Recent advances in well-based monitoring of CO$_2$ sequestration

GCCC Digital Publication Series #08-03f

Barry M. Freifeld
Thomas M. Daley
Susan D. Hovorka
Jan Henninges
Jim Underschultz
Sandeep Sharma

Keywords:
CO$_2$ monitoring; observation well; integrated completion; borehole instrumentation; geological storage

Cited as:
Abstract

Recent CO₂ sequestration pilot projects have implemented novel approaches to well-based subsurface monitoring aimed at increasing the amount and quality of information available from boreholes. Some of the drivers for the establishment of new well-based technologies and methodologies arise from (1) the need for data to assess physical and geochemical subsurface processes associated with CO₂ emplacement, (2) the high cost of deep boreholes and need to maximize data yield from each, (3) need for increased temporal resolution to observe plume evolution, (4) a lack of established processes and technologies for integrated permanent sensors in the oil and gas industry and (5) a lack of regulatory guidance concerning the amount, type, and duration of monitoring required for long-term performance confirmation of a CO₂ storage site. In this paper we will examine some of the latest innovations in well-based monitoring and present examples of integrated monitoring programs.

Keywords: CO2 monitoring, observation well, integrated completion, borehole instrumentation, geological storage.

1. Introduction

The primary aim of well-based monitoring within the oil and gas industries is to provide information that can be used to optimize reservoir management, enabling safe and economic extraction of oil and gas from the ground. Well based-monitoring of oil and gas reservoirs includes a broad array of techniques, using a diverse suite of instruments. During drilling, core is often recovered to permit petrophysical measurements and provide fluid saturation information. Core plugs from the larger core are often extracted to measure permeability and porosity and segments
of core can be used to conduct core fluid studies. Wireline logs provide information using non-contact methods (e.g. neutrons, seismic and electrical waves) to periodically interrogate the formation. In addition, permanently deployed sensors and repeat geophysical surveys can assess changes in the subsurface.

Reservoir management is an important driver for well-based monitoring of CO₂ storage operations. However, additional informational requirements arise during CO₂ emplacement that do not exist during conventional fluid production activities. Owing to potential complex issues arising from the various national and state regulatory frameworks that will guide CO₂ storage, the plume needs to be constrained to legally available pore space. Furthermore, coupled subsurface processes—including hydrological, mechanical, and geochemical—must be understood to ensure the permanence of the stored CO₂. While CO₂ has been injected in the subsurface for over 30 years for enhanced oil recovery, the additional requirement to assure the safe storage of extremely large volumes of emplaced CO₂ put additional requirements on subsurface monitoring activities.

While tools used for monitoring oil and gas reservoirs have evolved continuously over the last eighty years, large scale implementation of CO₂ sequestration and the deployment of monitoring technologies will need to be extremely rapid if geosequestration is to be an effective tool for mitigating the worst consequences of climate change. Several pilot scale studies have provided an opportunity for testing the performance of traditional well-based methods, along with the development of completely new tools and techniques. This paper highlights some of the results of these early demonstration projects and discusses the potential for integrated borehole monitoring completions for maximizing multifunctional data gathering opportunities.

2. Well-based monitoring technologies

Wireline logging

Wireline logging covers a broad array of measurement techniques in which a sonde is trolled through a wellbore and data is transmitted from sensors to the surface for recording. Commonly deployed wireline logs include gamma ray density, formation resistivity, acoustic velocity, self-potential, temperature and pressure. Oilfield service providers have made a continuous effort to increase the quantity and quality of wellbore information with new and more sophisticated tools including formation microimagers (FMI), neutron cross-section capture (Residual Saturation Tool), and nuclear magnetic resonance scanners (NMR). In addition to sondes that collect data as they are being trolled through a well, there are wireline tools to collect fluid samples such as the Kuster flow through sampler, Schlumberger’s Modular Formation Dynamics Tester (MDT)) and also to retrieve sidewall cores for later analysis.

Several pilot CO₂ storage studies have relied upon standard oilfield tools for characterizing the distribution and saturation of CO₂ in the formation. In the Nagaoka CO₂ injection experiment conducted in a brine saturated sandstone, repeat logging surveys were conducted in three observation wells (Xue et al., 2006). Estimates for CO₂ saturation were developed using decreases in sonic velocity (noted most clearly in p-wave velocities) and increases in resistivity (measured using a dual-induction tool). Based on the data collected at Nagaoka, the travel time from the injection borehole to the observation boreholes was determined along with an estimate for CO₂ sweep efficiency.

