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Abstract 
Decline-curve models inherently assume that the bottomhole flowing pressure (BHP) is constant. This is a 
poor assumption for many unconventional wells. For this reason, the application of decline-curve models 
might lead to incorrect: (a) flow regime identification and (b) estimated ultimate recovery (EUR). This 
work presents a novel technique that combines variable BHP conditions with decline-curve models and 
compares its results with traditional decline-curve analysis (DCA) for both synthetic and tight-oil wells. 

Using superposition, we generate a synthetic rate example using the constant-pressure solution of the 
diffusivity equation for a slightly compressible fluid (decline-curve model) along with a BHP history. 
However, we validate the technique using incorrect bottomhole and initial reservoir pressures. In each 
iteration, the algorithm sequentially estimates: (1) the decline-curve model parameters, (2) the BHP, and 
(3) the initial reservoir pressure. The result of the synthetic example leads to an accurate production history-
match and corrected estimates of the initial reservoir pressure and the BHP. Finally, this work compares 
the results of the technique with traditional DCA in terms of: (a) the model parameters, (b) flow regime 
identification, (c) production history-matches, and (d) estimated ultimate recovery (EUR) for tight-oil wells 
using three decline-curve models: 1-D single-phase constant-pressure solution of the diffusivity equation 
for a slightly compressible fluid, logistic growth model, and Arps hyperbolic relation. 

For the synthetic case, the algorithm can estimate the model parameters and the true initial reservoir 
pressure within 2% error. In addition, the method regenerates the true BHP history and provides an excellent 
production history-match. The analysis of the tight-oil wells shows that the new approach clearly identifies 
the flow regimes present in the well, which can be difficult to detect using traditional DCA when the BHP 
varies. In contrast, the application of traditional DCA shows considerable errors in the estimation of the 
model’s parameters and a poor history-match of the production data. Finally, this work shows that 
incorporating variable BHP into the decline-curve models leads to more accurate production history-
matches and EUR values compared to using only rate-time data. 
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This paper illustrates a workflow to incorporate variable BHP conditions for any decline-curve model. 
Moreover, the approach provides improved estimates of the BHP and initial reservoir pressures. The 
technique is computationally fast and history-matches and forecasts production of unconventional wells 
more accurately than traditional DCA. The major contribution of this work is the remarkable simplicity yet 
robustness of our solution to variable pressure decline-curve analysis. 

Introduction 
Decline-curve analysis is one of the most widely used methods in the oil and gas industry to forecast 
production from wells. The basic procedure is to establish a trend in the production rate decline, based on 
the available history, and then extrapolate the decline into the future. 

Decline-curve models include the popular Arps hyperbolic model (Arps 1945) as well as the more recent 
proliferation of decline-curve models developed specifically for unconventional wells, such as the power-
law exponential (Ilk et al. 2008), stretched exponential (Valko 2009), and the logistic growth (Clark et al. 
2011) models. The recent models include physics-based decline-curve models (Wattenbarger et al. 1998; 
Patzek et al. 2013; Male et al. 2016). 

All these models have one thing in common; namely, they inherently assume a constant BHP. While this 
assumption is often satisfactory for many conventional-recovery applications, it is often poor for 
unconventional-recovery applications. If applied to unconventional wells without properly correcting for a 
variable BHP, rate-time models might—and we show that they will—lead to several inaccuracies, including 
but not limited to grossly erroneous EURs and improper flow regime identification. 

One way to account for variable BHP conditions is to use rate-pressure deconvolution (Kuchuk et al. 2010). 
This mathematical operation transforms a variable-pressure rate into a constant-pressure rate response. 
Once we have the constant-pressure response, we fit the rate-time model to it, and then apply convolution 
to include back pressure variations to history-match and forecast production in the variable-pressure 
domain. Kuchuk et al. (2005) present an inverse scheme that uses an explicit positivity constrain 
transforming the linear inversion into non-linear problem. Ilk et al. (2007) introduce a rate-pressure 
deconvolution approach based on the cumulative production. They propose an inversion scheme using b-
spline basis functions with regularization (smoothing) to obtain the constant unit rate solution. The problem 
with deconvolution approaches is that errors in the data (rate, initial reservoir pressure, and BHP) lead to a 
convolution matrix which is usually rank deficient and ill-conditioned, making the constant-pressure rate 
response highly oscillatory and unstable (Aster et al. 2019; Hansen 2010). 

A simpler way to account for variable pressure conditions is to use a decline-curve model along with the 
time-superposition principle. Ilk and Blasingame (2013) and later Collins et al. (2014) propose applying 
time superposition along with decline-curve models to history-match and forecast production of 
unconventional wells subject to variable BHPs. The authors note the limitations of the method by pointing 
out that the superposition principle is only applicable under correct and consistent rate and pressure data. 
Errors in rate and pressure data lead to poor production history-matches and forecasts. 

The goal of this work is to incorporate variable BHP conditions into decline curve models in a fast and 
simple way while accounting for possible errors in the initial reservoir pressure and BHP history. The 
technique sequentially estimates: (1) the decline-curve model parameters, (2) the BHP, and (3) the initial 
reservoir pressure. These parameters are selected so as to accurately history-match the production of tight-
oil wells subject to variable pressure conditions. 

This paper is organized as follows. First, we detail the steps of the proposed approach. Second, we validate 
the technique with a synthetic case that has errors in the initial reservoir pressure and BHP history. Finally, 
this work compares the results of the application of the variable pressure drop DCA and the traditional DCA 
for tight-oil wells using three decline-curve models: 1-D single-phase constant-pressure solution of the 
diffusivity equation for a slightly compressible fluid, logistic growth model, and Arps hyperbolic relation. 
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Methods 
Figure 1 is a schematic illustrating the main idea of the variable pressure DCA method and it depicts two 
pressure domains: constant and variable pressure. Figure 1a depicts the constant-pressure domain, where 
the decline-curve model’s rate history is customarily displayed in terms of the unit-pressure rate, ݍ௨௣(ݐ;  ,(ݔ
which is a function of time ݐ and parameters ݔ. Figure 1b shows the variable-pressure domain where the 
actual rate history displayed. The goal of this step is to map a decline-curve model from a constant pressure 
drop domain (Fig. 1a) to variable pressure drop domain (Fig 1b) while yielding a good match of the actual 
rate history. 

