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Abstract. Groundwater discharge into streams helps maintain flows during droughts and provides refugia for
thermally sensitive species, as the relatively constant temperature of spring water buffers against instream diur-
nal and seasonal fluctuations. Unmanned aerial vehicle (UAV)-based thermal imagery represents an attractive
option to monitor sites of groundwater-surface water mixing. However, the use of economical thermal sensors
presents several challenges to obtaining a stable dataset for mosaicking. Here, we present a method for acquir-
ing and postprocessing thermal infrared imagery at spring discharge sites using an inexpensive, uncooled micro-
bolometer mounted on a small UAV. The procedure involves initial estimation and removal of pixel bias from the
sensor output, and then compensation for temporal sensor drift by optimizing the stability of the signal at ground
features detected within multiple frames. We illustrate this approach by presenting a case study at the Devils
River, a groundwater dependent stream in Texas. Comparison with imagery acquired using a more expensive
thermal camera system, designed to compensate for sensor drift at the time of data acquisition using knowledge
of internal camera temperature, reveals that our method produces a more consistent final mosaic image. A good
linear fit (r 2 ¼ 0.97) between the signal in the stabilized dataset and ground-based measurements of water tem-
perature underscores the potential for this method to inexpensively produce high quality maps of surface temper-
ature in ecologically important stream reaches. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.OE
.57.5.053113]
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1 Introduction
Water temperature is an important variable in aquatic ecosys-
tems which directly controls the habitat extents of thermally
sensitive species. In freshwater streams, water temperature
oscillates on annual and daily cycles which are driven by
meteorological conditions and influenced by flow volumes.1

Because the temperature of groundwater usually fluctuates
far less than surface water in the same area, groundwater
seeps (i.e., springs) have the potential to create relatively sta-
ble refugia for riverine species with narrow thermal ranges.
These refugia are often warmer than the main surface flow in
winter and cooler during the summer, hosting populations of
fish, invertebrates, or plants which depend on the spring flow
through part of or all the year.1,2

One approach to mapping thermal refugia associated with
groundwater discharge is to use thermal infrared (TIR)
imagery. The pixels of a TIR image indicate the radiance
of a surface in the 8 to 14 μm range, which is a function
of its temperature and emissivity. Because the emissivity
of water is nearly constant, TIR imagery has proven to be
a useful tool for inferring stream temperatures from a variety
of platforms, ranging from handheld cameras3 to satellites.4

Although TIR imagery is sensitive only to temperature in the
“skin,” or top ∼100 μm, of the water column, it can reveal
useful information regarding the relative size and extent of
groundwater plumes originating from springs on or near the
streambank, particularly during winter, when groundwater is
most likely to be relatively warm and buoyant.5

Unmanned aerial vehicles (UAVs) have become increas-
ingly popular in recent years and represent a promising and
cost-effective means of collecting TIR imagery over inter-
mediate scale stream reaches of several hundred meters to
several kilometers. However, due to weight limitations,
UAVs tend to be mounted with small, uncooled thermal cam-
eras. The output of these sensors is influenced considerably
by variation in camera temperature, which tends to be highly
unstable during a flight.6 In some applications of thermal im-
aging, such as fire mapping,7 estimation of thermal loading
around buildings,8 or search and rescue operations,9 the
resulting sensor drift may be small compared to differences
in thermal intensity between the target and the background,
which are associated with temperature differences of several
tens of degrees Celsius. However, applying effective correc-
tions for sensor drift is far more important at sites of
groundwater-surface water mixing, where key temperature
differences often are only several degrees.10 To date, only
a handful of studies have yet employed UAV platforms to
collect TIR imagery over any stream environments,11–13*Address all correspondence to: Charles Abolt, E-mail: chuck.abolt@beg.

utexas.edu
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necessitating the development of new methods to produce
data with sufficient thermal precision.

