collection can be difficult, they may be collected upstream (up to ~1 km) or downstream (up to ~0.5 km) from bridges, docks or boats. (Ensure there are no tributaries entering between the sampling station and the ideal point.) Near shore sampling could be used for streams or water bodies (lakes, sloughs, etc.) if deemed okay by Environment.

Samples should not be taken from backwater eddies or stagnant areas since these would not represent the conditions in the bulk of the stream. Systems with multiple nearby surface water sources must monitor the required parameters at all sources. Once the groundwater and surface water sampling stations have been chosen, these locations must be used for all subsequent monitoring.

Method of Sampling

Field Measurements

Coliform or HPC samples must be collected in the field and sent to a certified laboratory for analysis. Temperature, conductivity, turbidity and other parameters must be measured in the field. Special consideration may be given to parameters which cannot be measured in field if deemed needed by Environment.

Groundwater Sampling

Monitoring of groundwater needs to be performed in a manner that ensures the sample is representative of the water quality of the aquifer rather than the well casing or the borehole. This will require that the sample collected be taken under flowing water conditions. The rule of thumb is a minimum of three well casing volumes. Typically 15 to 30 minutes is ample time to ensure fresh aquifer water is present for the sample. Wells used for seasonal sources should be on-line for several days to a week and sampled after the well has been purged for 30 minutes.

Surface Water Sampling

Collection of surface water samples requires a clean four-litre container such as a bucket. The container should be rinsed at least three times with the surface water taking care to not stir up the bottom sediments of the stream or pond. Metal containers need to be brought to the ambient temperature of the water by letting each rinse sit in the bucket several minutes. The sample should be taken from a depth greater than 0.4 meters if possible.

When taking reading for temperature, conductivity, pH, etc. make sure the probe is within the middle of the container. Collect fresh water samples and repeat the measurements at least three times until they are the same or closely agree.

Coliform Samples

Bacteriological samples must be collected, transported and analyzed in accordance with SMOE standards for analysis by an accredited laboratory. Results must be reported counts/100 ml. If the sample result is positive for total coliform, it must be analyzed for fecal coliform and results reported as counts/ 100 ml.

Records

All sampling and monitoring data must be recorded with respect to time date and parameters tested. They must be available for review at any time by Environment. (The development and provision of forms for data collection could be done, or authorized by Environment.)

The data must be reviewed by a person qualified in hydrogeology, as outlined in this document. If the review indicates hydraulic connection, the study needs to proceed to Phase 2.0.

Follow-up

If the well is deemed groundwater but is still suspect, the EPO may require increased water quality monitoring for an indefinite time period. The long-term monitoring may satisfy any present health concerns and reduce the need for water treatment upgrade until such time that new technologies improve the feasibility of upgrades. The implementation of a wellhead protection plan and/or watershed protection plan may also be required to decrease the possibility of groundwater contamination. A wellhead protection plan must follow the guidelines set out in Environment's <u>Wellhead Protection EPB 299</u>.

If the data collected shows definite correlations between the groundwater quality and parameters linked to surface water or hydrometerological events, this will require Proceeding to Phase 2.0, Hydrogeological Assessment, self-declaring GUDI and proceeding to upgrade the existing water treatment facility or advance to Phase 3.0, Water Particulate Analysis.

When a hydraulic connection is determined or highly suspected and is within the 50 day horizontal travel time from surface to groundwater source, proceed to Phase 3.0 Water Quality Particulate Analysis described in this document. The data collected during Phase 1.5 should assist in determining the best possible time to collect samples for Microscopic Particulate Analysis (MPA).

Phase 2.0: Hydrogeological Assessment

The objective of this phase is to determine if there is either an existing or potential hydraulic connection that could allow rapid recharge of the well by surface water or precipitation. Phase 2.0 will normally involve a review of available hydrogeologic information and monitoring during Phase 1.5, of water level and water quality data (such as temperature, conductivity, turbidity, pH). Additional hydrogeologic data may also be collected if the review of available data indicates there is insufficient information. At the end of this Phase, the well can be classified as either:

- non-GUDI (no hydraulic connection with surface water/precipitation);
- in hydraulic connection with surface water/precipitation; or
- potentially in hydraulic connection, if there is significant uncertainty.