(a) (b) 

  
Fig. 1—Schematic illustrating the main idea of the variable pressure DCA method. The goal is to map a decline-curve model from (a) a constant-
pressure domain to (b) variable pressure conditions to history-match and forecast the production of tight-oil wells. 

To convert the decline-curve rate from constant- to variable-pressure domains, we apply the time-
superposition principle. 

;ݐො൫ݍ ,ݔ ௜ܲ , ௪ܲ௙൯ = ൫ ௜ܲ − ௪ܲ௙భ൯ ݍ௨௣(ݐ; (ݔ + ෍ൣ ௪ܲ௙ೖషభ − ௪ܲ௙ೖ൧ ݍ௨௣(ݐ − ;௞ିଵݐ (ݔ
௡

௞ୀଶ

. (1) 

Equation 1 allows us to incorporate variable pressure drop conditions into our decline-curve model ݍ௨௣. 
(defined in terms of rate per unit pressure). Figure 2 illustrates the application of Eq. 1 for the case of an 
example tight-oil well. Figure 2 shows two rate histories: one corresponding to the actual well’s history 
(green dots) and another showing the application of Eq. 1 using a decline-curve model (dashed blue curve). 
We use least-squares regression between the actual oil rate and ݍො to obtain the decline-curve model’s 
production history-match. This approach has been proposed by Ilk and Blasingame (2013) to account for 
variable pressure, but it typically yields poor history matches for the following reasons. First, Eq. 1 is very 
sensitive to errors in the data (data issues). Second, incorrect estimates in both the initial reservoir pressure 

௜ܲ and the BHP produce errors in the rate response. These errors propagate forward in time leading to large 
oscillations in the variable-pressure rate response as shown by the dashed blue curve in Fig. 2. 
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Fig. 2—Oil rate production history of a tight oil well (green dots) and production history-match using Eq. 1 with a decline-curve model (dashed 
blue lines). The model’s history-match is very poor. Incorrect estimates in both the initial reservoir pressure ௜ܲ and the BHP produce errors in the 
rate response in Eq. 1. These errors propagate forward in time leading to large oscillations in the calculated rate. 

To avoid these problems, we propose using the technique offered in this paper. This technique provides a 
fast and simple solution to incorporate variable BHP into any decline-curve model while addressing the 
following problems (data issues): 

1. Incorrect estimate of initial reservoir pressure ௜ܲ. 
2. Incorrect values of bottomhole flowing pressures ௪ܲ௙. 
3. Rate and bottomhole flowing pressure inconsistencies (e.g. flowing pressure increases and rate 

increases). 

There are three main goals of the present method: 

1. History-match the oil production using a decline-curve model while accounting for variable BHP. 
2. Estimate the BHP history consistent with the decline-curve model history-match. 
3. Estimate the initial reservoir pressure consistent with the decline-curve model history-match. 

Workflow 
This section details the workflow used in this study. There are three main steps: (1) production history-
match, (2) pressure drop correction, and (3) initial reservoir pressure correction. 

Step 1: Initialization  

The first step selects a decline-curve model ݍ௨௣ for the analysis of the oil production. The decline-curve 
model should be defined in terms of rate per unit pressure drop (dimensions of rate divided by pressure). In 
addition, the method needs preliminary estimates (݈ = 0) of the initial reservoir pressure ௜ܲ

(଴) and the 
bottomhole flowing pressure ௪ܲ௙

(଴). 

The algorithm requires a reasonable estimate for the BHP history. Ideally, flowing pressures should be 
measured using downhole pressure gauges but can be estimated using other means. 
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Step 2: ࢖ࡺ History Matching 

The second step history matches the oil production using the time superposition equation with the 
cumulative production of the decline-curve model ௣ܰ௨௣

. The cumulative production is a monotonic 
function that increases with time. Therefore, it is smoother than the rate history and provides a better 
history-match while dampening the effects of potential errors in the pressure drop estimates. 

෡ܰ௣൫ݐ; ,ݔ ௜ܲ , ௪ܲ௙൯ = ൫ ௜ܲ − ௪ܲ௙భ൯ ௣ܰ௨௣
;ݐ) (ݔ + ෍ൣ ௪ܲ௙ೖషభ − ௪ܲ௙ೖ൧ ௣ܰ௨௣

ݐ) − ;௞ିଵݐ (ݔ
௡

௞ୀଶ

. (2) 

The least-squares regression of the cumulative production is given by Eq. 3. 

(௟ାଵ)ݔ = arg ௫  min ൜ቛ ௣ܰ(ݐ) −  ෡ܰ௣ ቀݐ; ,ݔ ௜ܲ
(௟), ௪ܲ௙

(଴)ቁቛ
ଶ

ଶ
ൠ. (3) 

The goal of this step is to estimate the decline-curve model parameters ࢞(࢒ା૚) and to use them in next step 
to correct/estimate the pressure drop. 

Step 3: Pressure Drop Correction 

This step applies rate-pressure deconvolution (Kuchuk et al. 2010) to estimate the pressure drop ∆ ௪ܲ௙ =
௜ܲ − ௪ܲ௙  using the decline-curve model ݍ௨௣ and its parameters ݔ(௟ାଵ) from step 2.  

Equation 4 is an integrated form of the convolution integral (Ilk et al. 2007). 

න  ∆ ௪ܲ௙(ݐᇱ)ݍ௨௣(ݐ − ;ᇱݐ ᇱݐ݀ ((1+݈)ݔ

௧

଴

= ௣ܰ(ݐ) . (4) 

Considering a constant pressure drop for each time interval, Eq. 4 is discretized as follows. 

