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Abstract: Remote sensing technology enables detecting, acquiring, and recording certain information

about objects and locations from distances relative to their geographic locations. Airborne Lidar

bathymetry (ALB) is an active, non-imaging, remote sensing technology for measuring the depths

of shallow and relatively transparent water bodies using light beams from an airborne platform.

In this study, we acquired Lidar datasets using near-infrared and visible (green) wavelength with the

Leica Airborne Hydrography AB Chiroptera-I system over the Devils River basin of southwestern

Texas. Devils River is a highly groundwater-dependent stream that flows 150 km from source springs

to Lake Amistad on the lower Rio Grande. To improve spatially distributed stream bathymetry in

aquatic habitats of species of state and federal conservation interest, we conducted supplementary

water-depth observations using other remote sensing technologies integrated with the airborne Lidar

datasets. Ground penetrating radar (GPR) mapped the river bottom where vegetation impeded other

active sensors in attaining depth measurements. We confirmed the accuracy of bathymetric Lidar

datasets with a differential global positioning system (GPS) and compared the findings to sonar and

GPR measurements. The study revealed that seamless bathymetric and geomorphic mapping of

karst environments in complex settings (e.g., aquatic vegetation, entrained air bubbles, riparian zone

obstructions) require the integration of a variety of terrestrial and remotely operated survey methods.

We apply this approach to Devils River of Texas. However, the methods are applicable to similar

streams globally.

Keywords: karst; ground penetrating radar; remote sensing; bathymetry; hydrography

1. Introduction

Remote sensing technology uses active or passive propagated signals (e.g., light pulses,

electromagnetic radiation) to enable remote acquisition of information about objects. Remotely

sensed data are geospatial in nature because they are collected by global positioning system (GPS)

bearing instruments that allow rapid data capture over large areas [1,2]. Since the late 1960s, traditional

aerial photographic systems have been replaced with airborne and spaceborne sensors capable of
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acquiring data at different spatial, spectral, temporal, and radiometric resolutions, providing the means

for a variety of analytical opportunities.

Airborne and satellite-based remote sensing approaches show great promise for characterizing

aquatic ecosystems [3,4]. One such approach is light detection and ranging (Lidar), an active,

non-imaging, remote sensing technology that uses an artificial light source commonly falling in

the optical spectrum between 0.5 and 1.6 µm. The applications and usage of Lidar technology have

increased since the 1960s and cover a wide range of military, civilian, and scientific activities [5–7].

A typical non-stationary Lidar system is composed of a laser scanner, transmitting and receiving

units, a GPS, an inertial navigation system (INS), a digital storage unit, a digitizer, and an operator

interface. These system components emit pulsed or continuous laser energy and with each pulse

measure, the distance travelled between the transmitter, the target surface, and back to the receiver.

Onboard electronics digitize the received electromagnetic (EM) energy and record the amplitude, the

geographic location, and various other information.

Airborne Lidar bathymetry (ALB) is a derivative of Lidar technology, and popularly utilized

for mapping relatively shallow and transparent bodies of water and shorelines from an airborne

platform [8,9]. A typical ALB system uses two laser transmitters: a near-infrared (NIR, 1064 nm)

wavelength to detect water surfaces, and a visible (green, 515–532 nm) wavelength to measure water

depths. In theory, green wavelength beams emitted from an airborne laser transmitter traverse the

air–water interface and propagate in the water until reaching and illuminating the bottom. The light

beams slow while traveling in the water column, and their energy (amplitude) attenuate due to

refraction and scattering. If a beam is not attenuated entirely, it reflects from the bottom, and the

backscatter reaches the receiver. A digitizer records the reflected amplitude in a waveform fashion,

indicating the surface, bottom, and all other major interactions, including noise. Contrary to green

wavelength beams, depending on the turbidity levels and surface characteristics, NIR beams are

either absorbed immediately beneath the water surface or reflect off, indicating the surface location

(Figure 1). Especially in transparent waters, advanced data-processing algorithms can be combined

to extract elevations from both NIR and green-wavelength returns, producing a more accurate

surface representation.

In recent years, researchers have completed a number of inland bathymetric surveys using ALB

technology. In doing so, they have demonstrated this technology’s versatility and accuracy [10–13].

The term “inland” refers to specific ecosystem types, such as lakes, reservoirs, rivers, ponds, swamps,

and wetlands. The term also represents ecological and hydrologic environments of diverse shapes and

sizes and various physical, chemical, and optical properties [14]. Especially in fluvial karst environments,

the environmental conditions and aquatic properties vary greatly, presenting an accuracy challenge for

airborne Lidar bathymetry [15]. Therefore, it is essential to conduct in-situ measurements to quantify

bathymetric expectations [16,17]. With the advent of recent survey technologies, researchers now have

access to autonomous unmanned surface (USV) and aerial vehicles (UAV), sophisticated GPS/INS

positioning, dual and multibeam sonars, submerged spectrometers, and Lidar fluorosensors to measure

depth, water transparency, bottom properties, and environmental conditions that impact inherent

optical properties (IOP).

The present study addresses the data gap of stream bathymetry, which is required to parameterize

physical stream-flow models to assess aquatic habitat conditions under a range of stream-flow

conditions. In addition to thermal and hydrologic data collection, accurate stream bathymetry is critical

to hydraulic model development. To this end, we applied a suite of complementary remote sensing

approaches to characterize distributed stream depth. To map the stream bathymetry, we conducted

airborne Lidar surveys and performed supplementary measurements to build a seamless map of the

river bottom and immediate surroundings.

