Use of Gas Phase Tracers for Monitoring CO₂ Injection at the Frio Test Site

GCCC Digital Publication Series #05-04r

K. Pruess B. Freifeld M. Kennedy C. Oldenburg T. J. Phelps M. C. van Soest

Keywords:

Gas Phase Tracers, Phase-Partitioning Tracers, Brine Displacement, Retardation Factor, Tracer Travel Time

Cited as:

Pruess, K., Freifield, B., Kennedy, M., Oldenburg, C., Phelps, T.J., and van Soest, M.C., Use of gas phase tracers for monitoring CO₂ injection at the Frio Test Site: presented at the National Energy Technology Laboratory Fourth Annual Conference on Carbon Capture and Sequestration, Alexandria, Virginia, May 2-5, 2005. GCCC Digital Publication Series #05-04r, pp. 1-17.

Use of Gas Phase Tracers for Monitoring CO_2 Injection at the Frio Test Site

Karsten Pruess¹, Barry Freifeld¹, Mack Kennedy¹, Curt Oldenburg¹, Tommy J. Phelps² and M.C. van Soest¹

¹ Earth Sciences Division, Lawrence Berkeley National Laboratory
 ² Oak Ridge National Laboratory

Fourth Annual Conference on Carbon Capture and Sequestration Alexandria, VA, May 2–5, 2005

Outline

- Phase-partitioning tracers
- Issues for CO₂ injection into brine aquifers
- Tracer migration and analysis
- Test design
- Results
- Concluding Remarks

Phase-Partitioning Tracers (I)

Chemical species that are both water soluble and volatile

- non-condensible gases (O₂, CO₂, CH₄)
- noble gases
- SF₆; volatile organic chemicals (e.g., halogenated hydrocarbons)

Henry's law

$$P_{gas}^{tracer} = K_h x_{aq}^{tracer}$$

- determine reservoir processes and conditions (phase saturations, boiling, fracture-matrix interaction)
- find fast preferential flow paths

Phase-Partitioning Tracers (II)

- Typical application is for multiphase systems, with one mobile and one or more immobile fluid phases.
- Tracer migration is retarded (slowed) relative to an inert (insoluble) tracer by partitioning into immobile phases.
- The ratio of travel times is the retardation factor, $R = t_{PPT}/t_{inert}$.
- R is given by the (local) ratio of total tracer inventory to tracer inventory in the mobile phase.
- From known phase partitioning behavior (solubility, volatility), observations of tracer retardation can be used to infer the average volume fractions of different fluid phases along the flow path.
- Applications of phase-partitioning tracers have been made for different purposes, including:
 - determination of residual oil in petroleum reservoirs
 - estimation of non-aqueous phase liquid (NAPL) contamination
 - characterization of trapped gas in groundwater systems
 - determination of boiling processes in geothermal reservoirs

Displacement of Brine by CO_2 (I)

uniform displacement (Buckley-Leverett)

gravity override

Displacement of Brine by CO_2 (II)

non-uniform sweep

- formation heterogeneity
- hydrodynamic instabilities

Issues in Displacement of Brine by CO₂

- how does CO₂ invade and occupy the pore space?
- where does the CO₂ go, and how much brine is left behind?
- geometry of the displacement process
- utilization of subsurface space
- available storage capacity

Gas Tracers

Tracer transport in single-phase gas conditions

$$\frac{\partial \phi C_g^t}{\partial t} = -\operatorname{div} C_g^t v_g + \operatorname{div} \phi \tau D_g^t \nabla C_g^t$$

with $\phi = \text{porosity}$ $v_g = \text{gas velocity}$ $C_g^t = \text{tracer concentration in gas}$ $\tau = \text{tortuosity}$ (partial density; kg/m³) $D_g^t = \text{tracer diffusivity}$

Tracer transport in two-phase conditions with immobile liquid

$$\frac{\partial \phi \left[S_g C_g^t + S_a C_a^t \right]}{\partial t} = -\operatorname{div} C_g^t v_g + \operatorname{div} \phi \tau_g D_g^t \nabla C_g^t = \frac{\partial \phi R_t S_g C_g^t}{\partial t}$$

 R_t is the retardation factor, given by

$$R_t = \frac{\left[S_g C_g^t + S_a C_a^t\right]}{S_g C_g^t} = 1 + \frac{S_a \zeta_t}{1 - S_a}$$

with $\zeta_t = C_a^t / C_g^t$ an aqueous-gas distribution coefficient (solubility)

Retardation Factor

From a known (observed) retardation factor, aqueous phase saturation can be calculated:

$$S_a = \frac{R_t - 1}{R_t - 1 + \zeta_t}$$

 R_t is the ratio of tracer transit (or travel) time for a phase-partitioning tracer t to that for a hypothetical insoluble tracer i

$$R_t = t_t/t_i$$

- all tracers are soluble to some extent, so t_i is not observable, and neither is R_t
- from two different phase-partitioning tracers t and u, obtain t_t and t_u
- then have two equations for the unknowns t_i and S_a
- eliminating t_i gives aqueous phase saturation as

$$S_a = \frac{1 - t_t / t_u}{1 - t_t / t_u + \zeta_u t_t / t_u - \zeta_t}$$

Advantages of Noble Gas Tracers

- no significant subsurface sinks or sources
- chemically inert, non-hazardous
- abundance can be measured with great precision