The Frio Brine Pilot Test conducted in 2004 consisted of the injection of 1600 Tonnes of CO₂ in a steeply dipping brine saturated sandstone beneath a shale caprock [Hovorka, 2006]. Repeat surveys were conducted using a wire-line deployed reservoir saturation tool (RST), which uses pulsed neutron capture to determine changing brine saturation. Sigma (S), the parameter collected by the RST tool, is derived from the rate of capture of thermal neutrons (mainly chlorine). The high value of S for formation water derived from brine conductivity allows estimation of S_w and the inverse, CO₂ saturation [Sakurai et al., 2005]. A time-lapse series of five logs in the observation well was collected and is shown in Figure 1. To obtain the images shown, careful corrections needed to be applied to invert the data because of changes in borehole completions. The RST logs display good sensitivity to the presence of CO₂ and with care can be used to infer changes in CO₂ saturation. However given the open borehole along the perforated zone, it may be difficult to determine the representativeness of the well-based measurements in predicting CO₂ saturation deeper in the formation.
Geophysical techniques

Early work at Sleipner (Arts et al., 2004) showed the ability of surface seismic to detect and monitor subsurface CO₂. A traditional borehole method to calibrate and augment surface seismic is Vertical Seismic Profiling (VSP) in which seismic sensors are placed in a borehole and record data from surface sources. At the Frio Pilot, time-lapse VSP was successfully demonstrated to detect and map a CO₂ plume in the vicinity of the injection well (Daley, et al, 2007a). While VSP is spatially limited to the vicinity of a well, the near-well region is important to monitor for plume migration. Long term monitoring using the VSP method is more cost effective if permanent sensors are used. Such a permanent deployment was tested at Penn-West (Chalaturnyk, et al, 2006) and a semi-permanent VSP sensor deployment was integrated with other instruments at the Otway Project (Daley et al., 2008). Major, et al, 2006, are investigating use of inexpensive shallow ‘microholes’ for time-lapse VSP monitoring. Borehole sensor deployments also provide excellent microseismic monitoring.

A more unusual type of measurement is crosswell seismic imaging. Crosswell surveys provide tomographic imaging between two wells. Developed for oil reservoir monitoring in the early 1990’s, crosswell imaging provides a high resolution (~ 1-10 m) spatial image of subsurface properties. This is important for CO₂ sequestration where understanding the relationship between seismic velocity and CO₂ saturation is essential for quantitative interpretation of surface seismic. At the Frio Pilot, a crosswell survey was successful in imaging the velocity change induced by CO₂ injection (Daley, et al, 2007a, Ajo-Franklin, et al, 2008). Similarly at the Nagaoka Pilot, time-lapse crosswell and sonic logging measured velocity changes induced by CO₂ injection (Saito et al., 2006, Xue et al, 2006).

At the second injection at Frio (Frio-II Pilot) a unique semi-permanent crosswell monitoring scheme was developed (Daley, et al, 2007b) utilizing a tubing-deployed seismic source and sensors. This CASSM (continuous
active source seismic monitoring) experiment was able to monitor the development of the CO₂ plume in real time over the course of the 2 week injection with high spatial (~2m) and temporal (~15 min.) sampling. Figure 2 shows a schematic of the Frio-II CASSM experiment with conceptual CO₂ plume after one day (inner short dash) and after two days (outer long dash), with measured delay times at three sensor depths over three and a half days of CO₂ injection (right).

![Schematic of Frio-II seismic monitoring experiment with conceptual CO₂ plume after one day (inner short dash) and after two days (outer long dash), with measured delay times at three sensor depths over three and a half days of CO₂ injection](image)

**Figure 2.** Schematic of Frio-II seismic monitoring experiment with conceptual CO₂ plume after one day (inner short dash) and after two days (outer long dash), with measured delay times at three sensor depths over three and a half days of CO₂ injection (right).

**Geochemical Sampling**

Geochemical sampling is used to assess rock-water interaction in order to better understand the ultimate fate of emplaced CO₂ and assess the integrity of reservoir seals. There are numerous techniques for acquiring downhole fluid samples. Where reservoir operations support continuous productions of fluids, such as at CO₂ EOR site (e.g. Weyburn Field), wellhead samples provide fluids for geochemical analysis. At many CO₂ sites, observation wells may play a passive role, where periodic production of large volumes of fluids may be operationally difficult and lead to degassing and disturbance of sample integrity. Numerous methods have been devised to obtain representative downhole samples while maintaining reservoir pressure conditions.