The study proposed a detailed evaluation of the pools by Dolan Falls because of their significant role

in habitat conservation of the Devils River minnow. We defined the pool mesohabitat areas upstream of

Dolan Falls as “upper basin” and the area downstream of the falls as “lower basin.” The pool of the upper
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basin includes areas with dense submerged variable-leaf watermilfoil (Myriophyllum heterophyllum)

and emergent American water willow (Justicia americana), which pose challenges for Lidar and sonar.

Because of access issues to the watershed (98% is privately owned), in situ measurements were

limited and clustered by The Nature Conservancy’s Dolan Falls Preserve Area (29◦53′N, 100◦59′W).

Figure 2 illustrates the entire study area and exemplifies upper and lower basins, the location of in-situ

measurements (L1-11), GPS base stations, and Dolan Falls.

 

′ ′

 

Figure 1. Scattering and refraction occur when light beams traverse through the air–water interface.

Near infrared (NIR) beams are absorbed either at the surface or in the immediate water column, whereas

some reflect back to the receiver and indicate the water surface. Distances (range) from the surface and

bottom can be computed by measuring the flight duration of the pulses and adjusting with the varying

speed of light in air and water.
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Figure 2. Survey area and the Devils River watershed by Dolan Falls. In situ locations are marked

through L1-11, and purple lines indicate the airborne survey paths.

2. Materials and Methods

In this project, we generated bathymetric calculations of Devils River by integrating several survey

methods. We acquired airborne Lidar datasets using a Leica Airborne Hydrography AB (AHAB)

Chiroptera-I system with a maximum effective range of 500 m above the water surface. The system

acquired and recorded green-wavelength data with a pulse rate of 35 kHz in a waveform format.

A near-infrared scanner produced Lidar pulses at 260 kHz—optimum speed at an average survey

altitude of 450 m. The Chiroptera-I has two integrated cameras: a medium-format 50-megapixel (MP)

Hasselblad camera (red-green-blue, RGB) for orthophoto production, and a lower-resolution camera

(video graphics array; VGA) to assist airborne missions and data processing.
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The Chiroptera-I is rated as a shallow (i.e., depth penetration to 15 m in relatively transparent

waters) mapping system. The pulse power and energy are lower (0.062 MW and 0.12 mJ) than a typical

deep-channel (i.e., depth penetration to 30 m) ALB system, such as the Leica HawkEye III (0.72 MW and

2.3 mJ). The beam divergence of each pulse is between 0.5 and 3.0 mrad (NIR, green). The Chiroptera-I

uses two Palmer scanners to distribute Lidar pulses in an elliptic pattern; the maximum incident

angle is ±14◦ fore and aft and ±20◦ toward the edges (Figure 3). Palmer scanning mirrors revolve

inclined in a cycle, reflecting laser pulses to ground and projecting footprints overcast ground along

spiral line [18]. The advantages of a Palmer scanner include the capability to map sloped surfaces and

measure the terrain beneath moderate tree canopies such as those usually found in riverine survey

locations, particularly at riparian zones.

 

 
Figure 3. A representation of the Palmer scanner and its elliptical scanning pattern of Leica AHAB

Chiroptera-I sensors.

As an unconventional hydrographic survey instrument, we used a ground penetrating radar

(GPR) to characterize the depth and river bedrock where surface or submerged vegetation prevented

other active sensors such as Lidar and sonar from accurately measuring its depth. In order to have

higher chances of depth measurement and easier navigation with a boat, we completed GPR surveys in

October with lesser vegetation presence due to seasonal changes. GPR surveys are common in seismic

and near-surface profiling of bedrock [19,20], emitting electromagnetic pulses in the microwave band

of the radio spectrum (UHF/VHF) and detecting layer boundaries or objects in the subsurface with

different permittivity. EM waves are discharged and received by an antenna mounted immediately

above the water surface and are recorded when the instrument is in the rover (moving) mode. Because

EM waves do not travel at a constant speed through different types of material or through the water

column, the accurate propagation velocity needs to be calculated based on the electrical and magnetic

properties of the survey environment. The relative permittivity of the soil, rock, water, and air vary

greatly. Typically, EM waves travel 30 cm/ns in a vacuum and 3.3 cm/ns in freshwater [21].

2.1. Study Site

Devils River is a semi-arid karst stream in southwestern Texas in which most discharge originates

as spring flows and distributed groundwater inflows [22]. The river is pristine due to its remote

and rugged location, bordering primarily by large intact ranchlands and protected natural areas,

which minimizes pollution from human and animal waste [23]. Riparian vegetation includes stands

of Mexican white oak (Quercus polymorpha) and American sycamore trees (Platanus occidentalis);

upland areas are dotted with scrub juniper (Juniperus) and mesquite (Prosopis velutina). The study

area is comprised of several important pool mesohabitats with a diversity of hydrologic habitats,

supporting 28 species of fish [24]. The protected Devils River minnow (Dionda diaboli) is classified as

a federally threatened species. D. diaboli is a minnow species (family Cyprinidae) with a distribution

limited to tributaries of the middle Rio Grande in Texas and Coahuila, Mexico, with adults reaching

approximately 5–6 cm in length. Texas Parks and Wildlife Department (TPWD) biologists are working



Remote Sens. 2020, 12, 2491 6 of 24

with conservation and research partners to develop and execute a multidisciplinary research program

to collect the scientific evidence needed to inform management of D. diaboli and several other species of

interest to state and federal conservation efforts. This includes data collection to support development

of a robust two-dimensional hydraulic fish habitat model, enabling resource managers understand the

declines in spring flow and surface water discharges that affect habitats for imperiled fish and mussel

species. Findings would allow for data-driven revisions to current instream flow recommendations for

Devils River. As part of this research program, researchers used an infrared camera mounted to an

UAV to acquire stream surface temperature, identify spring discharge, and characterize stream and

spring water mixing [25]. Additionally, in-stream stage and temperature measurements were acquired

to quantify spring inputs and identify seasonal trends in thermal regime affecting target species [26].

