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@ RT Models & Experiments — why do them?

B Predict short-term chemical signals from CO,
® Help design pilot project sampling program
® Provide data useful to licensing and safety
® Evaluate injectivity and reservoir effects

B Predict long-term CQO,, fluid & mineral geochemical
interactions

® Various sequestration processes => capacity assessment needed
for credits

® Chemical integrity of seals
¥ Cap rock (Anahuac Shale)
¥ Cements and other borehole seals
B RT simulators require reactive transport experiments
for validation
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Requirements For RT Modeling

B Hydrologic model physical characteristics

® Based on field measurements and TOUGH2 (Pruess) models
from Chris Doughty (LBL)

B Baseline geochemical samples
® Reservoir fluids, injection fluids, reservoir rock
Compositions and estimate of heterogeneity
B Time series geochemical samples during field or lab
experiment for simulator validation
® Reservoir fluids and gases & post-test solids
Major inorganic and organic ions (& rock forming elements)
pH, TIC, TOC, isotopes, tracers
T&P
B A RT code
® CRUNCH (Steefel) for preliminary modeling
® NUFT (Nitao) for more fully coupled modeling



H_E' Frio Fm. injection scenario

B CRUNCH simulation

® Calculate radial velocity field
Match breakthrough time (2.1d) to calculate cell thickness
2Ty = (x*heS,p)/Q
—In agreement with RST (reservoir saturation tool) = 1.2m
Essentially a 1D, “radially symmetric” calculation
2>V(x) = Q/(2nxh@S,p)
—> Calculated velocities range from 2.1x10° to 4.4x10% m3/m?2y
® Inject CO,-charged water into 1.2m of “C” sand
Equivalent to 178 T/d CO, for 9 days
—> Single phase approximation for fluid chemistry
Pco, =152b at T =56°C => {,, = 78.3b
Look for chemistry changes in fluid as front passes well

® Reservoir fluid (initial) is sample 04FCO2-218
® Reservoir rock (initial) is BEG Pilot No. 1 at 5065.55%°



E Frio Fm. Problem Definition

B Mineralogy (Frio “C” sand)

® Quartz 71.0%
® K-feldspar 9.0%
® Labradorite 13.0%
® [llite/muscovite 4.9%
® Calcite 0.4%
® Kaolinite 0.3%
® Dolomite 1.0%
® Pyrite 0.4%
B Porosity 35.0%

B Thermo & Kinetics data
® C(Calculated data for An60

® 2 rate equations/mineral
® Acid catalyzed
¥ Neutral pH

B Potential secondary minerals
® Siderite

Magnesite

Dawsonite - NaAICO,;(OH),

Chalcedony

Barite

Anhydrite

Strontianite

B Water chemistry for Frio “C” sand

® Measured: Na, K, Ca, Mg, Ba, Sr,
Si, Cl, S, C, pH (04FCO2-218)

® Mineral/gas equilibria assumed:
€ Al = muscovite
@ Fe = pyrite (measured, but...)
90,=S0,/H,S



