BETTER THAN A POROSITY CUT-OFF: THE ROCK FABRIC APPROACH TO UNDERSTANDING POROSITY AND PERMEABILITY IN THE LOWER CLEAR FORK AND WICHITA

Rebecca H. Jones
F. Jerry Lucia

Bureau of Economic Geology
Jackson School of Geosciences
The University of Texas at Austin
PROBLEMS WITH USING POROSITY CUT-OFFS IN CARBONATES

- Selecting cut-off
- Varying fabrics
- Varying lithologies
- Porosity ≠ permeability
EXAMPLES: POROSITY ≠ PERMEABILITY

Grain-dominated dolopackstone
- Interparticle porosity

FCU 5927: 6930'

\[k = 2.21 \text{ md} \]
Both \(\phi = 9.64\% \)

Lime grainstone
- Separate vug porosity

FCU 5927: 6924'

\[k = 0.33 \text{ md} \]

R.H. Jones and F.J. Lucia; UL/PTTC May 2003 Workshop, Bureau of Economic Geology
EXAMPLES: POROSITY ≠ PERMEABILITY

Grain-dominated dolopackstone
- Interparticle porosity

\[\phi = 14.26\% \]
\[k = 33.7 \text{ md} \]

Lime grainstone
- Separate vug porosity

\[\phi = 14.46\% \]
\[k = 0.94 \text{ md} \]

R.H. Jones and F.J. Lucia; UL/PTTC May 2003 Workshop, Bureau of Economic Geology
THE ROCK FABRIC APPROACH

- Thin section calibration

- Lithology, fabric, pore type and crystal size

- Multiple porosity-permeability transforms based on petrophysical class

- High-quality data set: thin sections and core analysis from same sample
GLOBAL POROSITY–PERMEABILITY TRANSFORMS NONVUGGY CARBONATES

Global transform equation: \(\log_{10}(k) = (9.7982 - (12.0838 \times \log_{10}(\text{RFN}))) + (8.6711 - (8.2965 \times \log_{10}(\text{RFN}))) \times \log_{10}(\phi) \)
SAMPLING TECHNIQUE

• Foot-by-foot samples
 – Unbiased sample location, e.g., center of each foot in the center of the core
 – Slightly adjust locations to avoid fractures and large anhydrite nodules

• Cut plugs with wafer for thin section from end

• Reputable core analysis with careful cleaning
QUAILITY OF CORE ANALYSIS

Large low porosity data cloud

Few points in this area

Poor quality

Good quality

R.H. Jones and F.J. Lucia; UL/PTTC May 2003 Workshop, Bureau of Economic Geology
CORE SAMPLED

- FCU 5927 plus FCU 6429 for continuous foot-by-foot record
- Rock fabric calibration
- Saturation model
THIN SECTION DESCRIPTION

• Lithology and mineralogy
 - 80% dolomite or more = dolostone
 - <80% dolomite = limestone
 - Percent anhydrite

• Pore type percentages
 - Interparticle (intergrain, intercrystalline)
 - Separate vug (moldic, intrafossil)
 - Touching vug (fenestral, fracture)

• Rock fabric
 - Grainstone, grain-dominated packstone, mud-dominated packstone, wackestone, mudstone
 - Grain- or mud-dominated tidal flat facies, brecciation

• Measure dolomite crystal size

R.H. Jones and F.J. Lucia; UL/PTTC May 2003 Workshop, Bureau of Economic Geology
DOLOSTONE PETROPHYSICAL CLASSIFICATION

- Grain or mud-dominated fabric?
- Measure crystal size

<table>
<thead>
<tr>
<th>Grain-dominated</th>
<th>Mud-dominated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grainstone = class 1</td>
<td>>100 μm = class 1</td>
</tr>
<tr>
<td>Gddp = class 2</td>
<td>20-100 μm = class 2</td>
</tr>
<tr>
<td>>100 μm = class 1</td>
<td><20 μm = class 3</td>
</tr>
</tbody>
</table>
ALL DOLOSTONE SAMPLES FROM FOOT-BY-FOOT CALIBRATION