At the Frio Brine Pilot experiment, pre-CO₂ injection samples were collected by deploying both Kuster flow-through samplers and Schlumberger’s MDT tool [Kharaka et al., 2006]. However it was determined that during the active CO₂ injection period of testing, the continuous running of a wireline was not operationally feasible and would interfere with other planned measurements. Based on the spatial limitations that arose from the co-deployment of a string of hydrophones and a pressure/temperature gauge, a new small diameter permanently deployable geochemical sampler, referred to as a U-tube sampler [Freifeld et al. 2005] was developed. The U-tube sampling system (Figure 2) utilizes compressed gas to force the fluid to be sampled through a small diameter tube that goes down to the zone of interest and returns to the surface, forming a ‘‘U.’’ A short stinger with a check valve runs through a pneumatic
packer, used to isolate the perforated section of the well bore, and terminates at an inlet filter sitting in formation fluid. To minimize alteration of the sampled fluids, the fluid that is forced up the U-tube sample line is collected in pre-evacuated cylinders and driven into the cylinder until the cylinder matches formation pressure. To determine the density of the sampled—necessary to determine the ratio of supercritical CO$_2$ to brine—strain gages were mounted beneath each cylinder. Field measurements of ephemeral properties such as alkalinity and pH were performed along with real-time analysis of fluid gas composition using a portable quadrupole mass spectrometer [Freifeld and Trautz, 2006]. Additional samples in both pressurized and non-pressurized containers were collected for laboratory analysis.

**Integrated well-based monitoring**

Because of the high cost of drilling and completing deep wellbores, there are strong pressures to maximize the data collected. Traditionally measurements would be performed sequentially within a borehole, with the installation and removal of purpose built equipment for each independent measurement. The oil and gas industries have slowly moved to the incorporation of permanent downhole sensors, such as to permit continuous pressure and temperature monitoring while providing access for acquiring wireline logs. Recent CO$_2$ storage pilot studies, with a need to more fully understand the movement and distribution of CO$_2$ have incorporated significantly more sophisticated strings of multi-function permanently deployed sensors, while still facilitating access for wire-line deployed instruments, in what is referred to as integrated well-based monitoring. The term “integrated” arises from the simultaneous deployment of multiple sensor strings and data survey methods without a need for costly well-workover operations.

Examples of integrated well-based monitoring systems can be found at (1) the Frio-II experiment, Dayton, Texas, USA [Daley et al, 2008], (2) the Penn West Pilot, Alberta, Canada [Chalaturnyk et al., 2006], (3) CO$_2$SINK, Ketzin, Germany [Giese et al., 2008], and (4) the Otway Project, Victoria, Australia [Freifeld et. al., 2008a]. For the Frio-II pilot test, a string of 24 hydrophones was deployed concurrently with a U-tube geochemical sampler and a pressure/temperature transducer, strapped onto a 2-3/8” conductor pipe in an observation borehole. As previously discussed, a tubing deployed piezo-electric seismic source facilitated continuous imaging of the CO$_2$ plumes movement between the injection and observation boreholes. Simultaneous U-tube fluid sampling was carried out along with periodic RST wireline surveys. At the Frio-II Pilot, reductions in seismic travel time up to 8% were observed as the CO$_2$ plume crossed the raypaths between the source and receivers. At the Penn West Pilot, two fluid samplers, a string of eight geophones, and six pressure/temperature sensors were tubing deployed to monitor a nearby CO$_2$ injection [Chalaturnyk et al., 2006]. A unique diagnostic data set was collected during cementing operations, where pressure transients were revealed some difficulties in annular isolation because of conduits along the cemented zones.

The Otway Project is the first demonstration project for storage of CO$_2$ in a depleted gas field. To understand the changes in the reservoir induced by the CO2 injection, an existing decommissioned slim gas production well (3.5” casing) located near the crest of an anticline was recompleted as a monitoring borehole. Three U-tube samplers were installed, with one in the gas cap, and two beneath the gas water contact to observe the hydrologic and geochemical
changes occurring as the reservoir fills with supercritical CO₂ and the gas-water contact is pushed down. A string of 24 sensors (21 geophones and 3 hydrophones) permitted three distinct seismic measurements: (1) high resolution travel time through the reservoir, (2) walkaway vertical seismic profiling, and (3) passive microseismic monitoring. In addition two pressure/temperature gages were installed but failed to function properly. Data collection at the Otway site is ongoing, with weekly geochemical sampling and bimonthly seismic surveys.

