Simulated
Annealing in Seismic Inversion
Dr. Mrinal K. Sen Institute for Geophysics John A.& Katherine G. Jackson School of Geosciences The University of Texas at Austin
ABSTRACT
Seismic inversion involves estimating elastic properties or
some attributes of the subsurface rocks by iterative fitting of observed
seismograms with the theoretical seismograms. For many applications,
optimal fitting of data with model may become computationally intractable
due to nonlinearity, ill-posedness and expensive forward modeling.
I will discuss several efficient approaches to address these issues.
The non-linear optimization problem is solved very efficiently using
a method called simulated annealing (SA) that does not usually get
trapped in a local minimum of the fitness function that measures the
similarities or differences between observed and synthetic data. The
SA approach can be applied to post-stack inversion for impedances,
wavelet estimation, and pre-stack waveform inversion. It can also
be used for estimation of uncertainties in the derived results. The
efficiency can be increased further by a combination of SA with a
local optimization. I will show several field data examples to demonstrate
the applicability and usefulness of our algorithm.
|