 ∆ ௪ܲ௙ଵ
න ଵݐ)௨௣ݍ  − ;ᇱݐ ᇱݐ݀ ((௟ାଵ)ݔ

௧భ

଴

 +                            0                                    + ⋯ + 0 = ௣ܰ(ݐଵ)

∆ ௪ܲ௙ଵ
 න ଶݐ)௨௣ݍ  − ;ᇱݐ ᇱݐ݀ ((௟ାଵ)ݔ

௧భ

଴

 +  ∆ ௪ܲ௙ଶ
 න ଶݐ)௨௣ݍ  − ;ᇱݐ ᇱݐ݀ ((௟ାଵ)ݔ

௧మ

௧భ

+ ⋯ + 0 = ௣ܰ(ݐଶ)

                          

⋮      

෍ ∆ ௪ܲ௙௞

௡

௞ୀଵ

න ௡ݐ)௨௣ݍ  − ;ᇱݐ ᇱݐ݀ ((௟ାଵ)ݔ

௧ೖ

௧ೖషభ

    
⋮

= ௣ܰ(ݐ௡)
⎭
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫

∆ (௟ାଵ)ܤ ௪ܲ௙ = ௣ܰ, (5) 

where ௣ܰ and ∆ ௪ܲ௙ are the cumulative production and the pressure drop vectors, respectively. The matrix 
௞ݐ)௨௣ݍ  contains the time integrals of the decline-curve model  (௟ାଵ)ܤ − ;ᇱݐ  .((௟ାଵ)ݔ

The goal of this step is to get an estimate of the pressure drop  ∆ ௪ܲ௙
(௟ାଵ) . This estimate is then used in step 

4 to correct/estimate the initial reservoir pressure. 

∆ ௪ܲ௙
(௟ାଵ)  = arg ∆௉ೢ೑  min  ቄฮ ௣ܰ − ∆(௟ାଵ)ܤ ௪ܲ௙ฮ

ଶ
ଶቅ. (6) 

Step 4: Initial Reservoir Pressure Correction 

This step estimates the initial reservoir pressure using the following least-squares optimization. 
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௜ܲ
(௟ାଵ) = arg ௉೔  min ቄฮ−∆ ௪ܲ௙

(௟ାଵ) + ௜ܲ − ௪ܲ௙
(଴)ฮ

ଶ

ଶ
ቅ. (7) 

Once Eq. 7 is solved, we return to step 2 with the estimated initial reservoir pressure, and we repeat steps 2 
to 4 until: 

ะ ௜ܲ
(௟ାଵ) − ௜ܲ

(௟)

௜ܲ
(௟) ะ

ଶ

≤ Tolerance. (8) 

The final outputs of the algorithm are: (a) the model’s parameters ݔ(௟ାଵ), (b) the initial reservoir pressure 

௜ܲ
(௟ାଵ)  , and (c) the pressure drop ∆ ௪ܲ௙

(௟ାଵ). 

Step 5: Compute Rate History 

The final step computes the oil rate history using Eq. 1 with the estimated model’s parameters, the corrected 
initial reservoir pressure, and the corrected pressure drop. We convert the pressure drop into bottomhole 
flowing pressures using the pressure drop definition: ௪ܲ௙

(௟ାଵ) = −∆ ௪ܲ௙
(௟ାଵ) + ௜ܲ

(௟ାଵ). 

;ݐො൫ݍ ,(௟ାଵ)ݔ ௜ܲ
(௟ାଵ), ௪ܲ௙

(௟ାଵ)൯ = ൫ ௜ܲ
(௟ାଵ) − ௪ܲ௙ ଵ

(௟ାଵ)൯ݍ௨௣൫ݐ; ൯(௟ାଵ)ݔ + ෍ൣ ௪ܲ௙ ௞ିଵ
(௟ାଵ) − ௪ܲ௙ ௞

(௟ାଵ)൧ݍ௨௣൫ݐ − ;௞ିଵݐ ൯(௟ାଵ)ݔ
௡

௞ୀଶ

. (9) 

Figure 3 is a flowchart illustrating the steps of the variable pressure drop DCA method. 

 
Fig. 3—Flowchart illustrating the steps of the variable pressure drop method. The workflow consists of three main steps: (I) production history-
match (step 2), (II) pressure drop correction (step 3), and (III) initial reservoir pressure correction (step 4). 
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Computational Performance 
The design of the algorithm meets three requirements: high stability, robustness, and speed. The above 
workflow achieves those requirements. The application of an efficient optimization technique helps us to 
achieve fast convergence. Currently, a typical analysis for an average well requires about 10 seconds on a 
typical laptop computer. We expect much shorter execution times on more sophisticated hardware. Further 
improvements will shorten the computational time. 

Validation With Synthetic Case 
This study uses the 1-D constant-pressure solution of the diffusivity equation for a single-phase slightly 
compressible fluid along with time superposition (Eq. 1) to generate a synthetic example subject to variable 
BHP conditions. 

The 1-D constant-pressure solution of the diffusivity equation for a single-phase slightly compressible fluid 
represents an idealized hydro-fractured well (Fig. 4a). It consists of nf evenly-spaced, transverse planar 
hydraulic fractures that stimulate a rock volume around them. These stimulated rock volumes are equal for 
all hydro-fractures and constitute the stimulated rock volume (SRV) of the reservoir. The fractures and the 
well itself have infinite conductivity and thus, fluid that reaches them is instantly produced. In addition, we 
invoke the following model assumptions: (a) planar fractures of constant length 2ݔ௙ and height ℎ௙ and two 
producing faces, (b) flow is one-dimensional and perpendicular to the faces of the hydraulic fractures, (c) 
oil is a single component of constant properties at undersaturated conditions, (d) Darcy’s law applies, (e) 
gravity and capillary forces are negligible, (e) constant irreducible water saturation ܵ௪௜, (f) an isothermal 
reservoir, (g) constant initial reservoir pressure ௜ܲ, (h) constant bottomhole flowing pressure ௪ܲ௙ at the 
fracture face, and (i) no-flow boundary at half the distance ܮ between fractures. 

The repetitive symmetry of Fig.4a allows solving the oil flow equation for a single half-fracture face (Fig. 
4b). After obtaining the solution, we consider the oil flow from the remaining fractures by addition. 

(a) (b) 

 
 

Fig. 4—(a) Idealized representation of a hydraulically-fractured well. (b) Top view of the simplified medium under study showing initial and 
boundary conditions. 

Equation 10 is the dimensionless form of the pressure diffusivity equation (Walsh and Lake 2003) along 
with its initial (IC) and boundary (BC) conditions. 

߲ ஽ܲ

஽ݐ߲
=

߲ଶ
஽ܲ

஽ݔ߲
ଶ , 

IC:  ஽ܲ(ݐ஽ = 0, (஽ݔ = 1, BC1:  ஽ܲ(ݐ஽ , ஽ݔ = 0) = 0 ,      BC2: ൬
߲ ஽ܲ

஽ݔ߲
൰

௫ವୀଵ
= 0. 

(10) 
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The dimensionless variables in Eq. 10 are defined using the Shook et al. (1992) method. 