2.2. Data Acquisition

A Cessna 206 survey aircraft, owned and operated by the Texas Department of Transportation

(TxDOT), spent approximately 30 h over the survey site (Figure 4A,B). The airborne survey consisted

of 189 flight lines and covered an approximate area of 220 km2. The NIR sensor produced an average

point density of 10–12 per m2 with an approximate flight speed of 120 knots. However, we computed

an average ground-sampling density of 50 points per square meter, which is highly inflated due to a

number of flight lines overlapping each other, especially at river bend locations (Figure 2).

 

 

  

A B 

Figure 4. (A) TxDOT-owned Cessna 206 (aircraft registration N147TX) and (B) Leica AHAB

Chiroptera-I installation.

To comply with quality control procedures for ALB surveys [17] and to build a continuous map of

the river bottom, we acquired GPS, sonar, and GPR data at pools upstream and downstream of Dolan

Falls. Ground-truthing of river water surface and bottom elevations were completed using a Trimble

R8 global navigation satellite system (GNSS) receiver mounted to a variable height pole. To augment

spatial coverage of the bathymetric survey, we installed a consumer-grade Garmin echoMap 74dv to a

kayak and coupled it with a submerged GoPro HERO5 camera (Figure 5). The sonar encompasses

a dual-band transducer with an effective range of 36 cm to 700 m in freshwater bodies, and the unit

samples positional information at a frequency of 5 Hz (Figure 6). Prior to fieldwork, we tested the

unit in a pool at Applied Research Laboratories (ARL), The University of Texas at Austin (30◦23′05′′N,

97◦43′34′′W). The equipment measured depths with a bias of 2.7 cm (standard deviation to the mean) at

a depth of 11.8 m. Because the sonar beam diameter is much narrower than the Lidar pulse, we expected

deeper measurement capability in areas with aquatic vegetation. For example, a green-wavelength

Lidar pulse emitted at a range of 450 m will cover an area of 135 cm in diameter on the water surface,

expanding to an area of 250 cm at 5 m below the surface. However, the sonar transducer will generate a

much smaller footprint of 86 cm in diameter at the same depth, increasing the likelihood of penetration

through submerged vegetation [27].
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Figure 5. River bottom captured with a submerged GoPro HERO5 camera.

 

 

 

A B 

Figure 6. Surveying stream depth using a dual-beam Garmin echosounder.

For GPR surveys, we used a GSSI SIR-3000, coupled with a GSSI 200 MHz shielded monostatic

antenna. The main purpose of using the GPR was to investigate the feasibility of EM waves passing

through submerged aquatic vegetation and detecting the river bottom (Figure 7). The propagation

of the GPR waves through different layers of materials or surfaces creates varying and distinctive

resistivity in the frequency. The phase velocity (v) and attenuation constant (α) are the main parameters

describing the EM wave propagation, and they both depend on the dielectric and conductivity (σ)

properties of the medium. In theory, the lower the propagation (the higher the permittivity), the less

the lateral dimension of the medium is resolved [28,29]. Because water is highly polarizable and has

a higher degree of permittivity (ε), it absorbs EM waves quicker as the antenna frequency increases.

Freshwater permittivity is commonly referenced as 80, attenuation constant (α) as 0.1 dB/m and

conductivity (σ) as 0.5 mS/cm [21,30]. EM velocities are usually referenced in cm/ns and frequencies in

MHz; therefore, assuming a 200-MHz antenna and a water temperature of 20◦ Celsius, wavelength (λ)

is 16.77 m and propagates (ν) at 3.3 cm/ns. For optimum results, the GPR antenna should have no

interference and should be clear of signal-blocking obstructions. Therefore, we mounted the instrument

to a boat with a deflated rubber bottom, and the operator did not carry any electronics onboard.

We connected an external Trimble R8 GNSS receiver to the GPR and synchronized the time between

the instruments for all surveys. (Figure 8). Additional in-situ measurements, such as moisture and

salinity content, are suggested in the presence of mixed materials [23], but they are not considered

critical in freshwater reservoirs such as the Devils Rivers watershed.
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Figure 7. Dense submerged aquatic habitat in the upper basin.

 

 

λ
λ

Figure 8. GSSI SIR-3000 GPR mounted to an inflatable boat.

2.3. Optical Properties of Water

Light beams interact with a number of constituents while traveling through the water column.

Foremost, water in its purest form exhibits a complex absorption spectrum, and a significant amount of

scattering occurs due to refractive index fluctuations [31]. The two fundamental IOPs of water are the

absorption coefficient and the volume scattering function. Apparent optical properties (AOPs) depend

on the medium and the geometric (directional) structure of the ambient light field. According to Smith

and Baker [32], AOPs are particularly important when considering the penetration of radiant energy

to varying depths. ALB uses green wavelengths (515–532 nm) because of the least water absorption

(attenuation) (Figure 9).

In shallow waters and localized surveys, limnologists typically use conventional survey methods

and refer to Secchi disk depth (Zsd) to quantify water-column transparency. The diffuse-attenuation

coefficient Kd (z, λ) is an important optical property. It defines the logarithmic depth derivative of

ambient irradiance Ed (z,λ), which comprises photons heading in downward and upward directions [33].

Kd (or KPAR) depends on the directional structure of the ambient light field and is classified as an AOP.

It is determined in the photosynthetically active range of 400–700 nm.