Henry's coefficient as function of temperature

Isotope	Partial pressure in air, Pa	Dissolved mass fraction in water at T = 10 deg-C	Henry's co T = 10 deg-C	efficient, Pa T = 65 deg-C
²² Ne	0.170	2.440e-11	8.510e9	10.20e9
³⁶ Ar	3.184	2.134e-9	2.981e9	6.141e9
⁸⁴ Kr	0.0658	1.990e-10	1.542e9	3.860e9
¹³² Xe	2.370e-3	2.142e-11	8.110e8	2.634e9

Data from Crovetto et al., 1982

Field Equipment for Gas Tracer Tests

- Gas samples collected using the U-Tube sampling system
- Gas-phase was sampled off top of high pressure sample cylinders

- Sample gas processed in realtime using quadrupole mass spectrometer
- Complete collection and analysis cycle occurred every 11 minutes once sample stream became self-lifting

Gas Tracer Observations

Component	Mass	Injection	Injection	Arrival Time	Peak Time	Travel time
	Injected	Time	Duration	(Rel. time hr.)	(Rel. time hr.)	(hr.)
		(Rel. time hr.)	(hr)			
CO_2	3 kg/s^*	4 Oct 11:34	N/A	6 Oct 14:28	N/A	50.9+0.0/-
_	-	(0.00+0.0/-		50.90+0.0/-		2.0
		2.0)		2.0		
РМСН,	3.1 kg	4 Oct 13:26	3.9	6 Oct 14:28	6 Oct 15:20	48.0±0.9
РТСН	C	(1.87)		50.90+0.0/-	(51.8±0.9)	
				2.0		
РМСР,	0.3 kg	8 Oct 18:19	1.0	10 Oct 15:32	10 Oct 22:52	50.22±0.5
PDCH		(102.75)		(147.97 ± 0.5)	(155.3 ± 0.5)	
РМСН,	0.3 kg	9 Oct 11:37	1.0	11 Oct 11:42	11 Oct 18:36	52.67±0.5
РТСН		(120.05)		(168.13 ± 0.5)	(175.03±0.5)	
(SF_6)	< 200g [‡]	9 Oct 11:37	0.58	11 Oct 10:26	11 Oct 18:22	52.63±0.5
\mathbf{i}		(120.05)		(166.87±0.5)	(174.80±0.5)	
(Kr)	83.8 g	9 Oct 12:39	0.13	11 Oct 10:37	11 Oct 20:01	53.47±0.5
		(121.08)		(167.05 ± 0.5)	(176.45 ± 0.5)	

Observed Tracer Breakthrough Curves

Analysis

$$S_a = \frac{1 - t_t / t_u}{1 - t_t / t_u + \zeta_u t_t / t_u - \zeta_t}$$

 $t_{SF6}/t_{Kr} = 52.63/53.47 = 0.984 \pm 1 \%$

Solubilities at T = 65 deg-C

Inferred aqueous phase saturations (different assumptions for solubilities)

tracer	brine* molality	Henry's coefficient (Pa)	solubility ζ
Kr	1.55	6.27e9	2.440e-2
	0	3.86e9	3.964e-2
SF ₆	0	3.29e10	4.650e-3

Kr	SF ₆	Sa	
1.55 m brine	pure water	45.2 %	
1.55 m brine	insoluble	40.0 %	
pure water	pure water	31.8 %	

* modeled as pure NaCl

Uncertainty in Breakthrough Time

- $t_{SF6}/t_{Kr} = 0.984 \pm 1$ %; range: 0.975 0.993
- assume 1.55 m NaCl brine for Kr solubility; SF₆ insoluble
- $t_{SF6}/t_{Kr} = 0.975$; ==> $S_a = 51.2 \%$

•
$$t_{SF6}/t_{Kr} = 0.993$$
; ==> $S_a = 22.4 \%$

===> small uncertainty in relative tracer arrival times translates into large uncertainty for aqueous phase saturation

Concluding Remarks

- Conducted successful gas tracer tests at Frio site.
- More water-soluble tracer (krypton) is retarded relative to less soluble SF_6 .
- From krypton retardation relative to SF_6 , estimate in situ water saturation in CO_2 plume of approximately 40 %.
- Interpretation (conceptual model) is not unique:
 - analysis assumes simplest model: phase-partitioning according to local equilibrium
 - how about non-equilibrium dissolution and subsequent diffusion in aqueous phase?
 - partitioning into additional phases? (oil phase, sorption on solids)
- Ambiguities may be reduced by using several different tracers
- Additional data analysis is underway.