Dimensionless pressure ஽ܲ 

஽ܲ =
ܲ − ௪ܲ௙

௜ܲ − ௪ܲ௙
 . (11) 

Dimensionless coordinate ݔ஽ 

஽ݔ =
ݔ
ܮ

 . (12) 

Dimensionless time ݐ஽ 

஽ݐ =
ݐ
߬

 .  (13) 

We solve Eq. 10 using the method of separation of variables (Hahn and Özişik 2012). 

஽ܲ(ݔ஽ , (஽ݐ = ෍ ൤
4

(2݆ + ߨ(1
൨ sin ቆ(2݆ + 1)

ߨ
2

஽ቇݔ  ݁ିቂ(ଶ௝ାଵ)గ
ଶቃ

మ
௧ವ

ஶ

௝ୀ଴

 . (14) 

The dimensionless rate ݍ஽ relates to the dimensionless pressure ஽ܲ as follows. 

(஽ݐ)஽ݍ   =  ൬
߲ ஽ܲ

஽ݔ߲
൰

௫ವୀ଴
     

                                =  2 ෍ ݁ିቂ(ଶ௝ାଵ)గ
ଶቃ

మ
௧ವ

ஶ

௝ୀ଴

.   
(15) 

Equation 16 relates the unit-pressure-drop rate ݍ௨௣ to the dimensionless rate ݍ஽. Eq. 16 is a decline-curve 
model with two parameters: a hydrocarbon pore volume ௣ܸ, and a characteristic time ߬. These two 
parameters answer two important questions: how much oil is present ௣ܸ and how fast we can produce it ߬ 
(closely related to the time of end of transient flow). 

;ݐ௨௣ ൫ݍ ௣ܸ, ߬൯ =
ܿ௧ ௣ܸ

߬
 (16) . (߬/ݐ)஽ݍ

The hydrocarbon pore volume and the characteristic time are defined by Eqs. 17 and 18, respectively. 

௣ܸ =  4߶݊௙ℎ௙ݔ௙(17)  ܮ 

߬ =  
ଶܮ

ߙ
  , ߙ =

݇௢

௢ܿ௧ߤ߶
 . (18) 

Table 1 defines the input reservoir and completion properties for the synthetic case under study. 

Parameter ࣘ ࢕࢑ [nD] ࢕ࣆ [cP] ࢚ࢉ [1/psi] ࡸ [ft] ࢌ࢞ ࢌ࢔ [ft] ࢌࢎ [ft] ࢏ࡼ [psi] 
Value 0.078 218.10 0.30 2x10-5 20 150 100 60 7,000 

Table 1—Input reservoir and completion properties for the synthetic case. 

Using the properties of Table 1 in Eq. 17 and Eq. 18 lead to the following values of the decline-curve model 
(Eq. 16) parameters ௣ܸ and ߬: 

 ௣ܸ = 1 MMSTB 
 ߬ = 4  years 
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Figure 5 shows the synthetic rate history (green dots) generated using Eqs. 1, 15, and 16 for the case of the 
bottomhole pressure history in the figure; the BHP history contains four distinct step changes (cyan lines). 
To test the robustness of our workflow, we superimpose noise on the pressure data in Fig. 5. This noise 
reflects possible uncertainty in the pressure measurements. Specifically, we consider an incorrect initial 
reservoir pressure of 8,000 psi (dashed red line) and the noisy BHP data shown by brown diamonds in Fig. 
5. The error in the initial reservoir pressure is 15% and the error BHP ranges between 0-45%. For the 
synthetic case, Eq. 16 represents the decline-curve model. 

 
Fig. 5—Synthetic case oil rate history (green dots) generated using Eqs. 1, 15, and 16 with an initial reservoir pressure of 7,000 psi and a BHP 
history with step (cyan lines). We input incorrect initial reservoir pressure and BHP (dashed red line and the brown diamonds, respectively) to test 
the method’s ability to accurately history-match the oil production and to estimate both the true initial reservoir pressure and the BHP. The error in 
the initial pressure is 15% and the error in the BHP ranges between 0-45%. 

Figure 6 illustrates the results of the application of the method for the synthetic case of Fig. 5. The dashed 
blue curve is the oil rate history-match; the agreement with the oil production history is excellent. The 
dashed magenta line is the corrected initial reservoir pressure. This estimate coincides very closely with the 
true initial reservoir pressure. Finally, the dotted blue curve is the BHP history from the technique, which 
agrees well with the true BHP history. 

 
Fig. 6—Results of the application of the method for the synthetic case of Fig. 5. The dashed blue lines are the oil-rate history-match; the agreement 
with the oil production history is excellent. The dashed magenta line represents the corrected initial reservoir pressure estimated from the algorithm. 
This estimate coincides with the true initial reservoir pressure. Finally, the dotted blue curve is the BHP history estimated from the technique, which 
is in good agreement with the true BHP history. 
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Table 2 compares true and estimated initial reservoir pressure and model’s parameters ௣ܸ and ߬ for the 
synthetic case. The relative errors for these quantities are less than 2%. 

Parameter True Estimated Relative Error [%] 
௜ܲ [psi] 7,000 6,950 -0.71 
௣ܸ [MMSTB] 4.00 4.07 1.75 

߬ [year] 1.00 0.99 -1.00 
Table 2—Comparison between true and estimated initial reservoir pressure and model’s parameters ௣ܸ and ߬ for the synthetic case. The relative 
errors for these quantities are less than 2%. 

Tight-Oil Examples 
This section illustrates the application of the variable pressure drop technique for tight-oil wells producing 
under variable pressure drop conditions. For each tight-oil well, we apply the method using three decline 
curve models: 1-D single-phase solution of the diffusivity equation for a slightly compressible fluid ݍ௨௣ ௌ௉ 
(Eq. 19), logistic growth model ݍ௨௣ ௅ீெ (Eq. 20), and Arps hyperbolic relation ݍ௨௣ ு௬௣ (Eq. 21). 