Freshwater contains certain quantities of dissolved organic matter (DOM) and decayed vegetation

that are responsible for temporal and spatial variability of optical properties. In the water column,

these materials are the major cause of light and radio-wave absorption and scattering. Although there

have been 21st-century advances in optical electronic instruments using tungsten light sources to

measure water transparency and calculate Kd [34], a popular, simple method is to use a 30-cm-diameter
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Secchi disk. The Secchi-disk depth (Zsd, m) represents the maximum depth at which the disk is no

longer observed as it is progressively lowered into a water column. Using a Secchi disk to determine

Kd is simple: Kd = α/Zsd. However, this measurement is generalized and may not be accurate for large

and multiple pools. Lee et al. [35] defined the relationship between Zsd and Kd and reported that α

ranges between ~1.3 and 2.0, as observed in various studies for over 90 years [36,37]. In this study, we

assumed α = 1.6 and Kd < 1.5 to calculate the theoretical depth measurability (Dmax) of the Chiroptera-I

as specified by the manufacturer [38].

A turbidimeter measures the loss of intensity in the transmitted light resulting from scattering by

DOM, which vary in shape, color, and reflectance and range from <1.0 to several 10 s of micrometers

in size. Researchers observe and report turbidity either in nephelometric turbidity units (NTU) or in

formazin nephelometric units (FNU). In this study, we used a HACH 2100Q portable turbidimeter

for observations in NTU, and the instrument calibration indicated compliance with the manufacturer

recommendation (Supplementary Table S1). We sampled the river at an average depth of 1 m at 11

locations and replicated the practice three times in each location to comply with U.S. EPA 180.1 [39].

We observed an average turbidity of 2.76 NTU, and the standard deviation of all readings was 0.42 NTU,

which indicates suitability for Lidar bathymetry [17].

 

ௗܭ = ߙ ܼ௦ௗ⁄
α

α

 

ć

Δ

Figure 9. Graph indicating the minimal absorption coefficient in the 200–800 nm spectral region,

attained in pure freshwater (modified after Beć and Huck [40]).

2.4. Data Analysis

Lidar bathymetry is observed by calculating the total discrete time signals (∆t) occurring between

the water surface (t1) and the bottom peaks (t2) indicated in the backscattering signal. Variations in water

transparency, depth, and other environmental conditions may limit or prevent measurement, affecting

the modeling of the backscatter amplitude and the shape of the recorded waveform. Cottin et al. [41]

and Eren et al. [42] investigated waveform shapes, backscatter amplitudes, and attempted to model

the bottom properties. For river surveys, Allouis et al. [43] and Pan et al. [44] studied the waveform



Remote Sens. 2020, 12, 2491 10 of 24

shape, modifying it via decomposition and deconvolution methods and comparing their findings to

in-situ depth measurements.

Because most NIR beams get absorbed at the surface or in the immediate water column, only a

few backscattering signals return to the receiver. Using a receiver with a high signal-to-noise error

ratio, it is possible to detect and sort the returns and generate a representation of the water surface.

The Chiroptera-I’s manufacturer-supplied software, Lidar Survey Suite (LSS), outputs returns to

separate classes with respective wavelength type, shape, and amplitude. Class 0 includes returns

from both wavelengths, and Class 5 stores solely green wavelengths. A previous study reported a

robust goodness-of-fit between these classes (R2 = 0.99) in the transparent and deep waters of the

lower Colorado River [45]. Conversely, in Laguna Madre [17], which is a large, shallow lagoon

in southern Texas, the goodness-of-fit between these classes declined (R2 = 0.32) due to increased

amounts of turbidity (2–10 NTU) and poor transparency (Kd > 2). Therefore, variance in environmental

conditions represents one of the great challenges of ALB surveys, requiring frequent and localized

in-situ measurements to predict measuring-depth performance.

As for water-bottom detection, LSS outputs two separate classes of green-wavelength returns:

regular (Class 7) and enhanced (Class 10). The latter output algorithm filters out weaker signals and

selects the returns omitted by the Class 7 algorithm that are recorded below an optimum threshold.

In the Colorado River study, results revealed depth detection improved by an average of 0.81 m (9.2%)

at less turbid conditions (0.4 NTU) and locations where Class 7 returns were extinguished.

Lidar point-cloud data were output in LAS v1.2 format, and we converted water-surface and

water-bottom classes into text format (xyz) for analysis in Matlab v17. LSS requires amplitude and

backscatter thresholds to be optimized for accurate bathymetric datasets, especially at survey locations

where environmental conditions are dynamic. To comply with quality assurance procedures, the field

staff investigated the local conditions carefully and prepared supplemental information (e.g., pictures,

field notes) to assist data analysts.

Point-to-point correspondence or comparison with Lidar point-cloud datasets [46] or any other

geospatial vector datasets is not assumed; therefore, we used the Delaunay triangulation algorithm [47]

to create surface patches of triangulated irregular networks (TIN) (Surface 1, Figure 10). In theory,

the algorithm maximizes the minimum angles of triangles in the triangulation process by defining

an empty circumcircle [48]. Every TIN patch represented an averaged elevation computed from the

returns that formed a triangle (Surface 2, Figure 10). We compared the TIN patches to sonar, GPS,

and GPR-derived elevations that registered proximity (dS1i) of 1.0 m and excluded the returns at slopes

(α) steeper than 45◦. The vertical threshold (h) was set at 0.5 m to prevent the algorithm from picking

up vegetation or other highly sloped surface returns.

 

σ
α

ߥ = ߣ௪ߝ√/ܥ = ߙ(௪ߝ√݂)/ܥ = ௪ܶߝ௪ߝ√/ߪ 1.6 = 88.045 − 0.4147 ܶ + 6.295 × 10ିସܶଶ + 1.075 × 10ିହܶଷ

 

−

′ ″ ′ ″
′ ″ ′ ″

Figure 10. Conceptual representation of Lidar, sonar, GPS, and GPR-derived elevation comparisons

using Delaunay triangulation and a point-to-patch relationship.