In this paper, we present a postprocessing method to sta-
bilize imagery from the Forward Looking Infrared Systems
(FLIR, Wilsonville, Oregon, United States) Vue Pro, an
economically priced uncooled microbolometer weighing
approximately 100 g. We apply the method in a case study
at the Devils River in Val Verde County, Texas. We produce a
mosaic from 230 postprocessed still frame images and com-
pare it with the unprocessed imagery and with ground-based
observations of temperature at discrete points. Finally, we
compare the stabilized mosaic with another mosaic produced
using the FLIRTau2, a more expensive camera, which uses a
proprietary algorithm to stabilize imagery at the time of data
acquisition.

2 Background
All microbolometers include a focal plane array of elements
sensitive to incident longwave infrared radiation. The equa-
tion relating voltage at each array element (or pixel) to the
radiant flux from the scene takes a linear form:

EQ-TARGET;temp:intralink-;e001;63;520Vi;j ¼ x1i;jRi;j þ x0i;j ; (1)

where the coefficient x1;i;j relates the voltage, V, at pixel
ði; jÞ to the thermal radiance, Ri;j, originating from that por-
tion of the field of view; and the term x0;i;j represents other
factors to which the voltage is sensitive, including thermal
radiation originating from the camera interior.14 Whenever
data is collected, the camera effectively rearranges Eq. (1)
to convert voltage to a signal, S, in units of “counts,” or
digital numbers proportional to scene-based radiance:

EQ-TARGET;temp:intralink-;e002;63;400Si;j ¼ o1i;jVi;j þ o0i;j : (2)

For this procedure to work, the camera must have knowledge
of the correct offset compensation coefficients, o, which are
stored in internal memory.

In all longwave infrared cameras, the values of o vary
from pixel to pixel, and therefore must be calibrated prior
to data acquisition. In uncooled microbolometers, such as
the Vue Pro we used, an extra layer of complexity is intro-
duced, as the correct values of o also vary as a function of the
camera’s internal temperature. Because the internal temper-
ature of the camera changes substantially during a UAV
flight, the coefficients for each pixel drift over time, each
at a different rate. Therefore, to maintain the integrity of
the imagery, it is necessary for the camera to periodically
update its calibration. Many uncooled systems do so through
execution of a nonuniformity correction (NUC) procedure,
during which the internal shutter, assumed to be a uniform
temperature source, is presented to the focal array, and the
camera’s estimates of o are adjusted such that each pixel
records the same radiant flux. This procedure is intended
to assure that, within a single image, the signal at each
pixel is proportional to the scene-based radiance. How-
ever, the procedure does not ensure that the linear relation-
ship between signal and radiant flux remains constant among
multiple images, particularly when they are separated by one
or more instances of the NUC. This effectively means that
imagery from a UAV flight is affected by temporal sensor
drift, which may distort temperature estimates by several

degrees Celsius over the course of a flight and must be
removed prior to mosaicking.

In addition to temporal drift, one other form of data insta-
bility that can compromise the quality of a mosaic image is
fixed-point noise, or pixel bias. This bias distorts individual
still frames and is attributed in large part to longwave radi-
ation reflected off the inside of the camera lens toward the
sensor array, which is not visible when the internal shutter is
closed.15,16 The bias therefore persists through application of
a shutter-based NUC, producing a vignetting-like effect, in
which the edges of an image appear darker than the center.
Like temporal drift, this effect may represent the equivalent
of several degrees Celsius on sensor output. The magnitude
and spatial pattern of pixel bias may change over the course
of a UAV flight, but within individual frames, it tends to vary
smoothly from pixel to pixel.

Because the digital signal output by a microbolometer is
proportional to radiant flux, an appropriate conversion must
be made to derive surface temperature, once data have been
stabilized. The equation relating digital signal to temperature
takes the form:

EQ-TARGET;temp:intralink-;e003;326;521SðTÞ ¼ R
expðB∕TÞ − F

þO; (3)

where T is the temperature in kelvin, and the fitting param-
eters R, B, F, and O must be calibrated to the sensor.17

Although Eq. (3) is used in practice to interpret the signal
from sensors designed to monitor broad temperature ranges,
the relationship tends to be nearly linear when constrained to
ambient temperatures commonly observed at Earth’s surface.

