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Framing Conundrum

A majority of the educated public
do not know how electricity Is
made... nhor do they really care.

As a result, the public is free to
“not like™ everything.

We need to take the energy
conversation to a different place.



Outline

= Global Demand
= Shale Gas and Electricity

= Market Implications
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Global Population and Energy.
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Global Population and Energy
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Population 2015

~1 billion people per color
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Energy Mix
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Energy Demand
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Energy Flows
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Global Natural Gas Production
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Global Natural Gas Production
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Global Natural Gas
Resources v. Cost
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U.S. Natural Gas
Production and Reserves

Annual
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U.S. Natural Gas
Production (TcF)
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U.S. Natural Gas

Production (TcF

An Anticipated volution
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Environmental Impact

Traffic,
noise,
dust 2

CO,, @ R d 4gimby, Land fragmentation,
VOC emissions 4 ) : erosion,

CH, emissions | invasive species
Flaring

Proppant Impacts on ~ Water use

! Water use GWSW Leaking puts \
‘/i—\ mpoundments SurfaceH Dlscharge Dlsposal
) \ \
g )\ ] |
R — -y __|__ <=

spills Landfill

~—[@o8]— '
"W Compressor Treatment, ‘s’ \..g

recycling

. " Defective
Cloudiness, .
- taste, odor, CH,, compeion: . Stioh
i chemical complaints Jwe“
Potential leakage pathways:
abandoned wells/faults

Seismic

Y@ 5

Not to scale
QAe2208

Not to Scale!

After JP Nicot, Bureau of Economic Geology



Tinker, 2014

Environmental Impact
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Environmental Impact

Marcellus Mapped Frac Treatments/TVD
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Environmental ISSUes
Regulatory Considerations

Mandatory baseline data

. Cement all gas producing zones

Full disclosure of chemicals

Minimize fresh water use on the front end
Handle flowback and produced water
Manage potential induced seismicity
Minimize methane emissions and flaring
Minimize surface impact

after Rao, 2012
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Unconventional Resource Plays
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Modified from: EIA and National Geographic
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Unconventional Resource Plays
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Unconventional Resource Plays
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Bureau of Economic Geology
U.S. Shale Gas Study

= What is the total/resource base in place?

= What portion is techinically recoverable?

= What potion Is economically recoverable?
= What is the long-term production out/ook?
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Monte Carlo Production Distribution
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Fayetteville
Monte Carlo Production Distribution
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Haynesville
Monte Carlo Production Distribution
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Marcellus OGIP
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BEG Shale Reserves and Production Project
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Shale Gas Forecast vs. Actual
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Base Case ($4) Stacked Production
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EIA Price Case Stacked Production
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$6 Case Stacked Production
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Forecast vs. Actual

tef Model: Rice University, Medlock, 2012
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Natural Gas Prices

f\’\/N/\/_’_,
Jan-07 Jan-08 Jan-09 Jan-10 Jan-11 Jan-12 Jan-13

e JS (Henry Hub) UK (NBP)
== (German Oil-Linked — Japan

Figure 3.12: Monthly Global Gas Prices, 2007-Q1 2013
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Shale Drivers
Global shale gas basins, top reserve holders

@ Top reseryglaniiaie200 - Trin cubic metres

Argentina 21.

Assessed basins
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% REUTERS

Source: EIA based on Advanced Resourc Wasesai#al Inc data, BP

Reuters graphic/Catherine Trevethan
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Options to Natural Gas for Power

1. Coal
o Available, affordable to generate, reliable
o Dirty, expensive to build
1. Nuclear il
o Efficient, no emissions, affordable generation e Uy
o Expensive to build, waste, safety
1. Wind
o Simple, affordable, no emissions
o Intermittent, land and visual, transmission
iv. Solar
o Simple, no emissions, local
o Intermittent, land, transmission
v. Hydro
° Efficient, affordable to generate, no emissions
o Water, land, drought
vi. Geothermal
o Affordable where concentrated, no emissions
° Geology
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Global Investment in Clean Energy.
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Source: Bloomberg New Energy Finance, The Economist, April 26, 2014
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The Future Electricity. Mix
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TThe Future Electricity. Mix
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TThe Future Electricity. Mix
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The Future Electricity. Mix
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TThe Future Electricity. Mix
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The Future Electricity. Mix
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TThe Future Electricity. Mix

Energy-related carbon-dioxide emissions by

geography, an

d net change since 2005

Country/ Net change in annual emissions from
area 2011 emissions 2005 to 2011, million metric tons
China 8715 million metric tons
India 1726 B 544

Russia 1788 B 201

NETET! 1181 -61 B

Canada 553 71 B

UK 497 -86 B

Germany 748 99 B

Europe 4305 370

us 5491 -509 N

Sources: US DOE, The Wall Street Journal
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The Future Electricitv. Mix

Average national electricity prices (in 2011 US cents/kWh)

Tinker, 2014

Data: average prices from 2011 converted at
mean exchange rate for that year 41
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Sources: IEA, EIA, national electricity boards, OANDA, shrinkthatfootprint.com
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Energy Security

Affordable Cost

Price Volatility: stable or fluctuating

Infrastructure: Cost to build the plant

Avallable Access: substantial resources

Reliable Intermittent: source consistent or variable

Safe: natural/human causes

Sustainable Clean: air and atmospheric emissions

Dense: land footprint

Dry: fresh water use/risk
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Energy Security

Cost
=630)110)11)Y

PriceVolati...,. ... _. 7. ctuating

Infrastructure: Cost to build the plant

~The Three Es |

Safe: natural/human causes

Clean: a Environment ssions

Dense: land footprint

Dry: fresh water use/risk
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The 4" E

Environment

Energy Economy
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Efficiency

Benefits

= Save energy

= Lower emissions
s Less water

s Less infrastructure
= Less land

s Save $

Challenges

= Incentivize producers to produce less
= Expensive to install

= Requires a cultural change
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The Radical Middle
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Energy and the Economy.
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Medlock, 2012 QAe963
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Energy and the Economy.
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Energy and the Economy.
A Global Challenge

TPER = Total Primary Energy Requirement.
Energy needed to facilitate Total Final

DEVEILPEUMICLIDIIS:
8,000 - Consumption (TFC does not include
conversion and transmission losses). » Balance of Trade

7,000 v Exports
v Imports

s 6,000 . .
= « Regulation and Planning
& 5,000 e v Infrastructure
o Davealooirie) Nerifons s A
L 4,000
DC:" Food v Permitting
W 3,000 Housing -+ Emissions, Climate, Environment
I—

Clothing

Education
1.000 Healthcare
Electricity

2.000  Energy Security

| | | | |
0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000

_ GDP per capita
After: Rice World Gas Trade Model
Medlock, 2012 QAe963



Tinker, 2014

Tinker’s Top Ten

1. Governments, industry and academe must work together; we
all play a role in objective, balanced energy education.

2. The scale of energy demand is difficult to comprehend; energy
transitions take many, many decades.

3. Energy security — affordable, available, reliable, sustainable —
drives the energy mix and should be the goal of energy policy.

4. Energy efficiency is underappreciated; individuals matter!
5. Diverse energy portfolios are inevitable and healthy.

6. Renewables are growing but will remain regional supplements
until major advances are made in energy storage.

7. Shale will play a global role in the energy future; “above
ground” challenges are as important as “below ground.”

8. Natural gas and nuclear are the new foundational energies.

9. Oil and coal are abundant at the right price, and difficult to
replace as transportation and electricity fuels.

10. Energy, the economy and the environment are linked.