We performed the data analysis in ellipsoidal height elevations, which is native to GPS

measurements. This is a recommended quality control procedure for a reason: the geographic

positioning information acquired by most survey equipment (e.g., airborne Lidar, sonar, GPR) requires

conversions of ellipsoidal heights to real-world elevations (orthometric height), and the interpolation
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process can carry errors in extended baselines—particularly in river and shoreline surveys. It is

considered good practice to transform elevations following the completion of vector data alterations

(e.g., data cleaning, reclassifications) because most Lidar and remote sensing projects require rasterized

products in orthometric elevations. An average geoid height of −22.87 m was calculated using the

GEOID12B model near Dolan Falls.

For GPR data analysis, it is possible to calculate the velocity (ν) of an EM wave (Cem) in an insulator

by factoring the permittivity (εw) into the speed of light (Equation (1)). The wavelength (λ) in any

medium equals the velocity divided by the EM frequency (Equation (2)). We computed the attenuation

coefficient (α) using the observed water-column conductivity (σ) and the calculated permittivity

(Equation (3)). We adjusted the EM propagation in the water column by refining the permittivity value

with observed in situ water temperature (T) using Equation (4) as defined by Klein and Swift [49].

Furthermore, we calibrated the GPR using point-source reflectors that produce “hyperbolas” in the

data, which are caused by the cone shape of the antenna’s radiation pattern. We fitted the hyperbolas

with shapes of known velocity to the hyperbolas recorded at Devils River. Therefore, we were able to

confirm wave velocities and compute the correct propagation through the water column [50].

Throughout Devils River, water temperature was recorded using the sonar transducer’s imbedded

thermometer, and we computed the median temperature to be 24.55◦ Celsius. Using an Aqua-TROLL

200 Data Logger, we measured the median conductivity at σ= 0.44 mS/cm and computed the attenuation

coefficient at α = 0.08 dB/m (Equation (3)). Because the river depth, discharge, and temperature vary,

we expected to observe fluctuations in permittivity.

ν = Cem/
√
εw (1)

λ = Cem/
(

f
√
εw

)

(2)

α = 1.6 σ/
√
εw (3)

εwT = 88.045− 0.4147 T + 6.295× 10−4T2 + 1.075× 10−5T3 (4)

3. Results

Ultimately, the Devils River study attempts to (1) confirm the feasibility of using a geophysical

instrument to measure the river bedrock when active remote sensing technology is not able and (2) build

a seamless stream map by confirming the positional bias of a number of geospatial and geophysical

datasets. Furthermore, the findings of this study are expected to contribute to the ongoing investigation

of airborne Lidar bathymetry quality-control aspects applicable to karstic riverine environments with

varying environmental and morphological conditions.

3.1. Water Transparency and Turbidity

The river bottom was visible at five in situ locations. Hence, we expected the Lidar beams to

measure the water bottom without complications. A quadratic relationship (Figure 11) was observed,

and a high degree of coefficient of determination was computed between Kd and Dmax (R2 = 0.99,

RMSE = 0.02 m). At other locations, Zsd varied from 1.4 m to 2.9 m (Figure 12). We expected the Lidar

beams to attenuate rapidly in the less transparent waters. Table 1 illustrates the Zsd and turbidity

observations at all locations. AHAB claims that the Chiroptera-I can measure depths to 1.5 times the

Kd, indicating the Dmax capability [38]. To confirm this specification, we computed the theoretical Dmax

= 2.72 m by Dolan Falls (L6), where sonar readings indicated a depth of 5.77 m and Lidar beams were

attenuated at a depth of 2.65 m.
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Figure 11. Quadratic relationship between Kd (m−1) and Dmax (m) in Devils River, indicating the

lessening Dmax in parallel to the escalation in Kd.
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Figure 12. (A) In situ Location 7 showing transparent and shallow water (turbidity: 1.46 NTU).

(B) In situ Location 9 showing invisible bottom and 3.3 m depth (turbidity: 2.79 NTU).

Table 1. Secchi-disk and turbidity measurements at Devils River. Areas with dense aquatic vegetation

were excluded. VB indicates a visible river bottom.

In Situ
Location

Latitude
(N)

Longitude
(W)

Secchi Depth
(Zsd, m)

Sonar
Depth (m)

Turbidity
(NTU)

Kd

(m−1)

Dmax

(m)

L1 29◦53′52′′ 100◦59′50′′ 2.1 2.2 1.85 0.76 1.97
L2 29◦54′08′′ 101◦00′02′′ 1.4 2.0 3.35 1.14 1.31
L3 29◦54′04′′ 100◦59′59′′ VB 1.1 2.86 NA NA
L4 29◦53′55′′ 100◦59′51′′ 1.8 2.4 1.92 0.89 1.69
L5 29◦53′32′′ 100◦59′41′′ VB 1.1 1.69 NA NA
L6 29◦53′03′′ 100◦59′38′′ 2.9 5.8 1.31 0.55 2.72
L7 29◦52′58′′ 100◦59′38′′ VB 1.0 1.46 NA NA
L8 29◦52′49′′ 100◦59′38′′ VB 1.8 6.14 NA NA
L9 29◦52′36′′ 100◦59′33′′ 2.0 3.3 2.79 0.80 1.88

L10 29◦52′20′′ 100◦59′37′′ 1.6 2.4 2.86 1.00 1.50
L11 29◦52′16′′ 100◦59′36′′ VB 1.5 4.13 NA NA
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3.2. Water-Surface Detection Analysis

It is challenging to detect water surfaces accurately with airborne Lidar, especially in riverine

environments. In the Devils River project, we confirmed the surface representation with point-cloud

datasets (Class 0 and 5). Because the Chiroptera-I emits NIR beams faster and with a narrower pulse

width, fewer Class 0 returns are registered. It is expected that most NIR beams are absorbed by

the immediate water surface and only a few reach back to the receiver, especially in choppier and

turbid waters.