;ݐ௨௣ ௌ௉ ൫ݍ ௣ܸ, ߬൯ =
ܿ௧ ௣ܸ

߬
 2 ෍ ݁ିቂ(ଶ௝ାଵ)గ

ଶቃ
మ

 ௧ఛ

ஶ

௝ୀ଴

 . (19) 

௨௣ ௅ீெݍ  ൫ݐ; ,௨௣ܭ ܽ௅ீெ , ݊௅ீெ൯ =
௨௣ܽ௅ீெ ݊௅ீெܭ ௡ಽಸಾିଵݐ 

(ܽ௅ீெ + ௡ಽಸಾ)ଶݐ  . (20) 

௨௣ ு௬௣ݍ  ቀݐ; ௜ೠ೛ݍ , ௜ܦ , ܾ ቁ =
௜ೠ೛ݍ  

(1 + ଵ/௕(ݐ௜ܾܦ . (21) 

These models are defined per unit pressure drop (rate divided by pressure). For this reason, the logistic 
growth model carrying capacity parameter ܭ௨௣ has dimensions of volume divided by pressure and the Arps 
hyperbolic initial rate parameter ݍ௜ೠ೛  has dimensions of rate divided by pressure. In addition, this work 
constrains the Arps b parameter between 0 and 2. 

Finally, we compare the history-matches, model’s parameters, and production forecasts for each model 
with and without accounting for variable pressure drop conditions for each tight-oil well. 

Well # 1 

Figure 7 shows DCA results for the case of the 1-D single-phase model.  Figure 7a compares rate history 
matches for the cases of including and ignoring variable pressure (dashed blue vs dotted red curves, 
respectively). The case of ignoring variable pressure is corresponds to conventional DCA where only rate-
time data is considered. Accordingly, we sometimes refer to this method as the rate-time method, versus 
the pressure-rate-time method for the variable-pressure case. The variable-pressure case yields a much 
better history match; it effectively exhibits both the early-time ramp-up and the overall rate scatter.  Figure 
7b compares the forecasts for the cases of including and ignoring variable pressure. The forecasts are 
extended to 1400 days (3.8 years).  The two cases exhibit markedly different predictions, with the variable-
pressure case yielding a more conservative forecast. 
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Fig. 7—Comparison of the production history-matches (Fig. 7a) and forecasts (Fig. 7b) using the 1-D single-phase model (Eq. 19) including 
variable BHP (dashed blue curve) and using only rate-time data (dotted-dashed red curve). The variable pressure method mimics both the early-
time ramp-up and the scatter present in the oil rate in Fig. 7a. Figure 7b shows that incorporating variable pressure effects into the decline-curve 
model yields a production forecast that is less than the one using only rate-time data. 

Table 3 compares the 1-D single-phase model parameters, 20-year EUR, and 20-year recovery factor (RF) 
values including variable pressure drop effects and using only rate-time data of Fig. 7. Including variable 
pressure effects lead to smaller model’s parameters, 20-year EUR, and a realistic 20-year RF. 

The marked differences between the two cases is related to the nature of the 1-D single-phase model. The 
model accounts for both transient and boundary-dominated flow (BDF) regimes. When the effects of 
variable pressure are considered, the model predicts the onset of BDF before 450 days; in contrast, when 
the effects of variable pressure are ignored, the model predicts BDF has not occurred, and therefore predicts 
a much greater ߬ and EUR.  

Parameter Pressure-Rate-Time Rate-Time Relative Difference [%] 
௣ܸ [MMSTB] 9.57 99.98 944.70 

߬ [year] 1.72 344.51 19,930 
20-year EUR [MSTB] 247.86 817.08 229.70 
20-year RF [%] 2.58 0.82 -68.40 

Table 3—1-D single-phase model parameters, 20-year EUR, and 20-year recovery factor (RF) values including variable pressure drop effects (with 
pressure) and using only rate-time data (without pressure) of Fig. 7. Including variable pressure effects lead to smaller model’s parameters and 20-
year EUR, and a more realistic 20-year RF. 
Figure 8 is analogous to Fig. 7 but considers the logistic growth model (Eq. 20). The dashed magenta and 
dotted-dashed red curves correspond to the cases including and ignoring variable pressure, respectively. 
The variable pressure case matches both the early-time ramp-up and the scatter present in the oil rate in Fig. 
8a. In this case, incorporating variable pressure effects into the decline-curve model yields a slightly more 
conservative production forecast than the case of ignoring pressure (Fig. 8b). 
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Fig. 8—Comparison of the production history-matches (Fig. 8a) and forecasts (Fig. 8b) using the logistic growth model (Eq. 20) including for 
variable BHP (dashed magenta curve) and using only rate-time data (dotted-dashed red curve). The variable pressure method mimics both the early-
time ramp-up and the scatter present in the oil rate in Fig. 8a. In this case, the inclusion of variable pressure effects into the decline-curve model 
yields a slightly more conservative production forecast compared to using only rate-time data (Fig. 8b). 

Table 4 compares the logistic growth model parameters and 20-year EUR values including variable 
pressure drop effects and using only rate-time data of Fig. 8. Including variable pressure effects leads to a 
slightly smaller 20-year EUR. 

A comparison of Tables 3 and 4 reveals that the logistic growth model yields a greater EUR than the 1-D 
single-phase model for the case of including variable pressure (368 vs. 247 MSTB).  The reason for this 
difference is explained by inherent differences in the models. The logistic growth model does not allow for 
a complete transition to BDF, unlike the 1-D single-phase model. This difference illustrates the importance 
of exercising careful consideration when selecting a decline-curve model. 

Parameter Pressure-Rate-Time Rate-Time Relative Difference [%] 
 ௨௣ [STB/psi] 79.34 N/A N/Aܭ
 N/A 411.75 N/A [MSTB] ܭ
ܽ௅ீெ [daysn] 87.44 358.85 310.40 
݊௅ீெ [dimensionless] 0.75 0.92 22.70 
20-year EUR [MSTB] 368.56 375.16 1.80 

Table 4—LGM parameters and 20-year EUR values including variable pressure drop effects (with pressure) and using only rate-time data (without 
pressure) of Fig. 8. Including variable pressure effects leads to a slightly smaller 20-year EUR. 
Figure 9 is analogous to Figs. 7 and 8, but considers the Arps hyperbolic relation (Eq. 21). The black dashed 
and dotted-dashed red curves correspond to the cases of including and ignoring variable pressure, 
respectively. The variable pressure case exhibits both the early-time ramp-up and the scatter present in the 
oil rate in Fig. 9a. In this case, incorporating variable pressure effects into the decline-curve model yields a 
more conservative production forecast than the case of considering only rate-time data (Fig. 9b). 
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Fig. 9—Comparison of the production history-matches (Fig. 9a) and forecasts (Fig. 9b) using the Arps hyperbolic model (Eq. 21) including variable 
BHP (dashed black curve) and using only rate-time data (dotted-dashed red curve). The variable pressure method mimics both the early-time ramp-
up and the scatter present in the oil rate in Fig. 9a. Incorporating variable pressure effects into the decline-curve model yields a production forecast 
that is less than the one using only rate-time data (Fig. 9b). 
Table 5 compares the Arps hyperbolic model parameters and 20-year EUR values including variable 
pressure drop effects and using only rate-time data of Fig. 9. Including variable pressure effects yield a 
smaller b value and a smaller 20-year EUR. 

