Ruichang Guo

Expertise

- High performance computing (C/C++17, OpenMP, CUDA, and CMake): independently developed three lattice Boltzmann method-based simulators (a single-phase flow simulator , a two-phase flow simulator and a convection-diffusion simulator) and a reservoir scale simulator (a density-driven flow simulator). An LBM-based simulator for reactive flow in porous media and a reservoir-scale three-component simulator is under development. The efficiency of reservoir scale simulators exceeds commercial software.
- Numerical simulation pore scale: LBM-based simulation on fluid flow in porous media, such as solute transport in porous media, two-phase flow in porous media, reactive flow in porous media, etc.
- Numerical simulation reservoir scale: density-driven flow in porous media, fluid flow in well bore or drilling tools, thermal integrity profiling, etc.
- **Machine learning:** deep learning-based permeability and flow field prediction, micro-CT image segmentation, physics informed neural networks.
- **Experiments:** mass transport in porous media (Hele Shaw cell), proppant transport in fractures, micro-CT scanning, water flooding, etc.
- o Software skills: COMSOL, Fluent, AutoCAD, ParaView, Tecplot, etc.
- **Programming language:** C/C++ 17, Python, MATLAB

Education

- 2018 2022 Virginia Tech, Blacksburg, USA, Ph.D. in Mining Engineering
- 2016 2018 Missouri S&T University, Rolla, USA, Research Assistant in Geotechnical Engineering
- 2005 2010 China University of Petroleum, Beijing, China, Ph.D. in Petroleum Engineering
- 2001 2005 China University of Petroleum, Dongying, China, B. Eng. in Mechanical Engineering

Professional Experience

- 2024 present The Bureau of Economic Geology, University of Texas at Austin, Postdoc, Research on microfluidics and underground hydrogen storage.
- 2022 2024 Stevens Institute of Technology, Postdoc, Research on fluid flow in porous media in subsurface energy systems.
- 2010 2016 SINOPEC Research Institute of Petroleum Engineering, Senior Engineer, Deputy Chief Researcher,

Research and development on ultradeep horizontal drilling technology and downhole tools.

Research Projects

Investigation of mechanochemical interactions of hydrogen with earth materials in a subsurface gas
storage. U.S. Department of Energy project. Major researcher. Experimental evaluation of H₂ adsorption in rock.

Fundamentals of Particulate Amendment Transport and Compaction in Hydraulic Fractures and the Application to Effective Remediation in Low-Permeability Clay. U.S. Department of Defense project.

2022-2024 Application to Effective Reinediation in Low-Ferneability City. C.S. Department of Detense project. Design and construction of experimental setup, indoor testing to evaluate proppant transport in complex fractures.

Using a Well-Controlled Heterogeneous Permeability Field to Study Its Role on Miscible Density-Driven

2019 - 2022 Convection in Porous Media. U.S. NSF Project. Major researcher, Conducted the experiments and data analysis.

Understanding Relative Permeability, Residual Saturation, and Porosity in Reservoirs to Reduce

- 2019 2022 Uncertainty in Long-Term CO₂ Storage and Efficiency. U.S. DOE-NETL project. Major researcher. Conducted lattice Boltzmann multi-phase flow modeling and collaborated with the NETL Geo-Imaging Laboratory.
- 2014 2016 Research on Horizontal Drilling Technology in Fuling Shale Gas Fields. SINOPEC Key Project. Co-Principal Investigator.

- 2012 2013 Technical Tracking and Analysis on Horizontal Drilling and Staged Fracturing technology. SINOPEC Project. **Principal investigator**.
- 2011 2012 Pilot Experiment of Ultra-deep Horizontal Drilling Technology in Yuanba Gas Field. SINOPEC Project.

Co-Principal Investigator.

- 2011 2012 Development of Drilling Optimization Design and Drilling Geological Environmental Factors Description Software. SINOPEC Project. Major researcher, Programing on horizontal drilling technology related models.
 - Research on Ultra-deep Horizontal Drilling and Completion Technology in Yuanba Gas Field. SINOPEC
- 2011 2013 Key Project. Major researcher, Project leader assistant, R&D in horizontal drilling technology and downhole tool.
- 2010 2013 High-efficient Drilling Technology for Ultra-deep Well in Yuanba Gas Field. SINOPEC Top-ten Major Projects. **Principal investigator assistant** and major researcher.
- Technical Support for Ultra-Deep Horizontal Drilling and Drilling Fluid Technology in Yuanba Gas Field. 2010 - 2016 SINOPEC Field Project. On-site technical support for six ultradeep horizontal wells (YB103H, YB121H,

Awards and Honors

- 2022 Pratt Fellowship, Virginia Tech
- 2022 WAAIME West Virginia Southern Section Scholarship, SME

YB272H, YB101-1H, YB1-1H, SB1-1H, etc.).