In this analysis, we used Class 5 (green wavelength only) returns as the reference points to

compute the point-to-patch relationship. TIN patches were formed by Class 0 returns (NIR and green

wavelength), and each patch was compared to the nearest Class 5 return by using the least-squares

method. Computations revealed that a higher degree of correspondence was evident in the lower

basin due to less aquatic vegetation (Table 2). Furthermore, findings indicated that Class 0 returns

characterized the water-surface elevations slightly higher than Class 5 returns (Supplementary

Figure S1). Figure 13 illustrates the “noisy” nature of Class 5 returns compared to Class 0 output

(Standard deviation = 10 cm versus 3 cm) in the lower basin, where NIR beams reflected off and

penetrated the water column up to 0.19 m of median surface representation.

Table 2. Class 0 (CL0)-derived TIN patch elevations versus Class 5 (CL5) returns, indicating the surface

representation. In the upper basin, CL5 registered fewer returns due to dense aquatic habitat.

Basin
CL0/CL5

Sample Ratio
Number of

Patches
Sample

Range (m)
Mean Elevation
Difference (m)

Standard
Deviation (m)

Upper 1:37 32,339 1.87 0.085 0.16
Lower 1:11 100,063 1.02 0.094 0.10

 Figure 13. Representation of Class 0 (NIR + green) versus Class 5 (green wavelength only) returns,

indicating the water-surface detection challenges in inland pools. Note the “noisy” characteristic of

Class 5 returns; indicating the median surface is 9 cm lower than Class 0 returns.
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3.3. GPS Quality Control

To improve the static positional information acquired by Chiroptera-I’s integrated GPS, we used

a NovAtel GrafNav v8.4 application for differential processing. Initially, we refined the positions

using only Texas Del Rio (TXDR), a continuously operating reference system (CORS) station in Del

Rio, Texas (29◦21′51′′N, 100◦53′58′′W). However, because of the extended baseline (55 km) and to

better comply with quality control procedures, we setup additional base stations (Trimble R9) closer to

the survey location (CampTPWD: 29◦56′27′′N, 100◦58′12′′W; CampTNC: 29◦53′7′′N, 100◦59′41′′W).

Because these local base stations were initially “floating,” their locations were refined precisely using

the Online Positioning User Service (OPUS) to be relative to the TXDR-CORS base station (orthogonal

height: 395.38 m versus 395.33 m, RMSE = 10 cm).

We conducted eight missions to complete airborne data acquisition. In four of these, we merged

TXDR and CampTPWD base-station solutions using GrafNav application to achieve a closer baseline

(mean = 40.2 km) and a more precise differential solution. The application can support up to

32 base station. An average of 99.34% quality-one (Q1) resolution was achieved for all missions

(Supplementary Table S2). Positional dilution of precision (PDOP), which specifies the error propagation

and measurement precision of satellite geometry [51], averaged at 1.61 out of 10 scale (1-best, 10-worst).

Further, we conducted a forward/reverse separation analysis to estimate the robustness of solutions and

achieved RMSE of 1 cm for horizontal separation (easting and northing) and 5 cm for vertical separation.

Primarily, the CampTNC base station was used to differentially correct the static in-situ

measurements. We analyzed the expected bias applicable to horizontal and vertical accuracies by

computing the median standard bias and outliers in the differential solutions for 26–27 June 2019

(Supplementary Materials, Figure S2). Findings revealed a comparable horizontal and vertical bias

for both days (2.5 cm and 4.1 cm). The probability plot indicates normal distribution. However,

vertical solution has a higher probability to include outliers that are greater than 5 cm for both days

(Supplementary Figure S3).

3.4. Lidar Bathymetry versus GPS Measurements

We measured 29 water surface elevations and 487 bottom elevations and refined these static GPS

measurements differentially for higher accuracy. It was essential to measure the bottom elevations,

particularly at locations with dense vegetation, to assist in building a seamless rasterized map.

TIN patches were created (hL) using all available water-bottom Lidar returns (Classes 7 and 10) and

were compared to GPS-derived (hg) surface (WS) and bottom (WB) elevations.

Results revealed a robust coefficient of determination (R2 = 0.86) to GPS-derived elevations;

however, only a fraction of GPS measurements (21%) were compared due to aquatic vegetation blocking

the Lidar beams. Overall, GPS measured 0.03 m deeper than Lidar bathymetry (Table 3), possibly due

to circumference discrepancies between the measuring rod and the Lidar beam at the water bottom.

We measured the vertical bias at 0.12 m (RMSE). The regression plot illustrates an improved coefficient

of determination in the higher elevations of the basin (Figure 14). In our computations, GPS-derived

elevations indicated a higher probability of deeper measurement in the shallower areas of the river

compared to Lidar TIN patch elevations (Supplementary Figure S4).

Table 3. Lidar-derived (hL) water-bottom (WB) patch elevations compared to GPS measurements (hg).

Surface Samples
Sample

Range (m)
Mean Difference

(d, m) (dZ=hL−hg)
RMSE (m) R2

Bottom 102/487 0.82 −0.03 0.12 0.86
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Figure 14. Goodness-of-fit between Lidar-derived patch elevations to GPS measurements in the

upper basin.