The EUR differences between Table 3, 4, and 5 is readily explained by the differences in the models. The 
EUR of the Arps model (504 MSTB) is much greater than those of the 1-D single-phase model (247 MSTB) 
or logistic growth model (368 MSTB) because the Arps model is inherently limited to one flow regime, 
thereby precluding full BDF. The difference between the models again underscores the importance of 
careful consideration when selecting a model. 

Parameter Pressure-Rate-Time Rate-Time Relative Difference [%] 
௜ೠ೛ݍ  [STB/(day psi)] 0.50 N/A N/A 
 ௜ [MSTB/day] N/A 199.90 N/Aݍ
 ௜ [1/days] 0.04 0.01 -75.00ܦ
ܾ [dimensionless] 1.16 1.53 31.90 
20-year EUR [MSTB] 504.77 699.62 38.60 

Table 5—Arps hyperbolic model parameters and 20-year EUR values including variable pressure drop effects and using only rate-time data of Fig. 
9. Including variable pressure effects yield a smaller b value and a smaller 20-year EUR. 
Well # 2 

One important difference between this well and Well #1 is that this well exhibits substantial BHP variation 
over a longer time period than Well #1 (250 days versus 50 days). 

Figure 10 considers the 1-D single-phase model. The dashed blue and dotted-dashed red curves correspond 
to the cases including and ignoring variable pressure, respectively. The variable pressure case matches the 
trends and scatter in the rate data much better than the rate-time case. Figure 10b shows that incorporating 
variable pressure effects yields a more conservative production forecast than the rate-time case. 
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Fig. 10—Production history-matches (a) and forecasts (b) using the 1-D single-phase model (Eq. 19) including variable BHP (dashed blue curve) 
and using only rate-time data (dotted-dashed red curve). The variable pressure case matches the rate history much better than the rate-time case-
(Fig. 10a). Figure 10b shows that the former case yields a more conservative forecast than the latter case. 

Table 6 compares the 1-D single-phase model parameters, 20-year EUR, and 20-year RF values including 
variable pressure drop effects and using only rate-time data of Fig. 10. Including variable pressure effects 
yield smaller model’s parameters, 20-year EUR, and a realistic 20-year RF. 

Parameter Pressure-Rate-Time Rate-Time Relative Difference [%] 
௣ܸ [MMSTB] 6.76 100 1,379.00 

߬ [year] 0.69 544.7 78,842.00 
20-year EUR [MSTB] 181.18 682.38 276.60 
20-year RF [%] 2.68 0.68 -74.50 

Table 6—1-D single-phase model parameters, 20-year EUR, and 20-year recovery factor (RF) values including variable pressure effects and using 
only rate-time data of Fig. 10. Including variable pressure effects yield smaller model’s parameters, 20-year EUR, and a realistic 20-year RF. 
Figure 11 shows results for the logistic growth model (Eq. 20). The dashed magenta and dotted-dashed red 
curves show the results for the cases including and ignoring variable pressure, respectively. Again, the 
variable-pressure case matches the bumps and scatter in the rate history much better than the case ignoring 
variable pressure. Incorporating variable pressure effects into the decline-curve model yields a more 
conservative production forecast compared to using only rate-time data (Fig. 11b). 
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Fig. 11—Comparison of the production history-matches (a) and forecasts (b) using the logistic growth model (Eq. 20) including variable BHP 
(dashed magenta curve) and using only rate-time data (dotted-dashed red curve). The variable pressure method mimics the bumps and scatter 
present in the oil rate in Fig. 11a. In this case, the inclusion of variable pressure effects into the decline-curve model yields a smaller production 
forecast compared to the one using only rate-time data (Fig. 11b). 

Table 7 compares the logistic growth model parameters and 20-year EUR values including variable 
pressure drop effects and using only rate-time data of Fig. 11. Including variable pressure effects yield a 
smaller 20-year EUR. 

Parameter Pressure-Rate-Time Rate-Time Relative Difference [%] 
 ௨௣ [STB/psi] 100.83 N/A N/Aܭ
 N/A 392.22 N/A [MSTB] ܭ
ܽ௅ீெ [daysn] 36.61 1,000 2,631.50 
݊௅ீெ [dimensionless] 0.89 1.13 27.00 
20-year EUR [MSTB] 217.50 375.47 72.60 

Table 7—Logistic model parameters and 20-year EUR values including variable pressure drop effects and using only rate-time data of Fig. 11. 
Including variable pressure effects yield a smaller 20-year EUR. 
Figure 12 shows the results for the Arps hyperbolic model (Eq. 21). The dashed magenta and dotted-dashed 
red curves correspond to the cases including and ignoring variable pressure, respectively. The variable 
pressure case matches the bumps and scatter present in the oil rate in Fig. 12a. Incorporating variable 
pressure effects into the decline-curve model yields a more conservative production forecast than the case 
of ignoring pressure (Fig. 12b). 
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Fig. 12—Comparison of the production history-matches (Fig. 12a) and forecasts (Fig. 12b) using the Arps hyperbolic model (Eq. 21) including 
variable BHP (dashed black curve) and using only rate-time data (dotted-dashed red curve). The variable pressure method mimics the bumps and 
scatter present in the oil rate in Fig. 12a. Incorporating variable pressure effects into the decline-curve model yields a more conservative production 
forecast compared to using only rate-time data (Fig. 12b). 
Table 8 compares the Arps hyperbolic model parameters and 20-year EUR values including variable 
pressure drop effects and using only rate-time data of Fig. 12. The variable pressure drop method yields a 
b value smaller than one, meaning that the well is in boundary-dominated flow, and a smaller 20-year EUR. 