3 Equipment

3.1 FLIR Vue Pro

The camera on which we focused our study was the FLIR
Vue Pro, an uncooled microbolometer that retails for approx-
imately $2000. The camera has a 9-mm Germanium lens
with a 69 deg× 56 deg field of view, and a sensor array
of 640 × 512 elements, sensitive to the spectral band from
7.5 to 13.5 μm. The FLIR Vue Pro requires a 5V external
power source and records still frame or video imagery
directly onto a micro SD card inserted into its side. It
includes a built in GoPro-style mount, which we used for
attachment to the front of our UAV in a nadir-viewing posi-
tion. The camera features a shutter-based NUC procedure,
but it does not have any means of correcting for temporal
drift caused by instability in internal temperature.

3.2 FLIR Tau2

The second camera used in this study was the FLIR Tau2,
another uncooled microbolometer, which has similar optical
specifications to the Vue Pro and retails for approximately
$10,000. The Tau2 also requires an external 5V power
source, but unlike the Vue Pro, it requires an external system
to store digital output, provided by ICI (Infrared Cameras
Inc., Beaumont, Texas, United States). The key innovation
of the Tau2 beyond the Vue Pro is that it includes a therm-
istor to monitor internal camera temperature while data is
collected. The coefficients o from Eq. (2) are calibrated in
the factory as a function of internal temperature to stabilize
the digital signal as temperature varies. Because the camera
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is designed to remove temporal sensor drift at the time of
data acquisition, it can be paired with ICI IR Flash software
to output digital images in which the signal has already been
converted to absolute temperature.

4 Study Site and Data Acquisition
The study site was centered on Finegan Springs (∼29.900°N,
100.998°E), a large karst spring on the banks of the Devils
River18 in the Edwards Plateau region of Texas (Fig. 1).
Originating on the east bank of the stream, Finegan Springs
flows persistently throughout the year and provides aquatic
habitats for the federally threatened Devils River minnow
(Dionda diaboli),18,20 the federally endangered Texas
Hornshell mussel (Popenaias popeii),21,22 and other aquatic
species of conservation interest.2 At the mouth of the spring,
the river is ∼30 m wide and flows through an incised bed-
rock channel. During the week of data collection, we mea-
sured streamflow (using a FlowTracker acoustic Doppler
velocimeter, SonTek, San Diego, California, United States)
of ∼1.16 m3 s−1 approximately 1 km upstream from the
spring.

Data collection with the FLIRVue Pro began at 9:57 AM
on February 9, 2017, approximately two and a half hours
after sunrise. The sky was free of clouds and air temperature
was 15.6°C with 44% relative humidity. We programmed our
UAV to fly along the stream at an altitude of 65 m from
∼300m downstream of the main spring outlet to 200 m
upstream; it first flew up the east bank, then down the middle
of the channel, and up the west bank at a velocity of 5 m s−1.
Still frame images were collected once per second, and
a NUC was programmatically triggered every 5 s.

During the flight, we monitored temperature at three water
baths located along the eastern bank of the stream, using
TidbiT temperature sensors (manufacturer accuracy �0.2°C;
Onset Computer Corporation, Bourne, Massachusetts,
United States) programmed to record every minute. The
water baths were created in plastic pools, approximately 1 m
in diameter and a quarter meter deep. Each water bath was
filled with different ratios of spring to stream water to pro-
duce a wide range of temperatures. Additionally, we moni-
tored water temperature at the mouth of Finegan Springs
using the same sensor, to acquire ground-based temperature
observations at a total of four points. Observations at these
points were subsequently compared with the UAV imagery
to develop a curve relating the camera signal to surface
temperature.

Approximately an hour and a half following the flight of
the FLIR Vue Pro, imagery from the site was captured using
the FLIRTau2 from an altitude of 80 m. The flight path over-
lapped most of the area surveyed with the FLIRVue Pro but
was offset slightly upstream. The ICI IR-flash software was
used to process images from the Tau2 and derive surface
temperature, measured in °C. Therefore, no image stabiliza-
tion procedure was later applied to data from the Tau2.
Imagery from the second flight was processed into
a mosaic image and compared with data from the FLIR
Vue Pro.