- 2021 Pratt Fellowship, Virginia Tech
- 2021 WAAIME Scholarship, SME
- 2017 Norbert Schmidt Fellowship, Missouri S&T University
- 2014 SRIPE Scientific and Technical Outstanding Progress Award, SINOPEC Research Institute of Petroleum Engineering
- 2014 Scientific and Technical Progress Award, SINOPEC Oilfield Service Corporation
- 2013 Outstanding researcher of SINOPEC Research Institute of Petroleum Engineering

Journal Papers

In Preparation/Under Review

- [1] **R. Guo**, L. Dalton, H. Wang, J. McClure, D. Crandall, & C. Chen. (2024). Modeling and reconstructing heterogeneous wettability of a natural rock. In preparation.
- [2] **R. Guo**, C. Chen. (2024). Reconstruction of density-driven flow in porous media with physics informed neural network model. In preparation.
- [3] **R. Guo**, H Sun, H. Wang, Z. Li, Y Liu, & C. Chen. (2024). Experimental investigation on densitydriven convection in strongly heterogeneous porous media. To be submitted.
- [4] **R. Guo**, L. Zeng, C. Chen. (2024). Pore scale investigation on solute transport in unsaturated porous media. To be submitted
- [5] Z. Li, **R. Guo**, H. Wang, N. Ripepi, C. Fernandez, & C. Chen. (2024). Experimental and Numerical Investigation of Conductivity between Non-smooth Fracture with/without Proppant. Under review.

Published

- Q. Zhao, X, Han, R. Guo, & C. Chen. (2023) A Computationally Efficient Hybrid Neural Network Architecture for Porous Media: Integrating CNNs and GNNs for Improved Permeability Prediction. arXiv:2311.06418.
- [2] Q. Zhao, R. Guo, N. K. Jha, M. Sarmadivaleh, M. Lebedev, A. Al-Yaseri, J. McClure, & C. Chen. (2024). Using X-ray computed tomography and pore-scale numerical modeling to study the role of heterogeneous rock surface wettability on hydrogen brine two-phase flow in underground hydrogen storage. Fuel, 366, 131414.
- [3] H. Qu, Y. Xu, Y. Liu, X. Wang, X. Liu, Z. Zeng, & R. Guo. (2023). Experimental study of fluidparticle flow characteristics in a rough fracture. Energy, 129380
- [4] R. Guo, H. Sun, H. Wang, Y. Teng, Y. Liu, & C. Chen. (2023). Using novel 3D printing to study the role of permeability heterogeneity on miscible density-driven convection in porous media. Advances in Water Resources, 178, 104496.