This review should be used to assess whether there is potential for a hydraulic connection and to estimate the time-of-travel between the well and surface water. This review should characterize the hydrogeologic conditions of the site and should include, but not be limited to, an evaluation of the following:

Groundwater features:

- Well characteristics (well depth, casing depth, annular seal, casing type, well cap, connection to supply system, etc.);
- Hydrogeologic setting including stratigraphic correlation, depth to the aquifer, aquifer parameters including
 hydraulic conductivity, transmissivity, storage coefficient, nature and thickness of any confining layers,
 groundwater levels, aquifer water quality, static water levels, pumping water levels and the potential for
 connection between the surface water and aquifer (does the surface water body penetrate the aquifer);
- Pump test results and analysis (recharge boundary effects, recovery characteristics, etc.);
- Vertical and lateral hydraulic gradients and flow directions under pumping conditions. Groundwater level variations with time and precipitation;

Surface water features:

- Elevation of normal pool
- Elevation of 100-year floodplain
- Elevation of the lake bed, bottom of river channel, or streambed
- Approximate sampling point elevations
- Slope of the land surface between the source and the associated surface water

Including:

- Water quality; and
- Potential time-of-travel between the surface water and the well.

Raw water quality data should be collected at the well and at nearby surface water bodies for a period up to one year to determine if there is a close relationship between changes in the surface water quality and the well. Patterns are best recognized from one-year hydrographs; however, a shorter duration may be sufficient if a hydraulic connection is recognized early on in the monitoring program. Water quality parameters should include, but not be limited to, temperature, conductivity and pH measured on a weekly basis at a minimum. A rainfall gauge can be used to measure cumulative rainfall each week. Groundwater level monitoring is also required in determining potential connections.

The water quality data should be plotted and the graphs inspected for rapid changes and obvious similarities between surface water and groundwater. The time lag between peaks or inflection points of the surface water and groundwater temperature and conductivity graphs can be used to estimate the time-of travel. If the horizontal time-of travel is less than 50 days, this is considered to be a rapidly recharged well. The GUDI assessment water sampling must be completed for individual wells in a tested well field. Combined raw water samples are not recommended.

Phase 3.0: Water Quality Particulate Analysis

The results of the Hydrogeological Assessment in Phase 2.0 may determine that there is a hydraulic connection between the well and surface water. However, if the aquifer provides sufficient natural filtration to remove surface water organisms and debris, the well is not under the direct influence of surface water. The objective of

Phase 3.0 is to determine if there are significant particulates present in the well that are indicative of surface water. This is determined using Microscopic Particulate Analysis (MPA).

The MPA test involves filtering approximately 4,500 litres of water to concentrate organisms and debris, which are then identified, and quantified using a microscope. At the end of this Phase, the MPA score is used to classify the well as a low, medium or high risk.

A minimum of two MPA samples should be collected. The samples are to be collected during periods when there is the greatest probability that surface water is impacting groundwater. The results from Phase 2 should be used to help select the most appropriate MPA sampling times (if there is a 15 day time-of-travel, then the well should be sampled 15 days after a surface water event). It is recommended that one sample be collected in the spring after a heavy rainfall or snowmelt and one sample be collected in the fall after a prolonged dry period. The MPA scores should be evaluated based on the risk factors specified by the USEPA (1992) as follows:

- low risk = MPA score < 10
- medium risk = MPA score 10 to 19
- high risk = MPA score >20

If any of the MPA samples fall into the medium or high risk categories, the well should be considered GUDI unless remedial action and/or further sampling demonstrates otherwise.

There are currently no laboratories in Saskatchewan offering MPA analysis. At the date of publication, Hyperion Research (telephone 403-529-0847) of Medicine Hat, Alberta offers the MPA analysis and also rents the sampling equipment. Additional laboratories may also conduct the testing. Environment does not endorse any product or service.