5 Image Stabilization Procedure
Our workflow for stabilizing the FLIR Vue Pro imagery
involved two corrections to each frame (Fig. 2). The first cor-
rection was designed to compensate for pixel bias within

Fig. 1 Location of study area on the Devils River within Dolan Falls Preserve, including critical habitat for
Dionda diaboli.19
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individual images. The second correction was a linear inten-
sity adjustment unique to each image, designed to counteract
temporal drift by optimizing the stability of the signal at fea-
tures observed across multiple frames.

We were motivated to develop this workflow due to a lack
of pre-existing methods that: (1) are designed to stabilize
datasets affected by both pixel bias and temporal drift and
(2) are practicable using the hardware incorporated into
the Vue Pro. A number of prior methods have been devel-
oped which, like the algorithm used by Tau2, involve per-
forming a calibration to remove sensor drift and pixel bias

as a function of internal temperature.23,24 However, these
methods are inapplicable to the Vue Pro, due to the lack
of internal thermistors. Several methods that do not require
additional hardware have been developed to remove pixel
bias.15,16,25 However, some rely on an assumption of negli-
gible sensor drift25 (inapplicable in our case), and the remain-
der do not address the problem of sensor drift at all. To our
knowledge, our method is the first presented that is capable
of removing significant distortion attributed to both pixel
bias and sensor drift in the Vue Pro or any other uncooled
microbolometer with a shutter-based NUC procedure.

Conceptually, applying the first step of our procedure
involved estimating and then subtracting the pixel bias from
each frame. We reviewed previously developed approaches
to this objective and tested one popular method designed to
estimate the unique bias in each frame by isolating spatially
continuous, low gradient variation in image intensity from
high gradient variation associated with the scene.15 We
found that this method effectively removed pixel bias
from some of our images, but performed poorly on others,
as spatial variation in water temperature often was mistak-
enly identified as noise (Fig. 3). Through experience with
the camera, we determined that a suitable method for esti-
mating pixel bias in the FLIR Vue Pro was by imaging
the lens cap just after landing and assuming it to be a uniform
temperature source. Although this approach neglects tempo-
ral variation in pixel bias, we found that by allowing the cam-
era to warm up for roughly an hour before data acquisition
and by frequently applying the shutter-based NUC, the tem-
poral variation is significantly reduced. By computing
the mean of fifteen images of the lens cap immediately
following landing, we estimated that the most positively

Fig. 2 Flowchart of our two-step procedure for stabilizing the raw out-
put of the FLIR Vue Pro. The gray circle denotes a ground feature
within a stack of raw images. The feature and the background are
depicted at uniform but different temperatures. In the first step,
pixel bias, or distortion within individual frames, is removed. In the
second step, sensor drift is corrected using an optimized linear adjust-
ment to each frame. Image intensity in the stable output is eventually
converted to surface temperature through calibration against a set of
ground measurements.

Fig. 3 Results from the application of a popular method for removing pixel bias15 to our dataset, including
(a) an image at the start of our flightpath and (b) estimated pixel bias; and (c) an image at themain seep of
Finegan Springs and (d) estimated pixel bias. Note similarity between panel (b) and Fig. 4, implying
success. In contrast, results in panel (d) clearly demonstrate that the method mistakes some variation
in water temperature for pixel bias. Estimated pixel bias in panels (b) and (d) is normalized between 0 and
160 photon counts.
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biased pixels in our flight over the springs were ∼130 digital
counts brighter than the most negatively biased pixels
(Fig. 4). This bias was subtracted from each image in the
dataset.

