University of Texas at Austin

Environment

environmental icon

The Environmental Research division conducts a wide range of basic and applied research in environmental geosciences. These topics include groundwater resources, vadose-zone hydrology, coastal studies, near-surface geophysics, landscape processes, and geologic mapping. It strives to avoid studying these processes in a vacuum and to understand how interconnected they truly are. Its researchers also seek to connect environmental systems to energy systems—vital for understanding and addressing today’s complex issues. Its scientists have developed substantial strengths in the water/energy/land nexus, and are well-known and robust worldwide leaders in geological sequestration of greenhouse gases, like CO2.

The Environmental Research division investigates characteristics and processes of shallow Earth systems and impacts of human activities on those systems. Many of its projects address the needs of Texas, although it also conducts research in other states, countries and continents. Researchers collaborate with faculty, other researchers and students in the Department of Geological Sciences and the Institute for Geophysics in the Jackson School of Geosciences and across the University of Texas at Austin campus. The division has an active outreach program for broadly communicating and disseminating scientific results of its research projects.

The Bureau owns and operates an airborne laser terrain and bathymetric mapping system (lidar), a high-resolution 3D seismic imaging system, substantial laboratory experimental facilities, and its researchers have access to the depth of resources at the Jackson School and UT-Austin. Environmental Research projects are well supported by appropriate hardware and advanced software for data analysis and modeling, and its scientists apply related technologies in GIS, GPS, and remote sensing.


Groundwater Resources

Groundwater Resources
Bureau research into groundwater resources looks at such practical questions as how much water can be pumped from an aquifer, how much recharge is there, and how much water will be left in 50 years. Researchers answer such questions via numerical modeling, original field research, and data collection and analysis.

Groundwater research compilation


Vadose Zone Hydrology

Vadose Zone Hydrology
The Bureau has unique capabilities in characterizing the vadose zone. Soil studies and the vadose zone program are comprehensive and include the use of physics, chemistry, isotopes, and numerical modeling to characterize the direction and rate of water movement and contaminant transport.

Vadose Zone and Soil Studies compilation
Texas Soil Observation Network (TxSON)


Geological Sequestration of Greenhouse Gases

Geological Sequestration of Greenhouse Gases
The Bureau seeks to impact global levels of atmospheric greenhouse-gas emissions by conducting studies on geologically sequestering CO2 in the deep subsurface, focusing on the Gulf Coast; educating the public about risks that might limit deployment and measuring the retention of CO2 in the subsurface; and enabling the private sector to develop an economically viable industry to sequester CO2 in the Gulf Coast area.

Gulf Coast Carbon Center (GCCC)


Coastal Studies

Coastal Studies
Research includes isotopic age dating to determine sedimentation rates in bay marshes, mapping of shoreline types for oil spill contingency planning, and conducting regional assessments of offshore sand resources for beach nourishment. Other research studies shoreline change, beach and tidal inlet morphodynamics, and changes in wetlands distribution through time.

Near Surface Observatory Coastal Studies


Near-Surface Geophysics

Near-Surface Geophysics
The Bureau conducts studies focused on the surface and near-surface environment. Augmenting the efforts of researchers is a suite of airborne, surface, and borehole instruments that provide information on the physical properties of the near surface and allow researchers to conduct geologic mapping in diverse environments and studies on coastal hazards and geomorphic change, wetlands status and trends, coastal rookeries vulnerability, landscape characterization and evolution, periglacial landforms, soils, water bodies, and soil-moisture monitoring.

Near Surface Observatory at the Bureau of Economic Geology


Landscape Processes

Landscape Processes
The Bureau studies landscape processes that occur in the very-near surface of the Earth (upper 2 meters), including evapotranspiration, soil erosion, ecosystem health and habitats, soil water recharge, and potential land impacts from a variety of activities.

Texas Soil Observation Network (TxSON)


Geologic Mapping

Geologic Mapping
The Bureau complements a strong tradition of field-based geologic mapping with cutting edge technologies to create surface and shallow subsurface maps and spatially referenced digital data sets to meet the applied and basic data needs of geoscience professionals, governmental agencies, and citizens.

Geologic Mapping at the Bureau
The Near Surface Observatory
The Bureau Store


The Energy-Water Nexus

The Energy-Water Nexus
The study of brackish water resources and water treatment, water use in energy exploration and production (mostly unconventional energy), and water use in the electricity generation sector.

The Energy-Water Nexus research compilation


Energy and Environment

Energy and Environment
New hydrologic and geomorphic studies that provide a framework for preserving the environment and remediating past damages related to energy development. The research provides technical expertise to the private sector to produce energy while protecting the environment through economically sound approaches.

Sustainable Water Resources
Water impacts from unconventional energy (Nicot, Scanlon)
Water use in electricity generation (Scanlon)


Species, Water, and Landscape Studies

Water, Landscape, and Species Studies

The Bureau studies how aquatic and terrestrial habitats, some of which may be protected by State and/or Federal programs, intersect with economically important water, energy, and land resources.  Our interdisciplinary approach integrates hydrology, geology, energy resources, landscape ecology, biology, and economics to provide unbiased, scientifically rigorous research solutions to stakeholders with the goals of facilitating species conservation, balancing continued economic growth, and providing stakeholders with the information and assistance they need to develop strategies to prepare for a possible listing.

Water, Landscape, and Species Studies