The MPA analysis should be based on the most recent version of the USEPA's guideline Consensus Method for Determining Groundwater Under the Direct Influence of Surface Water Using Microscopic Particulate Analysis. MPA analysis based on other guidelines must provide that guideline and justification of usage with the assessment.

Proper sampling protocols must be used for the GUDI assessment. To obtain correct sampling protocols, contact laboratories or relevant Provincial and Federal agencies. Submittal of a GUDI assessment where sampling protocol is suspect may result in invalidation of the findings.

GUDI Determination

The final determination of whether a well is GUDI or non-GUDI will be a matter of professional judgement based on all of the evidence collected. In general, wells that have no evidence of existing or potential hydraulic connection with surface water will be considered non-GUDI. Wells that have a hydraulic connection and a medium or high risk MPA score will be considered GUDI. Evidence that a well is GUDI is usually more conclusive than evidence that a well is non-GUDI. If there is significant uncertainty, it is appropriate to err on the side of public health and safety and consider the well to be GUDI.

References

- Ontario Ministry of the Environment, 2001. Terms of Reference, Hydrogeological Study to Examine Groundwater Sources Potentially Under Direct Influence of Surface Water, October 2001.
- United States Environmental Protection Agency, Office of Drinking Water, 1991. Guidance Manual for Compliance with the Filtration and Disinfection Requirements for Public Water Systems Using Surface Waters, March 1991.
- United States Environmental Protection Agency, October 1992. Consensus Method for Determining Groundwater Under the Direct Influence of Surface Water Using Microscopic Particulate Analysis (MPA). EPA 910/9-92-029.
- American Water and Wastewater Association, 1996. Determining Groundwater Under the Direct Influence of Surface Water.
- American Water and Wastewater Association, 2001. Investigation of Criteria for GWUDI Determination.
- Nova Scotia Department of Environment and Labour, 2002. Protocol for Determining Groundwater Under the Direct Influence of Surface Water.

Appendix A - GUDI Survey Tool #1

Indicate the depth of the well casing		_ m
2. Is the well greater than 60 meters from the nearest surface water? If not, indicate the distance between the well and surface water, and describe the source of surface water.	Yes	N
3. Is the well properly sealed?	Yes	N
4. Is the well in a pit?	Yes	Ν
5. Does the casing extend at least 0.45 m above the surroundings?	Yes	N
6. Does the well casing penetrate consolidated (slowly permeable) material?7. Is the well casing only perforated or screened below consolidated (slowly	Yes	N
permeable) material?	Yes Yes	N
8. Attach a copy of the well log.9. Is the well properly grouted for at least 3 meters?	Yes	N N
10. Is the well subject to flooding?	Yes	N
If it is, does the casing extend at least 1 meter above the highest flood elevation, or the 100-year flood elevation, whichever is higher?	Yes	N
11. Are there any sewage disposal pits, leach beds, or improperly abandoned wells within 60 meters of the well?	Yes	N
12. Are there any septic tanks and subsurface septic tanks effluent disposal tile within 25 meters of the well?	Yes	N
13. Are there any livestock, grazing areas of feedlots, within 15 meters of the well?	Yes	Ν
14. Are there any sewers of non-watertight construction within 15 meters of the well?	Yes	Ν
15. Does the well have a history of total coliform or fecal coliform contamination in untreated samples collected over the past 3 years?If yes, describe the sampling frequency and number of unsatisfactory samples.	Yes	N
 16. Attach a summary of raw water coliform samples for the well over the last 3 years. 17. Does the well have a history of significant and relatively rapid water quality 	Yes	N
shifts? (e.g. turbidity, temperature, pH, taste & odour)	Yes	N
18. Has the well ever been associated with a disease outbreak?	Yes	N