The second correction was a linear adjustment to the
intensity of each frame. This correction was intended to cor-
rect for sensor drift driven by temporal variation in the inter-
nal temperature of the camera. In making this adjustment, we
relied on the assumption that signal in each image (after the
subtraction of estimated pixel bias) was proportional to
scene-based radiance, but that the ratio of signal to radiant
flux was inconsistent among images. Therefore, we sought
a pair of linear coefficients for each frame, to stabilize the
signal throughout the dataset. Our approach to estimating
these coefficients was to trace time variation in the signal
at a large set of ground points, each detectable in multiple
frames, and then identify the set of corrections that mini-
mized signal variation at each ground point.

We identified ground points using Agisoft Photoscan,
a popular commercial software package that uses proprietary
algorithms to track the movement of features across a cam-
era’s field of view with subpixel precision. For illustration,
Fig. 5 shows a set of 30 randomly selected ground points
identifiable in a pair of images collected three seconds
apart, while the UAV flew near one of the larger seeps of
Finegan Springs. Overall, from our set of 230 images,
Agisoft Photoscan identified 68,417 discrete ground points;

on average, more than 1200 were detectable in each frame of
imagery. At every instance of a detected ground point in our
dataset, we extracted the mean signal intensity within a ten-
pixel radius.

We then applied a global optimization routine, the
shuffled complex evolution algorithm developed at the
University of Arizona (SCE-UA), to identify the optimal
set of linear coefficients to apply to the frames. SCE-UA
is a popular genetic algorithm in which a collection of sim-
plexes, or sets of trial solutions, evolve simultaneously,
exchanging information with one another while exploring
a predefined parameter space to minimize an objective
function.26 SCE-UA handles high-dimensional problems
(i.e., those with many parameters), especially well, and
has been very successful in the past as a tool for calibrating
complex hydrologic models.27–29 We used the algorithm to
optimize the coefficients, x, for each frame, such that:

EQ-TARGET;temp:intralink-;e004;326;565I 0i;j ¼ x1Ii;j þ xo; (4)

where I is the intensity of the pixel at coordinates ði; jÞ
before the correction and I 0 is the intensity postcorrection.
The objective function was computed by calculating
a weighted mean of the standard deviation of the adjusted
signal at selected ground points, in which the assigned
weight was proportional to the number of frames in
which that point was detected. To increase computational
efficiency, the objective function incorporated only a subset
of the ground points identified in Agisoft Photoscan, chosen
such that each frame contained at least thirty instances. We
generally allowed x1 for each frame to vary between 0.9 and
1.1, and x0 to vary between −40 and þ40. These bounds
were set to be arbitrarily large; in practice, we found that
the parameters nearly always calibrated within the inner
25% of the defined limits. To prevent artificial reduction
of the signal in the optimized dataset, in the first frame,
x1 was not allowed to decrease below 1.0, and x0 was not
allowed to be negative.

To illustrate this approach, Figs. 4 and 6 show sample
results obtained by applying it to a subset of 15 images
near the start of the flight path. Thirty ground control points,
each represented by a colored “x,” were selected at random.
In this example, the weighted mean of the standard deviation
in signal intensity at each point decreased from 14.4 to 3.2
digital counts.

Fig. 4 Average of 15 images of the lens cap captured by the FLIR Vue
Pro immediately following landing, used to infer pixel bias. The most
positively biased pixels were 130 photon counts brighter than the
most negatively biased pixels. This image was subtracted from all
still frames in the first step of our stabilization procedure.

Fig. 5 (a) and (b) A pair of images captured 3 s apart, with 30 shared ground points marked.
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Although SCE-UA is well suited to optimize large sets of
parameters simultaneously, computation time increases non-
linearly as the number of parameters increases. Therefore, to
accelerate the procedure, we implemented the algorithm in
two phases, taking advantage of the linear nature of the

solution. In the first phase, the 230 images were stabilized
in groups of roughly 15. The groups were assigned based
on the geographic position of the still frame from
downstream to upstream, which was stored in a text file gen-
erated by Agisoft Photoscan; therefore, each group included

Fig. 6 Illustration of the stabilization of signal intensity in 15 images using our approach. Each line rep-
resents the signal at a ground feature detectable across multiple frames, shown (a) before and (b) after
postprocessing.

