

Unconventional Reservoir Future Science, Technology and Economics

Scott W. Tinker Bureau of Economic Geology The University of Texas at Austin, Austin

Acknowledgements

BEG Shale Reserves & Production Team » Dr. Svetlana Ikonnikova, co-PI The Alfred P. Sloan Foundation IHS & DrillingInfo for database access For potential conflicts of interest see http://www.beg.utexas.edu/info/shale rsrvs prod.php

Outline

Unconventional Reservoirs U. S. Shale Gas and Shale Oil Science, Technology & Economics

Global Natural Gas Resources v. Cost

Resources (TcF)

Global Oil Resources v. Cost

U.S. Natural Gas Production and Reserves

Data: BP World Energy 2012

U.S. Natural Gas Production (TcF)

http://www.eia.gov/energy_in_brief/about_shale_gas.cfm

http://www.eia.gov/energy_in_brief/about_shale_gas.cfm

Tinker, 2014 Shale Gas Forecast vs. Actual

tcf Model: Rice University, Medlock, 2012

Annual US Oil Production

From: James D. Hamilton, Working Paper 17759, NATIONAL BUREAU OF ECONOMIC RESEARCH, 2012

2010 U.S. SHALE LIQUIDS PROJECTION

After Morse et. al., 2012, Energy 2020: North America, the new Middle East: Citi GPS: Global Perspectives & Solutions, figure 14, p. 17.

Annual US Oil Production

From: James D. Hamilton, Working Paper 17759, NATIONAL BUREAU OF ECONOMIC RESEARCH, 2012

Outline

Unconventional Reservoirs U. S. Shale Gas and Shale Oil Science, Technology & Economics

Unconventional Resource Plays

Modified from: EIA and National Geographic

Unconventional Resource Plays

Cenozoic	Mesozoic	Paleozoic		
Miocene	Cretaceous	Permian	Mississippian-Devonian	Tight sands
Miocene-Oligocene	Jurassic	Pennsylvanian	Devonian	Basins
Eocene	Trassic	Mississippian-Per	Ordovician	
		📃 Mississippian	Cambrian	

Modified from: EIA and National Geographic

Unconventional Resource Plays

Cenozoic	Mesozoic	Paleozoic		
Miocene	Cretaceous	Permian	Mississippian-Devonian	Tight sands
Miocene-Oligocene	Jurassic	Pennsylvanian	Devonian	Basins
Eocene	Trassic	Mississippian-Per	n Ordovician	
		📃 Mississippian	Cambrian	

Modified from: EIA and National Geographic

Middle Devonian

Ν

Bakken

nker, 2014

From Blakey; http://cpgeosystems.com/paleomaps.html

Warcellus

Caleorinoes

Laurentia

&

Baltica

Bureau of Economic Geology U.S. Shale Gas Integrated Study

What is the *total* resource base in place?
What portion is *technically* recoverable?
What potion is *economically* recoverable?
What is the long-term *production outlook*?

Ikonnikova S., et al. 2013. SPE Res. Eval & Eng

Well Profiles Vary by Tier

BEG Shale Reserves and Production Project

Barnett Drilling by Tier

BEG Shale Reserves and Production Project

Production Outlook for the Barnett Shale through 2030

QAe1590

BEG Shale Reserves and Production Project

Barnett Production Forecast

BEG Shale Reserves and Production Project

Barnett Tinker, 2014 Monte Carlo Production Distribution

Browning, J. et al. 2013. SPE Econ & Mgmt

Fayetteville Productivity Tiers

Fayetteville Production Forecast

BEG Shale Reserves and Production Project

Fayetteville Production Forecast

BEG Shale Reserves and Production Project

Fayetteville Monte Carlo Production Distribution

Haynesville Productivity Tiers

Haynesville Production Forecast

BEG Shale Reserves and Production Project

Haynesville Production Forecast

BEG Shale Reserves and Production Project

Haynesville Monte Carlo Production Distribution

BEG Shale Reserves and Production Project

Economics by Tier (Bcf)

BEG Shale Reserves and Production Project

Economics by Tier (Bcf)