The CO₂SINK CO₂ storage experiment, Ketzin, Germany, will store approximately 60,000 Tonnes of CO₂ in a saline formation using three boreholes, an injection borehole with two nearby monitoring wells; all three boreholes have been completed with integrated monitoring systems. Cemented along the outside of the casing of each well are electrodes for conducting electrical resistance tomography surveys, along with fiber-optic distributed temperature sensors (DTS) [Giese et al., 2008]. The inside of each wellbore is available for periodic wireline logging, crosswell seismic surveys and gas sampling.

One instrument being used at CO₂SINK, not previously deployed during a CO₂ sequestration experiment, is the recently developed distributed perturbation thermal sensor (DTPS) [Freifeld 2008b]. The DTPS provides estimates for CO₂ saturation in the formation by proxy measurement of formation thermal conductivity. Since formation thermal conductivity is a function of rock matrix conductivity and fluid conductivity, any increase in CO₂ saturation and corresponding decrease in brine saturation will result in a reduction in bulk thermal conductivity. To perform a DTPS measurement an electrical heater (consisting of a loop of wire) was installed along with the DTS fiber-optic cables. The heater is energized for 48 hours, providing approximately 20 W/m of heat along the wellbore. Given the 1 m spatial resolution of the DTS, the thermal transients recorded can be inverted to provide estimates for thermal conductivity, and hence also CO₂ saturation with correspondingly high spatial resolution. Figure 4 shows data collected with the DTPS for well Ktzi 202 along with caliper, gamma ray, density and porosity. Estimates for baseline thermal conductivity for both well Ktzi 201 and Ktzi 202 are also shown. As CO₂ injection progresses at CO₂SINK, the CO₂ saturation in the formation around the observation boreholes is expected to increase, resulting in a measureable reduction in the formation’s thermal conductivity.

![Figure 4. Well log for Ktzi202 (left) showing successive thermal profiles during DTPS heating along with estimated density, porosity and lithology. On the right are the estimated baseline thermal conductivities for Ktzi 201 and Ktzi 202. Note that at a depth of ~560 m there is an anhydrite rich marker bed which is indicated by elevated density and thermal conductivity.](image-url)
3. Conclusions

Many standard oilfield tools such as sonic and dual induction logs are readily adaptable for monitoring CO₂ storage reservoirs. Seismic surveys are particularly sensitive to changes in the seismic properties of CO₂ saturated rock. While these existing tools will most likely serve as the basis for monitoring programs owing to their history and familiarity, newly developed instruments that are sensitive to property changes caused by emplaced CO₂ are rapidly being exploited. The DTPS monitors reductions in thermal conductivity that arise from the low thermal conductivity of supercritical CO₂. The U-tube sampler has been demonstrated at both the Frio Brine Pilot and the Otway Project as being capable of collecting uncontaminated samples of multi-phase fluids. Additional laboratory studies will be required to understand the effects of variable CO₂ saturation of seismic and electrical properties; as these studies are conducted, well-based geophysical surveys will be able to estimate CO₂ saturation. The numerous world-wide CO₂ storage demonstration projects and progress towards commercial-scale sequestration is resulting in the rapid adoption of existing and new tools and technologies for monitoring CO₂ storage in the subsurface.

4. Acknowledgments

Funding for the Frio Brine Pilot, and Berkeley Laboratory participation in the Otway Project, and CO₂SINK was provided by the National Energy Research Laboratory, US Department of Energy, Office of Fossil Energy, under DOE Contract Number DE-AC02-05CH11231. The work at CO₂SINK has been supported by the generous funding and technical support of the CO₂SINK Integrated Project by the European Commission and by the CO₂SINK industrial partners RWE Power AG, Shell International Exploration and Production, Statoil ASA, Vattenfall Europe, and Verbundnetz Gas AG. The Otway Project has been supported by the Australian Federal Government under the Cooperative Research Centre for Greenhouse Gas Technologies along with the support and participation of ACARP, the CSIRO, Foundation for Research Science and Technology (NZ), Geoscience Australia and the Universities of Adelaide, Curtin, Melbourne, Monash and NSW along with numerous industry partners. All of these demonstration projects would not be possible without the support of local government entities and the host communities.

5. References