3.5. Lidar Bathymetry versus Sonar

We processed a total of 13,720 sonar measurements in the upper and lower basins, which came out

to a mean depth of 1.26 m and 2.0 m, respectively. Sonar measured the shallowest depth as 36 cm and

the deepest depth as 7.87 m at the plunge pool by Dolan Falls. The density plot shows the distribution

of all sonar measurements, revealing the distinctive aquatic and geomorphologic characteristics of each

basin and the significant effects caused by Dolan Falls and other environmental factors (Supplementary

Figure S5).

We compared sonar measurements to Lidar-derived (WB) TIN patch elevations using least-squares

algorithm. The computations matched 7240 sonar measurements (52.77%) to TIN patches that

were within the defined thresholds (refer to Section 2.4). Results indicated a robust coefficient of

determination (R2 = 0.78 and σ2 = 0.08) due to its more uniform pool structure. Mean elevation

difference computed between the datasets was slightly higher in the upper basin due to the presence

of aquatic vegetation (11 cm versus 9 cm). In the lower basin, a lesser determination of coefficient was

observed (R2 = 0.72) and variance was higher (σ2 = 0.17). Nevertheless, mean elevation difference was

lower due to fewer amounts of aquatic vegetation existence (Table 4, Figures 15 and 16).

Table 4. Lidar-derived TIN patch elevations versus sonar measurements for the upper and lower basins

by Dolan Falls.

Basin
Degrees of
Freedom

Sample
Range (m)

Mean Elevation
Difference (cm)

RMSE (m) R2

Upper 4910 2.75 11 0.27 0.78
Lower 2330 5.54 9 0.36 0.72
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Figure 15. Regression of sonar-derived elevations versus Lidar-derived TIN patch (WB) elevations in

the upper basin. Aquatic vegetation is evident at the surface and in deeper parts of the water column.

 

Figure 16. Regression of sonar-derived elevations to Lidar-derived TIN patch (WB) elevations in the

lower basin. Sonar measured deeper than Lidar due to depth by the Dolan Falls plunge pool area.

3.6. Ground Penetrating Radar

Using an inflatable boat and a GSSI SIR-3000 GPR with a 200-MHz antenna, we conducted

geophysical surveys in the upper basin. We created and recorded 148 survey lines. Because GPR radio

waves are continuous, we were able to extract returns at every 10 cm of forward motion and compared

each measurement to the nearest Lidar-derived TIN patch. Due to dense submerged vegetation, the

least-squares algorithm did not register 57% of these patches (634 samples out of 1113) with a GPR

measurement (refer to Section 2.4). Preliminary regression results revealed an average depth bias
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of 5 cm and RMSE of 16 cm using the literature suggested fresh-water EM propagation rate of ν

= 3.3 cm/ns. Signal discontinuity caused by temperature and permittivity variability was evident,

particularly in the deeper areas. Of all GPR measurements taken, the deepest was 3.11 m, which

confirms the depth limitations of using a 200-MHz antenna [28]. To improve the findings, we adjusted

the water-column permittivity (ε) with the observed mean water temperature, 24.55◦ Celsius. As a

result, EM waves propagated quicker in the water column (ν = 3.38–3.7 cm/ns), especially in the deeper

parts of the river, and produced a better determination of coefficient (Table 5, Figures 17 and 18).

As an example, and for visual confirmation, GPR measurements at survey line #117 were output

and compared to Lidar bathymetry. It was evident that Lidar returns and GPR measurements matched

at locations with no vegetation or less vegetation. On a normal “B-scan” (Figure 19), the horizontal

axis represents distance and the vertical scale is in two-way reflection time, which we converted to

depth. As expected, submerged vegetation blocked Lidar beams in the water column, and EM waves

propagated through the medium, indicating the bedrock with distinctive amplitude in the waveform.

Table 5. GPR measurements compared to Lidar TIN patches, indicating the mean and maximum depth

discrepancies with initial and final EM velocity coefficients.

EM Velocity
(cm/ns)

Permittivity
(ε)

Median Depth
Difference (m)

Sample
Range (m)

Mean Depth
Lidar/GPR (m)

RMSE
(m)

Depth, R2

3.3 80 0.05 2.44 1.99/1.77 0.16 0.92
3.7 78.4 0.05 2.73 1.99/1.99 0.18 0.92

 

ν

ε
ν

ε

 

Figure 17. GPR measurements compared to Lidar TIN patches using the least-squares method.
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Figure 18. Solid linear-fit line revealing an improved regression between Lidar and GPR-derived

depths (3.3 cm/ns versus 3.7 cm/ns) using the adjusted EM propagation.

 

 
Figure 19. GPR EM “B-scan” representing survey line #117. Lidar pulses (blue) were blocked by

submerged vegetation, and GPR (orange) penetrated to measure the riverbed.

4. Discussion

In this study, we attempted to confirm the positional bias of remotely sensed measurements to

one another before generating a complete stream bathymetric map of Devils River by the Dolan Falls

Preserve area. In inland pools, especially in fluvial karst environments, conditions can be challenging

and typically have a dynamic nature. The results depicted in this study reveal that mapping with

airborne Lidar technology is accurate and wholesome (98%). However, complementary surveys and

in-situ measurements are required to validate bias and to complete mapping efforts of the remaining

survey location (2%) in building bathymetric products.
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In the upper basin by Dolan Falls, aquatic vegetation prevented airborne Lidar and sonar beams

from measuring depth; therefore, we applied a novel approach and conducted GPR surveys to increase

the likelihood of measuring the riverbed. GPR data acquisition and analysis was the final step in this

study due to uncertainties surrounding the bias errors and completeness of data measured in such

survey locations. Therefore, initial efforts (Figure 20A–C) in this study confirmed the mean vertical

bias of Lidar bathymetry against post-processed GPS measurements (11 cm RMSE) and dual-beam

sonar measurements (27 cm RMSE). Our final efforts validated the accuracy of GPR measurements to

the TIN patches generated from Lidar returns (~17 cm RMSE). Overall, the mean vertical difference

was computed less than 10 cm among comparison of all datasets.