To use petrophysical classification in modeling:

• Relate to stratigraphic framework
• Assess both vertical and lateral variations
• Calculate transforms

R.H. Jones and F.J. Lucia; UL/PTTC May 2003 Workshop, Bureau of Economic Geology
DOLOSTONE CLASSIFICATION RELATED TO STRATIGRAPHY

- L2.2 Lower Clear Fork
- L2.1 Lower Clear Fork
- L1 Wichita mudstones

- RFN 2 transform for sequence L2.1
- RFN 3 transform for L1 Wichita
- Statistical transform for sequence L2.2

R.H. Jones and F.J. Lucia; UL/PTTC May 2003 Workshop, Bureau of Economic Geology
ROLE OF POIKILOTOPIC ANHYDRITE IN L2.2 DOLOSTONES

L2.2 dolostones are class 2 but many plot as class 1 due to poikilotopic anhydrite

Statistical transform for sequence L2.2

R.H. Jones and F.J. Lucia; UL/PTTC May 2003 Workshop, Bureau of Economic Geology
POIKILOTOTOPIC ANHYDRITE IN THIN SECTION

Reduced porosity, permeability maintained

Anhydrite filling interparticle porosity in some areas only

FCU 6429: 6845°, φ = 8.1%, k = 9.02 md
LIMESTONE PETROPHYSICAL CLASSIFICATION

• Grain or mud-dominated fabric?

• If grain-dominated:
 Grainstone = class 1
 Grain-dominated packstone = class 2

• If mud-dominated:
 Mud-dominated packstone, wackestone, mudstone = class 3
L2.2 LIMESTONE SAMPLES

Class 1 and 2 samples tend to be moldic and do not plot in expected regions.

Class 3 data plots in class 3 field.

-RFN 2 transform

-RFN 3 transform

- Class 1 and 2 samples tend to be moldic and do not plot in expected regions.
- Class 3 data plots in class 3 field.
SPECIAL CONSIDERATIONS FOR MOLDIC LIMESTONES

- Rock fabric approach assumes all porosity to be interparticle
- Limestones commonly moldic (separate vug porosity)
- Will plot as lower class than expected due to separate vugs
- May require special transform

R.H. Jones and F.J. Lucia; UL/PTTC May 2003 Workshop, Bureau of Economic Geology
DISTINCT INTERVAL OF MOLDIC LIME GRAINSTONES IN L2.2, NW AREA ONLY

- Samples are moldic and plot in a lower class region than expected
- Special transform required for this distinct interval in mapped area

Lime grainstones would normally plot in this region

RFN 2.5 transform

R.H. Jones and F.J. Lucia; UL/PTTC May 2003 Workshop, Bureau of Economic Geology
TIDAL FLAT FACIES

- Generally separate vug porosity (molds) or touching vug porosity (fenestrae)
- Poor or little continuity
- Anhydrite or late calcite plugging much of porosity
- Small crystal size (<20 μm)
TIDAL FLAT FACIES
BRECCIAS

R.H. Jones and F.J. Lucia; UL/PTTC May 2003 Workshop, Bureau of Economic Geology
BRECCIAS

- Extremely variable and unpredictable
- Anhydrite or late calcite filling most or all space between lithoclasts
- Small crystal size (<20 microns)
- Fracture porosity?
BRECCIAS

No suitable transform

Highly varied porosity-permeability relationship

R.H. Jones and F.J. Lucia; UL/PTTC May 2003 Workshop, Bureau of Economic Geology
CONCLUSIONS

• Rock fabric approach yields improved understanding of porosity-permeability relationship

• Lower Clear Fork and Wichita reservoirs consist of mostly petrophysical classes 2 and 3
 – Class 2 rocks are grain-dominated and medium crystal dolostones
 – Class 3 rocks are mud-dominated dolostones, mud-dominated limestones, and tidal flat facies

• Special consideration must be given to grain-dominated limestones (moldic) and dolostones with poikilotopic anhydrite