- [5] H. Qu, C. Li, X. Chen, X. Liu, R. Guo, & Y. Liu. (2023). LN cooling on mechanical properties and fracture characteristics of hot dry granites involving ANN prediction. Renewable Energy, 119058
- [6] H. Qu, J. Hong, Y. Liu, Z. Zeng, X. Liu, X. Chen, & R. Guo. (2023). Experiment and simulation of slurry flow in irregular channels to understand proppant transport in complex fractures. Particuology, 83: 194-211
- [7] R. Guo, L. Dalton, H. Wang, J. McClure, D. Crandall, & C. Chen. (2022). Role of heterogeneous surface wettability on immiscible displacement, capillary pressure, and relative permeability in a CO₂-brine-rock system. Advances in Water Resources, 165, 104226.
- [8] H. Qu, Y. Hu, R. Guo, G. Lin, J. Xu, H. Jun, & X. Chen. (2023). Experimental study on pore structure alteration of deep shale under liquid nitrogen freezing based on nuclear magnetic resonance. International Journal of Hydrogen Energy, 48 (1): 51-66. (corresponding author)
- [9] H. Wang, L. Dalton, R. Guo, J. McClure, & D. Crandall. (2022) Unsupervised deep learning for image segmentation and in-situ contact angle measurements in a CO₂-water-rock multiphase flow system. Advances in Water Resources, 173, 104385
- [10] H. Wang, L. Dalton, M. Fan, R. Guo, J. McClure; D. Crandall, &C. Chen. (2022). Deep-learningbased workflow for boundary and small target segmentation in digital rock images using UNet++ and IK-EBM. Journal of Petroleum Science and Engineering, e110596.
- [11] R. Guo, H. Sun, Q. Zhao, Z. Li, Y. Liu, & C. Chen. (2021). A novel experimental study on densitydriven instability and convective dissolution in porous media. Geophysical Research Letters, 48, e2021GL095619
- [12] R. Guo, L. Dalton, M. Fan, J. McClure, L. Zeng, D. Crandall, & C. Chen. (2020). The role of the spatial heterogeneity and correlation length of surface wettability on two-phase flow in a CO₂-waterrock system. Advances in Water Resources, 146, 103763
- [13] R. Zhong, R. Guo, & W. Deng. (2018). Optical-fiber-based smart concrete thermal integrity profiling: an example of concrete shaft. Advances in Materials Science and Engineering, 9290306
- [14] D. Ma, G. Li, R. Guo, & W. Wang. (2013). Numerical simulation of cutting-carrying law of ultrashort radius radial drilling technology with steering in the casing. Fluid Machinery, 11, 6-10
- [15] D. Ma, G. Li, R. Guo, & Z. Huang. (2013). Hydraulic jetting ultra-short radius radial horizontal well drilling rate equation. Journal of China University of Petroleum (Edition of Natural Sciences), 3, 78-82
- [16] G. Yan, K. Liu, R. Guo, J. Liu, & H. Wu. (2013). Yuanba 272h well ultra-deep sidetracking drilling technology. Petroleum Drilling Techniques, 1, 113-117
- [17] G. Li, K. Liu, R. Guo, & Z. Song. (2012). Drilling techniques for the ultra-deep horizontal Yuanba 272H well. Drilling and Production Technology, 6: 116-120
- [18] R. Guo, K. Liu, X. Tao, W. Liu, C. Yang, & M. Li. (2012). Horizontal well penetration rate increasing technology in Daniudi gas field. Oil Drilling and Production Technology, 5, 49-52
- [19] H. Xu, K. Liu, R. Guo, N. Si, F. Yang, & R. Cai. (2012). Application of rotary steering technology in ultra-deep horizontal well in Yuanba gas field. Drilling and Production Technology, 2, 25-27
- [20] R. Guo, G. Li, Z. Huang, S. Tian, & H. Shi. (2010). Numerical simulation study on flow field of multi-hole jet bit. Fluid Machinery, 4, 13-17
- [21] R. Guo, G. Li, M. Liu, & Z. Huang. (2010). Mechanical models for flexible pipe in whipstock of radial drilling system. China Petroleum Machinery, 3, 24-27
- [22] R. Guo, G. Li, Z. Huang, S. Tian, & H. Shi. (2010). Investigation of factors affecting micro-hole's horizontal displacement. Drilling Petroleum Techniques, 2, 5-9
- [23] R. Guo, G. Li, Z. Huang, S. Tian, X. Zhang, & W. Wu. (2009). Theoretical and experimental study of the pulling force of jet bits in radial drilling technology. Petroleum Science, 4, 395-399

Conference Papers/Presentations/Posters

 H. Wang, R. Guo, J. Leng, S. A. Hosseini, & M. Fan. (2023). A Comparative Study of Deep Learning Models for Fracture and Pore Space Segmentation in Synthetic Fractured Digital Rocks. SPE ATCE 2023 (SPE-215117-MS)

- [2] R. Guo, L. Dalton, H. Wang, J. McClure, D. Crandall,& C. Chen. (2022). Comprehensive investigation on role of wettability heterogeneity in immiscible two-phase flow in sandstones. AGU Fall Meeting, MR55A-03
- [3] R. Guo, L. Dalton, H. Wang, J. McClure, D. Crandall,& C. Chen. (2022). Using In-situ Wettability Measurements to Reconstruct the Wetting Condition of a Natural Rock. *InterPore 2022*, Oral presentation, MS09
- [4] R. Guo, L. Dalton, M. Fan, J. McClure, L. Zeng, D. Crandall,& C. Chen. (2020). The impact of spatial variation and correlation length of wettability on scCO₂-brine immiscible displacement in 3D porous media. AGU Fall Meeting, MR023-0014
- [5] **R**. **Guo**, J. McClure, C. Chen and M. Fan. LBM-based simulation on impact of wettability heterogeneity on relative permeability in sandstone. *AGU Fall Meeting*, MR13C-0088
- [6] **R**. **Guo**, F. Jiang, & W. Deng. (2017). Lattice boltzmann simulation of seismic mobilization of residual oil in sandstone. *AGU Fall Meeting*, H11G-0583
- [7] **R. Guo**, G. Li, & Z. Huang. (2009). Study on flow field characteristics and rock-breaking mechanism of multi-hole jet bits. *The 6th Chinese National Conference on Deep Rock Mechanics*, 46-50

Academic Service

Associate Editor

Geoenergy Science and Engineering (Journal of Petroleum Science and Engineering)

Journal Reviewer

Geoenergy Science and Engineering

- o Fuel
- \circ Advances in Water Resources
- \circ Journal of Cleaner Production
- Petroleum Science
- \circ Journal of Hydrology
- o International Communications in Heat and Mass Transfer