BEG Shale Reserves and Production Project

Marcellus OGIP

Sources: Base map features acquired from TNRIS and SONRIS. USGS Quadrangles; Indices (1/64) were adapted from the USDA Geospatial Data Gateway (http://datagateway.nrcs.usda.gov/GDGOrder.aspx). Well data provided by IHS and DrillingInfo. Well logs provided by MJ Systems. Map compiled in ESRI ArcMap 10.2.; GCS WGS1984; Datum: D WGS 1984; Angular Unit: Degree Created by Guin McDaid on August 21, 2014

Tinker, 2014

All Maps Shown with Common Distance Scale

BEG Shale Reserves and Production Project

Marcellus OGIP

Sources: Base map features acquired from TNRIS and SONRIS. USGS Quadrangles; Indices (1/64) were adapted from the USDA Geospatial Data Gateway (http://datagateway.nrcs.usda.gov/GDGOrder.aspx). Well data provided by IHS and DrillingInfo. Well logs provided by MJ Systems. Map compiled in ESRI ArcMap 10.2.; GCS WGS1984; Datum: D WGS 1984; Angular Unit: Degree Created by Guin McDaid on August 21, 2014

Tinker, 2014

All Maps Shown with Common Distance Scale

BEG Shale Reserves and Production Project

Base Case (\$4) Stacked Production

BEG Shale Reserves and Production Project

EIA Price Case Stacked Production

BEG Shale Reserves and Production Project

\$6 Case Stacked Production

BEG Shale Reserves and Production Project

Forecast vs. Actual

Global Natural Gas *Resources v. Cost*

Outline

Unconventional Reservoirs U. S. Shale Gas and Shale Oil Science, Technology & Economics

The 5E Waltz

Environment

Education

The Radical Middle

Academia/NGO

The

Radical

Middle

Government

Industry

Tinker, 2014

Some Key Questions

- Can we re-complete existing wells economically?
- Will technology and economics allow for development of the large OGIP and OOIP in middle tiers?
- Can we improve facilities and manage flaring, choking of wells and other operational limitations?
- Can we improve fracture characterization and increase the number of contributing stages?
- Do we understand rock mechanics and what creates surface area?
- Can we forecast and manage decline of production and improve our estimates of EUR?
- Can we drill fewer wells from fewer pads?
- Can we use less water?
- What controls induced fracture morphology and can we improve our imaging of fracture networks?
- Can we improve characterization of hydraulic fractures by deploying smart nanosensors?
- Can we improve our understanding of adsorbed gas? Porosity?
 Permeability?

The Radical Middle

Economics

Success

Recompletions Middle Tiers Facilities

Contributing Stages Rock Mechanics Manage Decline Fewer Wells Less Water

Technology

Science

Porosity Adsorption Permeability Characterization Fracture Imaging

Energy and the Economy

QAe963

Energy and the Economy

Energy and the Economy A Global Challenge

9,000 - 8,000 -	TPER = Total Primary Energy Requirement. Energy needed to facilitate Total Final Consumption (TFC does not include conversion and transmission losses).	Developed Nations states Balance of Trade
7,000 - 6,000 - 9 5,000 -		 ✓ Exports ✓ Imports • Regulation and Planning
- 8_4,000 - ∠	Developing Nations Food Housing 	 ✓ Infrastructure ✓ Resources ✓ Permitting
3,000 - 2,000 -	ClothingEducation	 Emissions, Climate, Environment Energy Security
1,000 ⁻ 0 †	HealthcareElectricity	
0		000 25,000 30,000 35,000 40,000 45,00 DP per capita

After: Rice World Gas Trade Model Medlock, 2012

Oil "Frontiers" Unconventional Technology for Conventional Reservoirs

Tinker's Top Ten

- 1. Governments, industry and academe must work together; we all play a role in objective, balanced energy education.
- 2. The scale of energy demand is difficult to comprehend; energy transitions take many, many decades.
- 3. Energy security affordable, available, reliable, sustainable drives the energy mix and should be the goal of energy policy.
- 4. Energy efficiency is underappreciated; individuals matter!
- 5. Diverse energy portfolios are inevitable and healthy.
- 6. Renewables are growing but will remain regional supplements until major advances are made in energy storage.
- 7. Shale will play a global role in the energy future; "above ground" challenges are as important as "below ground."
- 8. Natural gas and nuclear are the new foundational energies.
- 9. Oil and coal are abundant at the right price, and difficult to replace as transportation and electricity fuels.
- 10. Energy, the economy and the environment are linked.