

Fundamental Requirements and Factors Influencing Successful Project Execution



**Nuclear Innovation** North America LLC

Presented by:

Mark McBurnett

Chief Executive Officer, Nuclear Innovation North America, LLC

# Global Deployment Of The Advanced Boiling Water Reactor (ABWR)



ABWRs under construction/planned in Japan and UK

## **South Texas Project Units 3&4 Project Highlights**

**Developer: Nuclear Innovation North America** 

**Location: South Texas Project site** 

near Bay City, Texas

**Electric Grid: Electric Reliability Council of Texas (ERCOT)** 

Plant: 2 Toshiba US-ABWR units, each unit to produce 1,500 MWe

(gross output after uprate)



#### STP Units 3&4 Status



- NRC Safety and Environmental reviews completed
- Mandatory Hearing before NRC Commissioners
  - Uncontested and completed November 19, 2015
  - Commissioner deliberation in progress
- Combined License estimated January 2016
- Engineering, Procurement, and Construction currently on hold
  - Engineering ~40% complete
  - Restart dependent on market

STP 3&4 will be "shovel ready" after receipt of the COL

## **Economic Development Benefits**



- New nuclear power generation at STP will create highquality, "send your kids to college" jobs
- Construction and operation of STP Units 3 and 4 will create approximately 5,000 jobs at peak construction and add 800 permanent jobs to the 1,300 existing jobs at the facility
- STP jobs will support the creation of an additional 1,500 jobs in the local community
- Total direct and indirect jobs will create more than 90,000 man-years of work in Texas during construction

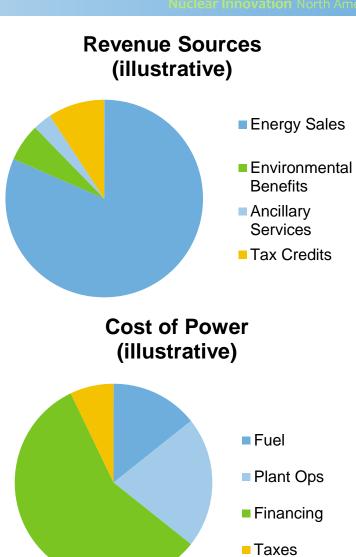
New nuclear power generation will put Texans to work

#### Clean Power Plan and Avoided CO<sub>2</sub> Emissions



- The Clean Power Plan requires Texas to achieve 1,042 lbs. CO<sub>2</sub> per MWh by 2030
- New nuclear generation is the single most effective means to reduce CO<sub>2</sub> emissions in the power industry

| Approximate Annual Emissions from Coal Generation <u>Avoided</u> with 1 MW of New Capacity |            |
|--------------------------------------------------------------------------------------------|------------|
| Nuclear                                                                                    | 9,300 tons |
| Wind                                                                                       | 3,900 tons |
| Solar                                                                                      | 2,900 tons |
| Nat. Gas CC                                                                                | 4,500 tons |


| Approximate Incremental MW Needed to Meet EPA's Clean Power Plan Emission Rate by Technology Choice |           |  |
|-----------------------------------------------------------------------------------------------------|-----------|--|
| Nuclear                                                                                             | 9,500 MW  |  |
| Wind                                                                                                | 22,500 MW |  |
| Solar                                                                                               | 30,500 MW |  |
| Nat. Gas CC                                                                                         | 19,500 MW |  |

- Different emissions avoided reflect different capacity factors and reduced emissions associated with gas
- Nuclear power emits virtually zero greenhouse gases and other pollutants
- New nuclear generation is the single most effective means to reduce greenhouse gas emissions and regional haze in Texas

## The Keys to Moving Forward at STP 3&4



- EPC execution
- Ensure revenues are available for full recovery of the cost of power
  - Participate in market policy development for energy and ancillary services
  - Maximize capacity factors
  - Secure environmental benefit recognition
  - Pursue existing, available tax credits
- Minimize fuel price volatility
  - Develop Uranium hedging plan
  - Secure conversion and fabrication
- Ensure top quartile operating cost
  - Utilize best practices from STPNOC
- Aggressively pursue lowest cost financing plan
- Minimize property tax expense through state incentive programs





# **BACKGROUND SLIDES**

#### **Key Considerations For Plant Development**



#### Six Primary Considerations

- Power and energy demand fundamentals of the market
- Technology fit
- Sufficiency of revenue sources
- Construction risk: cost and schedule certainty
- Availability of, and access to capital funding
- Reasonability and timeliness of regulatory authorization

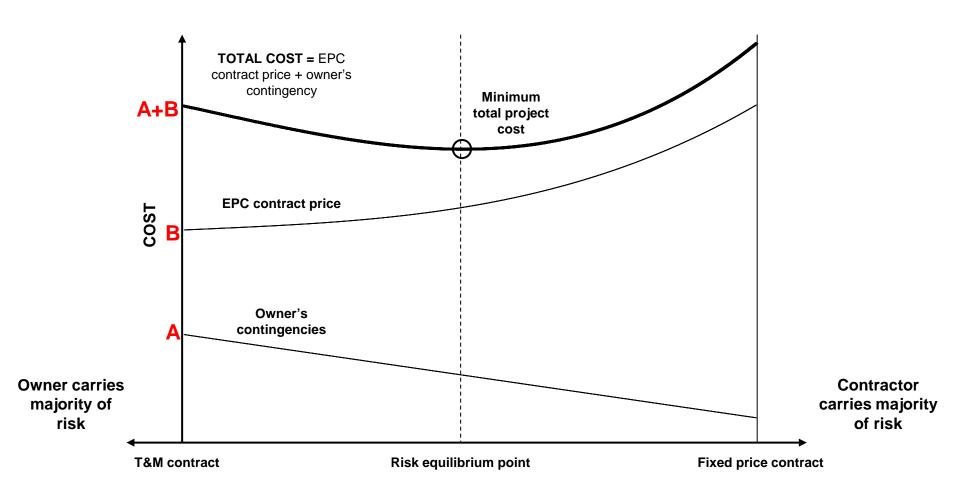
A successful development project must have line of sight on each of these important factors

#### **Structural Factors Influencing Project Execution**



#### **Project Economics**

- Fundamental market prices
- Financial structuring
- EPC contracting strategy
- Foreign exchange rates
- Operating costs
- Income and ad valorem tax


#### **Execution Challenges**

- Securing revenues or hedges
- Defining and managing risk
- Project scale
- Resource availability
- Regulatory affairs
- Public affairs

After meeting the threshold fundamental requirements, the developer must structure the project into an executable transaction

# **The Contract Price / Owner Contingency Dynamic**





## The Industry And Government Are Supportive



- The U.S. nuclear industry is the safest industrial sector in the world
- The NRC's Part 52 licensing process creates a platform for regulatory risk mitigation
- Increased employment and tax base value are recognized locally

These attributes create a solid foundation for new reactor deployment

#### **Market Fundamentals Are Pointing To Nuclear**



- Carbon and regional haze regulation is coming...and legacy coal retirements likely
- Combined-cycle natural gas plants, wind and solar aren't the only answer
- Market regulators recognize reliability is a value driver

## **But Nuclear Power Is Still Disadvantaged**



- Financing is not available without federal, state and/or ECA support
- Line of sight on spent fuel disposal is needed to broaden the investor base
- Nuclear tax incentives (PTCs and/or ITCs) are needed to level the playing field and for parity to other technologies

Resolving these important factors will improve the likelihood of broad nuclear expansion in the United States



# Questions?