Parameter Pressure-Rate-Time Rate-Time Relative Difference [%] 
௜ೠ೛ݍ  [STB/(day psi)] 2.41 N/A N/A 
 ௜ [MSTB/day] N/A 1.00 N/Aݍ
 ௜ [1/days] 0.05 0.01 -80.00ܦ
ܾ [dimensionless] 0.560 2.00 257.10 
20-year EUR [MSTB] 211.32 1,003.60 374.90 

Table 8—Arps hyperbolic model parameters and 20-year EUR values including variable pressure drop effects and using only rate-time data of Fig. 
12. The variable pressure drop method yields a b value smaller than one, meaning that the well is in boundary-dominated flow, and a smaller 20-
year EUR. 
Well # 3 

This well, like Well #2, exhibits a relatively long period of declining BHP. Figures 13, 14, and 15 in this 
section are analogous in format to figures for the previous wells. 

Figure 13 shows the results for the 1-D single-phase model (Eq. 19).  The dashed blue and dotted-dashed 
red curves correspond the cases including and ignoring variable pressure, respectively.  The variable 
pressure case matches the bumps and scatter in the oil rate much better than the case ignoring variable 
pressure (Fig. 13a). Figure 13b shows that the case of including variable pressure yields a more conservative 
production forecast than the case ignoring variable pressure. 
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Fig. 13—Production history-matches (a) and forecasts (b) using the 1-D single-phase model (Eq. 19) including variable BHP (dashed blue curve) 
and using only rate-time data (dotted-dashed red curve). The variable pressure method has both the bumps and scatter present in the oil rate while 
the rate-time model fit cannot history-match the oil production (Fig. 13a). Figure 13b shows that incorporating variable pressure effects into the 
decline-curve model yields a conservative production forecast compared to using only rate-time data. 

Table 9 compares the 1-D single-phase model parameters, 20-year EUR, and 20-year RF values including 
variable pressure drop effects and using only rate-time data of Fig. 13. Including the variable pressure 
effects leads to smaller model’s parameters, 20-year EUR, and a realistic 20-year RF. 

Parameter Pressure-Rate-Time Rate-Time Relative Difference [%] 
௣ܸ [MMSTB] 6.67 99.72 1,395.10 

߬ [year] 0.84 864.95 102,870 
20-year EUR [MSTB] 183.04 653.82 257.20 
20-year RF [%] 2.74 0.66 -76.10 

Table 9—1-D single-phase model parameters, 20-year EUR, and 20-year RF values including variable pressure drop effects and using only rate-
time data of Fig. 13. Including the variable pressure effects leads to smaller model’s parameters, 20-year EUR, and a realistic 20-year RF. 

Figure 14 shows the results for the logistic growth model (Eq. 20).  The dashed magenta and dotted-dashed 
red curves correspond to the cases including variable BHP and ignoring variable BHP, respectively. The 
variable pressure case matches both the bumps and scatter present in the oil rate history in Fig. 14a much 
better than the case ignoring variable pressure. Including variable BHP effects leads to a more conservative 
production forecast than the case of ignoring BHP (Fig. 14b). 
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Fig. 14—Comparison of the production history-matches (a) and forecasts (b) using the logistic growth model (Eq. 20) including variable BHP 
(dashed magenta curve) and using only rate-time data (dotted-dashed red curve). The variable pressure method mimics both the bumps and scatter 
present in the oil rate in Fig. 14a. Including variable BHP effects leads to a conservative production forecast compared to using only rate-time data 
(Fig. 14b). 

Table 10 compares the logistic growth model parameters and 20-year EUR values including variable 
pressure drop effects and using only rate-time data of Fig. 14. Including pressure effects yield a smaller 20-
year EUR. 

Parameter Pressure-Rate-Time Rate-Time Relative Difference [%] 
 ௨௣ [STB/psi] 98.73 N/A N/Aܭ
 N/A 437.84 N/A [MSTB] ܭ
ܽ௅ீெ [daysn] 68.83 772.75 1,022.70 
݊௅ீெ [dimensionless] 0.92 1.04 13.00 
20-year EUR [MSTB] 235.07 408.01 73.60 

Table 10—Logistic model parameters and 20-year EUR values including variable pressure drop effects and using only rate-time data of Fig. 14. 
Including pressure effects yield a smaller 20-year EUR. 
Figure 15 shows the results using the Arps hyperbolic relation (Eq. 21). The black dashed and dotted-
dashed red curves correspond to the cases including and ignoring variable BHP, respectively. The variable 
pressure case matches both the bumps and scatter in the rate history in Fig. 15a much better than the case 
ignoring the pressure variations. Incorporating variable pressure effects into the decline-curve model yields 
a more conservative production forecast than the case ignoring variable pressure (Fig. 15b).  
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Fig. 15—Comparison of the production history-matches (Fig. 15a) and forecasts (Fig. 15b) using the Arps hyperbolic model (Eq. 21) including 
variable BHP (dashed black curve) and using only rate-time data (dotted-dashed red curve). The variable pressure method mimics the bumps and 
scatter present in the oil rate in Fig. 15a. Incorporating variable pressure effects into the decline-curve model yields a more conservative production 
forecast compared to using only rate-time data (Fig. 15b). 
Table 11 compares the Arps hyperbolic model parameters and 20-year EUR values including variable 
pressure drop effects and using only rate-time data of Fig. 15. Incorporating variable pressure effects yield 
a b value smaller than one, meaning that the well is in boundary-dominated flow, and a smaller 20-year 
EUR. 

Parameter Pressure-Rate-Time Rate-Time Relative Difference [%] 
௜ೠ೛ݍ  [STB/(day psi)] 1.37 N/A N/A 
 ௜ [MSTB/day] N/A 0.80 N/Aݍ
 ௜ [1/days] 0.03 0.01 -66.70ܦ
ܾ [dimensionless] 0.55 2.00 263.60 
20-year EUR [MSTB] 223.99 1,038.90 364.30 

Table 11—Arps hyperbolic model parameters and 20-year EUR values including variable pressure drop effects and using only rate-time data of 
Fig. 15. The variable pressure drop method yields a b value smaller than one meaning that the well is in boundary-dominated flow, and a smaller 
20-year EUR. 