 

 

 

 

 

 

 

 

 

 Figure 20. Maps showing upper basin depths measured using (A) GPS, (B) sonar, and (C) GPR, and

(D), a final depth map with all measurements combined.
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Using GPR, our research efforts primarily focused on measuring the bedrock at locations with

dense aquatic vegetation. Accuracy and its quantification are essential. However, the foremost concern

remains the measurement reliability caused by varying depth and permittivity. Prior to the Devils

River survey, University of Texas at Austin researchers conducted a demonstration survey in Austin,

Texas. Barton Springs pool has similar depths and bedrock characteristics to Devils River, allowing the

researchers to investigate the suitability of using GPR throughout Devils River. Preliminary results

revealed that a 200-MHz antenna is suitable for measuring depths up to 3 m, confirming GPR would be

suitable for the Devils River study. A slower frequency antenna may generate deeper measurements

but produce fewer details.

Other influences of EM attenuation, such as varying levels of turbulence, salinity, and bottom

reflectance, may have an impact on the quality of the remotely sensed data. In the Devils River survey,

the water was calm and shallow with minimal turbulence. Therefore, we did not require inertial

measurements to correct positional information acquired from sonar and GPR. However, for choppier

and more turbulent conditions, using an inertial measurement unit (IMU) coupled with a GPS is

advisable to prevent random angle bias in depth measurements from a boat. For instance, a 3◦ antenna

angle, compared to the nadir angle, equals an additional 16 cm at a depth of 3 m.

Still, there are uncertainties in using active remote sensing technologies for bathymetric surveys.

Because of differences in platform heights (airborne and on a boat), the sensitivity and capacity of

electronics, and varying pulse widths and angles, minor discrepancies are expected. Overall, the

Devils River study findings revealed that these technologies could complement each other well and the

observed discrepancies are insignificant given the benefits gained from building a seamless bathymetric

map. Figure 20D illustrates the combined depth map of the upper basin by Dolan Falls where aquatic

vegetation interfered with Lidar and sonar measurements.

5. Conclusions

In Devils River, the foremost goal was to measure the river’s depth at all locations with airborne

Lidar, and supplement Lidar datasets using other hydrographic survey technologies as necessary.

Therefore, we constructed our hypothesis based on the following assumptions:

• the probability of measuring depth through aquatic vegetation with all available methods, and

• the confirmation that all integrated remote sensing datasets are accurate.

We demonstrated in this article that building seamless stream maps using only Lidar datasets may

not be possible, and quantifying the possible measurement bias between different survey technologies

is essential. Therefore, we conducted several in-situ measurements and systematically compared

remote sensing datasets to each other. We confirmed the possibility of combining datasets sourced

from different remote sensors, and the feasibility of using GPR for measuring depths while aquatic

vegetation is present. The quantification methods demonstrated in this study can be exhaustive

and complicated. However, they are required to comply with internal quality assurance and quality

control procedures.

Remote sensing hardware manufacturers provide specific training and support, and we

recommend collaboration before and during mapping efforts. To avoid costly re-measurements,

researchers may follow previously confirmed and established in-house quality control and quality

assurance procedures. For this purpose, researchers may consider implementing the U.S. Geological

Survey’s recently released Lidar base specifications (version 2.1) for all products used in conjunction

with their 3D Elevation Program (3DEP), which is a nationwide effort [52]. Various federal and

local organizations have also published their procurement standards and specified quality control

procedures to be followed prior to data and product acceptance (e.g., Texas Strategic Mapping Program,

StratMap).

For inland ALB surveys: passive remote sensing technologies (e.g., satellite or airborne

spectral imaging), can be highly beneficial for predicting environmental conditions in which in
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situ measurements may be inadequate or not feasible. There is a variety of tools available. Researchers

should investigate the spatial and spectral resolutions of their project requirements and available

budget prior to purchasing products. A new and an exciting update to the repertoire of tools for

civilian use is the no-cost data availability of NASA’s Ice, Cloud, and Land Elevation Satellite 2

(ICESAT-2), which became operational in September 2018. The satellite carries a photon-counting

Lidar unit with a 10-KHz scanner operating with green-wavelength energy. Recent articles have

demonstrated its versatility with nearshore [53,54] and reservoir studies [55]. Therefore, we believe

the hydrographic remote sensing community may benefit from a study that compares the survey

technologies demonstrated in this article to depths measured by ICESAT-2 for quality control purposes,

especially at karst riverine environments. Theoretically, positive comparison results would reduce

some of the labor-intensive in situ efforts, especially at remote locations. Additionally, due to the

routine orbiting of the satellite, researchers can investigate temporal changes in project locations against

the impacts of varying environmental conditions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/15/2491/s1,
Table S1: A priori calibration results of HACH 2100Q field turbidimeter, Table S2: Summary of post-processing of
all airborne missions concluded using TXDR and CampTPWD base stations (Easting-E, Northing-N, Height-H),
Figure S1: Distribution of Class 0 versus Class 5 for surface representation. The upper basin registered a greater
sample range and worse deviation, Figure S2: Median horizontal and vertical accuracy bias present in differential
correction, CampTNC base station (26–27 June 2019), Figure S3: Probability of positional bias in differential
solution applicable to localized measurements, Figure S4: GPS-derived elevations indicate higher possibility
of deeper measurement in the shallower areas of the river compared to Lidar-derived TIN elevations, Figure
S5: Density plot indicating the distribution of sonar-derived depths in the upper and lower basins surrounding
Dolan Falls.
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