'Reference State (25°C, 1b) Kinetic Parameters

mineral log k E. n source

(mol/mz*s) (kcal)
Albite -9.69 14.3 .5 Blum & Stillings (1995)
Albite -12.0 16.2 0  Blum & Stillings (1995)
Anhydrite -2.76 7.65 .11 Barton & Wilde (1971); Dove & Czank (1995)
Labradorite -8.86 15.9 .5  Blum & Stillings (1995)
Labradorite -12.0 162 0  Assume similar to albite Mineral diss()]uti()n/p recipitation;
Barite -7.19 7.65 .11 Dove & Czank (1995)
Calcite -1.16 4.54 1.0 Alkattan et al. (1998) N
Calcite -6.19 15.0 1.0 Chou et al. (1989) r =k A H an 9 -1
Chalcedony -12.7 16.5 0 Rimstidt & Barnes (1980) - a-cristobalite m m~m i K
Clinochlore -11.6 15.0 0 Malmstrom et al. (1996) i=1
Dawsonite  -7.00 15.0 0  Assume between calcite and magnesite
K-feldspar -9.45 12.4 4  Blum & Stillings (1995)
K-feldspar -12.0 13.8 0  Blum & Stillings (1995)
Kaolinite -11.6 15.0 .17 Nagy (1995) Temperature dependence:
Kaolinite -13.0 15.0 0  Nagy (1995)
Magnesite -4.36 4.54 1.0 Chou et al. (1989) |'_E ( "|
Magnesite  -9.35 150 0  Chou et al. (1989) a1l 1
Muscovite  -11.7 5.26 4 Knauss & Wolery (1989); Nagy (1995) km = km’T eXftT LE‘ - F J
Muscovite  -13.0 15.0 0  Knauss & Wolery (1989); Nagy (1995) r r
Pyrite -8.00 15.0 0 Steefel (2001)
Quartz -13.9 20.9 0 Testor et al. (1994)
Siderite -3.01 5.00 9 Gautelier et al. (1999) - dolomite
Siderite -8.90 15.0 0 Steefel (2001)
Strontianite -3.03 10.0 1 Sonderegger (1976)
Strontianite -7.35 10.0 0  Sonderegger (1976)




E 1D Reactive Transport Modeling — Frio

®m CRUNCH
e Carl Steefel (LBL)
e Full chemistry reactive Frio
transport simulator _
e Fictive tracer to track front Reactive Trans POl't
e Simplified flow model — chem Model
not coupled to flow, only 1
mobile phase flow direction >
e Use to help define chem for
coupled RT simulator ghost cell
e 1D approximates a single < o >
streamline ghost cell: domain: initial condition:
® Radial or Cartesian Frio formation fluid 32 cells @ .0625m Frio formation fluid
. no rock 16 cells @ .125m Frio Fm rock
coordinates CO3 fugacity = 78.3b 16 cells @ .25m €O fugacity = 0.17b
e Radial front velocity model U=t 16 cells @.5m T=66°C
P=152b 14 cells @ 1m P=152b

mV(x) = Q/(27txh(pSgp)
=Ty, = (7x*hS,p)/Q
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Frio simulation vs. field data

monitoring well (cell94)

monitoring well (cell94)
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Frio simulation vs. field data

add goethite

4e-3 monitoring well (cell94) monitoring well (cell94)
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Frio simulation vs. no field data

Frio Pilot Frio Pilot
Day 3 - carbonates Day 3 - carbonates
T T 012 003 L L L L A E R T T T LA L 012
01 0.025( YOO 0.1
&
; g - 008 0.02 | 0.08
f Calcite ] ]
o [ ¢ <> Dolomite 3 S L =
S i - 006 B S 0015 006 8
> < ’ © > ’ * @
P 0.04 0.01 0.04
02 I 1
o1l 0.02 0.005 | 0.02
Wﬂﬂ " A N IR I o
5 10 15 20 25 30

Distance (m) Distance (m)

11



@ Frio simulation vs. field data

B How’d we do?
® Trends OK, thermo/kinetic data may be OK — see next
® Absolute concentrations off, need fully coupled 2-phase
RT simulations

B What can we do to improve?
® Modeling

@ Include ion exchange to help improve very short term agreement
@ Include “grain coating” minerals — tweedle thermo & Kinetic

data, as needed, using RT lab experiments — see next
@ Use a more fully coupled RT model — NUFT, etc.

® Field data

¥ Measure missing components — Al, redox couples, etc.
¥ Better characterize composition & mineralogy of reservoir rock

12



@ Reactive Transport Experiments

¥ Why do them?