Implications to Traditional Rate-Transient Analysis (RTA) 

The method presented in this paper uses pressure-rate-time data to match the rate history and to estimate 
the well’s future production. The goal of popular RTA software programs is similar but they employ a 
different workflow, one that characteristically includes different diagnostic plots, such as a plot of 
normalized pressure versus square root of time, and requires the interpretation of an experienced reservoir 
engineer. If our method is applied using the 1-D single-phase decline-curve model, it mimics RTA but does 
not require an interpretation of diagnostic plots and does not suffer from some of the limitations of 
traditional RTA. Several investigators have recently discussed those limitations (Chaudhary and Lee 2016; 
Bowie and Ewert 2020; Carlsen et al. 2021). For instance, the present technique does not assume rate 
normalization since it solves the convolution integral to rigorously account for BHP changes. See 
Chaudhary and Lee (2016) for a discussion of the limitations of rate normalization. In summary, this method 
can be used as a supplement to RTA but without some of its limitations and intermediate graphing steps. 
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Conclusions 

This paper presents a new method to incorporate variable bottomhole pressures into decline-curve analysis 
using any decline-curve model. The technique is remarkably stable, robust, and fast (about 10 seconds per 
well). It consistently matches the rate better than conventional DCA, which ignores changes in the BHP. 

The conclusions of this work are the following. 

 For the synthetic example, the variable pressure DCA method provides an excellent history-match 
to the oil production history despite the presence of errors in both the initial reservoir pressure 
and the BHP history (Fig. 6). In addition, the method estimates the true model parameters and 
initial reservoir pressure within 2% error (Table 2). 

 The proposed method for correcting initial pressure and BHP measurements (Fig. 3) gives a way 
to infer possible corrections to errors present in the initial reservoir pressure and BHP history for 
tight-oil wells and to estimate the true or actual initial pressure and BHP (Fig. 6). 

 For the tight-oil examples, we show that including variable pressure conditions into decline curve 
models lead to more accurate production history-matches and smaller 20-year EUR values 
compared to the analysis of decline-curve models using only rate time data, see Figs. 7-15 and 
Tables 3-11. 

 The analysis of tight-oil well examples #2 and #3 using the 1-D single phase and the Arps 
hyperbolic relation (Figs. 9 and 15) stress the importance of incorporating variable pressure 
conditions for correct flow regime identification. Rate-time analysis might lead to incorrect ߬ and 
b values (for the 1-D single-phase and the Arps hyperbolic models, respectively) and thus, 
inaccurate flow regime characterization and misleading production forecasts because of BHP 
variations, see Tables 6, 8, and 9, 11, respectively. 

 The present method uses pressure-rate-time data to match the rate history and has similar goals 
of traditional RTA. However, the method does not: (a) require interpretation of diagnostic plots 
and (b) suffer from some of the limitations of RTA. This method can be used as a supplement to 
traditional RTA but without some of its limitations and intermediate graphing steps. 

Nomenclature 
ܽ௅ீெ = logistic growth model parameter, ݐ௡ಽಸಾ, ݀ܽݕ௡ಽಸಾ 
ܾ = Arps model b parameter, dimensionless 
 convolution matrix for estimating pressure drops, t2 L4/m, STB/psi = ܤ
ܿ௧ = total compressibility, Lt2/m, psi-1 
 ௜ = Arps model initial decline rate parameter, t-1, day-1ܦ
ℎ௙ = fracture height, L, ft 
݆ = iteration index, dimensionless 
݇ = time iteration index, dimensionless 
݇௢ = oil phase permeability, L2, nD 
 logistic growth model carrying capacity parameter, L3, MSTB = ܭ
 ௨௣ = logistic growth model carrying capacity parameter per unit pressure, t2 L4/m, STB/psiܭ
݈ = iteration index, number 
 half distance between adjacent fractures, L, ft = ܮ
 total lateral length, L, ft = ்ܮ

௣ܰ = oil cumulative production, L3, MSTB 
෡ܰ௣ = model estimate of the oil cumulative production, L3, MSTB 
݊ = number of time production data values, number 
ܽ௅ீெ = logistic growth model parameter, dimensionless 
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݊௙ = total number of fractures, number 
ܲ = reservoir pressure, m/Lt2, psi 

௜ܲ = initial reservoir pressure, m/Lt2, psi 
௪ܲ௙ = bottomhole flowing pressure, m/Lt2, psi 

 ො = model estimate of the oil rate, L3/t, STB/dayݍ
 ௜ = Arps model initial rate parameter, L3/t, STB/dayݍ
 ௜௨௣ = Arps model initial rate parameter per unit pressure, L2t/m, STB/(psi day)ݍ
 ஽ = dimensionless rate, dimensionlessݍ
 ௢ = gas rate at standard conditions, L3/t, STB/dayݍ
 ௨௣ = unit-pressure-drop oil rate, t L4/m, STB/(day*psi)ݍ
ܵ௪௜ = irreducible water phase saturation, fraction 
 time, t, day = ݐ
 ஽ = hydrocarbon pore volume parameter, L3, MMSTBݐ
 ஽ = dimensionless time, dimensionlessݐ
 model’s parameters = ݔ
 ஽ = dimensionless space coordinate, dimensionlessݔ
 ௙ = fracture half-length, L, ftݔ
 diffusion coefficient, L2/t, ft2/day = ߙ
∆ ௪ܲ௙ = pressure drop, m/Lt2, psi 
 ௢ = oil phase viscosity, m/Lt, cPߤ
 number ,3.14159 = ߨ
߬ = characteristic time parameter, t, year 
߶ = porosity, fraction 
‖ ‖ଶ = Euclidean norm 

Superscripts and subscripts 
 dimensionless = ܦ
݂ = fracture 
 Arps hyperbolic decline-curve model = ݌ݕܪ
݅ = initial condition 
݆ = index  
݇ = index for production time values 
 logistic growth decline-curve model = ܯܩܮ
݈ = iteration index  
 oil phase = ݋
ܵܲ = 1-D constant-pressure single-phase slightly compressible decline-curve model 
 unit-pressure-drop = ݌ݑ
 bottom-hole flowing pressure conditions = ݂ݓ
෡  = model estimate 

Abbreviations 
BC = boundary condition 
BHP = bottomhole flowing pressure 
DCA = decline-curve analysis 
EUR = estimated ultimate recovery 
IC = initial condition 
M = thousand 
MM = million 
RF = recovery factor 
RTA = rate-transient analysis 
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