Appendix B - GUDI Survey Tool #2

Preliminary Assessment of Ground Water Sources that may be Under the Direct Influence of Surface Water **System Name** ID# **Source Name** R.M. **Population Date Index Points** A. Type Of Structure (Circle ONE that Applies) Well Go To Section B Spring 40 Infiltration Gallery/Horizontal Well 40 **B.** Historical Pathogenic Organism Contamination History or suspected outbreak of Giardia, or other pathogenic organisms associated 40 with surface water, with current system configuration; No history or suspected outbreak of Giardia or other pathogenic organisms 0 C. Historical Microbiological Contamination Record of acute (boil order or fecal positive sample) violations of the Total Coliform Sampling during the last three years (Circle ONE that Applies) No violations 0 One violation 5 Two violations 10 Three violations 15 Record of microbiological violations during the last 3 years (Circle ONE that Applies) One violation or none 0 Two violations 5 Three violations 10 Complaints about turbidity 5 D. Hydrological Features Horizontal distance between surface water and the source greater than 100 meters 0 60 - 100 meters 5 30 - 60 meters 10

Poorly constructed well (uncased, or annular space not sealed to depth of at least six

of perforated interval or screen greater than 30 meters

15

15

0

5

10

15

15

less than 30 meters

E. Well Construction

15 – 30 meters

8 - 15 meters

0-8 meters

Unknown

F. Well Intake Construction In wells tapping unconfined or semi-confined aguifers, depth to static water level below land surface greater than 30 meters 0 15 - 30 meters 5 0-15 meters 10 Unknown 10 G. Well Cap Construction Poor sanitary seal, seal without acceptable material, or unknown sanitary seal type 15 **TOTAL SCORE** H. Preliminary Assessment Determination (Circle ONE that Applies) 1. PASS: Well is classified as ground water. 2. FAIL: Well must undergo further GUDI analysis. 3. FAIL: Spring or Infiltration Gallery; must undergo further GUDI analysis. 4. FAIL: Well will PASS if well construction deficiencies (section E or F) are repaired. 5. FAIL: Well may PASS if well construction details (section E or F) become available. **Analyst Analyst Affiliation** Comments:

Directions for Completing Preliminary Assessment of Groundwater Sources That May be Under the Direct Influence of Surface Water

A. Type of Structure

- 1. If the structure is classified as a Spring or Infiltration Gallery, do not fill out sections B through G. Give a score of 40 and circle option 3 in section H.
- 2. A well with collection laterals is classified as an Infiltration Gallery. Give score of 40 and circle option 3 in section H.

B. Historical Pathogenic Organism Contamination

Self-explanatory.

C. Historical Microbiological Contamination

Base the acute and non-acute MCL violations on MOE records for the three years preceding the date the PA form is being filled out. Acute violations typically are related to Precautionary Drinking Water Advisories and Emergency Boil Water Orders issued because of fecal or E-coli presence. Non-acute violations are typically failure to sample violations.

D. Hydrological Features

Use available information to determine nearest surface water. Surface water is defined as any water that is open to the atmosphere and is subject to surface runoff. This includes perennial streams, intermittent streams, rivers, ponds, lakes, ditches, some wetlands, and natural or artificial impoundments that receive water from surface runoff. In cases of doubt, the deciding factor will be whether the MOE determines that the surface source may contribute surface organisms to the ground water source.

E. Well Construction

If well construction is unknown, score 30 points and go to section F. However, if the data is available to answer at least one of the two questions in this section, do not score 30 points for "unknown well construction" and score the two questions in this section. A confined aquifer would score 0 under the depth to screened interval portion of this section.

F. Well Intake Construction

If well intake construction is unknown, score 10 points and go to section G. However, if the data is available to answer at least one of the two questions in this section, do not score 10 points for "unknown intake construction" and score the two questions in this section. A confined aquifer would score 0 under this section.

G. Well Cap Construction

Is the top	p of the well	I properly	sealed and	vented to	prevent of	contamination	from en	itering the w	ell? If not	, score
15 points	S.							_		

