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Initial oil saturation was highest in
high-porosity (25 - 30%) tidal-flat
dolostone facies at top of Wichita and
in subtidal dolostone and limestone
facies of the Lower Clear Fork.

Line-drive waterflooding pattern
initiated in 1960. Prior primary
production came dominantly from
high-porosity Wichita tidal-flat facies
and L2.1 Lower Clear Fork.

Effects of line-drive injection are
obvious afer 20 years.

Effects of conversion to pattern
flooding and infill drilling are apparent.
Considerable bypassed oil exists,
especially in Lower Clear Fork L2.2.
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3-D Seismic Inversion Modeling

Progressive Inversion

3-D Seismic for Porosity Imaging

3-D Seismic for Defining Architecture

ROLE OF 3-D SEISMIC IN RESERVOIR CHARACTERIZATION
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RESERVOIR MODELING AND SIMULATION
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3-D Seismic for Siting Infill Wells

3-D seismic data are important for distinguishing the subhorizontal nature of the
Lower Clear Fork from the clinoformal architecture of the Abo but are misleading
with respect to the position of the L1 - L2 sequence boundary.

Simple amplitude extractions provide superior imaging of porosity
distribution in both interwell areas and areas where modern wireline data
are lacking. Note that contours based on wireline data are inaccurate.

Blind Testing of Inversion Model
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Blind testing demonstrates predictive ability of 3-D seismic in areas where wells are absent.
When well 2 (above) is removed, wireline log model predicts too little porosity at A and too
much at B. Inversion model does a much better job of defining true porosity in both areas.

Progressive inversion entails four steps:
1. construction of detailed, cycle-based geological model.
2. development of high-resolution, wireline log model.
3. definition of geological framework in tuned, 3-D seismic data volume.
4. Merging of wireline model and 3-D seismic volume.
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Full-field Reservoir  Modeling  Flow Simulation

Study area

Sensitivity flow modeling was performed on a 2,000-acre
area selected for high-data quality and representative setting.
The area includes 140 wells on 10- and 20-acre spacing.
Modeling and simulation were based on 86 wells, all with
modern log suites. Model framework contains 38 cycle-
based flow-unit layers.

The flow-simulation model area exhibits nearly the entire range of petrophysical and
stratigraphic relationships observed in the full-field model. Results are thus applicable to
most of the reservoir.

Porosity is a function of diagenesis. Porosity is high in much of the Wichita tidal-flat succession and in the
Lower Clear Fork L2.1 subtidal. Lateral changes in porosity are more the result of structurally controlled
early diagenesis than changes in depositional facies.

Saturation is a function of rock fabric. Like permeability, oil saturation is highest in limestone-rich,
ramp-crest facies of the subtidal Lower Clear Fork L2.1. Compare with porosity maps above.

Field-wide Porosity Trends

Field-wide Saturation Trends

Model Area Petrophysics

Field-wide Permeability Trends
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PUBLISHED RESULTS
A complete report on the findings of this study, entitled
“Multidisciplinary imaging of rock properties in carbonate
reservoirs for flow unit targeting”, has been released by the
Bureau of Economic Geology. Contents are listed below.
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A pdf copy of this report is available from:

The Bureau of Economic Geology website
  <http://www.beg.utexas.edu/resprog/fullerton/index.htm>

The U.S. Department of Energy website
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A more complete CD publication of all results is being prepared
and will be published and distributed by the Bureau of Economic
Geology in 2006.
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Stratigraphic Architecture
• 3-D seismic data can provide inaccurate image of reservoir

architecture
• Sequence boundary karst is widespread
• Porosity is a function of diagenesis, but permeability is a

function of facies
• Porosity development is partially controlled by deep structure
Petrophysics
• Peritidal successions contain high-porosity, low-permeability

rock fabrics
• Subtidal successions contain higher permeability rock fabrics
• Peritidal limestones are flow baffles; subtidal limestones are

high-flow zones
• A single porosity cutoff or permeability transform is inadequate
• Permeability and water saturation models must consider rock-

fabric distribution
• Petrophysical classes and rock fabrics can be mapped

throughout the field using stratigraphic framework
3-D Geophysics
• Strong relationship between amplitude and porosity
• Amplitude extractions provide robust qualitative guide to

interwell and extrawell porosity distribution
• Progressive 3-D inversion provides quantitative measure of

interwell and extrawell porosity distribution
• Seismic response controlled by porosity (facies and diagenesis)
• Seismic architecture must be vetted by geological models
• Continuing and differential fault motion through Permian
Flow Modeling and Simulation
• Key insights to sweep and remaining oil distribution
• Recovery efficiency controlled by rock fabric, continuity, and

completion coverage
 Reservoir Resources
• Peritidal facies contains 55 percent of the total pore volume

but only 43 percent of the original hydrocarbon pore volume

P e rm e ab il i t y

0.1 10(md)

P e rm e ab il i t y

0.1 10(md)

P e rm e ab il i t y

0.1 10(md)

Log permeability

-1 (0.1) 1 (10)(md)

Permeability is a function of facies. Note that in contrast to porosity, permeability is much higher in the
subtidal Lower Clear Fork than in Wichita tidal-flat facies. The Wichita exhibits much lower permeabilities
because of the dominance of Type 3 (mud-rich) rock fabrics.

L2.2 L2.1

Lower Clear Fork Wichita

upper L2.0 lower L2.0 upper L1.0 lower L1.0

L2.2 L2.1
Lower Clear Fork Wichita

upper L2.0 lower L2.0 upper L1.0 lower L1.0

L2.2 L2.1
Lower Clear Fork Wichita

upper L2.0 lower L2.0 upper L1.0 lower L1.0

2811
2813

2913

3013
3015

3113
3115

2910

Producing well

Proposed infill well

3-D seismic

Unit
boundary

Amplitude extractions provide powerful constraints for
defining optimal locations for infill wells where other
porosity control is lacking. Note that half of the initially
proposed wells (yellow stars above) would have been
drilled into low-porosity areas without 3-D data.
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ROLE OF 3-D SEISMIC IN RESERVOIR CHARACTERIZATION RESERVOIR MODELING AND SIMULATION
IMPORTANT FINDINGS

Lower Clear Fork (L2.1, L2.2) and upper Wichita (L2.0)
sequences comprise cycle-based, subparallel layers (7, 7
and 5, respectively) that extend across the model area. The
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Model Framework Cycle-based Layers

lower Wichita contains five layers that terminate at the
Wichita-Abo facies transition. Abo layers are conceptually
modeled clinoforms.
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3-D seismic inversion has value only if a
strong relationship exists between 3-D data
and porosity. At Fullerton field, there is a

good relationship between acoustic
impedance (AI) and wireline log porosity.
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