Fig. 7 Mosaic of imagery from the FLIR Vue Pro (a) before postprocessing and (b) after postprocessing,
with (c) visual imagery provided for reference. Note trucks in lower-right quadrant of imagery for
scale.
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images from all three legs of the flight path. In the second
phase, an additional set of coefficients was optimized for
each group, to stabilize the entire dataset. Run on a personal
laptop, the optimization procedure was completed in less
than 8 min.

6 Results
Mosaic images are presented in Fig. 7 constructed using
uncorrected output from the FLIR Vue Pro (a) and imagery
that has been postprocessed using our method (b). The
mosaic images were produced in Agisoft Photoscan with
blending options disabled. The intensity of any pixel in
the mosaics is therefore derived solely from the image in
which the camera is pointed most nearly perpendicular to
the ground at that point. Our method of postprocessing

considerably reduces the sensor drift evident in the unproc-
essed mosaic; although the major spring discharge is notable
in both images midway down the eastern bank, the instability
among frames is much more pronounced in the unprocessed
imagery. Upon application of our method, the weighted
mean of the standard deviation of the signal at the ground
points used for data stabilization dropped from 37.6 digital
counts in the original to 4.4. The corrected image presents a
sharp representation of several groundwater seeps entering
the east bank of the river. At each seep, the warmer and
more buoyant groundwater enters the surface flow at the
top of the water column, gradually mixing with the cooler,
underlying river water as it flows downstream.

A mosaic constructed from imagery acquired by the FLIR
Tau2 is shown in Fig. 8. The spatial extent of the figure
overlaps the mosaics in Fig. 7 but depicts the study area
approximately an hour later in the day. Figure 8 was also
constructed with blending options disabled in Agisoft
Photoscan. As indicated by the color bar, the imagery has
units of temperature, rather than digital counts. It is evident
that, despite the internal procedures designed to compensate
for variation in internal camera temperature, the Tau2 is
affected considerably by sensor drift throughout the UAV
flight. The discordance between adjacent legs of the flight
path implies high levels of uncertainty in the real surface
temperature.

Postprocessed imagery from the FLIRVue Pro aligns well
with ground-based water temperature measurements; a linear
regression between four ground points and pixel intensity
extracted from the postprocessed mosaic reveals a close
fit (r2 ¼ 0.97) with a slope of approximately 1°C∕18 digital
counts (Fig. 9). The close match between camera signal and
water temperature underscores the potential to produce maps
of surface temperature by applying our method of data sta-
bilization to the output of the FLIR Vue Pro. Comparison of
surface temperature at 200 randomly selected points from the
river, estimated both through our method and from the Tau2
imagery, reveals that the Tau2 predicts temperatures gener-
ally cooler than the Vue Pro; at times, the difference is as
much as 3°C (Fig. 10).

Fig. 8 Mosaic of imagery from the FLIR Tau2.

Fig. 9 Comparison of signal from postprocessed FLIR Vue Pro
imagery with water temperature measured on the ground.
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7 Conclusions
Despite the challenges of compensating for data instability,
the collection of longwave infrared imagery from a UAV
platform is a promising method for mapping surface water
temperatures associated with groundwater-surface water
mixing. By applying a postprocessing procedure designed
to stabilize the intensity of ground features detected fre-
quently during a flight, we assembled data from an in-
expensive thermal camera into a stable mosaic of thermal
radiance along a ∼500-m stretch of river affected by several
groundwater seeps. The advantages of our postprocessing
method are that it performs well on data from an economical
sensor (∼2; 000 for the Vue Pro we used) and produces a
smoother mosaic image than data from a more expensive
system (∼10;000 for the Tau2 with accessories). The main
disadvantage is that the imagery produced through our
method must be converted to surface temperature through
calibration against a set of ground measurements.
Nonetheless, strong alignment between the signal in the
postprocessed imagery and observed water temperature at
our field site implies that the method can be used effectively
to estimate near-surface stream temperatures, and thereby
monitor the habitat of thermally sensitive species.
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