TOTAL	SCORE	
IUIAL	SUURE	

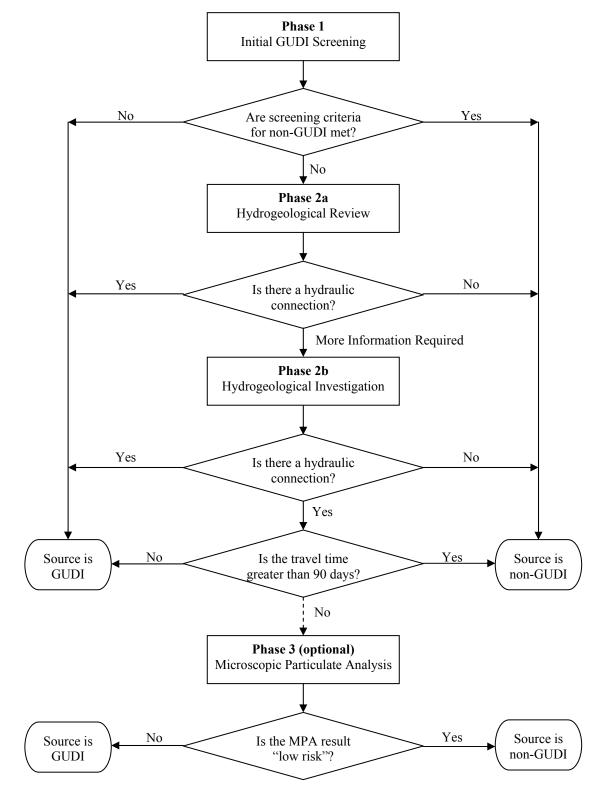
Add up all the points accumulated in sections A through G and enter the sum here.

Preliminary Assessment Determination

- 1. Well scored less than 40 points, and therefore is classified as ground water.
- Well scored 40 points or more and could not mathematically score less than 40 points even if:

 Information not available to answer questions in sections E and/or F becomes available and that information indicates the lowest point penalty should be applied; or
 Well intake construction (section F) deficiencies are repaired.
- 3. Source automatically fails if it is a spring or infiltration gallery.
- 4. Well scored 40 points or more, but will score under 40 points if well intake construction deficiencies are repaired.
- 5. Well scored 40 points or more, and could mathematically score under 40 points if unknown information in section E becomes available.

Appendix 22


Assessment Guideline for Well Water or Groundwater Under the Direct Influence of Surface Water (GUDI)

General

Well water or groundwater under the direct influence of surface water (GUDI) refers to groundwater supply sources that are hydraulically connected to nearby surface waters, and are thus vulnerable to contamination by pathogens. The vulnerability to contamination means that well water sources that are determined to be GUDI require treatment equivalent to that required for surface water sources.

This assessment guideline describes the protocol for determining whether a water well or groundwater source is GUDI or non-GUDI. The written documentation of the assessment and the conclusions derived from it must be sealed by a Professional Engineer who is licensed to practice in Yukon. The assessment is divided into three phases as outlined in the flow chart in Figure 1. The overall concept of the assessment guideline is to initially identify potential GUDI sources through a screening process and, depending on the results of the screening process, follow up with more detailed reviews and investigations to determine whether a source is GUDI or non-GUDI.

Figure 1 - GUDI Assessment Flowchart

The following describes the assessment phases and criteria shown in overview fashion in Figure 1.

Phase 1 – Initial GUDI Screening

The purpose of the initial GUDI screening is to identify, where possible, non-GUDI sources that do not require a detailed assessment. The screening criteria are as follows:

- 1. <u>Vulnerable location or type</u> the water source shall not be:
 - (a) a spring, infiltration gallery, shallow collector system or artificial recharge system;
 - (b) a well with a production zone located less than 15m below the ground surface;
 - (c) a well in an unconfined aquifer; or
 - (d) a well completed in fractured or karst bedrock exposed at or near the land surface.
- 2. <u>Proximity to surface water</u> the water source shall not be located within 60m of any permanent, intermittent or seasonal surface water body, including ponds, sloughs, lakes, rivers, streams, canals, lagoons, reservoirs, or other surface water features.
- 3. <u>Well construction</u> At a minimum, the well shall meet the requirements of the most recent version of the *Guidelines for Water Well Construction*, published by the Canadian Ground Water Association.
- 4. <u>Water quality</u> The raw water from the source shall not exhibit evidence of contamination by or from surface water (i.e., significant occurrences of insects, insect parts, microorganisms such as *E.coli*, algae, *Giardia, Cryptosporidium*, or viruses; or significant and rapid shifts in water characteristics such as turbidity, temperature, conductivity, pH or chemistry that closely correlate to either weather events or surface water conditions).

