

Bureau of Economic Geology, The University of Texas at Austin

Energy in the U.S.

Our Geography and Reach

AI GER ANGOLA ARGENTINA BANGLADESH BENIN BRAZIL CHILE CHINA CHINA-HONG KONG **COLOMBIA** CÔTE D'IVOIRE **ECUADOR** GAMBIA GHANA HONDURAS **INDONESIA** IRAQ **KENYA** KUWAIT MADAGASCAR MEXICO NAMIBIA NIGERIA PAKISTAN PERU CONGO **GEORGIA** SOUTH AFRICA **SOUTH KOREA** TANZANIA TOGO **TRINIDAD & TOBAGO** TURKEY TURKMENISTAN VENEZUELA UNITED KINGDOM

UNITED STATES OF AMERICA

CEE Project Locations (since 1991)
New Era in Oil, Gas & Power Value
Creation Delegate Countries (since 2001)

Regional Economy

- Oil & gas value chain is very important for Texas and Houston
- Texas is major exporter of oil, products and natural gas to rest of the U.S.
- Home to international companies
- Competition in electricity encourages new businesses (renewables, smart grid, etc) but still small share of the economy

Unconvential story

From Holditch, 2005, "Statistical Correlations in Tight Gas Sands", American Association of Petroleum Geologists (AAPG) Hedberg Conference Proceedings. <u>http://www.searchanddiscovery.net/documents/abstracts/2005hedberg_vail/abstracts/extended/holditc</u> h01/holditch01.htm

CENTER FOR ENERGY ECONOMICS Bureau of Economic Geology, Jackson School of Geosciences The University of Texas at Austin

Schlumberger

NPC 2007

NARUC Moratoria Study (SAIC/GTI)

"Strengthening Our Economy: The Untapped US Oil and Gas Resources;" American Petroleum Institute, December 2008

CEE-UT US/North America LNG Import Capacity Assessment Based on agency pre-filings, filings, approvals and industry information. As of: March 2010 NOTE: Includes both onshore

projects (in US, Federal Energy Regulatory Commission, FERC) and offshore (in US, Coast Guard and Maritime Administration, USCG/MARAD). US Gulf Coast capacity is an estimate of most likely additions based on projects under construction and approved projects and expansions (onshore and offshore).

Wellhead Price Eras (\$2005)

Frequency Distribution (\$2005)

*Price Volatility (\$2005)

	Wellhead	City Gate	Res	Com	Ind	El Pwr
Before	7.2% ^a	6.0% ^b	6.3% ^c	2.5% ^b		
99:12						
00:01-	12.2%	10.5%	7.7%	5.3%	11.4% ^d	10.6% ^e
09:11						
Change	71%	74%	22%	110%		
a 76:01-99:12; b 83:10-99:12; c 81:01-99:12; d 01:01-09:12; e 02:01-09:12						

* Std dev of change in price

Modern Energy Markets

Price Observations

- Volatility is a sensitive issue for large users and regulated utilities; lack of data prevents analysis on changes over time
- Residential (and some commercial) customers are sheltered by regulators
- Wellhead conditions drive overall price structure and may contribute to volatility
- Electric power demand swings on marginal gas generators + renewables may contribute to volatility

ERCOT Peak Day by Fuel Type

The University of Texas at Austin

Does Renewable Energy Create Volatility?

ERCOT balancing market prices, March 7, 2009, US\$/MWh.

Ross Baldick, UT Austin, Cockrell School of Engineering

Source: API

Source: API

ACESA & Texas

Texas Comptroller/CEE-UT

Energy per Capita (Btu, Left) and Industrial Energy Consumption Share (Right)