® Short term issues
¥ Validate short term model predictions
¥ Identify dominant mineral-water reactions
- Dominated by dissolution processes in short term
¥ Optimize thermodynamic, kinetic and surface area model
parameters

® Long term issues
¥ Determine appropriate growth Kinetics parameters
—> Existing growth Kkinetics data very sparse

¥ May require “over-driving” the system to obtain results

- Use temperature as accelerator, being careful about stability
fields and relative growth Kkinetics (E,) — keep it relevant

©® Needed for RT simulator validation

13



E Reactive Transport Experiments

B Plug Flow Reactor
e Ideal 1D Physical Model

e Quantitative validation
+ Models (processes)

+ Codes
> Flow and Transport
> Geochemical

+ Data

> Thermodynamic & Kinetic
> Physical & Hydrological

¢ Post-mortem on solids
e Wide parameter space

+ 20-300 °C (isothermal or
gradient)

¢ 1-345Db

+ 0.0001-10 mL/min

¢ Supercritical CO,, 0-5 m
NaCl, etc.

+ Darcy Law permeability on
the fly

Quizix pump

co,()

Differential
Pressure
Transducer

Quizix pump HPLC pump

i

L-

Ti Bomb
& Heater

3 Zone Heater

Ti Plug Flow Reactor
(removable Au liner)

Back Pressure Regulator

AR
P
0
0o
o
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Reactive Transport Experiments
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E Frio (PFR15+) Experimental Design

B Conditions
® T=56°C
® P=100b (f-,, = 54.3b)
® Flow rate = 151 g/d = 2058 m’/m?/y = 5144 m/y for PFR
© Frio pilot test = 30m/51h = 5156 m/y
® Time =9 d (following 1d flow w/o CO,)

B Solid
® Frio “C” sand from BEG Pilot No. 1 at 5065.55°
¥ Recovered at end of experiment and subsampled along core
B Aqueous phase

® 1.5 m NaCl & 2.2x10* m NaHCO; (simplified Frio brine)
® Equilibrated with CH,
@ Sampled throughout experiment
& Measured: pH, CO,, O,, Na, K, Ca, Mg, Fe, Mn, Al & Si
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PFR15+ simulation vs. lab data

pfr15+ Frio SS pfrl5+ Frio SS
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PFR15+ simulation vs. lab data

pfrl5+ Frio SS pfr15+ Frio SS
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PFR15+ simulation vs. lab data

pfrl5+ Frio SS
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PFR15+ simulation vs. lab data

pfrl5+ Frio SS pfrl15+ Frio SS
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PFR15+ simulation vs. lab data

® How’d we do?

® Steady-state concentrations are very close — this is
good!
® Missed some transient spikes
@ The lab spikes match those seen in field — this is good!

B What can we do to improve?
® Modeling

©®Fe, Mn & Al spikes will require inclusion of less stable
grain coating phases that quickly dissolve in early time

® LLab data

© Ca and Mg spike can be captured correctly by switching

almost immediately to CO,-charged fluid
—>No need to run overnight
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Conclusions

¥ RT simulations are required to make long-term
capacity/performance assessment and assure
safety

B Reactive transport experiments are required to
provide the model parameters needed and to

validate use of reactive transport simulators
® They complement and quantify field experiments
B More fully coupled simulations are planned
next for Frio data

® More experiments are being done to validate the
simulators
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Mineral Specific Surface Areas

B Geometric approximation
® Corrected to BET
® 200 um spheres
® Mineral molar volumes
® Primary minerals only

® Secondary minerals have
small initial area

. SSA
Mineral (m?lg)
Quartz 0.0566
K-feldspar 0.0939
Illite/muscovite 0.5299
Calcite 0.0533
Kaolinite 0.5782
Labradorite 0.0869
Pyrite 0.0299
Dolomite 0.0524
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CO2 fugacity and pH at 56C

slide CO5(g) from 10-3-5b to 78.3b at 56°C

L LT T— |
30 40 50 60 70 80
fCO,(g)
knauss 1 Tue Apr 26 2005
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