Should a water source not meet any one of the above criteria, the source shall be either identified as GUDI, or as potentially GUDI with a further confirmatory assessment to be carried out under Phase 2. If the criteria under items 1 and 2 above are met, but not the criteria under 3 and/or 4, the system owner may, instead of proceeding to Phase 2, modify the well construction to ensure that the criteria under 3 and 4 are met.

Phase 2 - Hydrogeological Assessment

The Phase 2 detailed hydrogeological assessment is divided into two parts - (a) a review of existing information; and (b) additional site investigations, data collection and analysis. The two phases may be carried out either separately or together.

Phase 2a -Hydrogeological Review

The objective of the Phase 2a hydrogeological review is to determine if a water source can be designated as GUDI or non-GUDI based on existing data and factors that may not have been considered in the Phase 1 screening process. The following information is normally required for the Phase 2a review:

- geological / lithological data, including depth and thickness of production zones, overlying confining beds and other subsurface units;
- depth of surface water bodies, and penetration of any confining units by surface water bodies;
- cross-section(s) showing site stratigraphy in relation to surface water bodies;
- any history of flooding;
- pumping test results establishing recharge boundaries, recovery characteristics and hydraulic connections to surface water;
- hydraulic conductivity testing of confining units;
- historic groundwater and surface water elevation monitoring;
- historic groundwater and surface water quality data;
- calculations of groundwater gradients and flow direction; and
- estimates of time-of-travel between nearby surface water and the water supply source (where possible).

If the Phase 2a review establishes that there is no direct hydraulic connection or little likelihood of a direct hydraulic connection between the water source and surface waters, then the water source may be considered to be non-GUDI.

If there is reasonable uncertainty as to whether the source is GUDI or non-GUDI, the water source may either be declared GUDI or the assessment shall proceed to Phase 2b.

Phase 2b - Hydrogeological Investigation

The objective of the Phase 2b hydrogeological investigation is to determine through additional data collection if there is an existing or potential direct hydraulic connection that could allow rapid recharge of the water source by surface water.

The hydrogeological investigation should lead to the identification and characterization of any direct hydraulic connection between the water source and surface water, and the time-of-travel between the surface water and the source. Various methods are available to determine time-of-travel, including, but not limited to, water quality analysis, computer modeling, pumping tests, surface and groundwater elevation monitoring, analytical methods and tracer tests. The choice of method(s) should take into account the proximity of the surface water body and/or anticipated travel times. For instance, analysis of water quality parameters such as temperature, conductivity and pH may be the best option for surface waters that are very close to a groundwater source in the same aquifer. It is recommended that monitoring of such parameters be collected on a weekly basis for a minimum of one year, unless a hydraulic connection is recognized early in the program.

If the Phase 2b investigation establishes that there is no direct hydraulic connection between the water source and surface waters, or if the time-of-travel between the surface water and the source is greater than 90 days, then the water source may be considered to be non-GUDI. Otherwise the source shall be identified as GUDI.

Phase 3 – Microscopic Particulate Analysis (optional)

In a case where the Phase 1 and 2 assessments have identified a water source as GUDI, a third phase of assessment involving Microscopic Particulate Analysis (MPA) <u>may</u> be carried out at the option of the person seeking the determination of the water source as being non-GUDI.

The MPA is used to determine if there is sufficient natural filtration to remove most surface water organisms and debris, thus mitigating risks to human health. If used, MPA must be conducted according to the *Consensus Method for Determining Groundwater Under the Direct Influence of Surface Water Using Microscopic Particulate Analysis* (US EPA, 1992). This document is may be obtained from Environmental Health Services.

Under this method, a "low risk" determination may be used to exempt the water source from the GUDI designation. A "medium risk" or "high risk" determination will require the water source to be designated GUDI.

Prepared by:

Environmental Health Services Health and Social Services, Government of Yukon (867) 667-8391 or 1-800-661-0408, extension 8391 environmental.health@gov.yk.ca

Date: February 2006